1 /*
2 * Copyright 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 
17 #include <ui/FenceTime.h>
18 
19 #define LOG_TAG "FenceTime"
20 
21 #include <cutils/compiler.h>  // For CC_[UN]LIKELY
22 #include <utils/Log.h>
23 #include <inttypes.h>
24 #include <stdlib.h>
25 
26 #include <memory>
27 
28 namespace android {
29 
30 // ============================================================================
31 // FenceTime
32 // ============================================================================
33 
34 const auto FenceTime::NO_FENCE = std::make_shared<FenceTime>(Fence::NO_FENCE);
35 
operator new(size_t byteCount)36 void* FenceTime::operator new(size_t byteCount) noexcept {
37     void *p = nullptr;
38     if (posix_memalign(&p, alignof(FenceTime), byteCount)) {
39         return nullptr;
40     }
41     return p;
42 }
43 
operator delete(void * p)44 void FenceTime::operator delete(void *p) {
45     free(p);
46 }
47 
FenceTime(const sp<Fence> & fence)48 FenceTime::FenceTime(const sp<Fence>& fence)
49   : mState(((fence.get() != nullptr) && fence->isValid()) ?
50             State::VALID : State::INVALID),
51     mFence(fence),
52     mSignalTime(mState == State::INVALID ?
53             Fence::SIGNAL_TIME_INVALID : Fence::SIGNAL_TIME_PENDING) {
54 }
55 
FenceTime(sp<Fence> && fence)56 FenceTime::FenceTime(sp<Fence>&& fence)
57   : mState(((fence.get() != nullptr) && fence->isValid()) ?
58             State::VALID : State::INVALID),
59     mFence(std::move(fence)),
60     mSignalTime(mState == State::INVALID ?
61             Fence::SIGNAL_TIME_INVALID : Fence::SIGNAL_TIME_PENDING) {
62 }
63 
FenceTime(nsecs_t signalTime)64 FenceTime::FenceTime(nsecs_t signalTime)
65   : mState(Fence::isValidTimestamp(signalTime) ? State::VALID : State::INVALID),
66     mFence(nullptr),
67     mSignalTime(signalTime) {
68     if (CC_UNLIKELY(mSignalTime == Fence::SIGNAL_TIME_PENDING)) {
69         ALOGE("Pending signal time not allowed after signal.");
70         mSignalTime = Fence::SIGNAL_TIME_INVALID;
71     }
72 }
73 
applyTrustedSnapshot(const Snapshot & src)74 void FenceTime::applyTrustedSnapshot(const Snapshot& src) {
75     if (CC_UNLIKELY(src.state != Snapshot::State::SIGNAL_TIME)) {
76         // Applying Snapshot::State::FENCE, could change the valid state of the
77         // FenceTime, which is not allowed. Callers should create a new
78         // FenceTime from the snapshot instead.
79         ALOGE("applyTrustedSnapshot: Unexpected fence.");
80         return;
81     }
82 
83     if (src.state == Snapshot::State::EMPTY) {
84         return;
85     }
86 
87     nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
88     if (signalTime != Fence::SIGNAL_TIME_PENDING) {
89         // We should always get the same signalTime here that we did in
90         // getSignalTime(). This check races with getSignalTime(), but it is
91         // only a sanity check so that's okay.
92         if (CC_UNLIKELY(signalTime != src.signalTime)) {
93             ALOGE("FenceTime::applyTrustedSnapshot: signalTime mismatch. "
94                     "(%" PRId64 " (old) != %" PRId64 " (new))",
95                     signalTime, src.signalTime);
96         }
97         return;
98     }
99 
100     std::lock_guard<std::mutex> lock(mMutex);
101     mFence.clear();
102     mSignalTime.store(src.signalTime, std::memory_order_relaxed);
103 }
104 
isValid() const105 bool FenceTime::isValid() const {
106     // We store the valid state in the constructors and return it here.
107     // This lets release code remember the valid state even after the
108     // underlying fence is destroyed.
109     return mState != State::INVALID;
110 }
111 
getSignalTime()112 nsecs_t FenceTime::getSignalTime() {
113     // See if we already have a cached value we can return.
114     nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
115     if (signalTime != Fence::SIGNAL_TIME_PENDING) {
116         return signalTime;
117     }
118 
119     // Hold a reference to the fence on the stack in case the class'
120     // reference is removed by another thread. This prevents the
121     // fence from being destroyed until the end of this method, where
122     // we conveniently do not have the lock held.
123     sp<Fence> fence;
124     {
125         // With the lock acquired this time, see if we have the cached
126         // value or if we need to poll the fence.
127         std::lock_guard<std::mutex> lock(mMutex);
128         if (!mFence.get()) {
129             // Another thread set the signal time just before we added the
130             // reference to mFence.
131             return mSignalTime.load(std::memory_order_relaxed);
132         }
133         fence = mFence;
134     }
135 
136     // Make the system call without the lock held.
137     signalTime = fence->getSignalTime();
138 
139     // Allow tests to override SIGNAL_TIME_INVALID behavior, since tests
140     // use invalid underlying Fences without real file descriptors.
141     if (CC_UNLIKELY(mState == State::FORCED_VALID_FOR_TEST)) {
142         if (signalTime == Fence::SIGNAL_TIME_INVALID) {
143             signalTime = Fence::SIGNAL_TIME_PENDING;
144         }
145     }
146 
147     // Make the signal time visible to everyone if it is no longer pending
148     // and remove the class' reference to the fence.
149     if (signalTime != Fence::SIGNAL_TIME_PENDING) {
150         std::lock_guard<std::mutex> lock(mMutex);
151         mFence.clear();
152         mSignalTime.store(signalTime, std::memory_order_relaxed);
153     }
154 
155     return signalTime;
156 }
157 
getCachedSignalTime() const158 nsecs_t FenceTime::getCachedSignalTime() const {
159     // memory_order_acquire since we don't have a lock fallback path
160     // that will do an acquire.
161     return mSignalTime.load(std::memory_order_acquire);
162 }
163 
getSnapshot() const164 FenceTime::Snapshot FenceTime::getSnapshot() const {
165     // Quick check without the lock.
166     nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
167     if (signalTime != Fence::SIGNAL_TIME_PENDING) {
168         return Snapshot(signalTime);
169     }
170 
171     // Do the full check with the lock.
172     std::lock_guard<std::mutex> lock(mMutex);
173     signalTime = mSignalTime.load(std::memory_order_relaxed);
174     if (signalTime != Fence::SIGNAL_TIME_PENDING) {
175         return Snapshot(signalTime);
176     }
177     return Snapshot(mFence);
178 }
179 
180 // For tests only. If forceValidForTest is true, then getSignalTime will
181 // never return SIGNAL_TIME_INVALID and isValid will always return true.
FenceTime(const sp<Fence> & fence,bool forceValidForTest)182 FenceTime::FenceTime(const sp<Fence>& fence, bool forceValidForTest)
183   : mState(forceValidForTest ?
184             State::FORCED_VALID_FOR_TEST : State::INVALID),
185     mFence(fence),
186     mSignalTime(mState == State::INVALID ?
187             Fence::SIGNAL_TIME_INVALID : Fence::SIGNAL_TIME_PENDING) {
188 }
189 
signalForTest(nsecs_t signalTime)190 void FenceTime::signalForTest(nsecs_t signalTime) {
191     // To be realistic, this should really set a hidden value that
192     // gets picked up in the next call to getSignalTime, but this should
193     // be good enough.
194     std::lock_guard<std::mutex> lock(mMutex);
195     mFence.clear();
196     mSignalTime.store(signalTime, std::memory_order_relaxed);
197 }
198 
199 // ============================================================================
200 // FenceTime::Snapshot
201 // ============================================================================
Snapshot(const sp<Fence> & srcFence)202 FenceTime::Snapshot::Snapshot(const sp<Fence>& srcFence)
203     : state(State::FENCE), fence(srcFence) {
204 }
205 
Snapshot(nsecs_t srcSignalTime)206 FenceTime::Snapshot::Snapshot(nsecs_t srcSignalTime)
207     : state(State::SIGNAL_TIME), signalTime(srcSignalTime) {
208 }
209 
getFlattenedSize() const210 size_t FenceTime::Snapshot::getFlattenedSize() const {
211     constexpr size_t min = sizeof(state);
212     switch (state) {
213         case State::EMPTY:
214             return min;
215         case State::FENCE:
216             return min + fence->getFlattenedSize();
217         case State::SIGNAL_TIME:
218             return min + sizeof(signalTime);
219     }
220     return 0;
221 }
222 
getFdCount() const223 size_t FenceTime::Snapshot::getFdCount() const {
224     return state == State::FENCE ? fence->getFdCount() : 0u;
225 }
226 
flatten(void * & buffer,size_t & size,int * & fds,size_t & count) const227 status_t FenceTime::Snapshot::flatten(
228         void*& buffer, size_t& size, int*& fds, size_t& count) const {
229     if (size < getFlattenedSize()) {
230         return NO_MEMORY;
231     }
232 
233     FlattenableUtils::write(buffer, size, state);
234     switch (state) {
235         case State::EMPTY:
236             return NO_ERROR;
237         case State::FENCE:
238             return fence->flatten(buffer, size, fds, count);
239         case State::SIGNAL_TIME:
240             FlattenableUtils::write(buffer, size, signalTime);
241             return NO_ERROR;
242     }
243 
244     return NO_ERROR;
245 }
246 
unflatten(void const * & buffer,size_t & size,int const * & fds,size_t & count)247 status_t FenceTime::Snapshot::unflatten(
248         void const*& buffer, size_t& size, int const*& fds, size_t& count) {
249     if (size < sizeof(state)) {
250         return NO_MEMORY;
251     }
252 
253     FlattenableUtils::read(buffer, size, state);
254     switch (state) {
255         case State::EMPTY:
256             return NO_ERROR;
257         case State::FENCE:
258             fence = new Fence;
259             return fence->unflatten(buffer, size, fds, count);
260         case State::SIGNAL_TIME:
261             if (size < sizeof(signalTime)) {
262                 return NO_MEMORY;
263             }
264             FlattenableUtils::read(buffer, size, signalTime);
265             return NO_ERROR;
266     }
267 
268     return NO_ERROR;
269 }
270 
271 // ============================================================================
272 // FenceTimeline
273 // ============================================================================
push(const std::shared_ptr<FenceTime> & fence)274 void FenceTimeline::push(const std::shared_ptr<FenceTime>& fence) {
275     std::lock_guard<std::mutex> lock(mMutex);
276     while (mQueue.size() >= MAX_ENTRIES) {
277         // This is a sanity check to make sure the queue doesn't grow unbounded.
278         // MAX_ENTRIES should be big enough not to trigger this path.
279         // In case this path is taken though, users of FenceTime must make sure
280         // not to rely solely on FenceTimeline to get the final timestamp and
281         // should eventually call Fence::getSignalTime on their own.
282         std::shared_ptr<FenceTime> front = mQueue.front().lock();
283         if (front) {
284             // Make a last ditch effort to get the signalTime here since
285             // we are removing it from the timeline.
286             front->getSignalTime();
287         }
288         mQueue.pop();
289     }
290     mQueue.push(fence);
291 }
292 
updateSignalTimes()293 void FenceTimeline::updateSignalTimes() {
294     while (!mQueue.empty()) {
295         std::lock_guard<std::mutex> lock(mMutex);
296         std::shared_ptr<FenceTime> fence = mQueue.front().lock();
297         if (!fence) {
298             // The shared_ptr no longer exists and no one cares about the
299             // timestamp anymore.
300             mQueue.pop();
301             continue;
302         } else if (fence->getSignalTime() != Fence::SIGNAL_TIME_PENDING) {
303             // The fence has signaled and we've removed the sp<Fence> ref.
304             mQueue.pop();
305             continue;
306         } else {
307             // The fence didn't signal yet. Break since the later ones
308             // shouldn't have signaled either.
309             break;
310         }
311     }
312 }
313 
314 // ============================================================================
315 // FenceToFenceTimeMap
316 // ============================================================================
createFenceTimeForTest(const sp<Fence> & fence)317 std::shared_ptr<FenceTime> FenceToFenceTimeMap::createFenceTimeForTest(
318         const sp<Fence>& fence) {
319     std::lock_guard<std::mutex> lock(mMutex);
320     // Always garbage collecting isn't efficient, but this is only for testing.
321     garbageCollectLocked();
322     std::shared_ptr<FenceTime> fenceTime(new FenceTime(fence, true));
323     mMap[fence.get()].push_back(fenceTime);
324     return fenceTime;
325 }
326 
signalAllForTest(const sp<Fence> & fence,nsecs_t signalTime)327 void FenceToFenceTimeMap::signalAllForTest(
328         const sp<Fence>& fence, nsecs_t signalTime) {
329     bool signaled = false;
330 
331     std::lock_guard<std::mutex> lock(mMutex);
332     auto it = mMap.find(fence.get());
333     if (it != mMap.end()) {
334         for (auto& weakFenceTime : it->second) {
335             std::shared_ptr<FenceTime> fenceTime = weakFenceTime.lock();
336             if (!fenceTime) {
337                 continue;
338             }
339             ALOGE_IF(!fenceTime->isValid(),
340                     "signalAllForTest: Signaling invalid fence.");
341             fenceTime->signalForTest(signalTime);
342             signaled = true;
343         }
344     }
345 
346     ALOGE_IF(!signaled, "signalAllForTest: Nothing to signal.");
347 }
348 
garbageCollectLocked()349 void FenceToFenceTimeMap::garbageCollectLocked() {
350     for (auto& it : mMap) {
351         // Erase all expired weak pointers from the vector.
352         auto& vect = it.second;
353         vect.erase(
354                 std::remove_if(vect.begin(), vect.end(),
355                         [](const std::weak_ptr<FenceTime>& ft) {
356                             return ft.expired();
357                         }),
358                 vect.end());
359 
360         // Also erase the map entry if the vector is now empty.
361         if (vect.empty()) {
362             mMap.erase(it.first);
363         }
364     }
365 }
366 
367 } // namespace android
368