1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "instruction_simplifier.h"
18 
19 #include "art_method-inl.h"
20 #include "class_linker-inl.h"
21 #include "data_type-inl.h"
22 #include "escape.h"
23 #include "intrinsics.h"
24 #include "mirror/class-inl.h"
25 #include "scoped_thread_state_change-inl.h"
26 #include "sharpening.h"
27 
28 namespace art {
29 
30 // Whether to run an exhaustive test of individual HInstructions cloning when each instruction
31 // is replaced with its copy if it is clonable.
32 static constexpr bool kTestInstructionClonerExhaustively = false;
33 
34 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
35  public:
InstructionSimplifierVisitor(HGraph * graph,CodeGenerator * codegen,CompilerDriver * compiler_driver,OptimizingCompilerStats * stats)36   InstructionSimplifierVisitor(HGraph* graph,
37                                CodeGenerator* codegen,
38                                CompilerDriver* compiler_driver,
39                                OptimizingCompilerStats* stats)
40       : HGraphDelegateVisitor(graph),
41         codegen_(codegen),
42         compiler_driver_(compiler_driver),
43         stats_(stats) {}
44 
45   void Run();
46 
47  private:
RecordSimplification()48   void RecordSimplification() {
49     simplification_occurred_ = true;
50     simplifications_at_current_position_++;
51     MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications);
52   }
53 
54   bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
55   bool TryReplaceWithRotate(HBinaryOperation* instruction);
56   bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
57   bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
58   bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
59 
60   bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
61   // `op` should be either HOr or HAnd.
62   // De Morgan's laws:
63   // ~a & ~b = ~(a | b)  and  ~a | ~b = ~(a & b)
64   bool TryDeMorganNegationFactoring(HBinaryOperation* op);
65   bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
66   bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
67   bool TryCombineVecMultiplyAccumulate(HVecMul* mul);
68 
69   void VisitShift(HBinaryOperation* shift);
70 
71   void VisitEqual(HEqual* equal) OVERRIDE;
72   void VisitNotEqual(HNotEqual* equal) OVERRIDE;
73   void VisitBooleanNot(HBooleanNot* bool_not) OVERRIDE;
74   void VisitInstanceFieldSet(HInstanceFieldSet* equal) OVERRIDE;
75   void VisitStaticFieldSet(HStaticFieldSet* equal) OVERRIDE;
76   void VisitArraySet(HArraySet* equal) OVERRIDE;
77   void VisitTypeConversion(HTypeConversion* instruction) OVERRIDE;
78   void VisitNullCheck(HNullCheck* instruction) OVERRIDE;
79   void VisitArrayLength(HArrayLength* instruction) OVERRIDE;
80   void VisitCheckCast(HCheckCast* instruction) OVERRIDE;
81   void VisitAdd(HAdd* instruction) OVERRIDE;
82   void VisitAnd(HAnd* instruction) OVERRIDE;
83   void VisitCondition(HCondition* instruction) OVERRIDE;
84   void VisitGreaterThan(HGreaterThan* condition) OVERRIDE;
85   void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) OVERRIDE;
86   void VisitLessThan(HLessThan* condition) OVERRIDE;
87   void VisitLessThanOrEqual(HLessThanOrEqual* condition) OVERRIDE;
88   void VisitBelow(HBelow* condition) OVERRIDE;
89   void VisitBelowOrEqual(HBelowOrEqual* condition) OVERRIDE;
90   void VisitAbove(HAbove* condition) OVERRIDE;
91   void VisitAboveOrEqual(HAboveOrEqual* condition) OVERRIDE;
92   void VisitDiv(HDiv* instruction) OVERRIDE;
93   void VisitMul(HMul* instruction) OVERRIDE;
94   void VisitNeg(HNeg* instruction) OVERRIDE;
95   void VisitNot(HNot* instruction) OVERRIDE;
96   void VisitOr(HOr* instruction) OVERRIDE;
97   void VisitShl(HShl* instruction) OVERRIDE;
98   void VisitShr(HShr* instruction) OVERRIDE;
99   void VisitSub(HSub* instruction) OVERRIDE;
100   void VisitUShr(HUShr* instruction) OVERRIDE;
101   void VisitXor(HXor* instruction) OVERRIDE;
102   void VisitSelect(HSelect* select) OVERRIDE;
103   void VisitIf(HIf* instruction) OVERRIDE;
104   void VisitInstanceOf(HInstanceOf* instruction) OVERRIDE;
105   void VisitInvoke(HInvoke* invoke) OVERRIDE;
106   void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE;
107   void VisitVecMul(HVecMul* instruction) OVERRIDE;
108 
109   bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
110 
111   void SimplifyRotate(HInvoke* invoke, bool is_left, DataType::Type type);
112   void SimplifySystemArrayCopy(HInvoke* invoke);
113   void SimplifyStringEquals(HInvoke* invoke);
114   void SimplifyCompare(HInvoke* invoke, bool is_signum, DataType::Type type);
115   void SimplifyIsNaN(HInvoke* invoke);
116   void SimplifyFP2Int(HInvoke* invoke);
117   void SimplifyStringCharAt(HInvoke* invoke);
118   void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
119   void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
120   void SimplifyReturnThis(HInvoke* invoke);
121   void SimplifyAllocationIntrinsic(HInvoke* invoke);
122   void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
123 
124   CodeGenerator* codegen_;
125   CompilerDriver* compiler_driver_;
126   OptimizingCompilerStats* stats_;
127   bool simplification_occurred_ = false;
128   int simplifications_at_current_position_ = 0;
129   // We ensure we do not loop infinitely. The value should not be too high, since that
130   // would allow looping around the same basic block too many times. The value should
131   // not be too low either, however, since we want to allow revisiting a basic block
132   // with many statements and simplifications at least once.
133   static constexpr int kMaxSamePositionSimplifications = 50;
134 };
135 
Run()136 void InstructionSimplifier::Run() {
137   if (kTestInstructionClonerExhaustively) {
138     CloneAndReplaceInstructionVisitor visitor(graph_);
139     visitor.VisitReversePostOrder();
140   }
141 
142   InstructionSimplifierVisitor visitor(graph_, codegen_, compiler_driver_, stats_);
143   visitor.Run();
144 }
145 
Run()146 void InstructionSimplifierVisitor::Run() {
147   // Iterate in reverse post order to open up more simplifications to users
148   // of instructions that got simplified.
149   for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
150     // The simplification of an instruction to another instruction may yield
151     // possibilities for other simplifications. So although we perform a reverse
152     // post order visit, we sometimes need to revisit an instruction index.
153     do {
154       simplification_occurred_ = false;
155       VisitBasicBlock(block);
156     } while (simplification_occurred_ &&
157              (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
158     simplifications_at_current_position_ = 0;
159   }
160 }
161 
162 namespace {
163 
AreAllBitsSet(HConstant * constant)164 bool AreAllBitsSet(HConstant* constant) {
165   return Int64FromConstant(constant) == -1;
166 }
167 
168 }  // namespace
169 
170 // Returns true if the code was simplified to use only one negation operation
171 // after the binary operation instead of one on each of the inputs.
TryMoveNegOnInputsAfterBinop(HBinaryOperation * binop)172 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
173   DCHECK(binop->IsAdd() || binop->IsSub());
174   DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
175   HNeg* left_neg = binop->GetLeft()->AsNeg();
176   HNeg* right_neg = binop->GetRight()->AsNeg();
177   if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
178       !right_neg->HasOnlyOneNonEnvironmentUse()) {
179     return false;
180   }
181   // Replace code looking like
182   //    NEG tmp1, a
183   //    NEG tmp2, b
184   //    ADD dst, tmp1, tmp2
185   // with
186   //    ADD tmp, a, b
187   //    NEG dst, tmp
188   // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
189   // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
190   // while the later yields `-0.0`.
191   if (!DataType::IsIntegralType(binop->GetType())) {
192     return false;
193   }
194   binop->ReplaceInput(left_neg->GetInput(), 0);
195   binop->ReplaceInput(right_neg->GetInput(), 1);
196   left_neg->GetBlock()->RemoveInstruction(left_neg);
197   right_neg->GetBlock()->RemoveInstruction(right_neg);
198   HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop);
199   binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
200   binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
201   RecordSimplification();
202   return true;
203 }
204 
TryDeMorganNegationFactoring(HBinaryOperation * op)205 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
206   DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
207   DataType::Type type = op->GetType();
208   HInstruction* left = op->GetLeft();
209   HInstruction* right = op->GetRight();
210 
211   // We can apply De Morgan's laws if both inputs are Not's and are only used
212   // by `op`.
213   if (((left->IsNot() && right->IsNot()) ||
214        (left->IsBooleanNot() && right->IsBooleanNot())) &&
215       left->HasOnlyOneNonEnvironmentUse() &&
216       right->HasOnlyOneNonEnvironmentUse()) {
217     // Replace code looking like
218     //    NOT nota, a
219     //    NOT notb, b
220     //    AND dst, nota, notb (respectively OR)
221     // with
222     //    OR or, a, b         (respectively AND)
223     //    NOT dest, or
224     HInstruction* src_left = left->InputAt(0);
225     HInstruction* src_right = right->InputAt(0);
226     uint32_t dex_pc = op->GetDexPc();
227 
228     // Remove the negations on the inputs.
229     left->ReplaceWith(src_left);
230     right->ReplaceWith(src_right);
231     left->GetBlock()->RemoveInstruction(left);
232     right->GetBlock()->RemoveInstruction(right);
233 
234     // Replace the `HAnd` or `HOr`.
235     HBinaryOperation* hbin;
236     if (op->IsAnd()) {
237       hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc);
238     } else {
239       hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc);
240     }
241     HInstruction* hnot;
242     if (left->IsBooleanNot()) {
243       hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc);
244     } else {
245       hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc);
246     }
247 
248     op->GetBlock()->InsertInstructionBefore(hbin, op);
249     op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
250 
251     RecordSimplification();
252     return true;
253   }
254 
255   return false;
256 }
257 
TryCombineVecMultiplyAccumulate(HVecMul * mul)258 bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) {
259   DataType::Type type = mul->GetPackedType();
260   InstructionSet isa = codegen_->GetInstructionSet();
261   switch (isa) {
262     case InstructionSet::kArm64:
263       if (!(type == DataType::Type::kUint8 ||
264             type == DataType::Type::kInt8 ||
265             type == DataType::Type::kUint16 ||
266             type == DataType::Type::kInt16 ||
267             type == DataType::Type::kInt32)) {
268         return false;
269       }
270       break;
271     case InstructionSet::kMips:
272     case InstructionSet::kMips64:
273       if (!(type == DataType::Type::kUint8 ||
274             type == DataType::Type::kInt8 ||
275             type == DataType::Type::kUint16 ||
276             type == DataType::Type::kInt16 ||
277             type == DataType::Type::kInt32 ||
278             type == DataType::Type::kInt64)) {
279         return false;
280       }
281       break;
282     default:
283       return false;
284   }
285 
286   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
287 
288   if (mul->HasOnlyOneNonEnvironmentUse()) {
289     HInstruction* use = mul->GetUses().front().GetUser();
290     if (use->IsVecAdd() || use->IsVecSub()) {
291       // Replace code looking like
292       //    VECMUL tmp, x, y
293       //    VECADD/SUB dst, acc, tmp
294       // with
295       //    VECMULACC dst, acc, x, y
296       // Note that we do not want to (unconditionally) perform the merge when the
297       // multiplication has multiple uses and it can be merged in all of them.
298       // Multiple uses could happen on the same control-flow path, and we would
299       // then increase the amount of work. In the future we could try to evaluate
300       // whether all uses are on different control-flow paths (using dominance and
301       // reverse-dominance information) and only perform the merge when they are.
302       HInstruction* accumulator = nullptr;
303       HVecBinaryOperation* binop = use->AsVecBinaryOperation();
304       HInstruction* binop_left = binop->GetLeft();
305       HInstruction* binop_right = binop->GetRight();
306       // This is always true since the `HVecMul` has only one use (which is checked above).
307       DCHECK_NE(binop_left, binop_right);
308       if (binop_right == mul) {
309         accumulator = binop_left;
310       } else if (use->IsVecAdd()) {
311         DCHECK_EQ(binop_left, mul);
312         accumulator = binop_right;
313       }
314 
315       HInstruction::InstructionKind kind =
316           use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
317       if (accumulator != nullptr) {
318         HVecMultiplyAccumulate* mulacc =
319             new (allocator) HVecMultiplyAccumulate(allocator,
320                                                    kind,
321                                                    accumulator,
322                                                    mul->GetLeft(),
323                                                    mul->GetRight(),
324                                                    binop->GetPackedType(),
325                                                    binop->GetVectorLength(),
326                                                    binop->GetDexPc());
327 
328         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
329         DCHECK(!mul->HasUses());
330         mul->GetBlock()->RemoveInstruction(mul);
331         return true;
332       }
333     }
334   }
335 
336   return false;
337 }
338 
VisitShift(HBinaryOperation * instruction)339 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
340   DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
341   HInstruction* shift_amount = instruction->GetRight();
342   HInstruction* value = instruction->GetLeft();
343 
344   int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64)
345       ? kMaxLongShiftDistance
346       : kMaxIntShiftDistance;
347 
348   if (shift_amount->IsConstant()) {
349     int64_t cst = Int64FromConstant(shift_amount->AsConstant());
350     int64_t masked_cst = cst & implicit_mask;
351     if (masked_cst == 0) {
352       // Replace code looking like
353       //    SHL dst, value, 0
354       // with
355       //    value
356       instruction->ReplaceWith(value);
357       instruction->GetBlock()->RemoveInstruction(instruction);
358       RecordSimplification();
359       return;
360     } else if (masked_cst != cst) {
361       // Replace code looking like
362       //    SHL dst, value, cst
363       // where cst exceeds maximum distance with the equivalent
364       //    SHL dst, value, cst & implicit_mask
365       // (as defined by shift semantics). This ensures other
366       // optimizations do not need to special case for such situations.
367       DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32);
368       instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index */ 1);
369       RecordSimplification();
370       return;
371     }
372   }
373 
374   // Shift operations implicitly mask the shift amount according to the type width. Get rid of
375   // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not
376   // affect the relevant bits.
377   // Replace code looking like
378   //    AND adjusted_shift, shift, <superset of implicit mask>
379   //    [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>]
380   //    [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift]
381   //    SHL dst, value, adjusted_shift
382   // with
383   //    SHL dst, value, shift
384   if (shift_amount->IsAnd() ||
385       shift_amount->IsOr() ||
386       shift_amount->IsXor() ||
387       shift_amount->IsAdd() ||
388       shift_amount->IsSub()) {
389     int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0;
390     HBinaryOperation* bin_op = shift_amount->AsBinaryOperation();
391     HConstant* mask = bin_op->GetConstantRight();
392     if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) {
393       instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1);
394       RecordSimplification();
395       return;
396     }
397   } else if (shift_amount->IsTypeConversion()) {
398     DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool);  // We never convert to bool.
399     DataType::Type source_type = shift_amount->InputAt(0)->GetType();
400     // Non-integral and 64-bit source types require an explicit type conversion.
401     if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) {
402       instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1);
403       RecordSimplification();
404       return;
405     }
406   }
407 }
408 
IsSubRegBitsMinusOther(HSub * sub,size_t reg_bits,HInstruction * other)409 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
410   return (sub->GetRight() == other &&
411           sub->GetLeft()->IsConstant() &&
412           (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
413 }
414 
ReplaceRotateWithRor(HBinaryOperation * op,HUShr * ushr,HShl * shl)415 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
416                                                         HUShr* ushr,
417                                                         HShl* shl) {
418   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
419   HRor* ror =
420       new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
421   op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
422   if (!ushr->HasUses()) {
423     ushr->GetBlock()->RemoveInstruction(ushr);
424   }
425   if (!ushr->GetRight()->HasUses()) {
426     ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
427   }
428   if (!shl->HasUses()) {
429     shl->GetBlock()->RemoveInstruction(shl);
430   }
431   if (!shl->GetRight()->HasUses()) {
432     shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
433   }
434   RecordSimplification();
435   return true;
436 }
437 
438 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
TryReplaceWithRotate(HBinaryOperation * op)439 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
440   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
441   HInstruction* left = op->GetLeft();
442   HInstruction* right = op->GetRight();
443   // If we have an UShr and a Shl (in either order).
444   if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
445     HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
446     HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
447     DCHECK(DataType::IsIntOrLongType(ushr->GetType()));
448     if (ushr->GetType() == shl->GetType() &&
449         ushr->GetLeft() == shl->GetLeft()) {
450       if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
451         // Shift distances are both constant, try replacing with Ror if they
452         // add up to the register size.
453         return TryReplaceWithRotateConstantPattern(op, ushr, shl);
454       } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
455         // Shift distances are potentially of the form x and (reg_size - x).
456         return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
457       } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
458         // Shift distances are potentially of the form d and -d.
459         return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
460       }
461     }
462   }
463   return false;
464 }
465 
466 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
467 //    UShr dst, x,   #rdist
468 //    Shl  tmp, x,   #ldist
469 //    OP   dst, dst, tmp
470 // or like (x >>> #rdist OP x << #-ldist):
471 //    UShr dst, x,   #rdist
472 //    Shl  tmp, x,   #-ldist
473 //    OP   dst, dst, tmp
474 // with
475 //    Ror  dst, x,   #rdist
TryReplaceWithRotateConstantPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)476 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
477                                                                        HUShr* ushr,
478                                                                        HShl* shl) {
479   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
480   size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
481   size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
482   size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
483   if (((ldist + rdist) & (reg_bits - 1)) == 0) {
484     ReplaceRotateWithRor(op, ushr, shl);
485     return true;
486   }
487   return false;
488 }
489 
490 // Replace code looking like (x >>> -d OP x << d):
491 //    Neg  neg, d
492 //    UShr dst, x,   neg
493 //    Shl  tmp, x,   d
494 //    OP   dst, dst, tmp
495 // with
496 //    Neg  neg, d
497 //    Ror  dst, x,   neg
498 // *** OR ***
499 // Replace code looking like (x >>> d OP x << -d):
500 //    UShr dst, x,   d
501 //    Neg  neg, d
502 //    Shl  tmp, x,   neg
503 //    OP   dst, dst, tmp
504 // with
505 //    Ror  dst, x,   d
TryReplaceWithRotateRegisterNegPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)506 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
507                                                                           HUShr* ushr,
508                                                                           HShl* shl) {
509   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
510   DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
511   bool neg_is_left = shl->GetRight()->IsNeg();
512   HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
513   // And the shift distance being negated is the distance being shifted the other way.
514   if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
515     ReplaceRotateWithRor(op, ushr, shl);
516   }
517   return false;
518 }
519 
520 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
521 //    UShr dst, x,     d
522 //    Sub  ld,  #bits, d
523 //    Shl  tmp, x,     ld
524 //    OP   dst, dst,   tmp
525 // with
526 //    Ror  dst, x,     d
527 // *** OR ***
528 // Replace code looking like (x >>> (#bits - d) OP x << d):
529 //    Sub  rd,  #bits, d
530 //    UShr dst, x,     rd
531 //    Shl  tmp, x,     d
532 //    OP   dst, dst,   tmp
533 // with
534 //    Neg  neg, d
535 //    Ror  dst, x,     neg
TryReplaceWithRotateRegisterSubPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)536 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
537                                                                           HUShr* ushr,
538                                                                           HShl* shl) {
539   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
540   DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
541   size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
542   HInstruction* shl_shift = shl->GetRight();
543   HInstruction* ushr_shift = ushr->GetRight();
544   if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
545       (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
546     return ReplaceRotateWithRor(op, ushr, shl);
547   }
548   return false;
549 }
550 
VisitNullCheck(HNullCheck * null_check)551 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
552   HInstruction* obj = null_check->InputAt(0);
553   if (!obj->CanBeNull()) {
554     null_check->ReplaceWith(obj);
555     null_check->GetBlock()->RemoveInstruction(null_check);
556     if (stats_ != nullptr) {
557       stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
558     }
559   }
560 }
561 
CanEnsureNotNullAt(HInstruction * input,HInstruction * at) const562 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
563   if (!input->CanBeNull()) {
564     return true;
565   }
566 
567   for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
568     HInstruction* user = use.GetUser();
569     if (user->IsNullCheck() && user->StrictlyDominates(at)) {
570       return true;
571     }
572   }
573 
574   return false;
575 }
576 
577 // Returns whether doing a type test between the class of `object` against `klass` has
578 // a statically known outcome. The result of the test is stored in `outcome`.
TypeCheckHasKnownOutcome(HLoadClass * klass,HInstruction * object,bool * outcome)579 static bool TypeCheckHasKnownOutcome(HLoadClass* klass, HInstruction* object, bool* outcome) {
580   DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
581   ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
582   ScopedObjectAccess soa(Thread::Current());
583   if (!obj_rti.IsValid()) {
584     // We run the simplifier before the reference type propagation so type info might not be
585     // available.
586     return false;
587   }
588 
589   ReferenceTypeInfo class_rti = klass->GetLoadedClassRTI();
590   if (!class_rti.IsValid()) {
591     // Happens when the loaded class is unresolved.
592     return false;
593   }
594   DCHECK(class_rti.IsExact());
595   if (class_rti.IsSupertypeOf(obj_rti)) {
596     *outcome = true;
597     return true;
598   } else if (obj_rti.IsExact()) {
599     // The test failed at compile time so will also fail at runtime.
600     *outcome = false;
601     return true;
602   } else if (!class_rti.IsInterface()
603              && !obj_rti.IsInterface()
604              && !obj_rti.IsSupertypeOf(class_rti)) {
605     // Different type hierarchy. The test will fail.
606     *outcome = false;
607     return true;
608   }
609   return false;
610 }
611 
VisitCheckCast(HCheckCast * check_cast)612 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
613   HInstruction* object = check_cast->InputAt(0);
614   HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
615   if (load_class->NeedsAccessCheck()) {
616     // If we need to perform an access check we cannot remove the instruction.
617     return;
618   }
619 
620   if (CanEnsureNotNullAt(object, check_cast)) {
621     check_cast->ClearMustDoNullCheck();
622   }
623 
624   if (object->IsNullConstant()) {
625     check_cast->GetBlock()->RemoveInstruction(check_cast);
626     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
627     return;
628   }
629 
630   // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
631   // the return value check with the `outcome` check, b/27651442 .
632   bool outcome = false;
633   if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
634     if (outcome) {
635       check_cast->GetBlock()->RemoveInstruction(check_cast);
636       MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
637       if (!load_class->HasUses()) {
638         // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
639         // However, here we know that it cannot because the checkcast was successfull, hence
640         // the class was already loaded.
641         load_class->GetBlock()->RemoveInstruction(load_class);
642       }
643     } else {
644       // Don't do anything for exceptional cases for now. Ideally we should remove
645       // all instructions and blocks this instruction dominates.
646     }
647   }
648 }
649 
VisitInstanceOf(HInstanceOf * instruction)650 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
651   HInstruction* object = instruction->InputAt(0);
652   HLoadClass* load_class = instruction->InputAt(1)->AsLoadClass();
653   if (load_class->NeedsAccessCheck()) {
654     // If we need to perform an access check we cannot remove the instruction.
655     return;
656   }
657 
658   bool can_be_null = true;
659   if (CanEnsureNotNullAt(object, instruction)) {
660     can_be_null = false;
661     instruction->ClearMustDoNullCheck();
662   }
663 
664   HGraph* graph = GetGraph();
665   if (object->IsNullConstant()) {
666     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
667     instruction->ReplaceWith(graph->GetIntConstant(0));
668     instruction->GetBlock()->RemoveInstruction(instruction);
669     RecordSimplification();
670     return;
671   }
672 
673   // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
674   // the return value check with the `outcome` check, b/27651442 .
675   bool outcome = false;
676   if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
677     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
678     if (outcome && can_be_null) {
679       // Type test will succeed, we just need a null test.
680       HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object);
681       instruction->GetBlock()->InsertInstructionBefore(test, instruction);
682       instruction->ReplaceWith(test);
683     } else {
684       // We've statically determined the result of the instanceof.
685       instruction->ReplaceWith(graph->GetIntConstant(outcome));
686     }
687     RecordSimplification();
688     instruction->GetBlock()->RemoveInstruction(instruction);
689     if (outcome && !load_class->HasUses()) {
690       // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
691       // However, here we know that it cannot because the instanceof check was successfull, hence
692       // the class was already loaded.
693       load_class->GetBlock()->RemoveInstruction(load_class);
694     }
695   }
696 }
697 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)698 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
699   if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
700       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
701     instruction->ClearValueCanBeNull();
702   }
703 }
704 
VisitStaticFieldSet(HStaticFieldSet * instruction)705 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
706   if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
707       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
708     instruction->ClearValueCanBeNull();
709   }
710 }
711 
GetOppositeConditionSwapOps(ArenaAllocator * allocator,HInstruction * cond)712 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) {
713   HInstruction *lhs = cond->InputAt(0);
714   HInstruction *rhs = cond->InputAt(1);
715   switch (cond->GetKind()) {
716     case HInstruction::kEqual:
717       return new (allocator) HEqual(rhs, lhs);
718     case HInstruction::kNotEqual:
719       return new (allocator) HNotEqual(rhs, lhs);
720     case HInstruction::kLessThan:
721       return new (allocator) HGreaterThan(rhs, lhs);
722     case HInstruction::kLessThanOrEqual:
723       return new (allocator) HGreaterThanOrEqual(rhs, lhs);
724     case HInstruction::kGreaterThan:
725       return new (allocator) HLessThan(rhs, lhs);
726     case HInstruction::kGreaterThanOrEqual:
727       return new (allocator) HLessThanOrEqual(rhs, lhs);
728     case HInstruction::kBelow:
729       return new (allocator) HAbove(rhs, lhs);
730     case HInstruction::kBelowOrEqual:
731       return new (allocator) HAboveOrEqual(rhs, lhs);
732     case HInstruction::kAbove:
733       return new (allocator) HBelow(rhs, lhs);
734     case HInstruction::kAboveOrEqual:
735       return new (allocator) HBelowOrEqual(rhs, lhs);
736     default:
737       LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
738   }
739   return nullptr;
740 }
741 
CmpHasBoolType(HInstruction * input,HInstruction * cmp)742 static bool CmpHasBoolType(HInstruction* input, HInstruction* cmp) {
743   if (input->GetType() == DataType::Type::kBool) {
744     return true;  // input has direct boolean type
745   } else if (cmp->GetUses().HasExactlyOneElement()) {
746     // Comparison also has boolean type if both its input and the instruction
747     // itself feed into the same phi node.
748     HInstruction* user = cmp->GetUses().front().GetUser();
749     return user->IsPhi() && user->HasInput(input) && user->HasInput(cmp);
750   }
751   return false;
752 }
753 
VisitEqual(HEqual * equal)754 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
755   HInstruction* input_const = equal->GetConstantRight();
756   if (input_const != nullptr) {
757     HInstruction* input_value = equal->GetLeastConstantLeft();
758     if (CmpHasBoolType(input_value, equal) && input_const->IsIntConstant()) {
759       HBasicBlock* block = equal->GetBlock();
760       // We are comparing the boolean to a constant which is of type int and can
761       // be any constant.
762       if (input_const->AsIntConstant()->IsTrue()) {
763         // Replace (bool_value == true) with bool_value
764         equal->ReplaceWith(input_value);
765         block->RemoveInstruction(equal);
766         RecordSimplification();
767       } else if (input_const->AsIntConstant()->IsFalse()) {
768         // Replace (bool_value == false) with !bool_value
769         equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
770         block->RemoveInstruction(equal);
771         RecordSimplification();
772       } else {
773         // Replace (bool_value == integer_not_zero_nor_one_constant) with false
774         equal->ReplaceWith(GetGraph()->GetIntConstant(0));
775         block->RemoveInstruction(equal);
776         RecordSimplification();
777       }
778     } else {
779       VisitCondition(equal);
780     }
781   } else {
782     VisitCondition(equal);
783   }
784 }
785 
VisitNotEqual(HNotEqual * not_equal)786 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
787   HInstruction* input_const = not_equal->GetConstantRight();
788   if (input_const != nullptr) {
789     HInstruction* input_value = not_equal->GetLeastConstantLeft();
790     if (CmpHasBoolType(input_value, not_equal) && input_const->IsIntConstant()) {
791       HBasicBlock* block = not_equal->GetBlock();
792       // We are comparing the boolean to a constant which is of type int and can
793       // be any constant.
794       if (input_const->AsIntConstant()->IsTrue()) {
795         // Replace (bool_value != true) with !bool_value
796         not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
797         block->RemoveInstruction(not_equal);
798         RecordSimplification();
799       } else if (input_const->AsIntConstant()->IsFalse()) {
800         // Replace (bool_value != false) with bool_value
801         not_equal->ReplaceWith(input_value);
802         block->RemoveInstruction(not_equal);
803         RecordSimplification();
804       } else {
805         // Replace (bool_value != integer_not_zero_nor_one_constant) with true
806         not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
807         block->RemoveInstruction(not_equal);
808         RecordSimplification();
809       }
810     } else {
811       VisitCondition(not_equal);
812     }
813   } else {
814     VisitCondition(not_equal);
815   }
816 }
817 
VisitBooleanNot(HBooleanNot * bool_not)818 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
819   HInstruction* input = bool_not->InputAt(0);
820   HInstruction* replace_with = nullptr;
821 
822   if (input->IsIntConstant()) {
823     // Replace !(true/false) with false/true.
824     if (input->AsIntConstant()->IsTrue()) {
825       replace_with = GetGraph()->GetIntConstant(0);
826     } else {
827       DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
828       replace_with = GetGraph()->GetIntConstant(1);
829     }
830   } else if (input->IsBooleanNot()) {
831     // Replace (!(!bool_value)) with bool_value.
832     replace_with = input->InputAt(0);
833   } else if (input->IsCondition() &&
834              // Don't change FP compares. The definition of compares involving
835              // NaNs forces the compares to be done as written by the user.
836              !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) {
837     // Replace condition with its opposite.
838     replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
839   }
840 
841   if (replace_with != nullptr) {
842     bool_not->ReplaceWith(replace_with);
843     bool_not->GetBlock()->RemoveInstruction(bool_not);
844     RecordSimplification();
845   }
846 }
847 
848 // Constructs a new ABS(x) node in the HIR.
NewIntegralAbs(ArenaAllocator * allocator,HInstruction * x,HInstruction * cursor)849 static HInstruction* NewIntegralAbs(ArenaAllocator* allocator,
850                                     HInstruction* x,
851                                     HInstruction* cursor) {
852   DataType::Type type = x->GetType();
853   DCHECK(type == DataType::Type::kInt32 || type ==  DataType::Type::kInt64);
854   // Construct a fake intrinsic with as much context as is needed to allocate one.
855   // The intrinsic will always be lowered into code later anyway.
856   // TODO: b/65164101 : moving towards a real HAbs node makes more sense.
857   HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
858     HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress,
859     HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
860     0u
861   };
862   HInvokeStaticOrDirect* invoke = new (allocator) HInvokeStaticOrDirect(
863       allocator,
864       1,
865       type,
866       x->GetDexPc(),
867       /*method_idx*/ -1,
868       /*resolved_method*/ nullptr,
869       dispatch_info,
870       kStatic,
871       MethodReference(nullptr, dex::kDexNoIndex),
872       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
873   invoke->SetArgumentAt(0, x);
874   invoke->SetIntrinsic(type == DataType::Type::kInt32 ? Intrinsics::kMathAbsInt
875                                                       : Intrinsics::kMathAbsLong,
876                        kNoEnvironmentOrCache,
877                        kNoSideEffects,
878                        kNoThrow);
879   cursor->GetBlock()->InsertInstructionBefore(invoke, cursor);
880   return invoke;
881 }
882 
883 // Returns true if operands a and b consists of widening type conversions
884 // (either explicit or implicit) to the given to_type.
AreLowerPrecisionArgs(DataType::Type to_type,HInstruction * a,HInstruction * b)885 static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) {
886   if (a->IsTypeConversion() && a->GetType() == to_type) {
887     a = a->InputAt(0);
888   }
889   if (b->IsTypeConversion() && b->GetType() == to_type) {
890     b = b->InputAt(0);
891   }
892   DataType::Type type1 = a->GetType();
893   DataType::Type type2 = b->GetType();
894   return (type1 == DataType::Type::kUint8  && type2 == DataType::Type::kUint8) ||
895          (type1 == DataType::Type::kInt8   && type2 == DataType::Type::kInt8) ||
896          (type1 == DataType::Type::kInt16  && type2 == DataType::Type::kInt16) ||
897          (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) ||
898          (type1 == DataType::Type::kInt32  && type2 == DataType::Type::kInt32 &&
899           to_type == DataType::Type::kInt64);
900 }
901 
VisitSelect(HSelect * select)902 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
903   HInstruction* replace_with = nullptr;
904   HInstruction* condition = select->GetCondition();
905   HInstruction* true_value = select->GetTrueValue();
906   HInstruction* false_value = select->GetFalseValue();
907 
908   if (condition->IsBooleanNot()) {
909     // Change ((!cond) ? x : y) to (cond ? y : x).
910     condition = condition->InputAt(0);
911     std::swap(true_value, false_value);
912     select->ReplaceInput(false_value, 0);
913     select->ReplaceInput(true_value, 1);
914     select->ReplaceInput(condition, 2);
915     RecordSimplification();
916   }
917 
918   if (true_value == false_value) {
919     // Replace (cond ? x : x) with (x).
920     replace_with = true_value;
921   } else if (condition->IsIntConstant()) {
922     if (condition->AsIntConstant()->IsTrue()) {
923       // Replace (true ? x : y) with (x).
924       replace_with = true_value;
925     } else {
926       // Replace (false ? x : y) with (y).
927       DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
928       replace_with = false_value;
929     }
930   } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
931     if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
932       // Replace (cond ? true : false) with (cond).
933       replace_with = condition;
934     } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
935       // Replace (cond ? false : true) with (!cond).
936       replace_with = GetGraph()->InsertOppositeCondition(condition, select);
937     }
938   } else if (condition->IsCondition()) {
939     IfCondition cmp = condition->AsCondition()->GetCondition();
940     HInstruction* a = condition->InputAt(0);
941     HInstruction* b = condition->InputAt(1);
942     DataType::Type t_type = true_value->GetType();
943     DataType::Type f_type = false_value->GetType();
944     // Here we have a <cmp> b ? true_value : false_value.
945     // Test if both values are same-typed int or long.
946     if (t_type == f_type &&
947         (t_type == DataType::Type::kInt32 || t_type == DataType::Type::kInt64)) {
948       // Try to replace typical integral ABS constructs.
949       if (true_value->IsNeg()) {
950         HInstruction* negated = true_value->InputAt(0);
951         if ((cmp == kCondLT || cmp == kCondLE) &&
952             (a == negated && a == false_value && IsInt64Value(b, 0))) {
953           // Found a < 0 ? -a : a which can be replaced by ABS(a).
954           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), false_value, select);
955         }
956       } else if (false_value->IsNeg()) {
957         HInstruction* negated = false_value->InputAt(0);
958         if ((cmp == kCondGT || cmp == kCondGE) &&
959             (a == true_value && a == negated && IsInt64Value(b, 0))) {
960           // Found a > 0 ? a : -a which can be replaced by ABS(a).
961           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
962         }
963       } else if (true_value->IsSub() && false_value->IsSub()) {
964         HInstruction* true_sub1 = true_value->InputAt(0);
965         HInstruction* true_sub2 = true_value->InputAt(1);
966         HInstruction* false_sub1 = false_value->InputAt(0);
967         HInstruction* false_sub2 = false_value->InputAt(1);
968         if ((((cmp == kCondGT || cmp == kCondGE) &&
969               (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) ||
970              ((cmp == kCondLT || cmp == kCondLE) &&
971               (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) &&
972             AreLowerPrecisionArgs(t_type, a, b)) {
973           // Found a > b ? a - b  : b - a   or
974           //       a < b ? b - a  : a - b
975           // which can be replaced by ABS(a - b) for lower precision operands a, b.
976           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
977         }
978       }
979     }
980   }
981 
982   if (replace_with != nullptr) {
983     select->ReplaceWith(replace_with);
984     select->GetBlock()->RemoveInstruction(select);
985     RecordSimplification();
986   }
987 }
988 
VisitIf(HIf * instruction)989 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
990   HInstruction* condition = instruction->InputAt(0);
991   if (condition->IsBooleanNot()) {
992     // Swap successors if input is negated.
993     instruction->ReplaceInput(condition->InputAt(0), 0);
994     instruction->GetBlock()->SwapSuccessors();
995     RecordSimplification();
996   }
997 }
998 
VisitArrayLength(HArrayLength * instruction)999 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
1000   HInstruction* input = instruction->InputAt(0);
1001   // If the array is a NewArray with constant size, replace the array length
1002   // with the constant instruction. This helps the bounds check elimination phase.
1003   if (input->IsNewArray()) {
1004     input = input->AsNewArray()->GetLength();
1005     if (input->IsIntConstant()) {
1006       instruction->ReplaceWith(input);
1007     }
1008   }
1009 }
1010 
VisitArraySet(HArraySet * instruction)1011 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
1012   HInstruction* value = instruction->GetValue();
1013   if (value->GetType() != DataType::Type::kReference) {
1014     return;
1015   }
1016 
1017   if (CanEnsureNotNullAt(value, instruction)) {
1018     instruction->ClearValueCanBeNull();
1019   }
1020 
1021   if (value->IsArrayGet()) {
1022     if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
1023       // If the code is just swapping elements in the array, no need for a type check.
1024       instruction->ClearNeedsTypeCheck();
1025       return;
1026     }
1027   }
1028 
1029   if (value->IsNullConstant()) {
1030     instruction->ClearNeedsTypeCheck();
1031     return;
1032   }
1033 
1034   ScopedObjectAccess soa(Thread::Current());
1035   ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
1036   ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
1037   if (!array_rti.IsValid()) {
1038     return;
1039   }
1040 
1041   if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
1042     instruction->ClearNeedsTypeCheck();
1043     return;
1044   }
1045 
1046   if (array_rti.IsObjectArray()) {
1047     if (array_rti.IsExact()) {
1048       instruction->ClearNeedsTypeCheck();
1049       return;
1050     }
1051     instruction->SetStaticTypeOfArrayIsObjectArray();
1052   }
1053 }
1054 
IsTypeConversionLossless(DataType::Type input_type,DataType::Type result_type)1055 static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) {
1056   // Make sure all implicit conversions have been simplified and no new ones have been introduced.
1057   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
1058       << input_type << "," << result_type;
1059   // The conversion to a larger type is loss-less with the exception of two cases,
1060   //   - conversion to the unsigned type Uint16, where we may lose some bits, and
1061   //   - conversion from float to long, the only FP to integral conversion with smaller FP type.
1062   // For integral to FP conversions this holds because the FP mantissa is large enough.
1063   // Note: The size check excludes Uint8 as the result type.
1064   return DataType::Size(result_type) > DataType::Size(input_type) &&
1065       result_type != DataType::Type::kUint16 &&
1066       !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32);
1067 }
1068 
TryReplaceFieldOrArrayGetType(HInstruction * maybe_get,DataType::Type new_type)1069 static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) {
1070   if (maybe_get->IsInstanceFieldGet()) {
1071     maybe_get->AsInstanceFieldGet()->SetType(new_type);
1072     return true;
1073   } else if (maybe_get->IsStaticFieldGet()) {
1074     maybe_get->AsStaticFieldGet()->SetType(new_type);
1075     return true;
1076   } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) {
1077     maybe_get->AsArrayGet()->SetType(new_type);
1078     return true;
1079   } else {
1080     return false;
1081   }
1082 }
1083 
1084 // The type conversion is only used for storing into a field/element of the
1085 // same/narrower size.
IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion * type_conversion)1086 static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) {
1087   if (type_conversion->HasEnvironmentUses()) {
1088     return false;
1089   }
1090   DataType::Type input_type = type_conversion->GetInputType();
1091   DataType::Type result_type = type_conversion->GetResultType();
1092   if (!DataType::IsIntegralType(input_type) ||
1093       !DataType::IsIntegralType(result_type) ||
1094       input_type == DataType::Type::kInt64 ||
1095       result_type == DataType::Type::kInt64) {
1096     // Type conversion is needed if non-integer types are involved, or 64-bit
1097     // types are involved, which may use different number of registers.
1098     return false;
1099   }
1100   if (DataType::Size(input_type) >= DataType::Size(result_type)) {
1101     // Type conversion is not necessary when storing to a field/element of the
1102     // same/smaller size.
1103   } else {
1104     // We do not handle this case here.
1105     return false;
1106   }
1107 
1108   // Check if the converted value is only used for storing into heap.
1109   for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) {
1110     HInstruction* instruction = use.GetUser();
1111     if (instruction->IsInstanceFieldSet() &&
1112         instruction->AsInstanceFieldSet()->GetFieldType() == result_type) {
1113       DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion);
1114       continue;
1115     }
1116     if (instruction->IsStaticFieldSet() &&
1117         instruction->AsStaticFieldSet()->GetFieldType() == result_type) {
1118       DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion);
1119       continue;
1120     }
1121     if (instruction->IsArraySet() &&
1122         instruction->AsArraySet()->GetComponentType() == result_type &&
1123         // not index use.
1124         instruction->AsArraySet()->GetIndex() != type_conversion) {
1125       DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion);
1126       continue;
1127     }
1128     // The use is not as a store value, or the field/element type is not the
1129     // same as the result_type, keep the type conversion.
1130     return false;
1131   }
1132   // Codegen automatically handles the type conversion during the store.
1133   return true;
1134 }
1135 
VisitTypeConversion(HTypeConversion * instruction)1136 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
1137   HInstruction* input = instruction->GetInput();
1138   DataType::Type input_type = input->GetType();
1139   DataType::Type result_type = instruction->GetResultType();
1140   if (DataType::IsTypeConversionImplicit(input_type, result_type)) {
1141     // Remove the implicit conversion; this includes conversion to the same type.
1142     instruction->ReplaceWith(input);
1143     instruction->GetBlock()->RemoveInstruction(instruction);
1144     RecordSimplification();
1145     return;
1146   }
1147 
1148   if (input->IsTypeConversion()) {
1149     HTypeConversion* input_conversion = input->AsTypeConversion();
1150     HInstruction* original_input = input_conversion->GetInput();
1151     DataType::Type original_type = original_input->GetType();
1152 
1153     // When the first conversion is lossless, a direct conversion from the original type
1154     // to the final type yields the same result, even for a lossy second conversion, for
1155     // example float->double->int or int->double->float.
1156     bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
1157 
1158     // For integral conversions, see if the first conversion loses only bits that the second
1159     // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
1160     // conversion yields the same result, for example long->int->short or int->char->short.
1161     bool integral_conversions_with_non_widening_second =
1162         DataType::IsIntegralType(input_type) &&
1163         DataType::IsIntegralType(original_type) &&
1164         DataType::IsIntegralType(result_type) &&
1165         DataType::Size(result_type) <= DataType::Size(input_type);
1166 
1167     if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
1168       // If the merged conversion is implicit, do the simplification unconditionally.
1169       if (DataType::IsTypeConversionImplicit(original_type, result_type)) {
1170         instruction->ReplaceWith(original_input);
1171         instruction->GetBlock()->RemoveInstruction(instruction);
1172         if (!input_conversion->HasUses()) {
1173           // Don't wait for DCE.
1174           input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1175         }
1176         RecordSimplification();
1177         return;
1178       }
1179       // Otherwise simplify only if the first conversion has no other use.
1180       if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
1181         input_conversion->ReplaceWith(original_input);
1182         input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1183         RecordSimplification();
1184         return;
1185       }
1186     }
1187   } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) {
1188     DCHECK(DataType::IsIntegralType(input_type));
1189     HAnd* input_and = input->AsAnd();
1190     HConstant* constant = input_and->GetConstantRight();
1191     if (constant != nullptr) {
1192       int64_t value = Int64FromConstant(constant);
1193       DCHECK_NE(value, -1);  // "& -1" would have been optimized away in VisitAnd().
1194       size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
1195       if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) {
1196         // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
1197         HInstruction* original_input = input_and->GetLeastConstantLeft();
1198         if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) {
1199           instruction->ReplaceWith(original_input);
1200           instruction->GetBlock()->RemoveInstruction(instruction);
1201           RecordSimplification();
1202           return;
1203         } else if (input->HasOnlyOneNonEnvironmentUse()) {
1204           input_and->ReplaceWith(original_input);
1205           input_and->GetBlock()->RemoveInstruction(input_and);
1206           RecordSimplification();
1207           return;
1208         }
1209       }
1210     }
1211   } else if (input->HasOnlyOneNonEnvironmentUse() &&
1212              ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) ||
1213               (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) ||
1214               (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) ||
1215               (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) {
1216     // Try to modify the type of the load to `result_type` and remove the explicit type conversion.
1217     if (TryReplaceFieldOrArrayGetType(input, result_type)) {
1218       instruction->ReplaceWith(input);
1219       instruction->GetBlock()->RemoveInstruction(instruction);
1220       RecordSimplification();
1221       return;
1222     }
1223   }
1224 
1225   if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) {
1226     instruction->ReplaceWith(input);
1227     instruction->GetBlock()->RemoveInstruction(instruction);
1228     RecordSimplification();
1229     return;
1230   }
1231 }
1232 
VisitAdd(HAdd * instruction)1233 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
1234   HConstant* input_cst = instruction->GetConstantRight();
1235   HInstruction* input_other = instruction->GetLeastConstantLeft();
1236   bool integral_type = DataType::IsIntegralType(instruction->GetType());
1237   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1238     // Replace code looking like
1239     //    ADD dst, src, 0
1240     // with
1241     //    src
1242     // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
1243     // `x` is `-0.0`, the former expression yields `0.0`, while the later
1244     // yields `-0.0`.
1245     if (integral_type) {
1246       instruction->ReplaceWith(input_other);
1247       instruction->GetBlock()->RemoveInstruction(instruction);
1248       RecordSimplification();
1249       return;
1250     }
1251   }
1252 
1253   HInstruction* left = instruction->GetLeft();
1254   HInstruction* right = instruction->GetRight();
1255   bool left_is_neg = left->IsNeg();
1256   bool right_is_neg = right->IsNeg();
1257 
1258   if (left_is_neg && right_is_neg) {
1259     if (TryMoveNegOnInputsAfterBinop(instruction)) {
1260       return;
1261     }
1262   }
1263 
1264   HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
1265   if ((left_is_neg ^ right_is_neg) && neg->HasOnlyOneNonEnvironmentUse()) {
1266     // Replace code looking like
1267     //    NEG tmp, b
1268     //    ADD dst, a, tmp
1269     // with
1270     //    SUB dst, a, b
1271     // We do not perform the optimization if the input negation has environment
1272     // uses or multiple non-environment uses as it could lead to worse code. In
1273     // particular, we do not want the live range of `b` to be extended if we are
1274     // not sure the initial 'NEG' instruction can be removed.
1275     HInstruction* other = left_is_neg ? right : left;
1276     HSub* sub =
1277         new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput());
1278     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
1279     RecordSimplification();
1280     neg->GetBlock()->RemoveInstruction(neg);
1281     return;
1282   }
1283 
1284   if (TryReplaceWithRotate(instruction)) {
1285     return;
1286   }
1287 
1288   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1289   // so no need to return.
1290   TryHandleAssociativeAndCommutativeOperation(instruction);
1291 
1292   if ((left->IsSub() || right->IsSub()) &&
1293       TrySubtractionChainSimplification(instruction)) {
1294     return;
1295   }
1296 
1297   if (integral_type) {
1298     // Replace code patterns looking like
1299     //    SUB dst1, x, y        SUB dst1, x, y
1300     //    ADD dst2, dst1, y     ADD dst2, y, dst1
1301     // with
1302     //    SUB dst1, x, y
1303     // ADD instruction is not needed in this case, we may use
1304     // one of inputs of SUB instead.
1305     if (left->IsSub() && left->InputAt(1) == right) {
1306       instruction->ReplaceWith(left->InputAt(0));
1307       RecordSimplification();
1308       instruction->GetBlock()->RemoveInstruction(instruction);
1309       return;
1310     } else if (right->IsSub() && right->InputAt(1) == left) {
1311       instruction->ReplaceWith(right->InputAt(0));
1312       RecordSimplification();
1313       instruction->GetBlock()->RemoveInstruction(instruction);
1314       return;
1315     }
1316   }
1317 }
1318 
VisitAnd(HAnd * instruction)1319 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
1320   DCHECK(DataType::IsIntegralType(instruction->GetType()));
1321   HConstant* input_cst = instruction->GetConstantRight();
1322   HInstruction* input_other = instruction->GetLeastConstantLeft();
1323 
1324   if (input_cst != nullptr) {
1325     int64_t value = Int64FromConstant(input_cst);
1326     if (value == -1 ||
1327         // Similar cases under zero extension.
1328         (DataType::IsUnsignedType(input_other->GetType()) &&
1329          ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) {
1330       // Replace code looking like
1331       //    AND dst, src, 0xFFF...FF
1332       // with
1333       //    src
1334       instruction->ReplaceWith(input_other);
1335       instruction->GetBlock()->RemoveInstruction(instruction);
1336       RecordSimplification();
1337       return;
1338     }
1339     if (input_other->IsTypeConversion() &&
1340         input_other->GetType() == DataType::Type::kInt64 &&
1341         DataType::IsIntegralType(input_other->InputAt(0)->GetType()) &&
1342         IsInt<32>(value) &&
1343         input_other->HasOnlyOneNonEnvironmentUse()) {
1344       // The AND can be reordered before the TypeConversion. Replace
1345       //   LongConstant cst, <32-bit-constant-sign-extended-to-64-bits>
1346       //   TypeConversion<Int64> tmp, src
1347       //   AND dst, tmp, cst
1348       // with
1349       //   IntConstant cst, <32-bit-constant>
1350       //   AND tmp, src, cst
1351       //   TypeConversion<Int64> dst, tmp
1352       // This helps 32-bit targets and does not hurt 64-bit targets.
1353       // This also simplifies detection of other patterns, such as Uint8 loads.
1354       HInstruction* new_and_input = input_other->InputAt(0);
1355       // Implicit conversion Int64->Int64 would have been removed previously.
1356       DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64);
1357       HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value);
1358       HAnd* new_and =
1359           new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const);
1360       instruction->GetBlock()->InsertInstructionBefore(new_and, instruction);
1361       HTypeConversion* new_conversion =
1362           new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and);
1363       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion);
1364       input_other->GetBlock()->RemoveInstruction(input_other);
1365       RecordSimplification();
1366       // Try to process the new And now, do not wait for the next round of simplifications.
1367       instruction = new_and;
1368       input_other = new_and_input;
1369     }
1370     // Eliminate And from UShr+And if the And-mask contains all the bits that
1371     // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
1372     // precisely clears the shifted-in sign bits.
1373     if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
1374       size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32;
1375       size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
1376       size_t num_tail_bits_set = CTZ(value + 1);
1377       if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
1378         // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
1379         instruction->ReplaceWith(input_other);
1380         instruction->GetBlock()->RemoveInstruction(instruction);
1381         RecordSimplification();
1382         return;
1383       }  else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
1384           input_other->HasOnlyOneNonEnvironmentUse()) {
1385         DCHECK(input_other->IsShr());  // For UShr, we would have taken the branch above.
1386         // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
1387         HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(),
1388                                                              input_other->InputAt(0),
1389                                                              input_other->InputAt(1),
1390                                                              input_other->GetDexPc());
1391         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
1392         input_other->GetBlock()->RemoveInstruction(input_other);
1393         RecordSimplification();
1394         return;
1395       }
1396     }
1397     if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) {
1398       // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field
1399       // or array Get with only a single use, short-circuit the subsequent simplification
1400       // of the Get+TypeConversion and change the Get's type to `new_type` instead.
1401       DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16;
1402       DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16;
1403       if (input_other->GetType() == find_type &&
1404           input_other->HasOnlyOneNonEnvironmentUse() &&
1405           TryReplaceFieldOrArrayGetType(input_other, new_type)) {
1406         instruction->ReplaceWith(input_other);
1407         instruction->GetBlock()->RemoveInstruction(instruction);
1408       } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) {
1409         instruction->ReplaceWith(input_other);
1410         instruction->GetBlock()->RemoveInstruction(instruction);
1411       } else {
1412         HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
1413             new_type, input_other, instruction->GetDexPc());
1414         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion);
1415       }
1416       RecordSimplification();
1417       return;
1418     }
1419   }
1420 
1421   // We assume that GVN has run before, so we only perform a pointer comparison.
1422   // If for some reason the values are equal but the pointers are different, we
1423   // are still correct and only miss an optimization opportunity.
1424   if (instruction->GetLeft() == instruction->GetRight()) {
1425     // Replace code looking like
1426     //    AND dst, src, src
1427     // with
1428     //    src
1429     instruction->ReplaceWith(instruction->GetLeft());
1430     instruction->GetBlock()->RemoveInstruction(instruction);
1431     RecordSimplification();
1432     return;
1433   }
1434 
1435   if (TryDeMorganNegationFactoring(instruction)) {
1436     return;
1437   }
1438 
1439   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1440   // so no need to return.
1441   TryHandleAssociativeAndCommutativeOperation(instruction);
1442 }
1443 
VisitGreaterThan(HGreaterThan * condition)1444 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
1445   VisitCondition(condition);
1446 }
1447 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * condition)1448 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
1449   VisitCondition(condition);
1450 }
1451 
VisitLessThan(HLessThan * condition)1452 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
1453   VisitCondition(condition);
1454 }
1455 
VisitLessThanOrEqual(HLessThanOrEqual * condition)1456 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
1457   VisitCondition(condition);
1458 }
1459 
VisitBelow(HBelow * condition)1460 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
1461   VisitCondition(condition);
1462 }
1463 
VisitBelowOrEqual(HBelowOrEqual * condition)1464 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
1465   VisitCondition(condition);
1466 }
1467 
VisitAbove(HAbove * condition)1468 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
1469   VisitCondition(condition);
1470 }
1471 
VisitAboveOrEqual(HAboveOrEqual * condition)1472 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
1473   VisitCondition(condition);
1474 }
1475 
1476 // Recognize the following pattern:
1477 // obj.getClass() ==/!= Foo.class
1478 // And replace it with a constant value if the type of `obj` is statically known.
RecognizeAndSimplifyClassCheck(HCondition * condition)1479 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
1480   HInstruction* input_one = condition->InputAt(0);
1481   HInstruction* input_two = condition->InputAt(1);
1482   HLoadClass* load_class = input_one->IsLoadClass()
1483       ? input_one->AsLoadClass()
1484       : input_two->AsLoadClass();
1485   if (load_class == nullptr) {
1486     return false;
1487   }
1488 
1489   ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
1490   if (!class_rti.IsValid()) {
1491     // Unresolved class.
1492     return false;
1493   }
1494 
1495   HInstanceFieldGet* field_get = (load_class == input_one)
1496       ? input_two->AsInstanceFieldGet()
1497       : input_one->AsInstanceFieldGet();
1498   if (field_get == nullptr) {
1499     return false;
1500   }
1501 
1502   HInstruction* receiver = field_get->InputAt(0);
1503   ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
1504   if (!receiver_type.IsExact()) {
1505     return false;
1506   }
1507 
1508   {
1509     ScopedObjectAccess soa(Thread::Current());
1510     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1511     ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
1512     DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
1513     if (field_get->GetFieldInfo().GetField() != field) {
1514       return false;
1515     }
1516 
1517     // We can replace the compare.
1518     int value = 0;
1519     if (receiver_type.IsEqual(class_rti)) {
1520       value = condition->IsEqual() ? 1 : 0;
1521     } else {
1522       value = condition->IsNotEqual() ? 1 : 0;
1523     }
1524     condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
1525     return true;
1526   }
1527 }
1528 
VisitCondition(HCondition * condition)1529 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
1530   if (condition->IsEqual() || condition->IsNotEqual()) {
1531     if (RecognizeAndSimplifyClassCheck(condition)) {
1532       return;
1533     }
1534   }
1535 
1536   // Reverse condition if left is constant. Our code generators prefer constant
1537   // on the right hand side.
1538   if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
1539     HBasicBlock* block = condition->GetBlock();
1540     HCondition* replacement =
1541         GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition);
1542     // If it is a fp we must set the opposite bias.
1543     if (replacement != nullptr) {
1544       if (condition->IsLtBias()) {
1545         replacement->SetBias(ComparisonBias::kGtBias);
1546       } else if (condition->IsGtBias()) {
1547         replacement->SetBias(ComparisonBias::kLtBias);
1548       }
1549       block->ReplaceAndRemoveInstructionWith(condition, replacement);
1550       RecordSimplification();
1551 
1552       condition = replacement;
1553     }
1554   }
1555 
1556   HInstruction* left = condition->GetLeft();
1557   HInstruction* right = condition->GetRight();
1558 
1559   // Try to fold an HCompare into this HCondition.
1560 
1561   // We can only replace an HCondition which compares a Compare to 0.
1562   // Both 'dx' and 'jack' generate a compare to 0 when compiling a
1563   // condition with a long, float or double comparison as input.
1564   if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
1565     // Conversion is not possible.
1566     return;
1567   }
1568 
1569   // Is the Compare only used for this purpose?
1570   if (!left->GetUses().HasExactlyOneElement()) {
1571     // Someone else also wants the result of the compare.
1572     return;
1573   }
1574 
1575   if (!left->GetEnvUses().empty()) {
1576     // There is a reference to the compare result in an environment. Do we really need it?
1577     if (GetGraph()->IsDebuggable()) {
1578       return;
1579     }
1580 
1581     // We have to ensure that there are no deopt points in the sequence.
1582     if (left->HasAnyEnvironmentUseBefore(condition)) {
1583       return;
1584     }
1585   }
1586 
1587   // Clean up any environment uses from the HCompare, if any.
1588   left->RemoveEnvironmentUsers();
1589 
1590   // We have decided to fold the HCompare into the HCondition. Transfer the information.
1591   condition->SetBias(left->AsCompare()->GetBias());
1592 
1593   // Replace the operands of the HCondition.
1594   condition->ReplaceInput(left->InputAt(0), 0);
1595   condition->ReplaceInput(left->InputAt(1), 1);
1596 
1597   // Remove the HCompare.
1598   left->GetBlock()->RemoveInstruction(left);
1599 
1600   RecordSimplification();
1601 }
1602 
1603 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
CanDivideByReciprocalMultiplyFloat(int32_t divisor)1604 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1605   // True, if the most significant bits of divisor are 0.
1606   return ((divisor & 0x7fffff) == 0);
1607 }
1608 
1609 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
CanDivideByReciprocalMultiplyDouble(int64_t divisor)1610 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1611   // True, if the most significant bits of divisor are 0.
1612   return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1613 }
1614 
VisitDiv(HDiv * instruction)1615 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1616   HConstant* input_cst = instruction->GetConstantRight();
1617   HInstruction* input_other = instruction->GetLeastConstantLeft();
1618   DataType::Type type = instruction->GetType();
1619 
1620   if ((input_cst != nullptr) && input_cst->IsOne()) {
1621     // Replace code looking like
1622     //    DIV dst, src, 1
1623     // with
1624     //    src
1625     instruction->ReplaceWith(input_other);
1626     instruction->GetBlock()->RemoveInstruction(instruction);
1627     RecordSimplification();
1628     return;
1629   }
1630 
1631   if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1632     // Replace code looking like
1633     //    DIV dst, src, -1
1634     // with
1635     //    NEG dst, src
1636     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1637         instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other));
1638     RecordSimplification();
1639     return;
1640   }
1641 
1642   if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) {
1643     // Try replacing code looking like
1644     //    DIV dst, src, constant
1645     // with
1646     //    MUL dst, src, 1 / constant
1647     HConstant* reciprocal = nullptr;
1648     if (type == DataType::Type::kFloat64) {
1649       double value = input_cst->AsDoubleConstant()->GetValue();
1650       if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1651         reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1652       }
1653     } else {
1654       DCHECK_EQ(type, DataType::Type::kFloat32);
1655       float value = input_cst->AsFloatConstant()->GetValue();
1656       if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1657         reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1658       }
1659     }
1660 
1661     if (reciprocal != nullptr) {
1662       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1663           instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal));
1664       RecordSimplification();
1665       return;
1666     }
1667   }
1668 }
1669 
VisitMul(HMul * instruction)1670 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1671   HConstant* input_cst = instruction->GetConstantRight();
1672   HInstruction* input_other = instruction->GetLeastConstantLeft();
1673   DataType::Type type = instruction->GetType();
1674   HBasicBlock* block = instruction->GetBlock();
1675   ArenaAllocator* allocator = GetGraph()->GetAllocator();
1676 
1677   if (input_cst == nullptr) {
1678     return;
1679   }
1680 
1681   if (input_cst->IsOne()) {
1682     // Replace code looking like
1683     //    MUL dst, src, 1
1684     // with
1685     //    src
1686     instruction->ReplaceWith(input_other);
1687     instruction->GetBlock()->RemoveInstruction(instruction);
1688     RecordSimplification();
1689     return;
1690   }
1691 
1692   if (input_cst->IsMinusOne() &&
1693       (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) {
1694     // Replace code looking like
1695     //    MUL dst, src, -1
1696     // with
1697     //    NEG dst, src
1698     HNeg* neg = new (allocator) HNeg(type, input_other);
1699     block->ReplaceAndRemoveInstructionWith(instruction, neg);
1700     RecordSimplification();
1701     return;
1702   }
1703 
1704   if (DataType::IsFloatingPointType(type) &&
1705       ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1706        (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1707     // Replace code looking like
1708     //    FP_MUL dst, src, 2.0
1709     // with
1710     //    FP_ADD dst, src, src
1711     // The 'int' and 'long' cases are handled below.
1712     block->ReplaceAndRemoveInstructionWith(instruction,
1713                                            new (allocator) HAdd(type, input_other, input_other));
1714     RecordSimplification();
1715     return;
1716   }
1717 
1718   if (DataType::IsIntOrLongType(type)) {
1719     int64_t factor = Int64FromConstant(input_cst);
1720     // Even though constant propagation also takes care of the zero case, other
1721     // optimizations can lead to having a zero multiplication.
1722     if (factor == 0) {
1723       // Replace code looking like
1724       //    MUL dst, src, 0
1725       // with
1726       //    0
1727       instruction->ReplaceWith(input_cst);
1728       instruction->GetBlock()->RemoveInstruction(instruction);
1729       RecordSimplification();
1730       return;
1731     } else if (IsPowerOfTwo(factor)) {
1732       // Replace code looking like
1733       //    MUL dst, src, pow_of_2
1734       // with
1735       //    SHL dst, src, log2(pow_of_2)
1736       HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1737       HShl* shl = new (allocator) HShl(type, input_other, shift);
1738       block->ReplaceAndRemoveInstructionWith(instruction, shl);
1739       RecordSimplification();
1740       return;
1741     } else if (IsPowerOfTwo(factor - 1)) {
1742       // Transform code looking like
1743       //    MUL dst, src, (2^n + 1)
1744       // into
1745       //    SHL tmp, src, n
1746       //    ADD dst, src, tmp
1747       HShl* shl = new (allocator) HShl(type,
1748                                        input_other,
1749                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1750       HAdd* add = new (allocator) HAdd(type, input_other, shl);
1751 
1752       block->InsertInstructionBefore(shl, instruction);
1753       block->ReplaceAndRemoveInstructionWith(instruction, add);
1754       RecordSimplification();
1755       return;
1756     } else if (IsPowerOfTwo(factor + 1)) {
1757       // Transform code looking like
1758       //    MUL dst, src, (2^n - 1)
1759       // into
1760       //    SHL tmp, src, n
1761       //    SUB dst, tmp, src
1762       HShl* shl = new (allocator) HShl(type,
1763                                        input_other,
1764                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1765       HSub* sub = new (allocator) HSub(type, shl, input_other);
1766 
1767       block->InsertInstructionBefore(shl, instruction);
1768       block->ReplaceAndRemoveInstructionWith(instruction, sub);
1769       RecordSimplification();
1770       return;
1771     }
1772   }
1773 
1774   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1775   // so no need to return.
1776   TryHandleAssociativeAndCommutativeOperation(instruction);
1777 }
1778 
VisitNeg(HNeg * instruction)1779 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1780   HInstruction* input = instruction->GetInput();
1781   if (input->IsNeg()) {
1782     // Replace code looking like
1783     //    NEG tmp, src
1784     //    NEG dst, tmp
1785     // with
1786     //    src
1787     HNeg* previous_neg = input->AsNeg();
1788     instruction->ReplaceWith(previous_neg->GetInput());
1789     instruction->GetBlock()->RemoveInstruction(instruction);
1790     // We perform the optimization even if the input negation has environment
1791     // uses since it allows removing the current instruction. But we only delete
1792     // the input negation only if it is does not have any uses left.
1793     if (!previous_neg->HasUses()) {
1794       previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1795     }
1796     RecordSimplification();
1797     return;
1798   }
1799 
1800   if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1801       !DataType::IsFloatingPointType(input->GetType())) {
1802     // Replace code looking like
1803     //    SUB tmp, a, b
1804     //    NEG dst, tmp
1805     // with
1806     //    SUB dst, b, a
1807     // We do not perform the optimization if the input subtraction has
1808     // environment uses or multiple non-environment uses as it could lead to
1809     // worse code. In particular, we do not want the live ranges of `a` and `b`
1810     // to be extended if we are not sure the initial 'SUB' instruction can be
1811     // removed.
1812     // We do not perform optimization for fp because we could lose the sign of zero.
1813     HSub* sub = input->AsSub();
1814     HSub* new_sub = new (GetGraph()->GetAllocator()) HSub(
1815         instruction->GetType(), sub->GetRight(), sub->GetLeft());
1816     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1817     if (!sub->HasUses()) {
1818       sub->GetBlock()->RemoveInstruction(sub);
1819     }
1820     RecordSimplification();
1821   }
1822 }
1823 
VisitNot(HNot * instruction)1824 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1825   HInstruction* input = instruction->GetInput();
1826   if (input->IsNot()) {
1827     // Replace code looking like
1828     //    NOT tmp, src
1829     //    NOT dst, tmp
1830     // with
1831     //    src
1832     // We perform the optimization even if the input negation has environment
1833     // uses since it allows removing the current instruction. But we only delete
1834     // the input negation only if it is does not have any uses left.
1835     HNot* previous_not = input->AsNot();
1836     instruction->ReplaceWith(previous_not->GetInput());
1837     instruction->GetBlock()->RemoveInstruction(instruction);
1838     if (!previous_not->HasUses()) {
1839       previous_not->GetBlock()->RemoveInstruction(previous_not);
1840     }
1841     RecordSimplification();
1842   }
1843 }
1844 
VisitOr(HOr * instruction)1845 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1846   HConstant* input_cst = instruction->GetConstantRight();
1847   HInstruction* input_other = instruction->GetLeastConstantLeft();
1848 
1849   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1850     // Replace code looking like
1851     //    OR dst, src, 0
1852     // with
1853     //    src
1854     instruction->ReplaceWith(input_other);
1855     instruction->GetBlock()->RemoveInstruction(instruction);
1856     RecordSimplification();
1857     return;
1858   }
1859 
1860   // We assume that GVN has run before, so we only perform a pointer comparison.
1861   // If for some reason the values are equal but the pointers are different, we
1862   // are still correct and only miss an optimization opportunity.
1863   if (instruction->GetLeft() == instruction->GetRight()) {
1864     // Replace code looking like
1865     //    OR dst, src, src
1866     // with
1867     //    src
1868     instruction->ReplaceWith(instruction->GetLeft());
1869     instruction->GetBlock()->RemoveInstruction(instruction);
1870     RecordSimplification();
1871     return;
1872   }
1873 
1874   if (TryDeMorganNegationFactoring(instruction)) return;
1875 
1876   if (TryReplaceWithRotate(instruction)) {
1877     return;
1878   }
1879 
1880   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1881   // so no need to return.
1882   TryHandleAssociativeAndCommutativeOperation(instruction);
1883 }
1884 
VisitShl(HShl * instruction)1885 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1886   VisitShift(instruction);
1887 }
1888 
VisitShr(HShr * instruction)1889 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1890   VisitShift(instruction);
1891 }
1892 
VisitSub(HSub * instruction)1893 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1894   HConstant* input_cst = instruction->GetConstantRight();
1895   HInstruction* input_other = instruction->GetLeastConstantLeft();
1896 
1897   DataType::Type type = instruction->GetType();
1898   if (DataType::IsFloatingPointType(type)) {
1899     return;
1900   }
1901 
1902   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1903     // Replace code looking like
1904     //    SUB dst, src, 0
1905     // with
1906     //    src
1907     // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
1908     // `x` is `-0.0`, the former expression yields `0.0`, while the later
1909     // yields `-0.0`.
1910     instruction->ReplaceWith(input_other);
1911     instruction->GetBlock()->RemoveInstruction(instruction);
1912     RecordSimplification();
1913     return;
1914   }
1915 
1916   HBasicBlock* block = instruction->GetBlock();
1917   ArenaAllocator* allocator = GetGraph()->GetAllocator();
1918 
1919   HInstruction* left = instruction->GetLeft();
1920   HInstruction* right = instruction->GetRight();
1921   if (left->IsConstant()) {
1922     if (Int64FromConstant(left->AsConstant()) == 0) {
1923       // Replace code looking like
1924       //    SUB dst, 0, src
1925       // with
1926       //    NEG dst, src
1927       // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
1928       // `x` is `0.0`, the former expression yields `0.0`, while the later
1929       // yields `-0.0`.
1930       HNeg* neg = new (allocator) HNeg(type, right);
1931       block->ReplaceAndRemoveInstructionWith(instruction, neg);
1932       RecordSimplification();
1933       return;
1934     }
1935   }
1936 
1937   if (left->IsNeg() && right->IsNeg()) {
1938     if (TryMoveNegOnInputsAfterBinop(instruction)) {
1939       return;
1940     }
1941   }
1942 
1943   if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
1944     // Replace code looking like
1945     //    NEG tmp, b
1946     //    SUB dst, a, tmp
1947     // with
1948     //    ADD dst, a, b
1949     HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput());
1950     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
1951     RecordSimplification();
1952     right->GetBlock()->RemoveInstruction(right);
1953     return;
1954   }
1955 
1956   if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
1957     // Replace code looking like
1958     //    NEG tmp, a
1959     //    SUB dst, tmp, b
1960     // with
1961     //    ADD tmp, a, b
1962     //    NEG dst, tmp
1963     // The second version is not intrinsically better, but enables more
1964     // transformations.
1965     HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right);
1966     instruction->GetBlock()->InsertInstructionBefore(add, instruction);
1967     HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add);
1968     instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
1969     instruction->ReplaceWith(neg);
1970     instruction->GetBlock()->RemoveInstruction(instruction);
1971     RecordSimplification();
1972     left->GetBlock()->RemoveInstruction(left);
1973     return;
1974   }
1975 
1976   if (TrySubtractionChainSimplification(instruction)) {
1977     return;
1978   }
1979 
1980   if (left->IsAdd()) {
1981     // Replace code patterns looking like
1982     //    ADD dst1, x, y        ADD dst1, x, y
1983     //    SUB dst2, dst1, y     SUB dst2, dst1, x
1984     // with
1985     //    ADD dst1, x, y
1986     // SUB instruction is not needed in this case, we may use
1987     // one of inputs of ADD instead.
1988     // It is applicable to integral types only.
1989     DCHECK(DataType::IsIntegralType(type));
1990     if (left->InputAt(1) == right) {
1991       instruction->ReplaceWith(left->InputAt(0));
1992       RecordSimplification();
1993       instruction->GetBlock()->RemoveInstruction(instruction);
1994       return;
1995     } else if (left->InputAt(0) == right) {
1996       instruction->ReplaceWith(left->InputAt(1));
1997       RecordSimplification();
1998       instruction->GetBlock()->RemoveInstruction(instruction);
1999       return;
2000     }
2001   }
2002 }
2003 
VisitUShr(HUShr * instruction)2004 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
2005   VisitShift(instruction);
2006 }
2007 
VisitXor(HXor * instruction)2008 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
2009   HConstant* input_cst = instruction->GetConstantRight();
2010   HInstruction* input_other = instruction->GetLeastConstantLeft();
2011 
2012   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
2013     // Replace code looking like
2014     //    XOR dst, src, 0
2015     // with
2016     //    src
2017     instruction->ReplaceWith(input_other);
2018     instruction->GetBlock()->RemoveInstruction(instruction);
2019     RecordSimplification();
2020     return;
2021   }
2022 
2023   if ((input_cst != nullptr) && input_cst->IsOne()
2024       && input_other->GetType() == DataType::Type::kBool) {
2025     // Replace code looking like
2026     //    XOR dst, src, 1
2027     // with
2028     //    BOOLEAN_NOT dst, src
2029     HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other);
2030     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
2031     RecordSimplification();
2032     return;
2033   }
2034 
2035   if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
2036     // Replace code looking like
2037     //    XOR dst, src, 0xFFF...FF
2038     // with
2039     //    NOT dst, src
2040     HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other);
2041     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
2042     RecordSimplification();
2043     return;
2044   }
2045 
2046   HInstruction* left = instruction->GetLeft();
2047   HInstruction* right = instruction->GetRight();
2048   if (((left->IsNot() && right->IsNot()) ||
2049        (left->IsBooleanNot() && right->IsBooleanNot())) &&
2050       left->HasOnlyOneNonEnvironmentUse() &&
2051       right->HasOnlyOneNonEnvironmentUse()) {
2052     // Replace code looking like
2053     //    NOT nota, a
2054     //    NOT notb, b
2055     //    XOR dst, nota, notb
2056     // with
2057     //    XOR dst, a, b
2058     instruction->ReplaceInput(left->InputAt(0), 0);
2059     instruction->ReplaceInput(right->InputAt(0), 1);
2060     left->GetBlock()->RemoveInstruction(left);
2061     right->GetBlock()->RemoveInstruction(right);
2062     RecordSimplification();
2063     return;
2064   }
2065 
2066   if (TryReplaceWithRotate(instruction)) {
2067     return;
2068   }
2069 
2070   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
2071   // so no need to return.
2072   TryHandleAssociativeAndCommutativeOperation(instruction);
2073 }
2074 
SimplifyStringEquals(HInvoke * instruction)2075 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
2076   HInstruction* argument = instruction->InputAt(1);
2077   HInstruction* receiver = instruction->InputAt(0);
2078   if (receiver == argument) {
2079     // Because String.equals is an instance call, the receiver is
2080     // a null check if we don't know it's null. The argument however, will
2081     // be the actual object. So we cannot end up in a situation where both
2082     // are equal but could be null.
2083     DCHECK(CanEnsureNotNullAt(argument, instruction));
2084     instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
2085     instruction->GetBlock()->RemoveInstruction(instruction);
2086   } else {
2087     StringEqualsOptimizations optimizations(instruction);
2088     if (CanEnsureNotNullAt(argument, instruction)) {
2089       optimizations.SetArgumentNotNull();
2090     }
2091     ScopedObjectAccess soa(Thread::Current());
2092     ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
2093     if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
2094       optimizations.SetArgumentIsString();
2095     } else if (kUseReadBarrier) {
2096       DCHECK(instruction->GetResolvedMethod() != nullptr);
2097       DCHECK(instruction->GetResolvedMethod()->GetDeclaringClass()->IsStringClass() ||
2098              // Object.equals() can be devirtualized to String.equals().
2099              instruction->GetResolvedMethod()->GetDeclaringClass()->IsObjectClass());
2100       Runtime* runtime = Runtime::Current();
2101       // For AOT, we always assume that the boot image shall contain the String.class and
2102       // we do not need a read barrier for boot image classes as they are non-moveable.
2103       // For JIT, check if we actually have a boot image; if we do, the String.class
2104       // should also be non-moveable.
2105       if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2106         DCHECK(runtime->IsAotCompiler() ||
2107                !runtime->GetHeap()->IsMovableObject(
2108                    instruction->GetResolvedMethod()->GetDeclaringClass()));
2109         optimizations.SetNoReadBarrierForStringClass();
2110       }
2111     }
2112   }
2113 }
2114 
SimplifyRotate(HInvoke * invoke,bool is_left,DataType::Type type)2115 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
2116                                                   bool is_left,
2117                                                   DataType::Type type) {
2118   DCHECK(invoke->IsInvokeStaticOrDirect());
2119   DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
2120   HInstruction* value = invoke->InputAt(0);
2121   HInstruction* distance = invoke->InputAt(1);
2122   // Replace the invoke with an HRor.
2123   if (is_left) {
2124     // Unconditionally set the type of the negated distance to `int`,
2125     // as shift and rotate operations expect a 32-bit (or narrower)
2126     // value for their distance input.
2127     distance = new (GetGraph()->GetAllocator()) HNeg(DataType::Type::kInt32, distance);
2128     invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
2129   }
2130   HRor* ror = new (GetGraph()->GetAllocator()) HRor(type, value, distance);
2131   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
2132   // Remove ClinitCheck and LoadClass, if possible.
2133   HInstruction* clinit = invoke->GetInputs().back();
2134   if (clinit->IsClinitCheck() && !clinit->HasUses()) {
2135     clinit->GetBlock()->RemoveInstruction(clinit);
2136     HInstruction* ldclass = clinit->InputAt(0);
2137     if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
2138       ldclass->GetBlock()->RemoveInstruction(ldclass);
2139     }
2140   }
2141 }
2142 
IsArrayLengthOf(HInstruction * potential_length,HInstruction * potential_array)2143 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
2144   if (potential_length->IsArrayLength()) {
2145     return potential_length->InputAt(0) == potential_array;
2146   }
2147 
2148   if (potential_array->IsNewArray()) {
2149     return potential_array->AsNewArray()->GetLength() == potential_length;
2150   }
2151 
2152   return false;
2153 }
2154 
SimplifySystemArrayCopy(HInvoke * instruction)2155 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
2156   HInstruction* source = instruction->InputAt(0);
2157   HInstruction* destination = instruction->InputAt(2);
2158   HInstruction* count = instruction->InputAt(4);
2159   SystemArrayCopyOptimizations optimizations(instruction);
2160   if (CanEnsureNotNullAt(source, instruction)) {
2161     optimizations.SetSourceIsNotNull();
2162   }
2163   if (CanEnsureNotNullAt(destination, instruction)) {
2164     optimizations.SetDestinationIsNotNull();
2165   }
2166   if (destination == source) {
2167     optimizations.SetDestinationIsSource();
2168   }
2169 
2170   if (IsArrayLengthOf(count, source)) {
2171     optimizations.SetCountIsSourceLength();
2172   }
2173 
2174   if (IsArrayLengthOf(count, destination)) {
2175     optimizations.SetCountIsDestinationLength();
2176   }
2177 
2178   {
2179     ScopedObjectAccess soa(Thread::Current());
2180     DataType::Type source_component_type = DataType::Type::kVoid;
2181     DataType::Type destination_component_type = DataType::Type::kVoid;
2182     ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
2183     if (destination_rti.IsValid()) {
2184       if (destination_rti.IsObjectArray()) {
2185         if (destination_rti.IsExact()) {
2186           optimizations.SetDoesNotNeedTypeCheck();
2187         }
2188         optimizations.SetDestinationIsTypedObjectArray();
2189       }
2190       if (destination_rti.IsPrimitiveArrayClass()) {
2191         destination_component_type = DataTypeFromPrimitive(
2192             destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2193         optimizations.SetDestinationIsPrimitiveArray();
2194       } else if (destination_rti.IsNonPrimitiveArrayClass()) {
2195         optimizations.SetDestinationIsNonPrimitiveArray();
2196       }
2197     }
2198     ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
2199     if (source_rti.IsValid()) {
2200       if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
2201         optimizations.SetDoesNotNeedTypeCheck();
2202       }
2203       if (source_rti.IsPrimitiveArrayClass()) {
2204         optimizations.SetSourceIsPrimitiveArray();
2205         source_component_type = DataTypeFromPrimitive(
2206             source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2207       } else if (source_rti.IsNonPrimitiveArrayClass()) {
2208         optimizations.SetSourceIsNonPrimitiveArray();
2209       }
2210     }
2211     // For primitive arrays, use their optimized ArtMethod implementations.
2212     if ((source_component_type != DataType::Type::kVoid) &&
2213         (source_component_type == destination_component_type)) {
2214       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2215       PointerSize image_size = class_linker->GetImagePointerSize();
2216       HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
2217       mirror::Class* system = invoke->GetResolvedMethod()->GetDeclaringClass();
2218       ArtMethod* method = nullptr;
2219       switch (source_component_type) {
2220         case DataType::Type::kBool:
2221           method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
2222           break;
2223         case DataType::Type::kInt8:
2224           method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
2225           break;
2226         case DataType::Type::kUint16:
2227           method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
2228           break;
2229         case DataType::Type::kInt16:
2230           method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
2231           break;
2232         case DataType::Type::kInt32:
2233           method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
2234           break;
2235         case DataType::Type::kFloat32:
2236           method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
2237           break;
2238         case DataType::Type::kInt64:
2239           method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
2240           break;
2241         case DataType::Type::kFloat64:
2242           method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
2243           break;
2244         default:
2245           LOG(FATAL) << "Unreachable";
2246       }
2247       DCHECK(method != nullptr);
2248       DCHECK(method->IsStatic());
2249       DCHECK(method->GetDeclaringClass() == system);
2250       invoke->SetResolvedMethod(method);
2251       // Sharpen the new invoke. Note that we do not update the dex method index of
2252       // the invoke, as we would need to look it up in the current dex file, and it
2253       // is unlikely that it exists. The most usual situation for such typed
2254       // arraycopy methods is a direct pointer to the boot image.
2255       HSharpening::SharpenInvokeStaticOrDirect(invoke, codegen_, compiler_driver_);
2256     }
2257   }
2258 }
2259 
SimplifyCompare(HInvoke * invoke,bool is_signum,DataType::Type type)2260 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
2261                                                    bool is_signum,
2262                                                    DataType::Type type) {
2263   DCHECK(invoke->IsInvokeStaticOrDirect());
2264   uint32_t dex_pc = invoke->GetDexPc();
2265   HInstruction* left = invoke->InputAt(0);
2266   HInstruction* right;
2267   if (!is_signum) {
2268     right = invoke->InputAt(1);
2269   } else if (type == DataType::Type::kInt64) {
2270     right = GetGraph()->GetLongConstant(0);
2271   } else {
2272     right = GetGraph()->GetIntConstant(0);
2273   }
2274   HCompare* compare = new (GetGraph()->GetAllocator())
2275       HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
2276   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
2277 }
2278 
SimplifyIsNaN(HInvoke * invoke)2279 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
2280   DCHECK(invoke->IsInvokeStaticOrDirect());
2281   uint32_t dex_pc = invoke->GetDexPc();
2282   // IsNaN(x) is the same as x != x.
2283   HInstruction* x = invoke->InputAt(0);
2284   HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2285   condition->SetBias(ComparisonBias::kLtBias);
2286   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
2287 }
2288 
SimplifyFP2Int(HInvoke * invoke)2289 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
2290   DCHECK(invoke->IsInvokeStaticOrDirect());
2291   uint32_t dex_pc = invoke->GetDexPc();
2292   HInstruction* x = invoke->InputAt(0);
2293   DataType::Type type = x->GetType();
2294   // Set proper bit pattern for NaN and replace intrinsic with raw version.
2295   HInstruction* nan;
2296   if (type == DataType::Type::kFloat64) {
2297     nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
2298     invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
2299                          kNeedsEnvironmentOrCache,
2300                          kNoSideEffects,
2301                          kNoThrow);
2302   } else {
2303     DCHECK_EQ(type, DataType::Type::kFloat32);
2304     nan = GetGraph()->GetIntConstant(0x7fc00000);
2305     invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
2306                          kNeedsEnvironmentOrCache,
2307                          kNoSideEffects,
2308                          kNoThrow);
2309   }
2310   // Test IsNaN(x), which is the same as x != x.
2311   HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2312   condition->SetBias(ComparisonBias::kLtBias);
2313   invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
2314   // Select between the two.
2315   HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc);
2316   invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
2317   invoke->ReplaceWithExceptInReplacementAtIndex(select, 0);  // false at index 0
2318 }
2319 
SimplifyStringCharAt(HInvoke * invoke)2320 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
2321   HInstruction* str = invoke->InputAt(0);
2322   HInstruction* index = invoke->InputAt(1);
2323   uint32_t dex_pc = invoke->GetDexPc();
2324   ArenaAllocator* allocator = GetGraph()->GetAllocator();
2325   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2326   // so create the HArrayLength, HBoundsCheck and HArrayGet.
2327   HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length */ true);
2328   invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2329   HBoundsCheck* bounds_check = new (allocator) HBoundsCheck(
2330       index, length, dex_pc, /* is_string_char_at */ true);
2331   invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
2332   HArrayGet* array_get = new (allocator) HArrayGet(str,
2333                                                    bounds_check,
2334                                                    DataType::Type::kUint16,
2335                                                    SideEffects::None(),  // Strings are immutable.
2336                                                    dex_pc,
2337                                                    /* is_string_char_at */ true);
2338   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
2339   bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
2340   GetGraph()->SetHasBoundsChecks(true);
2341 }
2342 
SimplifyStringIsEmptyOrLength(HInvoke * invoke)2343 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
2344   HInstruction* str = invoke->InputAt(0);
2345   uint32_t dex_pc = invoke->GetDexPc();
2346   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2347   // so create the HArrayLength.
2348   HArrayLength* length =
2349       new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length */ true);
2350   HInstruction* replacement;
2351   if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
2352     // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
2353     invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2354     HIntConstant* zero = GetGraph()->GetIntConstant(0);
2355     HEqual* equal = new (GetGraph()->GetAllocator()) HEqual(length, zero, dex_pc);
2356     replacement = equal;
2357   } else {
2358     DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
2359     replacement = length;
2360   }
2361   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
2362 }
2363 
2364 // This method should only be used on intrinsics whose sole way of throwing an
2365 // exception is raising a NPE when the nth argument is null. If that argument
2366 // is provably non-null, we can clear the flag.
SimplifyNPEOnArgN(HInvoke * invoke,size_t n)2367 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
2368   HInstruction* arg = invoke->InputAt(n);
2369   if (invoke->CanThrow() && !arg->CanBeNull()) {
2370     invoke->SetCanThrow(false);
2371   }
2372 }
2373 
2374 // Methods that return "this" can replace the returned value with the receiver.
SimplifyReturnThis(HInvoke * invoke)2375 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
2376   if (invoke->HasUses()) {
2377     HInstruction* receiver = invoke->InputAt(0);
2378     invoke->ReplaceWith(receiver);
2379     RecordSimplification();
2380   }
2381 }
2382 
2383 // Helper method for StringBuffer escape analysis.
NoEscapeForStringBufferReference(HInstruction * reference,HInstruction * user)2384 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
2385   if (user->IsInvokeStaticOrDirect()) {
2386     // Any constructor on StringBuffer is okay.
2387     return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2388            user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2389            user->InputAt(0) == reference;
2390   } else if (user->IsInvokeVirtual()) {
2391     switch (user->AsInvokeVirtual()->GetIntrinsic()) {
2392       case Intrinsics::kStringBufferLength:
2393       case Intrinsics::kStringBufferToString:
2394         DCHECK_EQ(user->InputAt(0), reference);
2395         return true;
2396       case Intrinsics::kStringBufferAppend:
2397         // Returns "this", so only okay if no further uses.
2398         DCHECK_EQ(user->InputAt(0), reference);
2399         DCHECK_NE(user->InputAt(1), reference);
2400         return !user->HasUses();
2401       default:
2402         break;
2403     }
2404   }
2405   return false;
2406 }
2407 
2408 // Certain allocation intrinsics are not removed by dead code elimination
2409 // because of potentially throwing an OOM exception or other side effects.
2410 // This method removes such intrinsics when special circumstances allow.
SimplifyAllocationIntrinsic(HInvoke * invoke)2411 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
2412   if (!invoke->HasUses()) {
2413     // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
2414     // the potential OOM of course. Otherwise, we must ensure the receiver object of this
2415     // call does not escape since only thread-local synchronization may be removed.
2416     bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
2417     HInstruction* receiver = invoke->InputAt(0);
2418     if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
2419       invoke->GetBlock()->RemoveInstruction(invoke);
2420       RecordSimplification();
2421     }
2422   }
2423 }
2424 
SimplifyMemBarrier(HInvoke * invoke,MemBarrierKind barrier_kind)2425 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke,
2426                                                       MemBarrierKind barrier_kind) {
2427   uint32_t dex_pc = invoke->GetDexPc();
2428   HMemoryBarrier* mem_barrier =
2429       new (GetGraph()->GetAllocator()) HMemoryBarrier(barrier_kind, dex_pc);
2430   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
2431 }
2432 
VisitInvoke(HInvoke * instruction)2433 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
2434   switch (instruction->GetIntrinsic()) {
2435     case Intrinsics::kStringEquals:
2436       SimplifyStringEquals(instruction);
2437       break;
2438     case Intrinsics::kSystemArrayCopy:
2439       SimplifySystemArrayCopy(instruction);
2440       break;
2441     case Intrinsics::kIntegerRotateRight:
2442       SimplifyRotate(instruction, /* is_left */ false, DataType::Type::kInt32);
2443       break;
2444     case Intrinsics::kLongRotateRight:
2445       SimplifyRotate(instruction, /* is_left */ false, DataType::Type::kInt64);
2446       break;
2447     case Intrinsics::kIntegerRotateLeft:
2448       SimplifyRotate(instruction, /* is_left */ true, DataType::Type::kInt32);
2449       break;
2450     case Intrinsics::kLongRotateLeft:
2451       SimplifyRotate(instruction, /* is_left */ true, DataType::Type::kInt64);
2452       break;
2453     case Intrinsics::kIntegerCompare:
2454       SimplifyCompare(instruction, /* is_signum */ false, DataType::Type::kInt32);
2455       break;
2456     case Intrinsics::kLongCompare:
2457       SimplifyCompare(instruction, /* is_signum */ false, DataType::Type::kInt64);
2458       break;
2459     case Intrinsics::kIntegerSignum:
2460       SimplifyCompare(instruction, /* is_signum */ true, DataType::Type::kInt32);
2461       break;
2462     case Intrinsics::kLongSignum:
2463       SimplifyCompare(instruction, /* is_signum */ true, DataType::Type::kInt64);
2464       break;
2465     case Intrinsics::kFloatIsNaN:
2466     case Intrinsics::kDoubleIsNaN:
2467       SimplifyIsNaN(instruction);
2468       break;
2469     case Intrinsics::kFloatFloatToIntBits:
2470     case Intrinsics::kDoubleDoubleToLongBits:
2471       SimplifyFP2Int(instruction);
2472       break;
2473     case Intrinsics::kStringCharAt:
2474       SimplifyStringCharAt(instruction);
2475       break;
2476     case Intrinsics::kStringIsEmpty:
2477     case Intrinsics::kStringLength:
2478       SimplifyStringIsEmptyOrLength(instruction);
2479       break;
2480     case Intrinsics::kStringStringIndexOf:
2481     case Intrinsics::kStringStringIndexOfAfter:
2482       SimplifyNPEOnArgN(instruction, 1);  // 0th has own NullCheck
2483       break;
2484     case Intrinsics::kStringBufferAppend:
2485     case Intrinsics::kStringBuilderAppend:
2486       SimplifyReturnThis(instruction);
2487       break;
2488     case Intrinsics::kStringBufferToString:
2489     case Intrinsics::kStringBuilderToString:
2490       SimplifyAllocationIntrinsic(instruction);
2491       break;
2492     case Intrinsics::kUnsafeLoadFence:
2493       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2494       break;
2495     case Intrinsics::kUnsafeStoreFence:
2496       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2497       break;
2498     case Intrinsics::kUnsafeFullFence:
2499       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2500       break;
2501     case Intrinsics::kVarHandleFullFence:
2502       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2503       break;
2504     case Intrinsics::kVarHandleAcquireFence:
2505       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2506       break;
2507     case Intrinsics::kVarHandleReleaseFence:
2508       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2509       break;
2510     case Intrinsics::kVarHandleLoadLoadFence:
2511       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2512       break;
2513     case Intrinsics::kVarHandleStoreStoreFence:
2514       SimplifyMemBarrier(instruction, MemBarrierKind::kStoreStore);
2515       break;
2516     default:
2517       break;
2518   }
2519 }
2520 
VisitDeoptimize(HDeoptimize * deoptimize)2521 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
2522   HInstruction* cond = deoptimize->InputAt(0);
2523   if (cond->IsConstant()) {
2524     if (cond->AsIntConstant()->IsFalse()) {
2525       // Never deopt: instruction can be removed.
2526       if (deoptimize->GuardsAnInput()) {
2527         deoptimize->ReplaceWith(deoptimize->GuardedInput());
2528       }
2529       deoptimize->GetBlock()->RemoveInstruction(deoptimize);
2530     } else {
2531       // Always deopt.
2532     }
2533   }
2534 }
2535 
2536 // Replace code looking like
2537 //    OP y, x, const1
2538 //    OP z, y, const2
2539 // with
2540 //    OP z, x, const3
2541 // where OP is both an associative and a commutative operation.
TryHandleAssociativeAndCommutativeOperation(HBinaryOperation * instruction)2542 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
2543     HBinaryOperation* instruction) {
2544   DCHECK(instruction->IsCommutative());
2545 
2546   if (!DataType::IsIntegralType(instruction->GetType())) {
2547     return false;
2548   }
2549 
2550   HInstruction* left = instruction->GetLeft();
2551   HInstruction* right = instruction->GetRight();
2552   // Variable names as described above.
2553   HConstant* const2;
2554   HBinaryOperation* y;
2555 
2556   if (instruction->InstructionTypeEquals(left) && right->IsConstant()) {
2557     const2 = right->AsConstant();
2558     y = left->AsBinaryOperation();
2559   } else if (left->IsConstant() && instruction->InstructionTypeEquals(right)) {
2560     const2 = left->AsConstant();
2561     y = right->AsBinaryOperation();
2562   } else {
2563     // The node does not match the pattern.
2564     return false;
2565   }
2566 
2567   // If `y` has more than one use, we do not perform the optimization
2568   // because it might increase code size (e.g. if the new constant is
2569   // no longer encodable as an immediate operand in the target ISA).
2570   if (!y->HasOnlyOneNonEnvironmentUse()) {
2571     return false;
2572   }
2573 
2574   // GetConstantRight() can return both left and right constants
2575   // for commutative operations.
2576   HConstant* const1 = y->GetConstantRight();
2577   if (const1 == nullptr) {
2578     return false;
2579   }
2580 
2581   instruction->ReplaceInput(const1, 0);
2582   instruction->ReplaceInput(const2, 1);
2583   HConstant* const3 = instruction->TryStaticEvaluation();
2584   DCHECK(const3 != nullptr);
2585   instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
2586   instruction->ReplaceInput(const3, 1);
2587   RecordSimplification();
2588   return true;
2589 }
2590 
AsAddOrSub(HInstruction * binop)2591 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
2592   return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
2593 }
2594 
2595 // Helper function that performs addition statically, considering the result type.
ComputeAddition(DataType::Type type,int64_t x,int64_t y)2596 static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) {
2597   // Use the Compute() method for consistency with TryStaticEvaluation().
2598   if (type == DataType::Type::kInt32) {
2599     return HAdd::Compute<int32_t>(x, y);
2600   } else {
2601     DCHECK_EQ(type, DataType::Type::kInt64);
2602     return HAdd::Compute<int64_t>(x, y);
2603   }
2604 }
2605 
2606 // Helper function that handles the child classes of HConstant
2607 // and returns an integer with the appropriate sign.
GetValue(HConstant * constant,bool is_negated)2608 static int64_t GetValue(HConstant* constant, bool is_negated) {
2609   int64_t ret = Int64FromConstant(constant);
2610   return is_negated ? -ret : ret;
2611 }
2612 
2613 // Replace code looking like
2614 //    OP1 y, x, const1
2615 //    OP2 z, y, const2
2616 // with
2617 //    OP3 z, x, const3
2618 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
TrySubtractionChainSimplification(HBinaryOperation * instruction)2619 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
2620     HBinaryOperation* instruction) {
2621   DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
2622 
2623   DataType::Type type = instruction->GetType();
2624   if (!DataType::IsIntegralType(type)) {
2625     return false;
2626   }
2627 
2628   HInstruction* left = instruction->GetLeft();
2629   HInstruction* right = instruction->GetRight();
2630   // Variable names as described above.
2631   HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
2632   if (const2 == nullptr) {
2633     return false;
2634   }
2635 
2636   HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
2637       ? left->AsBinaryOperation()
2638       : AsAddOrSub(right);
2639   // If y has more than one use, we do not perform the optimization because
2640   // it might increase code size (e.g. if the new constant is no longer
2641   // encodable as an immediate operand in the target ISA).
2642   if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
2643     return false;
2644   }
2645 
2646   left = y->GetLeft();
2647   HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
2648   if (const1 == nullptr) {
2649     return false;
2650   }
2651 
2652   HInstruction* x = (const1 == left) ? y->GetRight() : left;
2653   // If both inputs are constants, let the constant folding pass deal with it.
2654   if (x->IsConstant()) {
2655     return false;
2656   }
2657 
2658   bool is_const2_negated = (const2 == right) && instruction->IsSub();
2659   int64_t const2_val = GetValue(const2, is_const2_negated);
2660   bool is_y_negated = (y == right) && instruction->IsSub();
2661   right = y->GetRight();
2662   bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
2663   int64_t const1_val = GetValue(const1, is_const1_negated);
2664   bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
2665   int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
2666   HBasicBlock* block = instruction->GetBlock();
2667   HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
2668   ArenaAllocator* allocator = instruction->GetAllocator();
2669   HInstruction* z;
2670 
2671   if (is_x_negated) {
2672     z = new (allocator) HSub(type, const3, x, instruction->GetDexPc());
2673   } else {
2674     z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc());
2675   }
2676 
2677   block->ReplaceAndRemoveInstructionWith(instruction, z);
2678   RecordSimplification();
2679   return true;
2680 }
2681 
VisitVecMul(HVecMul * instruction)2682 void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) {
2683   if (TryCombineVecMultiplyAccumulate(instruction)) {
2684     RecordSimplification();
2685   }
2686 }
2687 
2688 }  // namespace art
2689