1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // 18 // Definitions of resource data structures. 19 // 20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H 21 #define _LIBS_UTILS_RESOURCE_TYPES_H 22 23 #include <androidfw/Asset.h> 24 #include <androidfw/LocaleData.h> 25 #include <utils/Errors.h> 26 #include <utils/String16.h> 27 #include <utils/Vector.h> 28 #include <utils/KeyedVector.h> 29 30 #include <utils/threads.h> 31 32 #include <stdint.h> 33 #include <sys/types.h> 34 35 #include <android/configuration.h> 36 37 #include <memory> 38 39 namespace android { 40 41 constexpr const static uint32_t kIdmapMagic = 0x504D4449u; 42 constexpr const static uint32_t kIdmapCurrentVersion = 0x00000001u; 43 44 /** 45 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of 46 * casting on raw data and expect char16_t to be exactly 16 bits. 47 */ 48 #if __cplusplus >= 201103L 49 struct __assertChar16Size { 50 static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits"); 51 static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned"); 52 }; 53 #endif 54 55 /** ******************************************************************** 56 * PNG Extensions 57 * 58 * New private chunks that may be placed in PNG images. 59 * 60 *********************************************************************** */ 61 62 /** 63 * This chunk specifies how to split an image into segments for 64 * scaling. 65 * 66 * There are J horizontal and K vertical segments. These segments divide 67 * the image into J*K regions as follows (where J=4 and K=3): 68 * 69 * F0 S0 F1 S1 70 * +-----+----+------+-------+ 71 * S2| 0 | 1 | 2 | 3 | 72 * +-----+----+------+-------+ 73 * | | | | | 74 * | | | | | 75 * F2| 4 | 5 | 6 | 7 | 76 * | | | | | 77 * | | | | | 78 * +-----+----+------+-------+ 79 * S3| 8 | 9 | 10 | 11 | 80 * +-----+----+------+-------+ 81 * 82 * Each horizontal and vertical segment is considered to by either 83 * stretchable (marked by the Sx labels) or fixed (marked by the Fy 84 * labels), in the horizontal or vertical axis, respectively. In the 85 * above example, the first is horizontal segment (F0) is fixed, the 86 * next is stretchable and then they continue to alternate. Note that 87 * the segment list for each axis can begin or end with a stretchable 88 * or fixed segment. 89 * 90 * The relative sizes of the stretchy segments indicates the relative 91 * amount of stretchiness of the regions bordered by the segments. For 92 * example, regions 3, 7 and 11 above will take up more horizontal space 93 * than regions 1, 5 and 9 since the horizontal segment associated with 94 * the first set of regions is larger than the other set of regions. The 95 * ratios of the amount of horizontal (or vertical) space taken by any 96 * two stretchable slices is exactly the ratio of their corresponding 97 * segment lengths. 98 * 99 * xDivs and yDivs are arrays of horizontal and vertical pixel 100 * indices. The first pair of Divs (in either array) indicate the 101 * starting and ending points of the first stretchable segment in that 102 * axis. The next pair specifies the next stretchable segment, etc. So 103 * in the above example xDiv[0] and xDiv[1] specify the horizontal 104 * coordinates for the regions labeled 1, 5 and 9. xDiv[2] and 105 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that 106 * the leftmost slices always start at x=0 and the rightmost slices 107 * always end at the end of the image. So, for example, the regions 0, 108 * 4 and 8 (which are fixed along the X axis) start at x value 0 and 109 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at 110 * xDiv[2]. 111 * 112 * The colors array contains hints for each of the regions. They are 113 * ordered according left-to-right and top-to-bottom as indicated above. 114 * For each segment that is a solid color the array entry will contain 115 * that color value; otherwise it will contain NO_COLOR. Segments that 116 * are completely transparent will always have the value TRANSPARENT_COLOR. 117 * 118 * The PNG chunk type is "npTc". 119 */ 120 struct alignas(uintptr_t) Res_png_9patch 121 { Res_png_9patchRes_png_9patch122 Res_png_9patch() : wasDeserialized(false), xDivsOffset(0), 123 yDivsOffset(0), colorsOffset(0) { } 124 125 int8_t wasDeserialized; 126 uint8_t numXDivs; 127 uint8_t numYDivs; 128 uint8_t numColors; 129 130 // The offset (from the start of this structure) to the xDivs & yDivs 131 // array for this 9patch. To get a pointer to this array, call 132 // getXDivs or getYDivs. Note that the serialized form for 9patches places 133 // the xDivs, yDivs and colors arrays immediately after the location 134 // of the Res_png_9patch struct. 135 uint32_t xDivsOffset; 136 uint32_t yDivsOffset; 137 138 int32_t paddingLeft, paddingRight; 139 int32_t paddingTop, paddingBottom; 140 141 enum { 142 // The 9 patch segment is not a solid color. 143 NO_COLOR = 0x00000001, 144 145 // The 9 patch segment is completely transparent. 146 TRANSPARENT_COLOR = 0x00000000 147 }; 148 149 // The offset (from the start of this structure) to the colors array 150 // for this 9patch. 151 uint32_t colorsOffset; 152 153 // Convert data from device representation to PNG file representation. 154 void deviceToFile(); 155 // Convert data from PNG file representation to device representation. 156 void fileToDevice(); 157 158 // Serialize/Marshall the patch data into a newly malloc-ed block. 159 static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 160 const int32_t* yDivs, const uint32_t* colors); 161 // Serialize/Marshall the patch data into |outData|. 162 static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 163 const int32_t* yDivs, const uint32_t* colors, void* outData); 164 // Deserialize/Unmarshall the patch data 165 static Res_png_9patch* deserialize(void* data); 166 // Compute the size of the serialized data structure 167 size_t serializedSize() const; 168 169 // These tell where the next section of a patch starts. 170 // For example, the first patch includes the pixels from 171 // 0 to xDivs[0]-1 and the second patch includes the pixels 172 // from xDivs[0] to xDivs[1]-1. getXDivsRes_png_9patch173 inline int32_t* getXDivs() const { 174 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset); 175 } getYDivsRes_png_9patch176 inline int32_t* getYDivs() const { 177 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset); 178 } getColorsRes_png_9patch179 inline uint32_t* getColors() const { 180 return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset); 181 } 182 183 } __attribute__((packed)); 184 185 /** ******************************************************************** 186 * Base Types 187 * 188 * These are standard types that are shared between multiple specific 189 * resource types. 190 * 191 *********************************************************************** */ 192 193 /** 194 * Header that appears at the front of every data chunk in a resource. 195 */ 196 struct ResChunk_header 197 { 198 // Type identifier for this chunk. The meaning of this value depends 199 // on the containing chunk. 200 uint16_t type; 201 202 // Size of the chunk header (in bytes). Adding this value to 203 // the address of the chunk allows you to find its associated data 204 // (if any). 205 uint16_t headerSize; 206 207 // Total size of this chunk (in bytes). This is the chunkSize plus 208 // the size of any data associated with the chunk. Adding this value 209 // to the chunk allows you to completely skip its contents (including 210 // any child chunks). If this value is the same as chunkSize, there is 211 // no data associated with the chunk. 212 uint32_t size; 213 }; 214 215 enum { 216 RES_NULL_TYPE = 0x0000, 217 RES_STRING_POOL_TYPE = 0x0001, 218 RES_TABLE_TYPE = 0x0002, 219 RES_XML_TYPE = 0x0003, 220 221 // Chunk types in RES_XML_TYPE 222 RES_XML_FIRST_CHUNK_TYPE = 0x0100, 223 RES_XML_START_NAMESPACE_TYPE= 0x0100, 224 RES_XML_END_NAMESPACE_TYPE = 0x0101, 225 RES_XML_START_ELEMENT_TYPE = 0x0102, 226 RES_XML_END_ELEMENT_TYPE = 0x0103, 227 RES_XML_CDATA_TYPE = 0x0104, 228 RES_XML_LAST_CHUNK_TYPE = 0x017f, 229 // This contains a uint32_t array mapping strings in the string 230 // pool back to resource identifiers. It is optional. 231 RES_XML_RESOURCE_MAP_TYPE = 0x0180, 232 233 // Chunk types in RES_TABLE_TYPE 234 RES_TABLE_PACKAGE_TYPE = 0x0200, 235 RES_TABLE_TYPE_TYPE = 0x0201, 236 RES_TABLE_TYPE_SPEC_TYPE = 0x0202, 237 RES_TABLE_LIBRARY_TYPE = 0x0203 238 }; 239 240 /** 241 * Macros for building/splitting resource identifiers. 242 */ 243 #define Res_VALIDID(resid) (resid != 0) 244 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0) 245 #define Res_MAKEID(package, type, entry) \ 246 (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF)) 247 #define Res_GETPACKAGE(id) ((id>>24)-1) 248 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1) 249 #define Res_GETENTRY(id) (id&0xFFFF) 250 251 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0) 252 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF)) 253 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF)) 254 255 static const size_t Res_MAXPACKAGE = 255; 256 static const size_t Res_MAXTYPE = 255; 257 258 /** 259 * Representation of a value in a resource, supplying type 260 * information. 261 */ 262 struct Res_value 263 { 264 // Number of bytes in this structure. 265 uint16_t size; 266 267 // Always set to 0. 268 uint8_t res0; 269 270 // Type of the data value. 271 enum : uint8_t { 272 // The 'data' is either 0 or 1, specifying this resource is either 273 // undefined or empty, respectively. 274 TYPE_NULL = 0x00, 275 // The 'data' holds a ResTable_ref, a reference to another resource 276 // table entry. 277 TYPE_REFERENCE = 0x01, 278 // The 'data' holds an attribute resource identifier. 279 TYPE_ATTRIBUTE = 0x02, 280 // The 'data' holds an index into the containing resource table's 281 // global value string pool. 282 TYPE_STRING = 0x03, 283 // The 'data' holds a single-precision floating point number. 284 TYPE_FLOAT = 0x04, 285 // The 'data' holds a complex number encoding a dimension value, 286 // such as "100in". 287 TYPE_DIMENSION = 0x05, 288 // The 'data' holds a complex number encoding a fraction of a 289 // container. 290 TYPE_FRACTION = 0x06, 291 // The 'data' holds a dynamic ResTable_ref, which needs to be 292 // resolved before it can be used like a TYPE_REFERENCE. 293 TYPE_DYNAMIC_REFERENCE = 0x07, 294 // The 'data' holds an attribute resource identifier, which needs to be resolved 295 // before it can be used like a TYPE_ATTRIBUTE. 296 TYPE_DYNAMIC_ATTRIBUTE = 0x08, 297 298 // Beginning of integer flavors... 299 TYPE_FIRST_INT = 0x10, 300 301 // The 'data' is a raw integer value of the form n..n. 302 TYPE_INT_DEC = 0x10, 303 // The 'data' is a raw integer value of the form 0xn..n. 304 TYPE_INT_HEX = 0x11, 305 // The 'data' is either 0 or 1, for input "false" or "true" respectively. 306 TYPE_INT_BOOLEAN = 0x12, 307 308 // Beginning of color integer flavors... 309 TYPE_FIRST_COLOR_INT = 0x1c, 310 311 // The 'data' is a raw integer value of the form #aarrggbb. 312 TYPE_INT_COLOR_ARGB8 = 0x1c, 313 // The 'data' is a raw integer value of the form #rrggbb. 314 TYPE_INT_COLOR_RGB8 = 0x1d, 315 // The 'data' is a raw integer value of the form #argb. 316 TYPE_INT_COLOR_ARGB4 = 0x1e, 317 // The 'data' is a raw integer value of the form #rgb. 318 TYPE_INT_COLOR_RGB4 = 0x1f, 319 320 // ...end of integer flavors. 321 TYPE_LAST_COLOR_INT = 0x1f, 322 323 // ...end of integer flavors. 324 TYPE_LAST_INT = 0x1f 325 }; 326 uint8_t dataType; 327 328 // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION) 329 enum { 330 // Where the unit type information is. This gives us 16 possible 331 // types, as defined below. 332 COMPLEX_UNIT_SHIFT = 0, 333 COMPLEX_UNIT_MASK = 0xf, 334 335 // TYPE_DIMENSION: Value is raw pixels. 336 COMPLEX_UNIT_PX = 0, 337 // TYPE_DIMENSION: Value is Device Independent Pixels. 338 COMPLEX_UNIT_DIP = 1, 339 // TYPE_DIMENSION: Value is a Scaled device independent Pixels. 340 COMPLEX_UNIT_SP = 2, 341 // TYPE_DIMENSION: Value is in points. 342 COMPLEX_UNIT_PT = 3, 343 // TYPE_DIMENSION: Value is in inches. 344 COMPLEX_UNIT_IN = 4, 345 // TYPE_DIMENSION: Value is in millimeters. 346 COMPLEX_UNIT_MM = 5, 347 348 // TYPE_FRACTION: A basic fraction of the overall size. 349 COMPLEX_UNIT_FRACTION = 0, 350 // TYPE_FRACTION: A fraction of the parent size. 351 COMPLEX_UNIT_FRACTION_PARENT = 1, 352 353 // Where the radix information is, telling where the decimal place 354 // appears in the mantissa. This give us 4 possible fixed point 355 // representations as defined below. 356 COMPLEX_RADIX_SHIFT = 4, 357 COMPLEX_RADIX_MASK = 0x3, 358 359 // The mantissa is an integral number -- i.e., 0xnnnnnn.0 360 COMPLEX_RADIX_23p0 = 0, 361 // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn 362 COMPLEX_RADIX_16p7 = 1, 363 // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn 364 COMPLEX_RADIX_8p15 = 2, 365 // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn 366 COMPLEX_RADIX_0p23 = 3, 367 368 // Where the actual value is. This gives us 23 bits of 369 // precision. The top bit is the sign. 370 COMPLEX_MANTISSA_SHIFT = 8, 371 COMPLEX_MANTISSA_MASK = 0xffffff 372 }; 373 374 // Possible data values for TYPE_NULL. 375 enum { 376 // The value is not defined. 377 DATA_NULL_UNDEFINED = 0, 378 // The value is explicitly defined as empty. 379 DATA_NULL_EMPTY = 1 380 }; 381 382 // The data for this item, as interpreted according to dataType. 383 typedef uint32_t data_type; 384 data_type data; 385 386 void copyFrom_dtoh(const Res_value& src); 387 }; 388 389 /** 390 * This is a reference to a unique entry (a ResTable_entry structure) 391 * in a resource table. The value is structured as: 0xpptteeee, 392 * where pp is the package index, tt is the type index in that 393 * package, and eeee is the entry index in that type. The package 394 * and type values start at 1 for the first item, to help catch cases 395 * where they have not been supplied. 396 */ 397 struct ResTable_ref 398 { 399 uint32_t ident; 400 }; 401 402 /** 403 * Reference to a string in a string pool. 404 */ 405 struct ResStringPool_ref 406 { 407 // Index into the string pool table (uint32_t-offset from the indices 408 // immediately after ResStringPool_header) at which to find the location 409 // of the string data in the pool. 410 uint32_t index; 411 }; 412 413 /** ******************************************************************** 414 * String Pool 415 * 416 * A set of strings that can be references by others through a 417 * ResStringPool_ref. 418 * 419 *********************************************************************** */ 420 421 /** 422 * Definition for a pool of strings. The data of this chunk is an 423 * array of uint32_t providing indices into the pool, relative to 424 * stringsStart. At stringsStart are all of the UTF-16 strings 425 * concatenated together; each starts with a uint16_t of the string's 426 * length and each ends with a 0x0000 terminator. If a string is > 427 * 32767 characters, the high bit of the length is set meaning to take 428 * those 15 bits as a high word and it will be followed by another 429 * uint16_t containing the low word. 430 * 431 * If styleCount is not zero, then immediately following the array of 432 * uint32_t indices into the string table is another array of indices 433 * into a style table starting at stylesStart. Each entry in the 434 * style table is an array of ResStringPool_span structures. 435 */ 436 struct ResStringPool_header 437 { 438 struct ResChunk_header header; 439 440 // Number of strings in this pool (number of uint32_t indices that follow 441 // in the data). 442 uint32_t stringCount; 443 444 // Number of style span arrays in the pool (number of uint32_t indices 445 // follow the string indices). 446 uint32_t styleCount; 447 448 // Flags. 449 enum { 450 // If set, the string index is sorted by the string values (based 451 // on strcmp16()). 452 SORTED_FLAG = 1<<0, 453 454 // String pool is encoded in UTF-8 455 UTF8_FLAG = 1<<8 456 }; 457 uint32_t flags; 458 459 // Index from header of the string data. 460 uint32_t stringsStart; 461 462 // Index from header of the style data. 463 uint32_t stylesStart; 464 }; 465 466 /** 467 * This structure defines a span of style information associated with 468 * a string in the pool. 469 */ 470 struct ResStringPool_span 471 { 472 enum { 473 END = 0xFFFFFFFF 474 }; 475 476 // This is the name of the span -- that is, the name of the XML 477 // tag that defined it. The special value END (0xFFFFFFFF) indicates 478 // the end of an array of spans. 479 ResStringPool_ref name; 480 481 // The range of characters in the string that this span applies to. 482 uint32_t firstChar, lastChar; 483 }; 484 485 /** 486 * Convenience class for accessing data in a ResStringPool resource. 487 */ 488 class ResStringPool 489 { 490 public: 491 ResStringPool(); 492 ResStringPool(const void* data, size_t size, bool copyData=false); 493 ~ResStringPool(); 494 495 void setToEmpty(); 496 status_t setTo(const void* data, size_t size, bool copyData=false); 497 498 status_t getError() const; 499 500 void uninit(); 501 502 // Return string entry as UTF16; if the pool is UTF8, the string will 503 // be converted before returning. stringAt(const ResStringPool_ref & ref,size_t * outLen)504 inline const char16_t* stringAt(const ResStringPool_ref& ref, size_t* outLen) const { 505 return stringAt(ref.index, outLen); 506 } 507 const char16_t* stringAt(size_t idx, size_t* outLen) const; 508 509 // Note: returns null if the string pool is not UTF8. 510 const char* string8At(size_t idx, size_t* outLen) const; 511 512 // Return string whether the pool is UTF8 or UTF16. Does not allow you 513 // to distinguish null. 514 const String8 string8ObjectAt(size_t idx) const; 515 516 const ResStringPool_span* styleAt(const ResStringPool_ref& ref) const; 517 const ResStringPool_span* styleAt(size_t idx) const; 518 519 ssize_t indexOfString(const char16_t* str, size_t strLen) const; 520 521 size_t size() const; 522 size_t styleCount() const; 523 size_t bytes() const; 524 525 bool isSorted() const; 526 bool isUTF8() const; 527 528 private: 529 status_t mError; 530 void* mOwnedData; 531 const ResStringPool_header* mHeader; 532 size_t mSize; 533 mutable Mutex mDecodeLock; 534 const uint32_t* mEntries; 535 const uint32_t* mEntryStyles; 536 const void* mStrings; 537 char16_t mutable** mCache; 538 uint32_t mStringPoolSize; // number of uint16_t 539 const uint32_t* mStyles; 540 uint32_t mStylePoolSize; // number of uint32_t 541 542 const char* stringDecodeAt(size_t idx, const uint8_t* str, const size_t encLen, 543 size_t* outLen) const; 544 }; 545 546 /** 547 * Wrapper class that allows the caller to retrieve a string from 548 * a string pool without knowing which string pool to look. 549 */ 550 class StringPoolRef { 551 public: 552 StringPoolRef() = default; 553 StringPoolRef(const ResStringPool* pool, uint32_t index); 554 555 const char* string8(size_t* outLen) const; 556 const char16_t* string16(size_t* outLen) const; 557 558 private: 559 const ResStringPool* mPool = nullptr; 560 uint32_t mIndex = 0u; 561 }; 562 563 /** ******************************************************************** 564 * XML Tree 565 * 566 * Binary representation of an XML document. This is designed to 567 * express everything in an XML document, in a form that is much 568 * easier to parse on the device. 569 * 570 *********************************************************************** */ 571 572 /** 573 * XML tree header. This appears at the front of an XML tree, 574 * describing its content. It is followed by a flat array of 575 * ResXMLTree_node structures; the hierarchy of the XML document 576 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE 577 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array. 578 */ 579 struct ResXMLTree_header 580 { 581 struct ResChunk_header header; 582 }; 583 584 /** 585 * Basic XML tree node. A single item in the XML document. Extended info 586 * about the node can be found after header.headerSize. 587 */ 588 struct ResXMLTree_node 589 { 590 struct ResChunk_header header; 591 592 // Line number in original source file at which this element appeared. 593 uint32_t lineNumber; 594 595 // Optional XML comment that was associated with this element; -1 if none. 596 struct ResStringPool_ref comment; 597 }; 598 599 /** 600 * Extended XML tree node for CDATA tags -- includes the CDATA string. 601 * Appears header.headerSize bytes after a ResXMLTree_node. 602 */ 603 struct ResXMLTree_cdataExt 604 { 605 // The raw CDATA character data. 606 struct ResStringPool_ref data; 607 608 // The typed value of the character data if this is a CDATA node. 609 struct Res_value typedData; 610 }; 611 612 /** 613 * Extended XML tree node for namespace start/end nodes. 614 * Appears header.headerSize bytes after a ResXMLTree_node. 615 */ 616 struct ResXMLTree_namespaceExt 617 { 618 // The prefix of the namespace. 619 struct ResStringPool_ref prefix; 620 621 // The URI of the namespace. 622 struct ResStringPool_ref uri; 623 }; 624 625 /** 626 * Extended XML tree node for element start/end nodes. 627 * Appears header.headerSize bytes after a ResXMLTree_node. 628 */ 629 struct ResXMLTree_endElementExt 630 { 631 // String of the full namespace of this element. 632 struct ResStringPool_ref ns; 633 634 // String name of this node if it is an ELEMENT; the raw 635 // character data if this is a CDATA node. 636 struct ResStringPool_ref name; 637 }; 638 639 /** 640 * Extended XML tree node for start tags -- includes attribute 641 * information. 642 * Appears header.headerSize bytes after a ResXMLTree_node. 643 */ 644 struct ResXMLTree_attrExt 645 { 646 // String of the full namespace of this element. 647 struct ResStringPool_ref ns; 648 649 // String name of this node if it is an ELEMENT; the raw 650 // character data if this is a CDATA node. 651 struct ResStringPool_ref name; 652 653 // Byte offset from the start of this structure where the attributes start. 654 uint16_t attributeStart; 655 656 // Size of the ResXMLTree_attribute structures that follow. 657 uint16_t attributeSize; 658 659 // Number of attributes associated with an ELEMENT. These are 660 // available as an array of ResXMLTree_attribute structures 661 // immediately following this node. 662 uint16_t attributeCount; 663 664 // Index (1-based) of the "id" attribute. 0 if none. 665 uint16_t idIndex; 666 667 // Index (1-based) of the "class" attribute. 0 if none. 668 uint16_t classIndex; 669 670 // Index (1-based) of the "style" attribute. 0 if none. 671 uint16_t styleIndex; 672 }; 673 674 struct ResXMLTree_attribute 675 { 676 // Namespace of this attribute. 677 struct ResStringPool_ref ns; 678 679 // Name of this attribute. 680 struct ResStringPool_ref name; 681 682 // The original raw string value of this attribute. 683 struct ResStringPool_ref rawValue; 684 685 // Processesd typed value of this attribute. 686 struct Res_value typedValue; 687 }; 688 689 class ResXMLTree; 690 691 class ResXMLParser 692 { 693 public: 694 ResXMLParser(const ResXMLTree& tree); 695 696 enum event_code_t { 697 BAD_DOCUMENT = -1, 698 START_DOCUMENT = 0, 699 END_DOCUMENT = 1, 700 701 FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE, 702 703 START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE, 704 END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE, 705 START_TAG = RES_XML_START_ELEMENT_TYPE, 706 END_TAG = RES_XML_END_ELEMENT_TYPE, 707 TEXT = RES_XML_CDATA_TYPE 708 }; 709 710 struct ResXMLPosition 711 { 712 event_code_t eventCode; 713 const ResXMLTree_node* curNode; 714 const void* curExt; 715 }; 716 717 void restart(); 718 719 const ResStringPool& getStrings() const; 720 721 event_code_t getEventType() const; 722 // Note, unlike XmlPullParser, the first call to next() will return 723 // START_TAG of the first element. 724 event_code_t next(); 725 726 // These are available for all nodes: 727 int32_t getCommentID() const; 728 const char16_t* getComment(size_t* outLen) const; 729 uint32_t getLineNumber() const; 730 731 // This is available for TEXT: 732 int32_t getTextID() const; 733 const char16_t* getText(size_t* outLen) const; 734 ssize_t getTextValue(Res_value* outValue) const; 735 736 // These are available for START_NAMESPACE and END_NAMESPACE: 737 int32_t getNamespacePrefixID() const; 738 const char16_t* getNamespacePrefix(size_t* outLen) const; 739 int32_t getNamespaceUriID() const; 740 const char16_t* getNamespaceUri(size_t* outLen) const; 741 742 // These are available for START_TAG and END_TAG: 743 int32_t getElementNamespaceID() const; 744 const char16_t* getElementNamespace(size_t* outLen) const; 745 int32_t getElementNameID() const; 746 const char16_t* getElementName(size_t* outLen) const; 747 748 // Remaining methods are for retrieving information about attributes 749 // associated with a START_TAG: 750 751 size_t getAttributeCount() const; 752 753 // Returns -1 if no namespace, -2 if idx out of range. 754 int32_t getAttributeNamespaceID(size_t idx) const; 755 const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const; 756 757 int32_t getAttributeNameID(size_t idx) const; 758 const char16_t* getAttributeName(size_t idx, size_t* outLen) const; 759 uint32_t getAttributeNameResID(size_t idx) const; 760 761 // These will work only if the underlying string pool is UTF-8. 762 const char* getAttributeNamespace8(size_t idx, size_t* outLen) const; 763 const char* getAttributeName8(size_t idx, size_t* outLen) const; 764 765 int32_t getAttributeValueStringID(size_t idx) const; 766 const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const; 767 768 int32_t getAttributeDataType(size_t idx) const; 769 int32_t getAttributeData(size_t idx) const; 770 ssize_t getAttributeValue(size_t idx, Res_value* outValue) const; 771 772 ssize_t indexOfAttribute(const char* ns, const char* attr) const; 773 ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen, 774 const char16_t* attr, size_t attrLen) const; 775 776 ssize_t indexOfID() const; 777 ssize_t indexOfClass() const; 778 ssize_t indexOfStyle() const; 779 780 void getPosition(ResXMLPosition* pos) const; 781 void setPosition(const ResXMLPosition& pos); 782 783 private: 784 friend class ResXMLTree; 785 786 event_code_t nextNode(); 787 788 const ResXMLTree& mTree; 789 event_code_t mEventCode; 790 const ResXMLTree_node* mCurNode; 791 const void* mCurExt; 792 }; 793 794 class DynamicRefTable; 795 796 /** 797 * Convenience class for accessing data in a ResXMLTree resource. 798 */ 799 class ResXMLTree : public ResXMLParser 800 { 801 public: 802 /** 803 * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation. 804 * The tree stores a clone of the specified DynamicRefTable, so any changes to the original 805 * DynamicRefTable will not affect this tree after instantiation. 806 **/ 807 ResXMLTree(const DynamicRefTable* dynamicRefTable); 808 ResXMLTree(); 809 ~ResXMLTree(); 810 811 status_t setTo(const void* data, size_t size, bool copyData=false); 812 813 status_t getError() const; 814 815 void uninit(); 816 817 private: 818 friend class ResXMLParser; 819 820 status_t validateNode(const ResXMLTree_node* node) const; 821 822 std::unique_ptr<const DynamicRefTable> mDynamicRefTable; 823 824 status_t mError; 825 void* mOwnedData; 826 const ResXMLTree_header* mHeader; 827 size_t mSize; 828 const uint8_t* mDataEnd; 829 ResStringPool mStrings; 830 const uint32_t* mResIds; 831 size_t mNumResIds; 832 const ResXMLTree_node* mRootNode; 833 const void* mRootExt; 834 event_code_t mRootCode; 835 }; 836 837 /** ******************************************************************** 838 * RESOURCE TABLE 839 * 840 *********************************************************************** */ 841 842 /** 843 * Header for a resource table. Its data contains a series of 844 * additional chunks: 845 * * A ResStringPool_header containing all table values. This string pool 846 * contains all of the string values in the entire resource table (not 847 * the names of entries or type identifiers however). 848 * * One or more ResTable_package chunks. 849 * 850 * Specific entries within a resource table can be uniquely identified 851 * with a single integer as defined by the ResTable_ref structure. 852 */ 853 struct ResTable_header 854 { 855 struct ResChunk_header header; 856 857 // The number of ResTable_package structures. 858 uint32_t packageCount; 859 }; 860 861 /** 862 * A collection of resource data types within a package. Followed by 863 * one or more ResTable_type and ResTable_typeSpec structures containing the 864 * entry values for each resource type. 865 */ 866 struct ResTable_package 867 { 868 struct ResChunk_header header; 869 870 // If this is a base package, its ID. Package IDs start 871 // at 1 (corresponding to the value of the package bits in a 872 // resource identifier). 0 means this is not a base package. 873 uint32_t id; 874 875 // Actual name of this package, \0-terminated. 876 uint16_t name[128]; 877 878 // Offset to a ResStringPool_header defining the resource 879 // type symbol table. If zero, this package is inheriting from 880 // another base package (overriding specific values in it). 881 uint32_t typeStrings; 882 883 // Last index into typeStrings that is for public use by others. 884 uint32_t lastPublicType; 885 886 // Offset to a ResStringPool_header defining the resource 887 // key symbol table. If zero, this package is inheriting from 888 // another base package (overriding specific values in it). 889 uint32_t keyStrings; 890 891 // Last index into keyStrings that is for public use by others. 892 uint32_t lastPublicKey; 893 894 uint32_t typeIdOffset; 895 }; 896 897 // The most specific locale can consist of: 898 // 899 // - a 3 char language code 900 // - a 3 char region code prefixed by a 'r' 901 // - a 4 char script code prefixed by a 's' 902 // - a 8 char variant code prefixed by a 'v' 903 // 904 // each separated by a single char separator, which sums up to a total of 24 905 // chars, (25 include the string terminator). Numbering system specificator, 906 // if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes, 907 // or 40 bytes to make it 4 bytes aligned. 908 #define RESTABLE_MAX_LOCALE_LEN 40 909 910 911 /** 912 * Describes a particular resource configuration. 913 */ 914 struct ResTable_config 915 { 916 // Number of bytes in this structure. 917 uint32_t size; 918 919 union { 920 struct { 921 // Mobile country code (from SIM). 0 means "any". 922 uint16_t mcc; 923 // Mobile network code (from SIM). 0 means "any". 924 uint16_t mnc; 925 }; 926 uint32_t imsi; 927 }; 928 929 union { 930 struct { 931 // This field can take three different forms: 932 // - \0\0 means "any". 933 // 934 // - Two 7 bit ascii values interpreted as ISO-639-1 language 935 // codes ('fr', 'en' etc. etc.). The high bit for both bytes is 936 // zero. 937 // 938 // - A single 16 bit little endian packed value representing an 939 // ISO-639-2 3 letter language code. This will be of the form: 940 // 941 // {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f} 942 // 943 // bit[0, 4] = first letter of the language code 944 // bit[5, 9] = second letter of the language code 945 // bit[10, 14] = third letter of the language code. 946 // bit[15] = 1 always 947 // 948 // For backwards compatibility, languages that have unambiguous 949 // two letter codes are represented in that format. 950 // 951 // The layout is always bigendian irrespective of the runtime 952 // architecture. 953 char language[2]; 954 955 // This field can take three different forms: 956 // - \0\0 means "any". 957 // 958 // - Two 7 bit ascii values interpreted as 2 letter region 959 // codes ('US', 'GB' etc.). The high bit for both bytes is zero. 960 // 961 // - An UN M.49 3 digit region code. For simplicity, these are packed 962 // in the same manner as the language codes, though we should need 963 // only 10 bits to represent them, instead of the 15. 964 // 965 // The layout is always bigendian irrespective of the runtime 966 // architecture. 967 char country[2]; 968 }; 969 uint32_t locale; 970 }; 971 972 enum { 973 ORIENTATION_ANY = ACONFIGURATION_ORIENTATION_ANY, 974 ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT, 975 ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND, 976 ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE, 977 }; 978 979 enum { 980 TOUCHSCREEN_ANY = ACONFIGURATION_TOUCHSCREEN_ANY, 981 TOUCHSCREEN_NOTOUCH = ACONFIGURATION_TOUCHSCREEN_NOTOUCH, 982 TOUCHSCREEN_STYLUS = ACONFIGURATION_TOUCHSCREEN_STYLUS, 983 TOUCHSCREEN_FINGER = ACONFIGURATION_TOUCHSCREEN_FINGER, 984 }; 985 986 enum { 987 DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT, 988 DENSITY_LOW = ACONFIGURATION_DENSITY_LOW, 989 DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM, 990 DENSITY_TV = ACONFIGURATION_DENSITY_TV, 991 DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH, 992 DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH, 993 DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH, 994 DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH, 995 DENSITY_ANY = ACONFIGURATION_DENSITY_ANY, 996 DENSITY_NONE = ACONFIGURATION_DENSITY_NONE 997 }; 998 999 union { 1000 struct { 1001 uint8_t orientation; 1002 uint8_t touchscreen; 1003 uint16_t density; 1004 }; 1005 uint32_t screenType; 1006 }; 1007 1008 enum { 1009 KEYBOARD_ANY = ACONFIGURATION_KEYBOARD_ANY, 1010 KEYBOARD_NOKEYS = ACONFIGURATION_KEYBOARD_NOKEYS, 1011 KEYBOARD_QWERTY = ACONFIGURATION_KEYBOARD_QWERTY, 1012 KEYBOARD_12KEY = ACONFIGURATION_KEYBOARD_12KEY, 1013 }; 1014 1015 enum { 1016 NAVIGATION_ANY = ACONFIGURATION_NAVIGATION_ANY, 1017 NAVIGATION_NONAV = ACONFIGURATION_NAVIGATION_NONAV, 1018 NAVIGATION_DPAD = ACONFIGURATION_NAVIGATION_DPAD, 1019 NAVIGATION_TRACKBALL = ACONFIGURATION_NAVIGATION_TRACKBALL, 1020 NAVIGATION_WHEEL = ACONFIGURATION_NAVIGATION_WHEEL, 1021 }; 1022 1023 enum { 1024 MASK_KEYSHIDDEN = 0x0003, 1025 KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY, 1026 KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO, 1027 KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES, 1028 KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT, 1029 }; 1030 1031 enum { 1032 MASK_NAVHIDDEN = 0x000c, 1033 SHIFT_NAVHIDDEN = 2, 1034 NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN, 1035 NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN, 1036 NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN, 1037 }; 1038 1039 union { 1040 struct { 1041 uint8_t keyboard; 1042 uint8_t navigation; 1043 uint8_t inputFlags; 1044 uint8_t inputPad0; 1045 }; 1046 uint32_t input; 1047 }; 1048 1049 enum { 1050 SCREENWIDTH_ANY = 0 1051 }; 1052 1053 enum { 1054 SCREENHEIGHT_ANY = 0 1055 }; 1056 1057 union { 1058 struct { 1059 uint16_t screenWidth; 1060 uint16_t screenHeight; 1061 }; 1062 uint32_t screenSize; 1063 }; 1064 1065 enum { 1066 SDKVERSION_ANY = 0 1067 }; 1068 1069 enum { 1070 MINORVERSION_ANY = 0 1071 }; 1072 1073 union { 1074 struct { 1075 uint16_t sdkVersion; 1076 // For now minorVersion must always be 0!!! Its meaning 1077 // is currently undefined. 1078 uint16_t minorVersion; 1079 }; 1080 uint32_t version; 1081 }; 1082 1083 enum { 1084 // screenLayout bits for screen size class. 1085 MASK_SCREENSIZE = 0x0f, 1086 SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY, 1087 SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL, 1088 SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL, 1089 SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE, 1090 SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE, 1091 1092 // screenLayout bits for wide/long screen variation. 1093 MASK_SCREENLONG = 0x30, 1094 SHIFT_SCREENLONG = 4, 1095 SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG, 1096 SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG, 1097 SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG, 1098 1099 // screenLayout bits for layout direction. 1100 MASK_LAYOUTDIR = 0xC0, 1101 SHIFT_LAYOUTDIR = 6, 1102 LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR, 1103 LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR, 1104 LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR, 1105 }; 1106 1107 enum { 1108 // uiMode bits for the mode type. 1109 MASK_UI_MODE_TYPE = 0x0f, 1110 UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY, 1111 UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL, 1112 UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK, 1113 UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR, 1114 UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION, 1115 UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE, 1116 UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH, 1117 UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET, 1118 1119 // uiMode bits for the night switch. 1120 MASK_UI_MODE_NIGHT = 0x30, 1121 SHIFT_UI_MODE_NIGHT = 4, 1122 UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT, 1123 UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT, 1124 UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT, 1125 }; 1126 1127 union { 1128 struct { 1129 uint8_t screenLayout; 1130 uint8_t uiMode; 1131 uint16_t smallestScreenWidthDp; 1132 }; 1133 uint32_t screenConfig; 1134 }; 1135 1136 union { 1137 struct { 1138 uint16_t screenWidthDp; 1139 uint16_t screenHeightDp; 1140 }; 1141 uint32_t screenSizeDp; 1142 }; 1143 1144 // The ISO-15924 short name for the script corresponding to this 1145 // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with 1146 // the locale field. 1147 char localeScript[4]; 1148 1149 // A single BCP-47 variant subtag. Will vary in length between 4 and 8 1150 // chars. Interpreted in conjunction with the locale field. 1151 char localeVariant[8]; 1152 1153 enum { 1154 // screenLayout2 bits for round/notround. 1155 MASK_SCREENROUND = 0x03, 1156 SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY, 1157 SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO, 1158 SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES, 1159 }; 1160 1161 enum { 1162 // colorMode bits for wide-color gamut/narrow-color gamut. 1163 MASK_WIDE_COLOR_GAMUT = 0x03, 1164 WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY, 1165 WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO, 1166 WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES, 1167 1168 // colorMode bits for HDR/LDR. 1169 MASK_HDR = 0x0c, 1170 SHIFT_COLOR_MODE_HDR = 2, 1171 HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR, 1172 HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR, 1173 HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR, 1174 }; 1175 1176 // An extension of screenConfig. 1177 union { 1178 struct { 1179 uint8_t screenLayout2; // Contains round/notround qualifier. 1180 uint8_t colorMode; // Wide-gamut, HDR, etc. 1181 uint16_t screenConfigPad2; // Reserved padding. 1182 }; 1183 uint32_t screenConfig2; 1184 }; 1185 1186 // If false and localeScript is set, it means that the script of the locale 1187 // was explicitly provided. 1188 // 1189 // If true, it means that localeScript was automatically computed. 1190 // localeScript may still not be set in this case, which means that we 1191 // tried but could not compute a script. 1192 bool localeScriptWasComputed; 1193 1194 // The value of BCP 47 Unicode extension for key 'nu' (numbering system). 1195 // Varies in length from 3 to 8 chars. Zero-filled value. 1196 char localeNumberingSystem[8]; 1197 1198 void copyFromDeviceNoSwap(const ResTable_config& o); 1199 1200 void copyFromDtoH(const ResTable_config& o); 1201 1202 void swapHtoD(); 1203 1204 int compare(const ResTable_config& o) const; 1205 int compareLogical(const ResTable_config& o) const; 1206 1207 inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; } 1208 1209 // Flags indicating a set of config values. These flag constants must 1210 // match the corresponding ones in android.content.pm.ActivityInfo and 1211 // attrs_manifest.xml. 1212 enum { 1213 CONFIG_MCC = ACONFIGURATION_MCC, 1214 CONFIG_MNC = ACONFIGURATION_MNC, 1215 CONFIG_LOCALE = ACONFIGURATION_LOCALE, 1216 CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN, 1217 CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD, 1218 CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN, 1219 CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION, 1220 CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION, 1221 CONFIG_DENSITY = ACONFIGURATION_DENSITY, 1222 CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE, 1223 CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE, 1224 CONFIG_VERSION = ACONFIGURATION_VERSION, 1225 CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT, 1226 CONFIG_UI_MODE = ACONFIGURATION_UI_MODE, 1227 CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR, 1228 CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND, 1229 CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE, 1230 }; 1231 1232 // Compare two configuration, returning CONFIG_* flags set for each value 1233 // that is different. 1234 int diff(const ResTable_config& o) const; 1235 1236 // Return true if 'this' is more specific than 'o'. 1237 bool isMoreSpecificThan(const ResTable_config& o) const; 1238 1239 // Return true if 'this' is a better match than 'o' for the 'requested' 1240 // configuration. This assumes that match() has already been used to 1241 // remove any configurations that don't match the requested configuration 1242 // at all; if they are not first filtered, non-matching results can be 1243 // considered better than matching ones. 1244 // The general rule per attribute: if the request cares about an attribute 1245 // (it normally does), if the two (this and o) are equal it's a tie. If 1246 // they are not equal then one must be generic because only generic and 1247 // '==requested' will pass the match() call. So if this is not generic, 1248 // it wins. If this IS generic, o wins (return false). 1249 bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1250 1251 // Return true if 'this' can be considered a match for the parameters in 1252 // 'settings'. 1253 // Note this is asymetric. A default piece of data will match every request 1254 // but a request for the default should not match odd specifics 1255 // (ie, request with no mcc should not match a particular mcc's data) 1256 // settings is the requested settings 1257 bool match(const ResTable_config& settings) const; 1258 1259 // Get the string representation of the locale component of this 1260 // Config. The maximum size of this representation will be 1261 // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0'). 1262 // 1263 // Example: en-US, en-Latn-US, en-POSIX. 1264 // 1265 // If canonicalize is set, Tagalog (tl) locales get converted 1266 // to Filipino (fil). 1267 void getBcp47Locale(char* out, bool canonicalize=false) const; 1268 1269 // Append to str the resource-qualifer string representation of the 1270 // locale component of this Config. If the locale is only country 1271 // and language, it will look like en-rUS. If it has scripts and 1272 // variants, it will be a modified bcp47 tag: b+en+Latn+US. 1273 void appendDirLocale(String8& str) const; 1274 1275 // Sets the values of language, region, script, variant and numbering 1276 // system to the well formed BCP 47 locale contained in |in|. 1277 // The input locale is assumed to be valid and no validation is performed. 1278 void setBcp47Locale(const char* in); 1279 clearLocaleResTable_config1280 inline void clearLocale() { 1281 locale = 0; 1282 localeScriptWasComputed = false; 1283 memset(localeScript, 0, sizeof(localeScript)); 1284 memset(localeVariant, 0, sizeof(localeVariant)); 1285 memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem)); 1286 } 1287 computeScriptResTable_config1288 inline void computeScript() { 1289 localeDataComputeScript(localeScript, language, country); 1290 } 1291 1292 // Get the 2 or 3 letter language code of this configuration. Trailing 1293 // bytes are set to '\0'. 1294 size_t unpackLanguage(char language[4]) const; 1295 // Get the 2 or 3 letter language code of this configuration. Trailing 1296 // bytes are set to '\0'. 1297 size_t unpackRegion(char region[4]) const; 1298 1299 // Sets the language code of this configuration to the first three 1300 // chars at |language|. 1301 // 1302 // If |language| is a 2 letter code, the trailing byte must be '\0' or 1303 // the BCP-47 separator '-'. 1304 void packLanguage(const char* language); 1305 // Sets the region code of this configuration to the first three bytes 1306 // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0' 1307 // or the BCP-47 separator '-'. 1308 void packRegion(const char* region); 1309 1310 // Returns a positive integer if this config is more specific than |o| 1311 // with respect to their locales, a negative integer if |o| is more specific 1312 // and 0 if they're equally specific. 1313 int isLocaleMoreSpecificThan(const ResTable_config &o) const; 1314 1315 // Returns an integer representng the imporance score of the configuration locale. 1316 int getImportanceScoreOfLocale() const; 1317 1318 // Return true if 'this' is a better locale match than 'o' for the 1319 // 'requested' configuration. Similar to isBetterThan(), this assumes that 1320 // match() has already been used to remove any configurations that don't 1321 // match the requested configuration at all. 1322 bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1323 1324 String8 toString() const; 1325 }; 1326 1327 /** 1328 * A specification of the resources defined by a particular type. 1329 * 1330 * There should be one of these chunks for each resource type. 1331 * 1332 * This structure is followed by an array of integers providing the set of 1333 * configuration change flags (ResTable_config::CONFIG_*) that have multiple 1334 * resources for that configuration. In addition, the high bit is set if that 1335 * resource has been made public. 1336 */ 1337 struct ResTable_typeSpec 1338 { 1339 struct ResChunk_header header; 1340 1341 // The type identifier this chunk is holding. Type IDs start 1342 // at 1 (corresponding to the value of the type bits in a 1343 // resource identifier). 0 is invalid. 1344 uint8_t id; 1345 1346 // Must be 0. 1347 uint8_t res0; 1348 // Must be 0. 1349 uint16_t res1; 1350 1351 // Number of uint32_t entry configuration masks that follow. 1352 uint32_t entryCount; 1353 1354 enum : uint32_t { 1355 // Additional flag indicating an entry is public. 1356 SPEC_PUBLIC = 0x40000000u, 1357 1358 // Additional flag indicating an entry is overlayable at runtime. 1359 // Added in Android-P. 1360 SPEC_OVERLAYABLE = 0x80000000u, 1361 }; 1362 }; 1363 1364 /** 1365 * A collection of resource entries for a particular resource data 1366 * type. 1367 * 1368 * If the flag FLAG_SPARSE is not set in `flags`, then this struct is 1369 * followed by an array of uint32_t defining the resource 1370 * values, corresponding to the array of type strings in the 1371 * ResTable_package::typeStrings string block. Each of these hold an 1372 * index from entriesStart; a value of NO_ENTRY means that entry is 1373 * not defined. 1374 * 1375 * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed 1376 * by an array of ResTable_sparseTypeEntry defining only the entries that 1377 * have values for this type. Each entry is sorted by their entry ID such 1378 * that a binary search can be performed over the entries. The ID and offset 1379 * are encoded in a uint32_t. See ResTabe_sparseTypeEntry. 1380 * 1381 * There may be multiple of these chunks for a particular resource type, 1382 * supply different configuration variations for the resource values of 1383 * that type. 1384 * 1385 * It would be nice to have an additional ordered index of entries, so 1386 * we can do a binary search if trying to find a resource by string name. 1387 */ 1388 struct ResTable_type 1389 { 1390 struct ResChunk_header header; 1391 1392 enum { 1393 NO_ENTRY = 0xFFFFFFFF 1394 }; 1395 1396 // The type identifier this chunk is holding. Type IDs start 1397 // at 1 (corresponding to the value of the type bits in a 1398 // resource identifier). 0 is invalid. 1399 uint8_t id; 1400 1401 enum { 1402 // If set, the entry is sparse, and encodes both the entry ID and offset into each entry, 1403 // and a binary search is used to find the key. Only available on platforms >= O. 1404 // Mark any types that use this with a v26 qualifier to prevent runtime issues on older 1405 // platforms. 1406 FLAG_SPARSE = 0x01, 1407 }; 1408 uint8_t flags; 1409 1410 // Must be 0. 1411 uint16_t reserved; 1412 1413 // Number of uint32_t entry indices that follow. 1414 uint32_t entryCount; 1415 1416 // Offset from header where ResTable_entry data starts. 1417 uint32_t entriesStart; 1418 1419 // Configuration this collection of entries is designed for. This must always be last. 1420 ResTable_config config; 1421 }; 1422 1423 // The minimum size required to read any version of ResTable_type. 1424 constexpr size_t kResTableTypeMinSize = 1425 sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size); 1426 1427 // Assert that the ResTable_config is always the last field. This poses a problem for extending 1428 // ResTable_type in the future, as ResTable_config is variable (over different releases). 1429 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config), 1430 "ResTable_config must be last field in ResTable_type"); 1431 1432 /** 1433 * An entry in a ResTable_type with the flag `FLAG_SPARSE` set. 1434 */ 1435 union ResTable_sparseTypeEntry { 1436 // Holds the raw uint32_t encoded value. Do not read this. 1437 uint32_t entry; 1438 struct { 1439 // The index of the entry. 1440 uint16_t idx; 1441 1442 // The offset from ResTable_type::entriesStart, divided by 4. 1443 uint16_t offset; 1444 }; 1445 }; 1446 1447 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t), 1448 "ResTable_sparseTypeEntry must be 4 bytes in size"); 1449 1450 /** 1451 * This is the beginning of information about an entry in the resource 1452 * table. It holds the reference to the name of this entry, and is 1453 * immediately followed by one of: 1454 * * A Res_value structure, if FLAG_COMPLEX is -not- set. 1455 * * An array of ResTable_map structures, if FLAG_COMPLEX is set. 1456 * These supply a set of name/value mappings of data. 1457 */ 1458 struct ResTable_entry 1459 { 1460 // Number of bytes in this structure. 1461 uint16_t size; 1462 1463 enum { 1464 // If set, this is a complex entry, holding a set of name/value 1465 // mappings. It is followed by an array of ResTable_map structures. 1466 FLAG_COMPLEX = 0x0001, 1467 // If set, this resource has been declared public, so libraries 1468 // are allowed to reference it. 1469 FLAG_PUBLIC = 0x0002, 1470 // If set, this is a weak resource and may be overriden by strong 1471 // resources of the same name/type. This is only useful during 1472 // linking with other resource tables. 1473 FLAG_WEAK = 0x0004 1474 }; 1475 uint16_t flags; 1476 1477 // Reference into ResTable_package::keyStrings identifying this entry. 1478 struct ResStringPool_ref key; 1479 }; 1480 1481 /** 1482 * Extended form of a ResTable_entry for map entries, defining a parent map 1483 * resource from which to inherit values. 1484 */ 1485 struct ResTable_map_entry : public ResTable_entry 1486 { 1487 // Resource identifier of the parent mapping, or 0 if there is none. 1488 // This is always treated as a TYPE_DYNAMIC_REFERENCE. 1489 ResTable_ref parent; 1490 // Number of name/value pairs that follow for FLAG_COMPLEX. 1491 uint32_t count; 1492 }; 1493 1494 /** 1495 * A single name/value mapping that is part of a complex resource 1496 * entry. 1497 */ 1498 struct ResTable_map 1499 { 1500 // The resource identifier defining this mapping's name. For attribute 1501 // resources, 'name' can be one of the following special resource types 1502 // to supply meta-data about the attribute; for all other resource types 1503 // it must be an attribute resource. 1504 ResTable_ref name; 1505 1506 // Special values for 'name' when defining attribute resources. 1507 enum { 1508 // This entry holds the attribute's type code. 1509 ATTR_TYPE = Res_MAKEINTERNAL(0), 1510 1511 // For integral attributes, this is the minimum value it can hold. 1512 ATTR_MIN = Res_MAKEINTERNAL(1), 1513 1514 // For integral attributes, this is the maximum value it can hold. 1515 ATTR_MAX = Res_MAKEINTERNAL(2), 1516 1517 // Localization of this resource is can be encouraged or required with 1518 // an aapt flag if this is set 1519 ATTR_L10N = Res_MAKEINTERNAL(3), 1520 1521 // for plural support, see android.content.res.PluralRules#attrForQuantity(int) 1522 ATTR_OTHER = Res_MAKEINTERNAL(4), 1523 ATTR_ZERO = Res_MAKEINTERNAL(5), 1524 ATTR_ONE = Res_MAKEINTERNAL(6), 1525 ATTR_TWO = Res_MAKEINTERNAL(7), 1526 ATTR_FEW = Res_MAKEINTERNAL(8), 1527 ATTR_MANY = Res_MAKEINTERNAL(9) 1528 1529 }; 1530 1531 // Bit mask of allowed types, for use with ATTR_TYPE. 1532 enum { 1533 // No type has been defined for this attribute, use generic 1534 // type handling. The low 16 bits are for types that can be 1535 // handled generically; the upper 16 require additional information 1536 // in the bag so can not be handled generically for TYPE_ANY. 1537 TYPE_ANY = 0x0000FFFF, 1538 1539 // Attribute holds a references to another resource. 1540 TYPE_REFERENCE = 1<<0, 1541 1542 // Attribute holds a generic string. 1543 TYPE_STRING = 1<<1, 1544 1545 // Attribute holds an integer value. ATTR_MIN and ATTR_MIN can 1546 // optionally specify a constrained range of possible integer values. 1547 TYPE_INTEGER = 1<<2, 1548 1549 // Attribute holds a boolean integer. 1550 TYPE_BOOLEAN = 1<<3, 1551 1552 // Attribute holds a color value. 1553 TYPE_COLOR = 1<<4, 1554 1555 // Attribute holds a floating point value. 1556 TYPE_FLOAT = 1<<5, 1557 1558 // Attribute holds a dimension value, such as "20px". 1559 TYPE_DIMENSION = 1<<6, 1560 1561 // Attribute holds a fraction value, such as "20%". 1562 TYPE_FRACTION = 1<<7, 1563 1564 // Attribute holds an enumeration. The enumeration values are 1565 // supplied as additional entries in the map. 1566 TYPE_ENUM = 1<<16, 1567 1568 // Attribute holds a bitmaks of flags. The flag bit values are 1569 // supplied as additional entries in the map. 1570 TYPE_FLAGS = 1<<17 1571 }; 1572 1573 // Enum of localization modes, for use with ATTR_L10N. 1574 enum { 1575 L10N_NOT_REQUIRED = 0, 1576 L10N_SUGGESTED = 1 1577 }; 1578 1579 // This mapping's value. 1580 Res_value value; 1581 }; 1582 1583 /** 1584 * A package-id to package name mapping for any shared libraries used 1585 * in this resource table. The package-id's encoded in this resource 1586 * table may be different than the id's assigned at runtime. We must 1587 * be able to translate the package-id's based on the package name. 1588 */ 1589 struct ResTable_lib_header 1590 { 1591 struct ResChunk_header header; 1592 1593 // The number of shared libraries linked in this resource table. 1594 uint32_t count; 1595 }; 1596 1597 /** 1598 * A shared library package-id to package name entry. 1599 */ 1600 struct ResTable_lib_entry 1601 { 1602 // The package-id this shared library was assigned at build time. 1603 // We use a uint32 to keep the structure aligned on a uint32 boundary. 1604 uint32_t packageId; 1605 1606 // The package name of the shared library. \0 terminated. 1607 uint16_t packageName[128]; 1608 }; 1609 1610 struct alignas(uint32_t) Idmap_header { 1611 // Always 0x504D4449 ('IDMP') 1612 uint32_t magic; 1613 1614 uint32_t version; 1615 1616 uint32_t target_crc32; 1617 uint32_t overlay_crc32; 1618 1619 uint8_t target_path[256]; 1620 uint8_t overlay_path[256]; 1621 1622 uint16_t target_package_id; 1623 uint16_t type_count; 1624 } __attribute__((packed)); 1625 1626 struct alignas(uint32_t) IdmapEntry_header { 1627 uint16_t target_type_id; 1628 uint16_t overlay_type_id; 1629 uint16_t entry_count; 1630 uint16_t entry_id_offset; 1631 uint32_t entries[0]; 1632 } __attribute__((packed)); 1633 1634 class AssetManager2; 1635 1636 /** 1637 * Holds the shared library ID table. Shared libraries are assigned package IDs at 1638 * build time, but they may be loaded in a different order, so we need to maintain 1639 * a mapping of build-time package ID to run-time assigned package ID. 1640 * 1641 * Dynamic references are not currently supported in overlays. Only the base package 1642 * may have dynamic references. 1643 */ 1644 class DynamicRefTable 1645 { 1646 friend class AssetManager2; 1647 public: 1648 DynamicRefTable(); 1649 DynamicRefTable(uint8_t packageId, bool appAsLib); 1650 1651 // Loads an unmapped reference table from the package. 1652 status_t load(const ResTable_lib_header* const header); 1653 1654 // Adds mappings from the other DynamicRefTable 1655 status_t addMappings(const DynamicRefTable& other); 1656 1657 // Creates a mapping from build-time package ID to run-time package ID for 1658 // the given package. 1659 status_t addMapping(const String16& packageName, uint8_t packageId); 1660 1661 void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId); 1662 1663 // Creates a new clone of the reference table 1664 std::unique_ptr<DynamicRefTable> clone() const; 1665 1666 // Performs the actual conversion of build-time resource ID to run-time 1667 // resource ID. 1668 status_t lookupResourceId(uint32_t* resId) const; 1669 status_t lookupResourceValue(Res_value* value) const; 1670 entries()1671 inline const KeyedVector<String16, uint8_t>& entries() const { 1672 return mEntries; 1673 } 1674 1675 private: 1676 uint8_t mAssignedPackageId; 1677 uint8_t mLookupTable[256]; 1678 KeyedVector<String16, uint8_t> mEntries; 1679 bool mAppAsLib; 1680 }; 1681 1682 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue); 1683 1684 /** 1685 * Convenience class for accessing data in a ResTable resource. 1686 */ 1687 class ResTable 1688 { 1689 public: 1690 ResTable(); 1691 ResTable(const void* data, size_t size, const int32_t cookie, 1692 bool copyData=false); 1693 ~ResTable(); 1694 1695 status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false); 1696 status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1697 const int32_t cookie=-1, bool copyData=false, bool appAsLib=false); 1698 1699 status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false); 1700 status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false, 1701 bool appAsLib=false, bool isSystemAsset=false); 1702 1703 status_t add(ResTable* src, bool isSystemAsset=false); 1704 status_t addEmpty(const int32_t cookie); 1705 1706 status_t getError() const; 1707 1708 void uninit(); 1709 1710 struct resource_name 1711 { 1712 const char16_t* package; 1713 size_t packageLen; 1714 const char16_t* type; 1715 const char* type8; 1716 size_t typeLen; 1717 const char16_t* name; 1718 const char* name8; 1719 size_t nameLen; 1720 }; 1721 1722 bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const; 1723 1724 bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const; 1725 1726 /** 1727 * Returns whether or not the package for the given resource has been dynamically assigned. 1728 * If the resource can't be found, returns 'false'. 1729 */ 1730 bool isResourceDynamic(uint32_t resID) const; 1731 1732 /** 1733 * Returns whether or not the given package has been dynamically assigned. 1734 * If the package can't be found, returns 'false'. 1735 */ 1736 bool isPackageDynamic(uint8_t packageID) const; 1737 1738 /** 1739 * Retrieve the value of a resource. If the resource is found, returns a 1740 * value >= 0 indicating the table it is in (for use with 1741 * getTableStringBlock() and getTableCookie()) and fills in 'outValue'. If 1742 * not found, returns a negative error code. 1743 * 1744 * Note that this function does not do reference traversal. If you want 1745 * to follow references to other resources to get the "real" value to 1746 * use, you need to call resolveReference() after this function. 1747 * 1748 * @param resID The desired resoruce identifier. 1749 * @param outValue Filled in with the resource data that was found. 1750 * 1751 * @return ssize_t Either a >= 0 table index or a negative error code. 1752 */ 1753 ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false, 1754 uint16_t density = 0, 1755 uint32_t* outSpecFlags = NULL, 1756 ResTable_config* outConfig = NULL) const; 1757 1758 inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue, 1759 uint32_t* outSpecFlags=NULL) const { 1760 return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL); 1761 } 1762 1763 ssize_t resolveReference(Res_value* inOutValue, 1764 ssize_t blockIndex, 1765 uint32_t* outLastRef = NULL, 1766 uint32_t* inoutTypeSpecFlags = NULL, 1767 ResTable_config* outConfig = NULL) const; 1768 1769 enum { 1770 TMP_BUFFER_SIZE = 16 1771 }; 1772 const char16_t* valueToString(const Res_value* value, size_t stringBlock, 1773 char16_t tmpBuffer[TMP_BUFFER_SIZE], 1774 size_t* outLen) const; 1775 1776 struct bag_entry { 1777 ssize_t stringBlock; 1778 ResTable_map map; 1779 }; 1780 1781 /** 1782 * Retrieve the bag of a resource. If the resoruce is found, returns the 1783 * number of bags it contains and 'outBag' points to an array of their 1784 * values. If not found, a negative error code is returned. 1785 * 1786 * Note that this function -does- do reference traversal of the bag data. 1787 * 1788 * @param resID The desired resource identifier. 1789 * @param outBag Filled inm with a pointer to the bag mappings. 1790 * 1791 * @return ssize_t Either a >= 0 bag count of negative error code. 1792 */ 1793 ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const; 1794 1795 void unlockBag(const bag_entry* bag) const; 1796 1797 void lock() const; 1798 1799 ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag, 1800 uint32_t* outTypeSpecFlags=NULL) const; 1801 1802 void unlock() const; 1803 1804 class Theme { 1805 public: 1806 Theme(const ResTable& table); 1807 ~Theme(); 1808 getResTable()1809 inline const ResTable& getResTable() const { return mTable; } 1810 1811 status_t applyStyle(uint32_t resID, bool force=false); 1812 status_t setTo(const Theme& other); 1813 status_t clear(); 1814 1815 /** 1816 * Retrieve a value in the theme. If the theme defines this 1817 * value, returns a value >= 0 indicating the table it is in 1818 * (for use with getTableStringBlock() and getTableCookie) and 1819 * fills in 'outValue'. If not found, returns a negative error 1820 * code. 1821 * 1822 * Note that this function does not do reference traversal. If you want 1823 * to follow references to other resources to get the "real" value to 1824 * use, you need to call resolveReference() after this function. 1825 * 1826 * @param resID A resource identifier naming the desired theme 1827 * attribute. 1828 * @param outValue Filled in with the theme value that was 1829 * found. 1830 * 1831 * @return ssize_t Either a >= 0 table index or a negative error code. 1832 */ 1833 ssize_t getAttribute(uint32_t resID, Res_value* outValue, 1834 uint32_t* outTypeSpecFlags = NULL) const; 1835 1836 /** 1837 * This is like ResTable::resolveReference(), but also takes 1838 * care of resolving attribute references to the theme. 1839 */ 1840 ssize_t resolveAttributeReference(Res_value* inOutValue, 1841 ssize_t blockIndex, uint32_t* outLastRef = NULL, 1842 uint32_t* inoutTypeSpecFlags = NULL, 1843 ResTable_config* inoutConfig = NULL) const; 1844 1845 /** 1846 * Returns a bit mask of configuration changes that will impact this 1847 * theme (and thus require completely reloading it). 1848 */ 1849 uint32_t getChangingConfigurations() const; 1850 1851 void dumpToLog() const; 1852 1853 private: 1854 Theme(const Theme&); 1855 Theme& operator=(const Theme&); 1856 1857 struct theme_entry { 1858 ssize_t stringBlock; 1859 uint32_t typeSpecFlags; 1860 Res_value value; 1861 }; 1862 1863 struct type_info { 1864 size_t numEntries; 1865 theme_entry* entries; 1866 }; 1867 1868 struct package_info { 1869 type_info types[Res_MAXTYPE + 1]; 1870 }; 1871 1872 void free_package(package_info* pi); 1873 package_info* copy_package(package_info* pi); 1874 1875 const ResTable& mTable; 1876 package_info* mPackages[Res_MAXPACKAGE]; 1877 uint32_t mTypeSpecFlags; 1878 }; 1879 1880 void setParameters(const ResTable_config* params); 1881 void getParameters(ResTable_config* params) const; 1882 1883 // Retrieve an identifier (which can be passed to getResource) 1884 // for a given resource name. The 'name' can be fully qualified 1885 // (<package>:<type>.<basename>) or the package or type components 1886 // can be dropped if default values are supplied here. 1887 // 1888 // Returns 0 if no such resource was found, else a valid resource ID. 1889 uint32_t identifierForName(const char16_t* name, size_t nameLen, 1890 const char16_t* type = 0, size_t typeLen = 0, 1891 const char16_t* defPackage = 0, 1892 size_t defPackageLen = 0, 1893 uint32_t* outTypeSpecFlags = NULL) const; 1894 1895 static bool expandResourceRef(const char16_t* refStr, size_t refLen, 1896 String16* outPackage, 1897 String16* outType, 1898 String16* outName, 1899 const String16* defType = NULL, 1900 const String16* defPackage = NULL, 1901 const char** outErrorMsg = NULL, 1902 bool* outPublicOnly = NULL); 1903 1904 static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue); 1905 static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue); 1906 1907 // Used with stringToValue. 1908 class Accessor 1909 { 1910 public: ~Accessor()1911 inline virtual ~Accessor() { } 1912 1913 virtual const String16& getAssetsPackage() const = 0; 1914 1915 virtual uint32_t getCustomResource(const String16& package, 1916 const String16& type, 1917 const String16& name) const = 0; 1918 virtual uint32_t getCustomResourceWithCreation(const String16& package, 1919 const String16& type, 1920 const String16& name, 1921 const bool createIfNeeded = false) = 0; 1922 virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0; 1923 virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0; 1924 virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0; 1925 virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0; 1926 virtual bool getAttributeEnum(uint32_t attrID, 1927 const char16_t* name, size_t nameLen, 1928 Res_value* outValue) = 0; 1929 virtual bool getAttributeFlags(uint32_t attrID, 1930 const char16_t* name, size_t nameLen, 1931 Res_value* outValue) = 0; 1932 virtual uint32_t getAttributeL10N(uint32_t attrID) = 0; 1933 virtual bool getLocalizationSetting() = 0; 1934 virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0; 1935 }; 1936 1937 // Convert a string to a resource value. Handles standard "@res", 1938 // "#color", "123", and "0x1bd" types; performs escaping of strings. 1939 // The resulting value is placed in 'outValue'; if it is a string type, 1940 // 'outString' receives the string. If 'attrID' is supplied, the value is 1941 // type checked against this attribute and it is used to perform enum 1942 // evaluation. If 'acccessor' is supplied, it will be used to attempt to 1943 // resolve resources that do not exist in this ResTable. If 'attrType' is 1944 // supplied, the value will be type checked for this format if 'attrID' 1945 // is not supplied or found. 1946 bool stringToValue(Res_value* outValue, String16* outString, 1947 const char16_t* s, size_t len, 1948 bool preserveSpaces, bool coerceType, 1949 uint32_t attrID = 0, 1950 const String16* defType = NULL, 1951 const String16* defPackage = NULL, 1952 Accessor* accessor = NULL, 1953 void* accessorCookie = NULL, 1954 uint32_t attrType = ResTable_map::TYPE_ANY, 1955 bool enforcePrivate = true) const; 1956 1957 // Perform processing of escapes and quotes in a string. 1958 static bool collectString(String16* outString, 1959 const char16_t* s, size_t len, 1960 bool preserveSpaces, 1961 const char** outErrorMsg = NULL, 1962 bool append = false); 1963 1964 size_t getBasePackageCount() const; 1965 const String16 getBasePackageName(size_t idx) const; 1966 uint32_t getBasePackageId(size_t idx) const; 1967 uint32_t getLastTypeIdForPackage(size_t idx) const; 1968 1969 // Return the number of resource tables that the object contains. 1970 size_t getTableCount() const; 1971 // Return the values string pool for the resource table at the given 1972 // index. This string pool contains all of the strings for values 1973 // contained in the resource table -- that is the item values themselves, 1974 // but not the names their entries or types. 1975 const ResStringPool* getTableStringBlock(size_t index) const; 1976 // Return unique cookie identifier for the given resource table. 1977 int32_t getTableCookie(size_t index) const; 1978 1979 const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const; 1980 1981 // Return the configurations (ResTable_config) that we know about 1982 void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false, 1983 bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const; 1984 1985 void getLocales(Vector<String8>* locales, bool includeSystemLocales=true, 1986 bool mergeEquivalentLangs=false) const; 1987 1988 // Generate an idmap. 1989 // 1990 // Return value: on success: NO_ERROR; caller is responsible for free-ing 1991 // outData (using free(3)). On failure, any status_t value other than 1992 // NO_ERROR; the caller should not free outData. 1993 status_t createIdmap(const ResTable& overlay, 1994 uint32_t targetCrc, uint32_t overlayCrc, 1995 const char* targetPath, const char* overlayPath, 1996 void** outData, size_t* outSize) const; 1997 1998 static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256; 1999 static const uint32_t IDMAP_CURRENT_VERSION = 0x00000001; 2000 2001 // Retrieve idmap meta-data. 2002 // 2003 // This function only requires the idmap header (the first 2004 // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file. 2005 static bool getIdmapInfo(const void* idmap, size_t size, 2006 uint32_t* pVersion, 2007 uint32_t* pTargetCrc, uint32_t* pOverlayCrc, 2008 String8* pTargetPath, String8* pOverlayPath); 2009 2010 void print(bool inclValues) const; 2011 static String8 normalizeForOutput(const char* input); 2012 2013 private: 2014 struct Header; 2015 struct Type; 2016 struct Entry; 2017 struct Package; 2018 struct PackageGroup; 2019 typedef Vector<Type*> TypeList; 2020 2021 struct bag_set { 2022 size_t numAttrs; // number in array 2023 size_t availAttrs; // total space in array 2024 uint32_t typeSpecFlags; 2025 // Followed by 'numAttr' bag_entry structures. 2026 }; 2027 2028 /** 2029 * Configuration dependent cached data. This must be cleared when the configuration is 2030 * changed (setParameters). 2031 */ 2032 struct TypeCacheEntry { TypeCacheEntryTypeCacheEntry2033 TypeCacheEntry() : cachedBags(NULL) {} 2034 2035 // Computed attribute bags for this type. 2036 bag_set** cachedBags; 2037 2038 // Pre-filtered list of configurations (per asset path) that match the parameters set on this 2039 // ResTable. 2040 Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs; 2041 }; 2042 2043 status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 2044 bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false); 2045 2046 ssize_t getResourcePackageIndex(uint32_t resID) const; 2047 ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const; 2048 2049 status_t getEntry( 2050 const PackageGroup* packageGroup, int typeIndex, int entryIndex, 2051 const ResTable_config* config, 2052 Entry* outEntry) const; 2053 2054 uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name, 2055 size_t nameLen, uint32_t* outTypeSpecFlags) const; 2056 2057 status_t parsePackage( 2058 const ResTable_package* const pkg, const Header* const header, 2059 bool appAsLib, bool isSystemAsset); 2060 2061 void print_value(const Package* pkg, const Res_value& value) const; 2062 2063 template <typename Func> 2064 void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage, 2065 bool includeSystemConfigs, const Func& f) const; 2066 2067 mutable Mutex mLock; 2068 2069 // Mutex that controls access to the list of pre-filtered configurations 2070 // to check when looking up entries. 2071 // When iterating over a bag, the mLock mutex is locked. While mLock is locked, 2072 // we do resource lookups. 2073 // Mutex is not reentrant, so we must use a different lock than mLock. 2074 mutable Mutex mFilteredConfigLock; 2075 2076 status_t mError; 2077 2078 ResTable_config mParams; 2079 2080 // Array of all resource tables. 2081 Vector<Header*> mHeaders; 2082 2083 // Array of packages in all resource tables. 2084 Vector<PackageGroup*> mPackageGroups; 2085 2086 // Mapping from resource package IDs to indices into the internal 2087 // package array. 2088 uint8_t mPackageMap[256]; 2089 2090 uint8_t mNextPackageId; 2091 }; 2092 2093 } // namespace android 2094 2095 #endif // _LIBS_UTILS_RESOURCE_TYPES_H 2096