1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_simplifier.h"
18
19 #include "art_method-inl.h"
20 #include "class_linker-inl.h"
21 #include "data_type-inl.h"
22 #include "escape.h"
23 #include "intrinsics.h"
24 #include "mirror/class-inl.h"
25 #include "scoped_thread_state_change-inl.h"
26 #include "sharpening.h"
27
28 namespace art {
29
30 // Whether to run an exhaustive test of individual HInstructions cloning when each instruction
31 // is replaced with its copy if it is clonable.
32 static constexpr bool kTestInstructionClonerExhaustively = false;
33
34 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
35 public:
InstructionSimplifierVisitor(HGraph * graph,CodeGenerator * codegen,CompilerDriver * compiler_driver,OptimizingCompilerStats * stats)36 InstructionSimplifierVisitor(HGraph* graph,
37 CodeGenerator* codegen,
38 CompilerDriver* compiler_driver,
39 OptimizingCompilerStats* stats)
40 : HGraphDelegateVisitor(graph),
41 codegen_(codegen),
42 compiler_driver_(compiler_driver),
43 stats_(stats) {}
44
45 void Run();
46
47 private:
RecordSimplification()48 void RecordSimplification() {
49 simplification_occurred_ = true;
50 simplifications_at_current_position_++;
51 MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications);
52 }
53
54 bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
55 bool TryReplaceWithRotate(HBinaryOperation* instruction);
56 bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
57 bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
58 bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
59
60 bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
61 // `op` should be either HOr or HAnd.
62 // De Morgan's laws:
63 // ~a & ~b = ~(a | b) and ~a | ~b = ~(a & b)
64 bool TryDeMorganNegationFactoring(HBinaryOperation* op);
65 bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
66 bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
67 bool TryCombineVecMultiplyAccumulate(HVecMul* mul);
68
69 void VisitShift(HBinaryOperation* shift);
70
71 void VisitEqual(HEqual* equal) OVERRIDE;
72 void VisitNotEqual(HNotEqual* equal) OVERRIDE;
73 void VisitBooleanNot(HBooleanNot* bool_not) OVERRIDE;
74 void VisitInstanceFieldSet(HInstanceFieldSet* equal) OVERRIDE;
75 void VisitStaticFieldSet(HStaticFieldSet* equal) OVERRIDE;
76 void VisitArraySet(HArraySet* equal) OVERRIDE;
77 void VisitTypeConversion(HTypeConversion* instruction) OVERRIDE;
78 void VisitNullCheck(HNullCheck* instruction) OVERRIDE;
79 void VisitArrayLength(HArrayLength* instruction) OVERRIDE;
80 void VisitCheckCast(HCheckCast* instruction) OVERRIDE;
81 void VisitAdd(HAdd* instruction) OVERRIDE;
82 void VisitAnd(HAnd* instruction) OVERRIDE;
83 void VisitCondition(HCondition* instruction) OVERRIDE;
84 void VisitGreaterThan(HGreaterThan* condition) OVERRIDE;
85 void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) OVERRIDE;
86 void VisitLessThan(HLessThan* condition) OVERRIDE;
87 void VisitLessThanOrEqual(HLessThanOrEqual* condition) OVERRIDE;
88 void VisitBelow(HBelow* condition) OVERRIDE;
89 void VisitBelowOrEqual(HBelowOrEqual* condition) OVERRIDE;
90 void VisitAbove(HAbove* condition) OVERRIDE;
91 void VisitAboveOrEqual(HAboveOrEqual* condition) OVERRIDE;
92 void VisitDiv(HDiv* instruction) OVERRIDE;
93 void VisitMul(HMul* instruction) OVERRIDE;
94 void VisitNeg(HNeg* instruction) OVERRIDE;
95 void VisitNot(HNot* instruction) OVERRIDE;
96 void VisitOr(HOr* instruction) OVERRIDE;
97 void VisitShl(HShl* instruction) OVERRIDE;
98 void VisitShr(HShr* instruction) OVERRIDE;
99 void VisitSub(HSub* instruction) OVERRIDE;
100 void VisitUShr(HUShr* instruction) OVERRIDE;
101 void VisitXor(HXor* instruction) OVERRIDE;
102 void VisitSelect(HSelect* select) OVERRIDE;
103 void VisitIf(HIf* instruction) OVERRIDE;
104 void VisitInstanceOf(HInstanceOf* instruction) OVERRIDE;
105 void VisitInvoke(HInvoke* invoke) OVERRIDE;
106 void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE;
107 void VisitVecMul(HVecMul* instruction) OVERRIDE;
108
109 bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
110
111 void SimplifyRotate(HInvoke* invoke, bool is_left, DataType::Type type);
112 void SimplifySystemArrayCopy(HInvoke* invoke);
113 void SimplifyStringEquals(HInvoke* invoke);
114 void SimplifyCompare(HInvoke* invoke, bool is_signum, DataType::Type type);
115 void SimplifyIsNaN(HInvoke* invoke);
116 void SimplifyFP2Int(HInvoke* invoke);
117 void SimplifyStringCharAt(HInvoke* invoke);
118 void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
119 void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
120 void SimplifyReturnThis(HInvoke* invoke);
121 void SimplifyAllocationIntrinsic(HInvoke* invoke);
122 void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
123
124 CodeGenerator* codegen_;
125 CompilerDriver* compiler_driver_;
126 OptimizingCompilerStats* stats_;
127 bool simplification_occurred_ = false;
128 int simplifications_at_current_position_ = 0;
129 // We ensure we do not loop infinitely. The value should not be too high, since that
130 // would allow looping around the same basic block too many times. The value should
131 // not be too low either, however, since we want to allow revisiting a basic block
132 // with many statements and simplifications at least once.
133 static constexpr int kMaxSamePositionSimplifications = 50;
134 };
135
Run()136 void InstructionSimplifier::Run() {
137 if (kTestInstructionClonerExhaustively) {
138 CloneAndReplaceInstructionVisitor visitor(graph_);
139 visitor.VisitReversePostOrder();
140 }
141
142 InstructionSimplifierVisitor visitor(graph_, codegen_, compiler_driver_, stats_);
143 visitor.Run();
144 }
145
Run()146 void InstructionSimplifierVisitor::Run() {
147 // Iterate in reverse post order to open up more simplifications to users
148 // of instructions that got simplified.
149 for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
150 // The simplification of an instruction to another instruction may yield
151 // possibilities for other simplifications. So although we perform a reverse
152 // post order visit, we sometimes need to revisit an instruction index.
153 do {
154 simplification_occurred_ = false;
155 VisitBasicBlock(block);
156 } while (simplification_occurred_ &&
157 (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
158 simplifications_at_current_position_ = 0;
159 }
160 }
161
162 namespace {
163
AreAllBitsSet(HConstant * constant)164 bool AreAllBitsSet(HConstant* constant) {
165 return Int64FromConstant(constant) == -1;
166 }
167
168 } // namespace
169
170 // Returns true if the code was simplified to use only one negation operation
171 // after the binary operation instead of one on each of the inputs.
TryMoveNegOnInputsAfterBinop(HBinaryOperation * binop)172 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
173 DCHECK(binop->IsAdd() || binop->IsSub());
174 DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
175 HNeg* left_neg = binop->GetLeft()->AsNeg();
176 HNeg* right_neg = binop->GetRight()->AsNeg();
177 if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
178 !right_neg->HasOnlyOneNonEnvironmentUse()) {
179 return false;
180 }
181 // Replace code looking like
182 // NEG tmp1, a
183 // NEG tmp2, b
184 // ADD dst, tmp1, tmp2
185 // with
186 // ADD tmp, a, b
187 // NEG dst, tmp
188 // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
189 // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
190 // while the later yields `-0.0`.
191 if (!DataType::IsIntegralType(binop->GetType())) {
192 return false;
193 }
194 binop->ReplaceInput(left_neg->GetInput(), 0);
195 binop->ReplaceInput(right_neg->GetInput(), 1);
196 left_neg->GetBlock()->RemoveInstruction(left_neg);
197 right_neg->GetBlock()->RemoveInstruction(right_neg);
198 HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop);
199 binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
200 binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
201 RecordSimplification();
202 return true;
203 }
204
TryDeMorganNegationFactoring(HBinaryOperation * op)205 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
206 DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
207 DataType::Type type = op->GetType();
208 HInstruction* left = op->GetLeft();
209 HInstruction* right = op->GetRight();
210
211 // We can apply De Morgan's laws if both inputs are Not's and are only used
212 // by `op`.
213 if (((left->IsNot() && right->IsNot()) ||
214 (left->IsBooleanNot() && right->IsBooleanNot())) &&
215 left->HasOnlyOneNonEnvironmentUse() &&
216 right->HasOnlyOneNonEnvironmentUse()) {
217 // Replace code looking like
218 // NOT nota, a
219 // NOT notb, b
220 // AND dst, nota, notb (respectively OR)
221 // with
222 // OR or, a, b (respectively AND)
223 // NOT dest, or
224 HInstruction* src_left = left->InputAt(0);
225 HInstruction* src_right = right->InputAt(0);
226 uint32_t dex_pc = op->GetDexPc();
227
228 // Remove the negations on the inputs.
229 left->ReplaceWith(src_left);
230 right->ReplaceWith(src_right);
231 left->GetBlock()->RemoveInstruction(left);
232 right->GetBlock()->RemoveInstruction(right);
233
234 // Replace the `HAnd` or `HOr`.
235 HBinaryOperation* hbin;
236 if (op->IsAnd()) {
237 hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc);
238 } else {
239 hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc);
240 }
241 HInstruction* hnot;
242 if (left->IsBooleanNot()) {
243 hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc);
244 } else {
245 hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc);
246 }
247
248 op->GetBlock()->InsertInstructionBefore(hbin, op);
249 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
250
251 RecordSimplification();
252 return true;
253 }
254
255 return false;
256 }
257
TryCombineVecMultiplyAccumulate(HVecMul * mul)258 bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) {
259 DataType::Type type = mul->GetPackedType();
260 InstructionSet isa = codegen_->GetInstructionSet();
261 switch (isa) {
262 case InstructionSet::kArm64:
263 if (!(type == DataType::Type::kUint8 ||
264 type == DataType::Type::kInt8 ||
265 type == DataType::Type::kUint16 ||
266 type == DataType::Type::kInt16 ||
267 type == DataType::Type::kInt32)) {
268 return false;
269 }
270 break;
271 case InstructionSet::kMips:
272 case InstructionSet::kMips64:
273 if (!(type == DataType::Type::kUint8 ||
274 type == DataType::Type::kInt8 ||
275 type == DataType::Type::kUint16 ||
276 type == DataType::Type::kInt16 ||
277 type == DataType::Type::kInt32 ||
278 type == DataType::Type::kInt64)) {
279 return false;
280 }
281 break;
282 default:
283 return false;
284 }
285
286 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
287
288 if (mul->HasOnlyOneNonEnvironmentUse()) {
289 HInstruction* use = mul->GetUses().front().GetUser();
290 if (use->IsVecAdd() || use->IsVecSub()) {
291 // Replace code looking like
292 // VECMUL tmp, x, y
293 // VECADD/SUB dst, acc, tmp
294 // with
295 // VECMULACC dst, acc, x, y
296 // Note that we do not want to (unconditionally) perform the merge when the
297 // multiplication has multiple uses and it can be merged in all of them.
298 // Multiple uses could happen on the same control-flow path, and we would
299 // then increase the amount of work. In the future we could try to evaluate
300 // whether all uses are on different control-flow paths (using dominance and
301 // reverse-dominance information) and only perform the merge when they are.
302 HInstruction* accumulator = nullptr;
303 HVecBinaryOperation* binop = use->AsVecBinaryOperation();
304 HInstruction* binop_left = binop->GetLeft();
305 HInstruction* binop_right = binop->GetRight();
306 // This is always true since the `HVecMul` has only one use (which is checked above).
307 DCHECK_NE(binop_left, binop_right);
308 if (binop_right == mul) {
309 accumulator = binop_left;
310 } else if (use->IsVecAdd()) {
311 DCHECK_EQ(binop_left, mul);
312 accumulator = binop_right;
313 }
314
315 HInstruction::InstructionKind kind =
316 use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
317 if (accumulator != nullptr) {
318 HVecMultiplyAccumulate* mulacc =
319 new (allocator) HVecMultiplyAccumulate(allocator,
320 kind,
321 accumulator,
322 mul->GetLeft(),
323 mul->GetRight(),
324 binop->GetPackedType(),
325 binop->GetVectorLength(),
326 binop->GetDexPc());
327
328 binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
329 DCHECK(!mul->HasUses());
330 mul->GetBlock()->RemoveInstruction(mul);
331 return true;
332 }
333 }
334 }
335
336 return false;
337 }
338
VisitShift(HBinaryOperation * instruction)339 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
340 DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
341 HInstruction* shift_amount = instruction->GetRight();
342 HInstruction* value = instruction->GetLeft();
343
344 int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64)
345 ? kMaxLongShiftDistance
346 : kMaxIntShiftDistance;
347
348 if (shift_amount->IsConstant()) {
349 int64_t cst = Int64FromConstant(shift_amount->AsConstant());
350 int64_t masked_cst = cst & implicit_mask;
351 if (masked_cst == 0) {
352 // Replace code looking like
353 // SHL dst, value, 0
354 // with
355 // value
356 instruction->ReplaceWith(value);
357 instruction->GetBlock()->RemoveInstruction(instruction);
358 RecordSimplification();
359 return;
360 } else if (masked_cst != cst) {
361 // Replace code looking like
362 // SHL dst, value, cst
363 // where cst exceeds maximum distance with the equivalent
364 // SHL dst, value, cst & implicit_mask
365 // (as defined by shift semantics). This ensures other
366 // optimizations do not need to special case for such situations.
367 DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32);
368 instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index */ 1);
369 RecordSimplification();
370 return;
371 }
372 }
373
374 // Shift operations implicitly mask the shift amount according to the type width. Get rid of
375 // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not
376 // affect the relevant bits.
377 // Replace code looking like
378 // AND adjusted_shift, shift, <superset of implicit mask>
379 // [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>]
380 // [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift]
381 // SHL dst, value, adjusted_shift
382 // with
383 // SHL dst, value, shift
384 if (shift_amount->IsAnd() ||
385 shift_amount->IsOr() ||
386 shift_amount->IsXor() ||
387 shift_amount->IsAdd() ||
388 shift_amount->IsSub()) {
389 int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0;
390 HBinaryOperation* bin_op = shift_amount->AsBinaryOperation();
391 HConstant* mask = bin_op->GetConstantRight();
392 if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) {
393 instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1);
394 RecordSimplification();
395 return;
396 }
397 } else if (shift_amount->IsTypeConversion()) {
398 DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool); // We never convert to bool.
399 DataType::Type source_type = shift_amount->InputAt(0)->GetType();
400 // Non-integral and 64-bit source types require an explicit type conversion.
401 if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) {
402 instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1);
403 RecordSimplification();
404 return;
405 }
406 }
407 }
408
IsSubRegBitsMinusOther(HSub * sub,size_t reg_bits,HInstruction * other)409 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
410 return (sub->GetRight() == other &&
411 sub->GetLeft()->IsConstant() &&
412 (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
413 }
414
ReplaceRotateWithRor(HBinaryOperation * op,HUShr * ushr,HShl * shl)415 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
416 HUShr* ushr,
417 HShl* shl) {
418 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
419 HRor* ror =
420 new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
421 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
422 if (!ushr->HasUses()) {
423 ushr->GetBlock()->RemoveInstruction(ushr);
424 }
425 if (!ushr->GetRight()->HasUses()) {
426 ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
427 }
428 if (!shl->HasUses()) {
429 shl->GetBlock()->RemoveInstruction(shl);
430 }
431 if (!shl->GetRight()->HasUses()) {
432 shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
433 }
434 RecordSimplification();
435 return true;
436 }
437
438 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
TryReplaceWithRotate(HBinaryOperation * op)439 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
440 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
441 HInstruction* left = op->GetLeft();
442 HInstruction* right = op->GetRight();
443 // If we have an UShr and a Shl (in either order).
444 if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
445 HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
446 HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
447 DCHECK(DataType::IsIntOrLongType(ushr->GetType()));
448 if (ushr->GetType() == shl->GetType() &&
449 ushr->GetLeft() == shl->GetLeft()) {
450 if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
451 // Shift distances are both constant, try replacing with Ror if they
452 // add up to the register size.
453 return TryReplaceWithRotateConstantPattern(op, ushr, shl);
454 } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
455 // Shift distances are potentially of the form x and (reg_size - x).
456 return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
457 } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
458 // Shift distances are potentially of the form d and -d.
459 return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
460 }
461 }
462 }
463 return false;
464 }
465
466 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
467 // UShr dst, x, #rdist
468 // Shl tmp, x, #ldist
469 // OP dst, dst, tmp
470 // or like (x >>> #rdist OP x << #-ldist):
471 // UShr dst, x, #rdist
472 // Shl tmp, x, #-ldist
473 // OP dst, dst, tmp
474 // with
475 // Ror dst, x, #rdist
TryReplaceWithRotateConstantPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)476 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
477 HUShr* ushr,
478 HShl* shl) {
479 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
480 size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
481 size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
482 size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
483 if (((ldist + rdist) & (reg_bits - 1)) == 0) {
484 ReplaceRotateWithRor(op, ushr, shl);
485 return true;
486 }
487 return false;
488 }
489
490 // Replace code looking like (x >>> -d OP x << d):
491 // Neg neg, d
492 // UShr dst, x, neg
493 // Shl tmp, x, d
494 // OP dst, dst, tmp
495 // with
496 // Neg neg, d
497 // Ror dst, x, neg
498 // *** OR ***
499 // Replace code looking like (x >>> d OP x << -d):
500 // UShr dst, x, d
501 // Neg neg, d
502 // Shl tmp, x, neg
503 // OP dst, dst, tmp
504 // with
505 // Ror dst, x, d
TryReplaceWithRotateRegisterNegPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)506 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
507 HUShr* ushr,
508 HShl* shl) {
509 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
510 DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
511 bool neg_is_left = shl->GetRight()->IsNeg();
512 HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
513 // And the shift distance being negated is the distance being shifted the other way.
514 if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
515 ReplaceRotateWithRor(op, ushr, shl);
516 }
517 return false;
518 }
519
520 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
521 // UShr dst, x, d
522 // Sub ld, #bits, d
523 // Shl tmp, x, ld
524 // OP dst, dst, tmp
525 // with
526 // Ror dst, x, d
527 // *** OR ***
528 // Replace code looking like (x >>> (#bits - d) OP x << d):
529 // Sub rd, #bits, d
530 // UShr dst, x, rd
531 // Shl tmp, x, d
532 // OP dst, dst, tmp
533 // with
534 // Neg neg, d
535 // Ror dst, x, neg
TryReplaceWithRotateRegisterSubPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)536 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
537 HUShr* ushr,
538 HShl* shl) {
539 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
540 DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
541 size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
542 HInstruction* shl_shift = shl->GetRight();
543 HInstruction* ushr_shift = ushr->GetRight();
544 if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
545 (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
546 return ReplaceRotateWithRor(op, ushr, shl);
547 }
548 return false;
549 }
550
VisitNullCheck(HNullCheck * null_check)551 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
552 HInstruction* obj = null_check->InputAt(0);
553 if (!obj->CanBeNull()) {
554 null_check->ReplaceWith(obj);
555 null_check->GetBlock()->RemoveInstruction(null_check);
556 if (stats_ != nullptr) {
557 stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
558 }
559 }
560 }
561
CanEnsureNotNullAt(HInstruction * input,HInstruction * at) const562 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
563 if (!input->CanBeNull()) {
564 return true;
565 }
566
567 for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
568 HInstruction* user = use.GetUser();
569 if (user->IsNullCheck() && user->StrictlyDominates(at)) {
570 return true;
571 }
572 }
573
574 return false;
575 }
576
577 // Returns whether doing a type test between the class of `object` against `klass` has
578 // a statically known outcome. The result of the test is stored in `outcome`.
TypeCheckHasKnownOutcome(HLoadClass * klass,HInstruction * object,bool * outcome)579 static bool TypeCheckHasKnownOutcome(HLoadClass* klass, HInstruction* object, bool* outcome) {
580 DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
581 ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
582 ScopedObjectAccess soa(Thread::Current());
583 if (!obj_rti.IsValid()) {
584 // We run the simplifier before the reference type propagation so type info might not be
585 // available.
586 return false;
587 }
588
589 ReferenceTypeInfo class_rti = klass->GetLoadedClassRTI();
590 if (!class_rti.IsValid()) {
591 // Happens when the loaded class is unresolved.
592 return false;
593 }
594 DCHECK(class_rti.IsExact());
595 if (class_rti.IsSupertypeOf(obj_rti)) {
596 *outcome = true;
597 return true;
598 } else if (obj_rti.IsExact()) {
599 // The test failed at compile time so will also fail at runtime.
600 *outcome = false;
601 return true;
602 } else if (!class_rti.IsInterface()
603 && !obj_rti.IsInterface()
604 && !obj_rti.IsSupertypeOf(class_rti)) {
605 // Different type hierarchy. The test will fail.
606 *outcome = false;
607 return true;
608 }
609 return false;
610 }
611
VisitCheckCast(HCheckCast * check_cast)612 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
613 HInstruction* object = check_cast->InputAt(0);
614 HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
615 if (load_class->NeedsAccessCheck()) {
616 // If we need to perform an access check we cannot remove the instruction.
617 return;
618 }
619
620 if (CanEnsureNotNullAt(object, check_cast)) {
621 check_cast->ClearMustDoNullCheck();
622 }
623
624 if (object->IsNullConstant()) {
625 check_cast->GetBlock()->RemoveInstruction(check_cast);
626 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
627 return;
628 }
629
630 // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
631 // the return value check with the `outcome` check, b/27651442 .
632 bool outcome = false;
633 if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
634 if (outcome) {
635 check_cast->GetBlock()->RemoveInstruction(check_cast);
636 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
637 if (!load_class->HasUses()) {
638 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
639 // However, here we know that it cannot because the checkcast was successfull, hence
640 // the class was already loaded.
641 load_class->GetBlock()->RemoveInstruction(load_class);
642 }
643 } else {
644 // Don't do anything for exceptional cases for now. Ideally we should remove
645 // all instructions and blocks this instruction dominates.
646 }
647 }
648 }
649
VisitInstanceOf(HInstanceOf * instruction)650 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
651 HInstruction* object = instruction->InputAt(0);
652 HLoadClass* load_class = instruction->InputAt(1)->AsLoadClass();
653 if (load_class->NeedsAccessCheck()) {
654 // If we need to perform an access check we cannot remove the instruction.
655 return;
656 }
657
658 bool can_be_null = true;
659 if (CanEnsureNotNullAt(object, instruction)) {
660 can_be_null = false;
661 instruction->ClearMustDoNullCheck();
662 }
663
664 HGraph* graph = GetGraph();
665 if (object->IsNullConstant()) {
666 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
667 instruction->ReplaceWith(graph->GetIntConstant(0));
668 instruction->GetBlock()->RemoveInstruction(instruction);
669 RecordSimplification();
670 return;
671 }
672
673 // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
674 // the return value check with the `outcome` check, b/27651442 .
675 bool outcome = false;
676 if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
677 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
678 if (outcome && can_be_null) {
679 // Type test will succeed, we just need a null test.
680 HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object);
681 instruction->GetBlock()->InsertInstructionBefore(test, instruction);
682 instruction->ReplaceWith(test);
683 } else {
684 // We've statically determined the result of the instanceof.
685 instruction->ReplaceWith(graph->GetIntConstant(outcome));
686 }
687 RecordSimplification();
688 instruction->GetBlock()->RemoveInstruction(instruction);
689 if (outcome && !load_class->HasUses()) {
690 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
691 // However, here we know that it cannot because the instanceof check was successfull, hence
692 // the class was already loaded.
693 load_class->GetBlock()->RemoveInstruction(load_class);
694 }
695 }
696 }
697
VisitInstanceFieldSet(HInstanceFieldSet * instruction)698 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
699 if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
700 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
701 instruction->ClearValueCanBeNull();
702 }
703 }
704
VisitStaticFieldSet(HStaticFieldSet * instruction)705 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
706 if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
707 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
708 instruction->ClearValueCanBeNull();
709 }
710 }
711
GetOppositeConditionSwapOps(ArenaAllocator * allocator,HInstruction * cond)712 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) {
713 HInstruction *lhs = cond->InputAt(0);
714 HInstruction *rhs = cond->InputAt(1);
715 switch (cond->GetKind()) {
716 case HInstruction::kEqual:
717 return new (allocator) HEqual(rhs, lhs);
718 case HInstruction::kNotEqual:
719 return new (allocator) HNotEqual(rhs, lhs);
720 case HInstruction::kLessThan:
721 return new (allocator) HGreaterThan(rhs, lhs);
722 case HInstruction::kLessThanOrEqual:
723 return new (allocator) HGreaterThanOrEqual(rhs, lhs);
724 case HInstruction::kGreaterThan:
725 return new (allocator) HLessThan(rhs, lhs);
726 case HInstruction::kGreaterThanOrEqual:
727 return new (allocator) HLessThanOrEqual(rhs, lhs);
728 case HInstruction::kBelow:
729 return new (allocator) HAbove(rhs, lhs);
730 case HInstruction::kBelowOrEqual:
731 return new (allocator) HAboveOrEqual(rhs, lhs);
732 case HInstruction::kAbove:
733 return new (allocator) HBelow(rhs, lhs);
734 case HInstruction::kAboveOrEqual:
735 return new (allocator) HBelowOrEqual(rhs, lhs);
736 default:
737 LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
738 }
739 return nullptr;
740 }
741
CmpHasBoolType(HInstruction * input,HInstruction * cmp)742 static bool CmpHasBoolType(HInstruction* input, HInstruction* cmp) {
743 if (input->GetType() == DataType::Type::kBool) {
744 return true; // input has direct boolean type
745 } else if (cmp->GetUses().HasExactlyOneElement()) {
746 // Comparison also has boolean type if both its input and the instruction
747 // itself feed into the same phi node.
748 HInstruction* user = cmp->GetUses().front().GetUser();
749 return user->IsPhi() && user->HasInput(input) && user->HasInput(cmp);
750 }
751 return false;
752 }
753
VisitEqual(HEqual * equal)754 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
755 HInstruction* input_const = equal->GetConstantRight();
756 if (input_const != nullptr) {
757 HInstruction* input_value = equal->GetLeastConstantLeft();
758 if (CmpHasBoolType(input_value, equal) && input_const->IsIntConstant()) {
759 HBasicBlock* block = equal->GetBlock();
760 // We are comparing the boolean to a constant which is of type int and can
761 // be any constant.
762 if (input_const->AsIntConstant()->IsTrue()) {
763 // Replace (bool_value == true) with bool_value
764 equal->ReplaceWith(input_value);
765 block->RemoveInstruction(equal);
766 RecordSimplification();
767 } else if (input_const->AsIntConstant()->IsFalse()) {
768 // Replace (bool_value == false) with !bool_value
769 equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
770 block->RemoveInstruction(equal);
771 RecordSimplification();
772 } else {
773 // Replace (bool_value == integer_not_zero_nor_one_constant) with false
774 equal->ReplaceWith(GetGraph()->GetIntConstant(0));
775 block->RemoveInstruction(equal);
776 RecordSimplification();
777 }
778 } else {
779 VisitCondition(equal);
780 }
781 } else {
782 VisitCondition(equal);
783 }
784 }
785
VisitNotEqual(HNotEqual * not_equal)786 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
787 HInstruction* input_const = not_equal->GetConstantRight();
788 if (input_const != nullptr) {
789 HInstruction* input_value = not_equal->GetLeastConstantLeft();
790 if (CmpHasBoolType(input_value, not_equal) && input_const->IsIntConstant()) {
791 HBasicBlock* block = not_equal->GetBlock();
792 // We are comparing the boolean to a constant which is of type int and can
793 // be any constant.
794 if (input_const->AsIntConstant()->IsTrue()) {
795 // Replace (bool_value != true) with !bool_value
796 not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
797 block->RemoveInstruction(not_equal);
798 RecordSimplification();
799 } else if (input_const->AsIntConstant()->IsFalse()) {
800 // Replace (bool_value != false) with bool_value
801 not_equal->ReplaceWith(input_value);
802 block->RemoveInstruction(not_equal);
803 RecordSimplification();
804 } else {
805 // Replace (bool_value != integer_not_zero_nor_one_constant) with true
806 not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
807 block->RemoveInstruction(not_equal);
808 RecordSimplification();
809 }
810 } else {
811 VisitCondition(not_equal);
812 }
813 } else {
814 VisitCondition(not_equal);
815 }
816 }
817
VisitBooleanNot(HBooleanNot * bool_not)818 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
819 HInstruction* input = bool_not->InputAt(0);
820 HInstruction* replace_with = nullptr;
821
822 if (input->IsIntConstant()) {
823 // Replace !(true/false) with false/true.
824 if (input->AsIntConstant()->IsTrue()) {
825 replace_with = GetGraph()->GetIntConstant(0);
826 } else {
827 DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
828 replace_with = GetGraph()->GetIntConstant(1);
829 }
830 } else if (input->IsBooleanNot()) {
831 // Replace (!(!bool_value)) with bool_value.
832 replace_with = input->InputAt(0);
833 } else if (input->IsCondition() &&
834 // Don't change FP compares. The definition of compares involving
835 // NaNs forces the compares to be done as written by the user.
836 !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) {
837 // Replace condition with its opposite.
838 replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
839 }
840
841 if (replace_with != nullptr) {
842 bool_not->ReplaceWith(replace_with);
843 bool_not->GetBlock()->RemoveInstruction(bool_not);
844 RecordSimplification();
845 }
846 }
847
848 // Constructs a new ABS(x) node in the HIR.
NewIntegralAbs(ArenaAllocator * allocator,HInstruction * x,HInstruction * cursor)849 static HInstruction* NewIntegralAbs(ArenaAllocator* allocator,
850 HInstruction* x,
851 HInstruction* cursor) {
852 DataType::Type type = x->GetType();
853 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
854 // Construct a fake intrinsic with as much context as is needed to allocate one.
855 // The intrinsic will always be lowered into code later anyway.
856 // TODO: b/65164101 : moving towards a real HAbs node makes more sense.
857 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
858 HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress,
859 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
860 0u
861 };
862 HInvokeStaticOrDirect* invoke = new (allocator) HInvokeStaticOrDirect(
863 allocator,
864 1,
865 type,
866 x->GetDexPc(),
867 /*method_idx*/ -1,
868 /*resolved_method*/ nullptr,
869 dispatch_info,
870 kStatic,
871 MethodReference(nullptr, dex::kDexNoIndex),
872 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
873 invoke->SetArgumentAt(0, x);
874 invoke->SetIntrinsic(type == DataType::Type::kInt32 ? Intrinsics::kMathAbsInt
875 : Intrinsics::kMathAbsLong,
876 kNoEnvironmentOrCache,
877 kNoSideEffects,
878 kNoThrow);
879 cursor->GetBlock()->InsertInstructionBefore(invoke, cursor);
880 return invoke;
881 }
882
883 // Returns true if operands a and b consists of widening type conversions
884 // (either explicit or implicit) to the given to_type.
AreLowerPrecisionArgs(DataType::Type to_type,HInstruction * a,HInstruction * b)885 static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) {
886 if (a->IsTypeConversion() && a->GetType() == to_type) {
887 a = a->InputAt(0);
888 }
889 if (b->IsTypeConversion() && b->GetType() == to_type) {
890 b = b->InputAt(0);
891 }
892 DataType::Type type1 = a->GetType();
893 DataType::Type type2 = b->GetType();
894 return (type1 == DataType::Type::kUint8 && type2 == DataType::Type::kUint8) ||
895 (type1 == DataType::Type::kInt8 && type2 == DataType::Type::kInt8) ||
896 (type1 == DataType::Type::kInt16 && type2 == DataType::Type::kInt16) ||
897 (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) ||
898 (type1 == DataType::Type::kInt32 && type2 == DataType::Type::kInt32 &&
899 to_type == DataType::Type::kInt64);
900 }
901
VisitSelect(HSelect * select)902 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
903 HInstruction* replace_with = nullptr;
904 HInstruction* condition = select->GetCondition();
905 HInstruction* true_value = select->GetTrueValue();
906 HInstruction* false_value = select->GetFalseValue();
907
908 if (condition->IsBooleanNot()) {
909 // Change ((!cond) ? x : y) to (cond ? y : x).
910 condition = condition->InputAt(0);
911 std::swap(true_value, false_value);
912 select->ReplaceInput(false_value, 0);
913 select->ReplaceInput(true_value, 1);
914 select->ReplaceInput(condition, 2);
915 RecordSimplification();
916 }
917
918 if (true_value == false_value) {
919 // Replace (cond ? x : x) with (x).
920 replace_with = true_value;
921 } else if (condition->IsIntConstant()) {
922 if (condition->AsIntConstant()->IsTrue()) {
923 // Replace (true ? x : y) with (x).
924 replace_with = true_value;
925 } else {
926 // Replace (false ? x : y) with (y).
927 DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
928 replace_with = false_value;
929 }
930 } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
931 if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
932 // Replace (cond ? true : false) with (cond).
933 replace_with = condition;
934 } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
935 // Replace (cond ? false : true) with (!cond).
936 replace_with = GetGraph()->InsertOppositeCondition(condition, select);
937 }
938 } else if (condition->IsCondition()) {
939 IfCondition cmp = condition->AsCondition()->GetCondition();
940 HInstruction* a = condition->InputAt(0);
941 HInstruction* b = condition->InputAt(1);
942 DataType::Type t_type = true_value->GetType();
943 DataType::Type f_type = false_value->GetType();
944 // Here we have a <cmp> b ? true_value : false_value.
945 // Test if both values are same-typed int or long.
946 if (t_type == f_type &&
947 (t_type == DataType::Type::kInt32 || t_type == DataType::Type::kInt64)) {
948 // Try to replace typical integral ABS constructs.
949 if (true_value->IsNeg()) {
950 HInstruction* negated = true_value->InputAt(0);
951 if ((cmp == kCondLT || cmp == kCondLE) &&
952 (a == negated && a == false_value && IsInt64Value(b, 0))) {
953 // Found a < 0 ? -a : a which can be replaced by ABS(a).
954 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), false_value, select);
955 }
956 } else if (false_value->IsNeg()) {
957 HInstruction* negated = false_value->InputAt(0);
958 if ((cmp == kCondGT || cmp == kCondGE) &&
959 (a == true_value && a == negated && IsInt64Value(b, 0))) {
960 // Found a > 0 ? a : -a which can be replaced by ABS(a).
961 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
962 }
963 } else if (true_value->IsSub() && false_value->IsSub()) {
964 HInstruction* true_sub1 = true_value->InputAt(0);
965 HInstruction* true_sub2 = true_value->InputAt(1);
966 HInstruction* false_sub1 = false_value->InputAt(0);
967 HInstruction* false_sub2 = false_value->InputAt(1);
968 if ((((cmp == kCondGT || cmp == kCondGE) &&
969 (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) ||
970 ((cmp == kCondLT || cmp == kCondLE) &&
971 (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) &&
972 AreLowerPrecisionArgs(t_type, a, b)) {
973 // Found a > b ? a - b : b - a or
974 // a < b ? b - a : a - b
975 // which can be replaced by ABS(a - b) for lower precision operands a, b.
976 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
977 }
978 }
979 }
980 }
981
982 if (replace_with != nullptr) {
983 select->ReplaceWith(replace_with);
984 select->GetBlock()->RemoveInstruction(select);
985 RecordSimplification();
986 }
987 }
988
VisitIf(HIf * instruction)989 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
990 HInstruction* condition = instruction->InputAt(0);
991 if (condition->IsBooleanNot()) {
992 // Swap successors if input is negated.
993 instruction->ReplaceInput(condition->InputAt(0), 0);
994 instruction->GetBlock()->SwapSuccessors();
995 RecordSimplification();
996 }
997 }
998
VisitArrayLength(HArrayLength * instruction)999 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
1000 HInstruction* input = instruction->InputAt(0);
1001 // If the array is a NewArray with constant size, replace the array length
1002 // with the constant instruction. This helps the bounds check elimination phase.
1003 if (input->IsNewArray()) {
1004 input = input->AsNewArray()->GetLength();
1005 if (input->IsIntConstant()) {
1006 instruction->ReplaceWith(input);
1007 }
1008 }
1009 }
1010
VisitArraySet(HArraySet * instruction)1011 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
1012 HInstruction* value = instruction->GetValue();
1013 if (value->GetType() != DataType::Type::kReference) {
1014 return;
1015 }
1016
1017 if (CanEnsureNotNullAt(value, instruction)) {
1018 instruction->ClearValueCanBeNull();
1019 }
1020
1021 if (value->IsArrayGet()) {
1022 if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
1023 // If the code is just swapping elements in the array, no need for a type check.
1024 instruction->ClearNeedsTypeCheck();
1025 return;
1026 }
1027 }
1028
1029 if (value->IsNullConstant()) {
1030 instruction->ClearNeedsTypeCheck();
1031 return;
1032 }
1033
1034 ScopedObjectAccess soa(Thread::Current());
1035 ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
1036 ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
1037 if (!array_rti.IsValid()) {
1038 return;
1039 }
1040
1041 if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
1042 instruction->ClearNeedsTypeCheck();
1043 return;
1044 }
1045
1046 if (array_rti.IsObjectArray()) {
1047 if (array_rti.IsExact()) {
1048 instruction->ClearNeedsTypeCheck();
1049 return;
1050 }
1051 instruction->SetStaticTypeOfArrayIsObjectArray();
1052 }
1053 }
1054
IsTypeConversionLossless(DataType::Type input_type,DataType::Type result_type)1055 static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) {
1056 // Make sure all implicit conversions have been simplified and no new ones have been introduced.
1057 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
1058 << input_type << "," << result_type;
1059 // The conversion to a larger type is loss-less with the exception of two cases,
1060 // - conversion to the unsigned type Uint16, where we may lose some bits, and
1061 // - conversion from float to long, the only FP to integral conversion with smaller FP type.
1062 // For integral to FP conversions this holds because the FP mantissa is large enough.
1063 // Note: The size check excludes Uint8 as the result type.
1064 return DataType::Size(result_type) > DataType::Size(input_type) &&
1065 result_type != DataType::Type::kUint16 &&
1066 !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32);
1067 }
1068
TryReplaceFieldOrArrayGetType(HInstruction * maybe_get,DataType::Type new_type)1069 static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) {
1070 if (maybe_get->IsInstanceFieldGet()) {
1071 maybe_get->AsInstanceFieldGet()->SetType(new_type);
1072 return true;
1073 } else if (maybe_get->IsStaticFieldGet()) {
1074 maybe_get->AsStaticFieldGet()->SetType(new_type);
1075 return true;
1076 } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) {
1077 maybe_get->AsArrayGet()->SetType(new_type);
1078 return true;
1079 } else {
1080 return false;
1081 }
1082 }
1083
1084 // The type conversion is only used for storing into a field/element of the
1085 // same/narrower size.
IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion * type_conversion)1086 static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) {
1087 if (type_conversion->HasEnvironmentUses()) {
1088 return false;
1089 }
1090 DataType::Type input_type = type_conversion->GetInputType();
1091 DataType::Type result_type = type_conversion->GetResultType();
1092 if (!DataType::IsIntegralType(input_type) ||
1093 !DataType::IsIntegralType(result_type) ||
1094 input_type == DataType::Type::kInt64 ||
1095 result_type == DataType::Type::kInt64) {
1096 // Type conversion is needed if non-integer types are involved, or 64-bit
1097 // types are involved, which may use different number of registers.
1098 return false;
1099 }
1100 if (DataType::Size(input_type) >= DataType::Size(result_type)) {
1101 // Type conversion is not necessary when storing to a field/element of the
1102 // same/smaller size.
1103 } else {
1104 // We do not handle this case here.
1105 return false;
1106 }
1107
1108 // Check if the converted value is only used for storing into heap.
1109 for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) {
1110 HInstruction* instruction = use.GetUser();
1111 if (instruction->IsInstanceFieldSet() &&
1112 instruction->AsInstanceFieldSet()->GetFieldType() == result_type) {
1113 DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion);
1114 continue;
1115 }
1116 if (instruction->IsStaticFieldSet() &&
1117 instruction->AsStaticFieldSet()->GetFieldType() == result_type) {
1118 DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion);
1119 continue;
1120 }
1121 if (instruction->IsArraySet() &&
1122 instruction->AsArraySet()->GetComponentType() == result_type &&
1123 // not index use.
1124 instruction->AsArraySet()->GetIndex() != type_conversion) {
1125 DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion);
1126 continue;
1127 }
1128 // The use is not as a store value, or the field/element type is not the
1129 // same as the result_type, keep the type conversion.
1130 return false;
1131 }
1132 // Codegen automatically handles the type conversion during the store.
1133 return true;
1134 }
1135
VisitTypeConversion(HTypeConversion * instruction)1136 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
1137 HInstruction* input = instruction->GetInput();
1138 DataType::Type input_type = input->GetType();
1139 DataType::Type result_type = instruction->GetResultType();
1140 if (DataType::IsTypeConversionImplicit(input_type, result_type)) {
1141 // Remove the implicit conversion; this includes conversion to the same type.
1142 instruction->ReplaceWith(input);
1143 instruction->GetBlock()->RemoveInstruction(instruction);
1144 RecordSimplification();
1145 return;
1146 }
1147
1148 if (input->IsTypeConversion()) {
1149 HTypeConversion* input_conversion = input->AsTypeConversion();
1150 HInstruction* original_input = input_conversion->GetInput();
1151 DataType::Type original_type = original_input->GetType();
1152
1153 // When the first conversion is lossless, a direct conversion from the original type
1154 // to the final type yields the same result, even for a lossy second conversion, for
1155 // example float->double->int or int->double->float.
1156 bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
1157
1158 // For integral conversions, see if the first conversion loses only bits that the second
1159 // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
1160 // conversion yields the same result, for example long->int->short or int->char->short.
1161 bool integral_conversions_with_non_widening_second =
1162 DataType::IsIntegralType(input_type) &&
1163 DataType::IsIntegralType(original_type) &&
1164 DataType::IsIntegralType(result_type) &&
1165 DataType::Size(result_type) <= DataType::Size(input_type);
1166
1167 if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
1168 // If the merged conversion is implicit, do the simplification unconditionally.
1169 if (DataType::IsTypeConversionImplicit(original_type, result_type)) {
1170 instruction->ReplaceWith(original_input);
1171 instruction->GetBlock()->RemoveInstruction(instruction);
1172 if (!input_conversion->HasUses()) {
1173 // Don't wait for DCE.
1174 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1175 }
1176 RecordSimplification();
1177 return;
1178 }
1179 // Otherwise simplify only if the first conversion has no other use.
1180 if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
1181 input_conversion->ReplaceWith(original_input);
1182 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1183 RecordSimplification();
1184 return;
1185 }
1186 }
1187 } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) {
1188 DCHECK(DataType::IsIntegralType(input_type));
1189 HAnd* input_and = input->AsAnd();
1190 HConstant* constant = input_and->GetConstantRight();
1191 if (constant != nullptr) {
1192 int64_t value = Int64FromConstant(constant);
1193 DCHECK_NE(value, -1); // "& -1" would have been optimized away in VisitAnd().
1194 size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
1195 if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) {
1196 // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
1197 HInstruction* original_input = input_and->GetLeastConstantLeft();
1198 if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) {
1199 instruction->ReplaceWith(original_input);
1200 instruction->GetBlock()->RemoveInstruction(instruction);
1201 RecordSimplification();
1202 return;
1203 } else if (input->HasOnlyOneNonEnvironmentUse()) {
1204 input_and->ReplaceWith(original_input);
1205 input_and->GetBlock()->RemoveInstruction(input_and);
1206 RecordSimplification();
1207 return;
1208 }
1209 }
1210 }
1211 } else if (input->HasOnlyOneNonEnvironmentUse() &&
1212 ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) ||
1213 (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) ||
1214 (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) ||
1215 (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) {
1216 // Try to modify the type of the load to `result_type` and remove the explicit type conversion.
1217 if (TryReplaceFieldOrArrayGetType(input, result_type)) {
1218 instruction->ReplaceWith(input);
1219 instruction->GetBlock()->RemoveInstruction(instruction);
1220 RecordSimplification();
1221 return;
1222 }
1223 }
1224
1225 if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) {
1226 instruction->ReplaceWith(input);
1227 instruction->GetBlock()->RemoveInstruction(instruction);
1228 RecordSimplification();
1229 return;
1230 }
1231 }
1232
VisitAdd(HAdd * instruction)1233 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
1234 HConstant* input_cst = instruction->GetConstantRight();
1235 HInstruction* input_other = instruction->GetLeastConstantLeft();
1236 bool integral_type = DataType::IsIntegralType(instruction->GetType());
1237 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1238 // Replace code looking like
1239 // ADD dst, src, 0
1240 // with
1241 // src
1242 // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
1243 // `x` is `-0.0`, the former expression yields `0.0`, while the later
1244 // yields `-0.0`.
1245 if (integral_type) {
1246 instruction->ReplaceWith(input_other);
1247 instruction->GetBlock()->RemoveInstruction(instruction);
1248 RecordSimplification();
1249 return;
1250 }
1251 }
1252
1253 HInstruction* left = instruction->GetLeft();
1254 HInstruction* right = instruction->GetRight();
1255 bool left_is_neg = left->IsNeg();
1256 bool right_is_neg = right->IsNeg();
1257
1258 if (left_is_neg && right_is_neg) {
1259 if (TryMoveNegOnInputsAfterBinop(instruction)) {
1260 return;
1261 }
1262 }
1263
1264 HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
1265 if ((left_is_neg ^ right_is_neg) && neg->HasOnlyOneNonEnvironmentUse()) {
1266 // Replace code looking like
1267 // NEG tmp, b
1268 // ADD dst, a, tmp
1269 // with
1270 // SUB dst, a, b
1271 // We do not perform the optimization if the input negation has environment
1272 // uses or multiple non-environment uses as it could lead to worse code. In
1273 // particular, we do not want the live range of `b` to be extended if we are
1274 // not sure the initial 'NEG' instruction can be removed.
1275 HInstruction* other = left_is_neg ? right : left;
1276 HSub* sub =
1277 new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput());
1278 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
1279 RecordSimplification();
1280 neg->GetBlock()->RemoveInstruction(neg);
1281 return;
1282 }
1283
1284 if (TryReplaceWithRotate(instruction)) {
1285 return;
1286 }
1287
1288 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1289 // so no need to return.
1290 TryHandleAssociativeAndCommutativeOperation(instruction);
1291
1292 if ((left->IsSub() || right->IsSub()) &&
1293 TrySubtractionChainSimplification(instruction)) {
1294 return;
1295 }
1296
1297 if (integral_type) {
1298 // Replace code patterns looking like
1299 // SUB dst1, x, y SUB dst1, x, y
1300 // ADD dst2, dst1, y ADD dst2, y, dst1
1301 // with
1302 // SUB dst1, x, y
1303 // ADD instruction is not needed in this case, we may use
1304 // one of inputs of SUB instead.
1305 if (left->IsSub() && left->InputAt(1) == right) {
1306 instruction->ReplaceWith(left->InputAt(0));
1307 RecordSimplification();
1308 instruction->GetBlock()->RemoveInstruction(instruction);
1309 return;
1310 } else if (right->IsSub() && right->InputAt(1) == left) {
1311 instruction->ReplaceWith(right->InputAt(0));
1312 RecordSimplification();
1313 instruction->GetBlock()->RemoveInstruction(instruction);
1314 return;
1315 }
1316 }
1317 }
1318
VisitAnd(HAnd * instruction)1319 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
1320 DCHECK(DataType::IsIntegralType(instruction->GetType()));
1321 HConstant* input_cst = instruction->GetConstantRight();
1322 HInstruction* input_other = instruction->GetLeastConstantLeft();
1323
1324 if (input_cst != nullptr) {
1325 int64_t value = Int64FromConstant(input_cst);
1326 if (value == -1 ||
1327 // Similar cases under zero extension.
1328 (DataType::IsUnsignedType(input_other->GetType()) &&
1329 ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) {
1330 // Replace code looking like
1331 // AND dst, src, 0xFFF...FF
1332 // with
1333 // src
1334 instruction->ReplaceWith(input_other);
1335 instruction->GetBlock()->RemoveInstruction(instruction);
1336 RecordSimplification();
1337 return;
1338 }
1339 if (input_other->IsTypeConversion() &&
1340 input_other->GetType() == DataType::Type::kInt64 &&
1341 DataType::IsIntegralType(input_other->InputAt(0)->GetType()) &&
1342 IsInt<32>(value) &&
1343 input_other->HasOnlyOneNonEnvironmentUse()) {
1344 // The AND can be reordered before the TypeConversion. Replace
1345 // LongConstant cst, <32-bit-constant-sign-extended-to-64-bits>
1346 // TypeConversion<Int64> tmp, src
1347 // AND dst, tmp, cst
1348 // with
1349 // IntConstant cst, <32-bit-constant>
1350 // AND tmp, src, cst
1351 // TypeConversion<Int64> dst, tmp
1352 // This helps 32-bit targets and does not hurt 64-bit targets.
1353 // This also simplifies detection of other patterns, such as Uint8 loads.
1354 HInstruction* new_and_input = input_other->InputAt(0);
1355 // Implicit conversion Int64->Int64 would have been removed previously.
1356 DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64);
1357 HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value);
1358 HAnd* new_and =
1359 new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const);
1360 instruction->GetBlock()->InsertInstructionBefore(new_and, instruction);
1361 HTypeConversion* new_conversion =
1362 new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and);
1363 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion);
1364 input_other->GetBlock()->RemoveInstruction(input_other);
1365 RecordSimplification();
1366 // Try to process the new And now, do not wait for the next round of simplifications.
1367 instruction = new_and;
1368 input_other = new_and_input;
1369 }
1370 // Eliminate And from UShr+And if the And-mask contains all the bits that
1371 // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
1372 // precisely clears the shifted-in sign bits.
1373 if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
1374 size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32;
1375 size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
1376 size_t num_tail_bits_set = CTZ(value + 1);
1377 if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
1378 // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
1379 instruction->ReplaceWith(input_other);
1380 instruction->GetBlock()->RemoveInstruction(instruction);
1381 RecordSimplification();
1382 return;
1383 } else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
1384 input_other->HasOnlyOneNonEnvironmentUse()) {
1385 DCHECK(input_other->IsShr()); // For UShr, we would have taken the branch above.
1386 // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
1387 HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(),
1388 input_other->InputAt(0),
1389 input_other->InputAt(1),
1390 input_other->GetDexPc());
1391 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
1392 input_other->GetBlock()->RemoveInstruction(input_other);
1393 RecordSimplification();
1394 return;
1395 }
1396 }
1397 if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) {
1398 // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field
1399 // or array Get with only a single use, short-circuit the subsequent simplification
1400 // of the Get+TypeConversion and change the Get's type to `new_type` instead.
1401 DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16;
1402 DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16;
1403 if (input_other->GetType() == find_type &&
1404 input_other->HasOnlyOneNonEnvironmentUse() &&
1405 TryReplaceFieldOrArrayGetType(input_other, new_type)) {
1406 instruction->ReplaceWith(input_other);
1407 instruction->GetBlock()->RemoveInstruction(instruction);
1408 } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) {
1409 instruction->ReplaceWith(input_other);
1410 instruction->GetBlock()->RemoveInstruction(instruction);
1411 } else {
1412 HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
1413 new_type, input_other, instruction->GetDexPc());
1414 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion);
1415 }
1416 RecordSimplification();
1417 return;
1418 }
1419 }
1420
1421 // We assume that GVN has run before, so we only perform a pointer comparison.
1422 // If for some reason the values are equal but the pointers are different, we
1423 // are still correct and only miss an optimization opportunity.
1424 if (instruction->GetLeft() == instruction->GetRight()) {
1425 // Replace code looking like
1426 // AND dst, src, src
1427 // with
1428 // src
1429 instruction->ReplaceWith(instruction->GetLeft());
1430 instruction->GetBlock()->RemoveInstruction(instruction);
1431 RecordSimplification();
1432 return;
1433 }
1434
1435 if (TryDeMorganNegationFactoring(instruction)) {
1436 return;
1437 }
1438
1439 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1440 // so no need to return.
1441 TryHandleAssociativeAndCommutativeOperation(instruction);
1442 }
1443
VisitGreaterThan(HGreaterThan * condition)1444 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
1445 VisitCondition(condition);
1446 }
1447
VisitGreaterThanOrEqual(HGreaterThanOrEqual * condition)1448 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
1449 VisitCondition(condition);
1450 }
1451
VisitLessThan(HLessThan * condition)1452 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
1453 VisitCondition(condition);
1454 }
1455
VisitLessThanOrEqual(HLessThanOrEqual * condition)1456 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
1457 VisitCondition(condition);
1458 }
1459
VisitBelow(HBelow * condition)1460 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
1461 VisitCondition(condition);
1462 }
1463
VisitBelowOrEqual(HBelowOrEqual * condition)1464 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
1465 VisitCondition(condition);
1466 }
1467
VisitAbove(HAbove * condition)1468 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
1469 VisitCondition(condition);
1470 }
1471
VisitAboveOrEqual(HAboveOrEqual * condition)1472 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
1473 VisitCondition(condition);
1474 }
1475
1476 // Recognize the following pattern:
1477 // obj.getClass() ==/!= Foo.class
1478 // And replace it with a constant value if the type of `obj` is statically known.
RecognizeAndSimplifyClassCheck(HCondition * condition)1479 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
1480 HInstruction* input_one = condition->InputAt(0);
1481 HInstruction* input_two = condition->InputAt(1);
1482 HLoadClass* load_class = input_one->IsLoadClass()
1483 ? input_one->AsLoadClass()
1484 : input_two->AsLoadClass();
1485 if (load_class == nullptr) {
1486 return false;
1487 }
1488
1489 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
1490 if (!class_rti.IsValid()) {
1491 // Unresolved class.
1492 return false;
1493 }
1494
1495 HInstanceFieldGet* field_get = (load_class == input_one)
1496 ? input_two->AsInstanceFieldGet()
1497 : input_one->AsInstanceFieldGet();
1498 if (field_get == nullptr) {
1499 return false;
1500 }
1501
1502 HInstruction* receiver = field_get->InputAt(0);
1503 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
1504 if (!receiver_type.IsExact()) {
1505 return false;
1506 }
1507
1508 {
1509 ScopedObjectAccess soa(Thread::Current());
1510 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1511 ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
1512 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
1513 if (field_get->GetFieldInfo().GetField() != field) {
1514 return false;
1515 }
1516
1517 // We can replace the compare.
1518 int value = 0;
1519 if (receiver_type.IsEqual(class_rti)) {
1520 value = condition->IsEqual() ? 1 : 0;
1521 } else {
1522 value = condition->IsNotEqual() ? 1 : 0;
1523 }
1524 condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
1525 return true;
1526 }
1527 }
1528
VisitCondition(HCondition * condition)1529 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
1530 if (condition->IsEqual() || condition->IsNotEqual()) {
1531 if (RecognizeAndSimplifyClassCheck(condition)) {
1532 return;
1533 }
1534 }
1535
1536 // Reverse condition if left is constant. Our code generators prefer constant
1537 // on the right hand side.
1538 if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
1539 HBasicBlock* block = condition->GetBlock();
1540 HCondition* replacement =
1541 GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition);
1542 // If it is a fp we must set the opposite bias.
1543 if (replacement != nullptr) {
1544 if (condition->IsLtBias()) {
1545 replacement->SetBias(ComparisonBias::kGtBias);
1546 } else if (condition->IsGtBias()) {
1547 replacement->SetBias(ComparisonBias::kLtBias);
1548 }
1549 block->ReplaceAndRemoveInstructionWith(condition, replacement);
1550 RecordSimplification();
1551
1552 condition = replacement;
1553 }
1554 }
1555
1556 HInstruction* left = condition->GetLeft();
1557 HInstruction* right = condition->GetRight();
1558
1559 // Try to fold an HCompare into this HCondition.
1560
1561 // We can only replace an HCondition which compares a Compare to 0.
1562 // Both 'dx' and 'jack' generate a compare to 0 when compiling a
1563 // condition with a long, float or double comparison as input.
1564 if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
1565 // Conversion is not possible.
1566 return;
1567 }
1568
1569 // Is the Compare only used for this purpose?
1570 if (!left->GetUses().HasExactlyOneElement()) {
1571 // Someone else also wants the result of the compare.
1572 return;
1573 }
1574
1575 if (!left->GetEnvUses().empty()) {
1576 // There is a reference to the compare result in an environment. Do we really need it?
1577 if (GetGraph()->IsDebuggable()) {
1578 return;
1579 }
1580
1581 // We have to ensure that there are no deopt points in the sequence.
1582 if (left->HasAnyEnvironmentUseBefore(condition)) {
1583 return;
1584 }
1585 }
1586
1587 // Clean up any environment uses from the HCompare, if any.
1588 left->RemoveEnvironmentUsers();
1589
1590 // We have decided to fold the HCompare into the HCondition. Transfer the information.
1591 condition->SetBias(left->AsCompare()->GetBias());
1592
1593 // Replace the operands of the HCondition.
1594 condition->ReplaceInput(left->InputAt(0), 0);
1595 condition->ReplaceInput(left->InputAt(1), 1);
1596
1597 // Remove the HCompare.
1598 left->GetBlock()->RemoveInstruction(left);
1599
1600 RecordSimplification();
1601 }
1602
1603 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
CanDivideByReciprocalMultiplyFloat(int32_t divisor)1604 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1605 // True, if the most significant bits of divisor are 0.
1606 return ((divisor & 0x7fffff) == 0);
1607 }
1608
1609 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
CanDivideByReciprocalMultiplyDouble(int64_t divisor)1610 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1611 // True, if the most significant bits of divisor are 0.
1612 return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1613 }
1614
VisitDiv(HDiv * instruction)1615 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1616 HConstant* input_cst = instruction->GetConstantRight();
1617 HInstruction* input_other = instruction->GetLeastConstantLeft();
1618 DataType::Type type = instruction->GetType();
1619
1620 if ((input_cst != nullptr) && input_cst->IsOne()) {
1621 // Replace code looking like
1622 // DIV dst, src, 1
1623 // with
1624 // src
1625 instruction->ReplaceWith(input_other);
1626 instruction->GetBlock()->RemoveInstruction(instruction);
1627 RecordSimplification();
1628 return;
1629 }
1630
1631 if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1632 // Replace code looking like
1633 // DIV dst, src, -1
1634 // with
1635 // NEG dst, src
1636 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1637 instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other));
1638 RecordSimplification();
1639 return;
1640 }
1641
1642 if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) {
1643 // Try replacing code looking like
1644 // DIV dst, src, constant
1645 // with
1646 // MUL dst, src, 1 / constant
1647 HConstant* reciprocal = nullptr;
1648 if (type == DataType::Type::kFloat64) {
1649 double value = input_cst->AsDoubleConstant()->GetValue();
1650 if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1651 reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1652 }
1653 } else {
1654 DCHECK_EQ(type, DataType::Type::kFloat32);
1655 float value = input_cst->AsFloatConstant()->GetValue();
1656 if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1657 reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1658 }
1659 }
1660
1661 if (reciprocal != nullptr) {
1662 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1663 instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal));
1664 RecordSimplification();
1665 return;
1666 }
1667 }
1668 }
1669
VisitMul(HMul * instruction)1670 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1671 HConstant* input_cst = instruction->GetConstantRight();
1672 HInstruction* input_other = instruction->GetLeastConstantLeft();
1673 DataType::Type type = instruction->GetType();
1674 HBasicBlock* block = instruction->GetBlock();
1675 ArenaAllocator* allocator = GetGraph()->GetAllocator();
1676
1677 if (input_cst == nullptr) {
1678 return;
1679 }
1680
1681 if (input_cst->IsOne()) {
1682 // Replace code looking like
1683 // MUL dst, src, 1
1684 // with
1685 // src
1686 instruction->ReplaceWith(input_other);
1687 instruction->GetBlock()->RemoveInstruction(instruction);
1688 RecordSimplification();
1689 return;
1690 }
1691
1692 if (input_cst->IsMinusOne() &&
1693 (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) {
1694 // Replace code looking like
1695 // MUL dst, src, -1
1696 // with
1697 // NEG dst, src
1698 HNeg* neg = new (allocator) HNeg(type, input_other);
1699 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1700 RecordSimplification();
1701 return;
1702 }
1703
1704 if (DataType::IsFloatingPointType(type) &&
1705 ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1706 (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1707 // Replace code looking like
1708 // FP_MUL dst, src, 2.0
1709 // with
1710 // FP_ADD dst, src, src
1711 // The 'int' and 'long' cases are handled below.
1712 block->ReplaceAndRemoveInstructionWith(instruction,
1713 new (allocator) HAdd(type, input_other, input_other));
1714 RecordSimplification();
1715 return;
1716 }
1717
1718 if (DataType::IsIntOrLongType(type)) {
1719 int64_t factor = Int64FromConstant(input_cst);
1720 // Even though constant propagation also takes care of the zero case, other
1721 // optimizations can lead to having a zero multiplication.
1722 if (factor == 0) {
1723 // Replace code looking like
1724 // MUL dst, src, 0
1725 // with
1726 // 0
1727 instruction->ReplaceWith(input_cst);
1728 instruction->GetBlock()->RemoveInstruction(instruction);
1729 RecordSimplification();
1730 return;
1731 } else if (IsPowerOfTwo(factor)) {
1732 // Replace code looking like
1733 // MUL dst, src, pow_of_2
1734 // with
1735 // SHL dst, src, log2(pow_of_2)
1736 HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1737 HShl* shl = new (allocator) HShl(type, input_other, shift);
1738 block->ReplaceAndRemoveInstructionWith(instruction, shl);
1739 RecordSimplification();
1740 return;
1741 } else if (IsPowerOfTwo(factor - 1)) {
1742 // Transform code looking like
1743 // MUL dst, src, (2^n + 1)
1744 // into
1745 // SHL tmp, src, n
1746 // ADD dst, src, tmp
1747 HShl* shl = new (allocator) HShl(type,
1748 input_other,
1749 GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1750 HAdd* add = new (allocator) HAdd(type, input_other, shl);
1751
1752 block->InsertInstructionBefore(shl, instruction);
1753 block->ReplaceAndRemoveInstructionWith(instruction, add);
1754 RecordSimplification();
1755 return;
1756 } else if (IsPowerOfTwo(factor + 1)) {
1757 // Transform code looking like
1758 // MUL dst, src, (2^n - 1)
1759 // into
1760 // SHL tmp, src, n
1761 // SUB dst, tmp, src
1762 HShl* shl = new (allocator) HShl(type,
1763 input_other,
1764 GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1765 HSub* sub = new (allocator) HSub(type, shl, input_other);
1766
1767 block->InsertInstructionBefore(shl, instruction);
1768 block->ReplaceAndRemoveInstructionWith(instruction, sub);
1769 RecordSimplification();
1770 return;
1771 }
1772 }
1773
1774 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1775 // so no need to return.
1776 TryHandleAssociativeAndCommutativeOperation(instruction);
1777 }
1778
VisitNeg(HNeg * instruction)1779 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1780 HInstruction* input = instruction->GetInput();
1781 if (input->IsNeg()) {
1782 // Replace code looking like
1783 // NEG tmp, src
1784 // NEG dst, tmp
1785 // with
1786 // src
1787 HNeg* previous_neg = input->AsNeg();
1788 instruction->ReplaceWith(previous_neg->GetInput());
1789 instruction->GetBlock()->RemoveInstruction(instruction);
1790 // We perform the optimization even if the input negation has environment
1791 // uses since it allows removing the current instruction. But we only delete
1792 // the input negation only if it is does not have any uses left.
1793 if (!previous_neg->HasUses()) {
1794 previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1795 }
1796 RecordSimplification();
1797 return;
1798 }
1799
1800 if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1801 !DataType::IsFloatingPointType(input->GetType())) {
1802 // Replace code looking like
1803 // SUB tmp, a, b
1804 // NEG dst, tmp
1805 // with
1806 // SUB dst, b, a
1807 // We do not perform the optimization if the input subtraction has
1808 // environment uses or multiple non-environment uses as it could lead to
1809 // worse code. In particular, we do not want the live ranges of `a` and `b`
1810 // to be extended if we are not sure the initial 'SUB' instruction can be
1811 // removed.
1812 // We do not perform optimization for fp because we could lose the sign of zero.
1813 HSub* sub = input->AsSub();
1814 HSub* new_sub = new (GetGraph()->GetAllocator()) HSub(
1815 instruction->GetType(), sub->GetRight(), sub->GetLeft());
1816 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1817 if (!sub->HasUses()) {
1818 sub->GetBlock()->RemoveInstruction(sub);
1819 }
1820 RecordSimplification();
1821 }
1822 }
1823
VisitNot(HNot * instruction)1824 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1825 HInstruction* input = instruction->GetInput();
1826 if (input->IsNot()) {
1827 // Replace code looking like
1828 // NOT tmp, src
1829 // NOT dst, tmp
1830 // with
1831 // src
1832 // We perform the optimization even if the input negation has environment
1833 // uses since it allows removing the current instruction. But we only delete
1834 // the input negation only if it is does not have any uses left.
1835 HNot* previous_not = input->AsNot();
1836 instruction->ReplaceWith(previous_not->GetInput());
1837 instruction->GetBlock()->RemoveInstruction(instruction);
1838 if (!previous_not->HasUses()) {
1839 previous_not->GetBlock()->RemoveInstruction(previous_not);
1840 }
1841 RecordSimplification();
1842 }
1843 }
1844
VisitOr(HOr * instruction)1845 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1846 HConstant* input_cst = instruction->GetConstantRight();
1847 HInstruction* input_other = instruction->GetLeastConstantLeft();
1848
1849 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1850 // Replace code looking like
1851 // OR dst, src, 0
1852 // with
1853 // src
1854 instruction->ReplaceWith(input_other);
1855 instruction->GetBlock()->RemoveInstruction(instruction);
1856 RecordSimplification();
1857 return;
1858 }
1859
1860 // We assume that GVN has run before, so we only perform a pointer comparison.
1861 // If for some reason the values are equal but the pointers are different, we
1862 // are still correct and only miss an optimization opportunity.
1863 if (instruction->GetLeft() == instruction->GetRight()) {
1864 // Replace code looking like
1865 // OR dst, src, src
1866 // with
1867 // src
1868 instruction->ReplaceWith(instruction->GetLeft());
1869 instruction->GetBlock()->RemoveInstruction(instruction);
1870 RecordSimplification();
1871 return;
1872 }
1873
1874 if (TryDeMorganNegationFactoring(instruction)) return;
1875
1876 if (TryReplaceWithRotate(instruction)) {
1877 return;
1878 }
1879
1880 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1881 // so no need to return.
1882 TryHandleAssociativeAndCommutativeOperation(instruction);
1883 }
1884
VisitShl(HShl * instruction)1885 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1886 VisitShift(instruction);
1887 }
1888
VisitShr(HShr * instruction)1889 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1890 VisitShift(instruction);
1891 }
1892
VisitSub(HSub * instruction)1893 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1894 HConstant* input_cst = instruction->GetConstantRight();
1895 HInstruction* input_other = instruction->GetLeastConstantLeft();
1896
1897 DataType::Type type = instruction->GetType();
1898 if (DataType::IsFloatingPointType(type)) {
1899 return;
1900 }
1901
1902 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1903 // Replace code looking like
1904 // SUB dst, src, 0
1905 // with
1906 // src
1907 // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
1908 // `x` is `-0.0`, the former expression yields `0.0`, while the later
1909 // yields `-0.0`.
1910 instruction->ReplaceWith(input_other);
1911 instruction->GetBlock()->RemoveInstruction(instruction);
1912 RecordSimplification();
1913 return;
1914 }
1915
1916 HBasicBlock* block = instruction->GetBlock();
1917 ArenaAllocator* allocator = GetGraph()->GetAllocator();
1918
1919 HInstruction* left = instruction->GetLeft();
1920 HInstruction* right = instruction->GetRight();
1921 if (left->IsConstant()) {
1922 if (Int64FromConstant(left->AsConstant()) == 0) {
1923 // Replace code looking like
1924 // SUB dst, 0, src
1925 // with
1926 // NEG dst, src
1927 // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
1928 // `x` is `0.0`, the former expression yields `0.0`, while the later
1929 // yields `-0.0`.
1930 HNeg* neg = new (allocator) HNeg(type, right);
1931 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1932 RecordSimplification();
1933 return;
1934 }
1935 }
1936
1937 if (left->IsNeg() && right->IsNeg()) {
1938 if (TryMoveNegOnInputsAfterBinop(instruction)) {
1939 return;
1940 }
1941 }
1942
1943 if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
1944 // Replace code looking like
1945 // NEG tmp, b
1946 // SUB dst, a, tmp
1947 // with
1948 // ADD dst, a, b
1949 HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput());
1950 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
1951 RecordSimplification();
1952 right->GetBlock()->RemoveInstruction(right);
1953 return;
1954 }
1955
1956 if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
1957 // Replace code looking like
1958 // NEG tmp, a
1959 // SUB dst, tmp, b
1960 // with
1961 // ADD tmp, a, b
1962 // NEG dst, tmp
1963 // The second version is not intrinsically better, but enables more
1964 // transformations.
1965 HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right);
1966 instruction->GetBlock()->InsertInstructionBefore(add, instruction);
1967 HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add);
1968 instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
1969 instruction->ReplaceWith(neg);
1970 instruction->GetBlock()->RemoveInstruction(instruction);
1971 RecordSimplification();
1972 left->GetBlock()->RemoveInstruction(left);
1973 return;
1974 }
1975
1976 if (TrySubtractionChainSimplification(instruction)) {
1977 return;
1978 }
1979
1980 if (left->IsAdd()) {
1981 // Replace code patterns looking like
1982 // ADD dst1, x, y ADD dst1, x, y
1983 // SUB dst2, dst1, y SUB dst2, dst1, x
1984 // with
1985 // ADD dst1, x, y
1986 // SUB instruction is not needed in this case, we may use
1987 // one of inputs of ADD instead.
1988 // It is applicable to integral types only.
1989 DCHECK(DataType::IsIntegralType(type));
1990 if (left->InputAt(1) == right) {
1991 instruction->ReplaceWith(left->InputAt(0));
1992 RecordSimplification();
1993 instruction->GetBlock()->RemoveInstruction(instruction);
1994 return;
1995 } else if (left->InputAt(0) == right) {
1996 instruction->ReplaceWith(left->InputAt(1));
1997 RecordSimplification();
1998 instruction->GetBlock()->RemoveInstruction(instruction);
1999 return;
2000 }
2001 }
2002 }
2003
VisitUShr(HUShr * instruction)2004 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
2005 VisitShift(instruction);
2006 }
2007
VisitXor(HXor * instruction)2008 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
2009 HConstant* input_cst = instruction->GetConstantRight();
2010 HInstruction* input_other = instruction->GetLeastConstantLeft();
2011
2012 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
2013 // Replace code looking like
2014 // XOR dst, src, 0
2015 // with
2016 // src
2017 instruction->ReplaceWith(input_other);
2018 instruction->GetBlock()->RemoveInstruction(instruction);
2019 RecordSimplification();
2020 return;
2021 }
2022
2023 if ((input_cst != nullptr) && input_cst->IsOne()
2024 && input_other->GetType() == DataType::Type::kBool) {
2025 // Replace code looking like
2026 // XOR dst, src, 1
2027 // with
2028 // BOOLEAN_NOT dst, src
2029 HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other);
2030 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
2031 RecordSimplification();
2032 return;
2033 }
2034
2035 if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
2036 // Replace code looking like
2037 // XOR dst, src, 0xFFF...FF
2038 // with
2039 // NOT dst, src
2040 HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other);
2041 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
2042 RecordSimplification();
2043 return;
2044 }
2045
2046 HInstruction* left = instruction->GetLeft();
2047 HInstruction* right = instruction->GetRight();
2048 if (((left->IsNot() && right->IsNot()) ||
2049 (left->IsBooleanNot() && right->IsBooleanNot())) &&
2050 left->HasOnlyOneNonEnvironmentUse() &&
2051 right->HasOnlyOneNonEnvironmentUse()) {
2052 // Replace code looking like
2053 // NOT nota, a
2054 // NOT notb, b
2055 // XOR dst, nota, notb
2056 // with
2057 // XOR dst, a, b
2058 instruction->ReplaceInput(left->InputAt(0), 0);
2059 instruction->ReplaceInput(right->InputAt(0), 1);
2060 left->GetBlock()->RemoveInstruction(left);
2061 right->GetBlock()->RemoveInstruction(right);
2062 RecordSimplification();
2063 return;
2064 }
2065
2066 if (TryReplaceWithRotate(instruction)) {
2067 return;
2068 }
2069
2070 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
2071 // so no need to return.
2072 TryHandleAssociativeAndCommutativeOperation(instruction);
2073 }
2074
SimplifyStringEquals(HInvoke * instruction)2075 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
2076 HInstruction* argument = instruction->InputAt(1);
2077 HInstruction* receiver = instruction->InputAt(0);
2078 if (receiver == argument) {
2079 // Because String.equals is an instance call, the receiver is
2080 // a null check if we don't know it's null. The argument however, will
2081 // be the actual object. So we cannot end up in a situation where both
2082 // are equal but could be null.
2083 DCHECK(CanEnsureNotNullAt(argument, instruction));
2084 instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
2085 instruction->GetBlock()->RemoveInstruction(instruction);
2086 } else {
2087 StringEqualsOptimizations optimizations(instruction);
2088 if (CanEnsureNotNullAt(argument, instruction)) {
2089 optimizations.SetArgumentNotNull();
2090 }
2091 ScopedObjectAccess soa(Thread::Current());
2092 ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
2093 if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
2094 optimizations.SetArgumentIsString();
2095 } else if (kUseReadBarrier) {
2096 DCHECK(instruction->GetResolvedMethod() != nullptr);
2097 DCHECK(instruction->GetResolvedMethod()->GetDeclaringClass()->IsStringClass() ||
2098 // Object.equals() can be devirtualized to String.equals().
2099 instruction->GetResolvedMethod()->GetDeclaringClass()->IsObjectClass());
2100 Runtime* runtime = Runtime::Current();
2101 // For AOT, we always assume that the boot image shall contain the String.class and
2102 // we do not need a read barrier for boot image classes as they are non-moveable.
2103 // For JIT, check if we actually have a boot image; if we do, the String.class
2104 // should also be non-moveable.
2105 if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2106 DCHECK(runtime->IsAotCompiler() ||
2107 !runtime->GetHeap()->IsMovableObject(
2108 instruction->GetResolvedMethod()->GetDeclaringClass()));
2109 optimizations.SetNoReadBarrierForStringClass();
2110 }
2111 }
2112 }
2113 }
2114
SimplifyRotate(HInvoke * invoke,bool is_left,DataType::Type type)2115 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
2116 bool is_left,
2117 DataType::Type type) {
2118 DCHECK(invoke->IsInvokeStaticOrDirect());
2119 DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
2120 HInstruction* value = invoke->InputAt(0);
2121 HInstruction* distance = invoke->InputAt(1);
2122 // Replace the invoke with an HRor.
2123 if (is_left) {
2124 // Unconditionally set the type of the negated distance to `int`,
2125 // as shift and rotate operations expect a 32-bit (or narrower)
2126 // value for their distance input.
2127 distance = new (GetGraph()->GetAllocator()) HNeg(DataType::Type::kInt32, distance);
2128 invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
2129 }
2130 HRor* ror = new (GetGraph()->GetAllocator()) HRor(type, value, distance);
2131 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
2132 // Remove ClinitCheck and LoadClass, if possible.
2133 HInstruction* clinit = invoke->GetInputs().back();
2134 if (clinit->IsClinitCheck() && !clinit->HasUses()) {
2135 clinit->GetBlock()->RemoveInstruction(clinit);
2136 HInstruction* ldclass = clinit->InputAt(0);
2137 if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
2138 ldclass->GetBlock()->RemoveInstruction(ldclass);
2139 }
2140 }
2141 }
2142
IsArrayLengthOf(HInstruction * potential_length,HInstruction * potential_array)2143 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
2144 if (potential_length->IsArrayLength()) {
2145 return potential_length->InputAt(0) == potential_array;
2146 }
2147
2148 if (potential_array->IsNewArray()) {
2149 return potential_array->AsNewArray()->GetLength() == potential_length;
2150 }
2151
2152 return false;
2153 }
2154
SimplifySystemArrayCopy(HInvoke * instruction)2155 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
2156 HInstruction* source = instruction->InputAt(0);
2157 HInstruction* destination = instruction->InputAt(2);
2158 HInstruction* count = instruction->InputAt(4);
2159 SystemArrayCopyOptimizations optimizations(instruction);
2160 if (CanEnsureNotNullAt(source, instruction)) {
2161 optimizations.SetSourceIsNotNull();
2162 }
2163 if (CanEnsureNotNullAt(destination, instruction)) {
2164 optimizations.SetDestinationIsNotNull();
2165 }
2166 if (destination == source) {
2167 optimizations.SetDestinationIsSource();
2168 }
2169
2170 if (IsArrayLengthOf(count, source)) {
2171 optimizations.SetCountIsSourceLength();
2172 }
2173
2174 if (IsArrayLengthOf(count, destination)) {
2175 optimizations.SetCountIsDestinationLength();
2176 }
2177
2178 {
2179 ScopedObjectAccess soa(Thread::Current());
2180 DataType::Type source_component_type = DataType::Type::kVoid;
2181 DataType::Type destination_component_type = DataType::Type::kVoid;
2182 ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
2183 if (destination_rti.IsValid()) {
2184 if (destination_rti.IsObjectArray()) {
2185 if (destination_rti.IsExact()) {
2186 optimizations.SetDoesNotNeedTypeCheck();
2187 }
2188 optimizations.SetDestinationIsTypedObjectArray();
2189 }
2190 if (destination_rti.IsPrimitiveArrayClass()) {
2191 destination_component_type = DataTypeFromPrimitive(
2192 destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2193 optimizations.SetDestinationIsPrimitiveArray();
2194 } else if (destination_rti.IsNonPrimitiveArrayClass()) {
2195 optimizations.SetDestinationIsNonPrimitiveArray();
2196 }
2197 }
2198 ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
2199 if (source_rti.IsValid()) {
2200 if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
2201 optimizations.SetDoesNotNeedTypeCheck();
2202 }
2203 if (source_rti.IsPrimitiveArrayClass()) {
2204 optimizations.SetSourceIsPrimitiveArray();
2205 source_component_type = DataTypeFromPrimitive(
2206 source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2207 } else if (source_rti.IsNonPrimitiveArrayClass()) {
2208 optimizations.SetSourceIsNonPrimitiveArray();
2209 }
2210 }
2211 // For primitive arrays, use their optimized ArtMethod implementations.
2212 if ((source_component_type != DataType::Type::kVoid) &&
2213 (source_component_type == destination_component_type)) {
2214 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2215 PointerSize image_size = class_linker->GetImagePointerSize();
2216 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
2217 mirror::Class* system = invoke->GetResolvedMethod()->GetDeclaringClass();
2218 ArtMethod* method = nullptr;
2219 switch (source_component_type) {
2220 case DataType::Type::kBool:
2221 method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
2222 break;
2223 case DataType::Type::kInt8:
2224 method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
2225 break;
2226 case DataType::Type::kUint16:
2227 method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
2228 break;
2229 case DataType::Type::kInt16:
2230 method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
2231 break;
2232 case DataType::Type::kInt32:
2233 method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
2234 break;
2235 case DataType::Type::kFloat32:
2236 method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
2237 break;
2238 case DataType::Type::kInt64:
2239 method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
2240 break;
2241 case DataType::Type::kFloat64:
2242 method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
2243 break;
2244 default:
2245 LOG(FATAL) << "Unreachable";
2246 }
2247 DCHECK(method != nullptr);
2248 DCHECK(method->IsStatic());
2249 DCHECK(method->GetDeclaringClass() == system);
2250 invoke->SetResolvedMethod(method);
2251 // Sharpen the new invoke. Note that we do not update the dex method index of
2252 // the invoke, as we would need to look it up in the current dex file, and it
2253 // is unlikely that it exists. The most usual situation for such typed
2254 // arraycopy methods is a direct pointer to the boot image.
2255 HSharpening::SharpenInvokeStaticOrDirect(invoke, codegen_, compiler_driver_);
2256 }
2257 }
2258 }
2259
SimplifyCompare(HInvoke * invoke,bool is_signum,DataType::Type type)2260 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
2261 bool is_signum,
2262 DataType::Type type) {
2263 DCHECK(invoke->IsInvokeStaticOrDirect());
2264 uint32_t dex_pc = invoke->GetDexPc();
2265 HInstruction* left = invoke->InputAt(0);
2266 HInstruction* right;
2267 if (!is_signum) {
2268 right = invoke->InputAt(1);
2269 } else if (type == DataType::Type::kInt64) {
2270 right = GetGraph()->GetLongConstant(0);
2271 } else {
2272 right = GetGraph()->GetIntConstant(0);
2273 }
2274 HCompare* compare = new (GetGraph()->GetAllocator())
2275 HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
2276 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
2277 }
2278
SimplifyIsNaN(HInvoke * invoke)2279 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
2280 DCHECK(invoke->IsInvokeStaticOrDirect());
2281 uint32_t dex_pc = invoke->GetDexPc();
2282 // IsNaN(x) is the same as x != x.
2283 HInstruction* x = invoke->InputAt(0);
2284 HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2285 condition->SetBias(ComparisonBias::kLtBias);
2286 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
2287 }
2288
SimplifyFP2Int(HInvoke * invoke)2289 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
2290 DCHECK(invoke->IsInvokeStaticOrDirect());
2291 uint32_t dex_pc = invoke->GetDexPc();
2292 HInstruction* x = invoke->InputAt(0);
2293 DataType::Type type = x->GetType();
2294 // Set proper bit pattern for NaN and replace intrinsic with raw version.
2295 HInstruction* nan;
2296 if (type == DataType::Type::kFloat64) {
2297 nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
2298 invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
2299 kNeedsEnvironmentOrCache,
2300 kNoSideEffects,
2301 kNoThrow);
2302 } else {
2303 DCHECK_EQ(type, DataType::Type::kFloat32);
2304 nan = GetGraph()->GetIntConstant(0x7fc00000);
2305 invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
2306 kNeedsEnvironmentOrCache,
2307 kNoSideEffects,
2308 kNoThrow);
2309 }
2310 // Test IsNaN(x), which is the same as x != x.
2311 HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2312 condition->SetBias(ComparisonBias::kLtBias);
2313 invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
2314 // Select between the two.
2315 HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc);
2316 invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
2317 invoke->ReplaceWithExceptInReplacementAtIndex(select, 0); // false at index 0
2318 }
2319
SimplifyStringCharAt(HInvoke * invoke)2320 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
2321 HInstruction* str = invoke->InputAt(0);
2322 HInstruction* index = invoke->InputAt(1);
2323 uint32_t dex_pc = invoke->GetDexPc();
2324 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2325 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2326 // so create the HArrayLength, HBoundsCheck and HArrayGet.
2327 HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length */ true);
2328 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2329 HBoundsCheck* bounds_check = new (allocator) HBoundsCheck(
2330 index, length, dex_pc, /* is_string_char_at */ true);
2331 invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
2332 HArrayGet* array_get = new (allocator) HArrayGet(str,
2333 bounds_check,
2334 DataType::Type::kUint16,
2335 SideEffects::None(), // Strings are immutable.
2336 dex_pc,
2337 /* is_string_char_at */ true);
2338 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
2339 bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
2340 GetGraph()->SetHasBoundsChecks(true);
2341 }
2342
SimplifyStringIsEmptyOrLength(HInvoke * invoke)2343 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
2344 HInstruction* str = invoke->InputAt(0);
2345 uint32_t dex_pc = invoke->GetDexPc();
2346 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2347 // so create the HArrayLength.
2348 HArrayLength* length =
2349 new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length */ true);
2350 HInstruction* replacement;
2351 if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
2352 // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
2353 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2354 HIntConstant* zero = GetGraph()->GetIntConstant(0);
2355 HEqual* equal = new (GetGraph()->GetAllocator()) HEqual(length, zero, dex_pc);
2356 replacement = equal;
2357 } else {
2358 DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
2359 replacement = length;
2360 }
2361 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
2362 }
2363
2364 // This method should only be used on intrinsics whose sole way of throwing an
2365 // exception is raising a NPE when the nth argument is null. If that argument
2366 // is provably non-null, we can clear the flag.
SimplifyNPEOnArgN(HInvoke * invoke,size_t n)2367 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
2368 HInstruction* arg = invoke->InputAt(n);
2369 if (invoke->CanThrow() && !arg->CanBeNull()) {
2370 invoke->SetCanThrow(false);
2371 }
2372 }
2373
2374 // Methods that return "this" can replace the returned value with the receiver.
SimplifyReturnThis(HInvoke * invoke)2375 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
2376 if (invoke->HasUses()) {
2377 HInstruction* receiver = invoke->InputAt(0);
2378 invoke->ReplaceWith(receiver);
2379 RecordSimplification();
2380 }
2381 }
2382
2383 // Helper method for StringBuffer escape analysis.
NoEscapeForStringBufferReference(HInstruction * reference,HInstruction * user)2384 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
2385 if (user->IsInvokeStaticOrDirect()) {
2386 // Any constructor on StringBuffer is okay.
2387 return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2388 user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2389 user->InputAt(0) == reference;
2390 } else if (user->IsInvokeVirtual()) {
2391 switch (user->AsInvokeVirtual()->GetIntrinsic()) {
2392 case Intrinsics::kStringBufferLength:
2393 case Intrinsics::kStringBufferToString:
2394 DCHECK_EQ(user->InputAt(0), reference);
2395 return true;
2396 case Intrinsics::kStringBufferAppend:
2397 // Returns "this", so only okay if no further uses.
2398 DCHECK_EQ(user->InputAt(0), reference);
2399 DCHECK_NE(user->InputAt(1), reference);
2400 return !user->HasUses();
2401 default:
2402 break;
2403 }
2404 }
2405 return false;
2406 }
2407
2408 // Certain allocation intrinsics are not removed by dead code elimination
2409 // because of potentially throwing an OOM exception or other side effects.
2410 // This method removes such intrinsics when special circumstances allow.
SimplifyAllocationIntrinsic(HInvoke * invoke)2411 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
2412 if (!invoke->HasUses()) {
2413 // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
2414 // the potential OOM of course. Otherwise, we must ensure the receiver object of this
2415 // call does not escape since only thread-local synchronization may be removed.
2416 bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
2417 HInstruction* receiver = invoke->InputAt(0);
2418 if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
2419 invoke->GetBlock()->RemoveInstruction(invoke);
2420 RecordSimplification();
2421 }
2422 }
2423 }
2424
SimplifyMemBarrier(HInvoke * invoke,MemBarrierKind barrier_kind)2425 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke,
2426 MemBarrierKind barrier_kind) {
2427 uint32_t dex_pc = invoke->GetDexPc();
2428 HMemoryBarrier* mem_barrier =
2429 new (GetGraph()->GetAllocator()) HMemoryBarrier(barrier_kind, dex_pc);
2430 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
2431 }
2432
VisitInvoke(HInvoke * instruction)2433 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
2434 switch (instruction->GetIntrinsic()) {
2435 case Intrinsics::kStringEquals:
2436 SimplifyStringEquals(instruction);
2437 break;
2438 case Intrinsics::kSystemArrayCopy:
2439 SimplifySystemArrayCopy(instruction);
2440 break;
2441 case Intrinsics::kIntegerRotateRight:
2442 SimplifyRotate(instruction, /* is_left */ false, DataType::Type::kInt32);
2443 break;
2444 case Intrinsics::kLongRotateRight:
2445 SimplifyRotate(instruction, /* is_left */ false, DataType::Type::kInt64);
2446 break;
2447 case Intrinsics::kIntegerRotateLeft:
2448 SimplifyRotate(instruction, /* is_left */ true, DataType::Type::kInt32);
2449 break;
2450 case Intrinsics::kLongRotateLeft:
2451 SimplifyRotate(instruction, /* is_left */ true, DataType::Type::kInt64);
2452 break;
2453 case Intrinsics::kIntegerCompare:
2454 SimplifyCompare(instruction, /* is_signum */ false, DataType::Type::kInt32);
2455 break;
2456 case Intrinsics::kLongCompare:
2457 SimplifyCompare(instruction, /* is_signum */ false, DataType::Type::kInt64);
2458 break;
2459 case Intrinsics::kIntegerSignum:
2460 SimplifyCompare(instruction, /* is_signum */ true, DataType::Type::kInt32);
2461 break;
2462 case Intrinsics::kLongSignum:
2463 SimplifyCompare(instruction, /* is_signum */ true, DataType::Type::kInt64);
2464 break;
2465 case Intrinsics::kFloatIsNaN:
2466 case Intrinsics::kDoubleIsNaN:
2467 SimplifyIsNaN(instruction);
2468 break;
2469 case Intrinsics::kFloatFloatToIntBits:
2470 case Intrinsics::kDoubleDoubleToLongBits:
2471 SimplifyFP2Int(instruction);
2472 break;
2473 case Intrinsics::kStringCharAt:
2474 SimplifyStringCharAt(instruction);
2475 break;
2476 case Intrinsics::kStringIsEmpty:
2477 case Intrinsics::kStringLength:
2478 SimplifyStringIsEmptyOrLength(instruction);
2479 break;
2480 case Intrinsics::kStringStringIndexOf:
2481 case Intrinsics::kStringStringIndexOfAfter:
2482 SimplifyNPEOnArgN(instruction, 1); // 0th has own NullCheck
2483 break;
2484 case Intrinsics::kStringBufferAppend:
2485 case Intrinsics::kStringBuilderAppend:
2486 SimplifyReturnThis(instruction);
2487 break;
2488 case Intrinsics::kStringBufferToString:
2489 case Intrinsics::kStringBuilderToString:
2490 SimplifyAllocationIntrinsic(instruction);
2491 break;
2492 case Intrinsics::kUnsafeLoadFence:
2493 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2494 break;
2495 case Intrinsics::kUnsafeStoreFence:
2496 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2497 break;
2498 case Intrinsics::kUnsafeFullFence:
2499 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2500 break;
2501 case Intrinsics::kVarHandleFullFence:
2502 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2503 break;
2504 case Intrinsics::kVarHandleAcquireFence:
2505 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2506 break;
2507 case Intrinsics::kVarHandleReleaseFence:
2508 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2509 break;
2510 case Intrinsics::kVarHandleLoadLoadFence:
2511 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2512 break;
2513 case Intrinsics::kVarHandleStoreStoreFence:
2514 SimplifyMemBarrier(instruction, MemBarrierKind::kStoreStore);
2515 break;
2516 default:
2517 break;
2518 }
2519 }
2520
VisitDeoptimize(HDeoptimize * deoptimize)2521 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
2522 HInstruction* cond = deoptimize->InputAt(0);
2523 if (cond->IsConstant()) {
2524 if (cond->AsIntConstant()->IsFalse()) {
2525 // Never deopt: instruction can be removed.
2526 if (deoptimize->GuardsAnInput()) {
2527 deoptimize->ReplaceWith(deoptimize->GuardedInput());
2528 }
2529 deoptimize->GetBlock()->RemoveInstruction(deoptimize);
2530 } else {
2531 // Always deopt.
2532 }
2533 }
2534 }
2535
2536 // Replace code looking like
2537 // OP y, x, const1
2538 // OP z, y, const2
2539 // with
2540 // OP z, x, const3
2541 // where OP is both an associative and a commutative operation.
TryHandleAssociativeAndCommutativeOperation(HBinaryOperation * instruction)2542 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
2543 HBinaryOperation* instruction) {
2544 DCHECK(instruction->IsCommutative());
2545
2546 if (!DataType::IsIntegralType(instruction->GetType())) {
2547 return false;
2548 }
2549
2550 HInstruction* left = instruction->GetLeft();
2551 HInstruction* right = instruction->GetRight();
2552 // Variable names as described above.
2553 HConstant* const2;
2554 HBinaryOperation* y;
2555
2556 if (instruction->InstructionTypeEquals(left) && right->IsConstant()) {
2557 const2 = right->AsConstant();
2558 y = left->AsBinaryOperation();
2559 } else if (left->IsConstant() && instruction->InstructionTypeEquals(right)) {
2560 const2 = left->AsConstant();
2561 y = right->AsBinaryOperation();
2562 } else {
2563 // The node does not match the pattern.
2564 return false;
2565 }
2566
2567 // If `y` has more than one use, we do not perform the optimization
2568 // because it might increase code size (e.g. if the new constant is
2569 // no longer encodable as an immediate operand in the target ISA).
2570 if (!y->HasOnlyOneNonEnvironmentUse()) {
2571 return false;
2572 }
2573
2574 // GetConstantRight() can return both left and right constants
2575 // for commutative operations.
2576 HConstant* const1 = y->GetConstantRight();
2577 if (const1 == nullptr) {
2578 return false;
2579 }
2580
2581 instruction->ReplaceInput(const1, 0);
2582 instruction->ReplaceInput(const2, 1);
2583 HConstant* const3 = instruction->TryStaticEvaluation();
2584 DCHECK(const3 != nullptr);
2585 instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
2586 instruction->ReplaceInput(const3, 1);
2587 RecordSimplification();
2588 return true;
2589 }
2590
AsAddOrSub(HInstruction * binop)2591 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
2592 return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
2593 }
2594
2595 // Helper function that performs addition statically, considering the result type.
ComputeAddition(DataType::Type type,int64_t x,int64_t y)2596 static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) {
2597 // Use the Compute() method for consistency with TryStaticEvaluation().
2598 if (type == DataType::Type::kInt32) {
2599 return HAdd::Compute<int32_t>(x, y);
2600 } else {
2601 DCHECK_EQ(type, DataType::Type::kInt64);
2602 return HAdd::Compute<int64_t>(x, y);
2603 }
2604 }
2605
2606 // Helper function that handles the child classes of HConstant
2607 // and returns an integer with the appropriate sign.
GetValue(HConstant * constant,bool is_negated)2608 static int64_t GetValue(HConstant* constant, bool is_negated) {
2609 int64_t ret = Int64FromConstant(constant);
2610 return is_negated ? -ret : ret;
2611 }
2612
2613 // Replace code looking like
2614 // OP1 y, x, const1
2615 // OP2 z, y, const2
2616 // with
2617 // OP3 z, x, const3
2618 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
TrySubtractionChainSimplification(HBinaryOperation * instruction)2619 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
2620 HBinaryOperation* instruction) {
2621 DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
2622
2623 DataType::Type type = instruction->GetType();
2624 if (!DataType::IsIntegralType(type)) {
2625 return false;
2626 }
2627
2628 HInstruction* left = instruction->GetLeft();
2629 HInstruction* right = instruction->GetRight();
2630 // Variable names as described above.
2631 HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
2632 if (const2 == nullptr) {
2633 return false;
2634 }
2635
2636 HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
2637 ? left->AsBinaryOperation()
2638 : AsAddOrSub(right);
2639 // If y has more than one use, we do not perform the optimization because
2640 // it might increase code size (e.g. if the new constant is no longer
2641 // encodable as an immediate operand in the target ISA).
2642 if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
2643 return false;
2644 }
2645
2646 left = y->GetLeft();
2647 HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
2648 if (const1 == nullptr) {
2649 return false;
2650 }
2651
2652 HInstruction* x = (const1 == left) ? y->GetRight() : left;
2653 // If both inputs are constants, let the constant folding pass deal with it.
2654 if (x->IsConstant()) {
2655 return false;
2656 }
2657
2658 bool is_const2_negated = (const2 == right) && instruction->IsSub();
2659 int64_t const2_val = GetValue(const2, is_const2_negated);
2660 bool is_y_negated = (y == right) && instruction->IsSub();
2661 right = y->GetRight();
2662 bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
2663 int64_t const1_val = GetValue(const1, is_const1_negated);
2664 bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
2665 int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
2666 HBasicBlock* block = instruction->GetBlock();
2667 HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
2668 ArenaAllocator* allocator = instruction->GetAllocator();
2669 HInstruction* z;
2670
2671 if (is_x_negated) {
2672 z = new (allocator) HSub(type, const3, x, instruction->GetDexPc());
2673 } else {
2674 z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc());
2675 }
2676
2677 block->ReplaceAndRemoveInstructionWith(instruction, z);
2678 RecordSimplification();
2679 return true;
2680 }
2681
VisitVecMul(HVecMul * instruction)2682 void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) {
2683 if (TryCombineVecMultiplyAccumulate(instruction)) {
2684 RecordSimplification();
2685 }
2686 }
2687
2688 } // namespace art
2689