1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "BufferLayer"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22 #include "BufferLayer.h"
23 #include "Colorizer.h"
24 #include "DisplayDevice.h"
25 #include "LayerRejecter.h"
26 #include "clz.h"
27
28 #include "RenderEngine/RenderEngine.h"
29
30 #include <gui/BufferItem.h>
31 #include <gui/BufferQueue.h>
32 #include <gui/LayerDebugInfo.h>
33 #include <gui/Surface.h>
34
35 #include <ui/DebugUtils.h>
36
37 #include <utils/Errors.h>
38 #include <utils/Log.h>
39 #include <utils/NativeHandle.h>
40 #include <utils/StopWatch.h>
41 #include <utils/Trace.h>
42
43 #include <cutils/compiler.h>
44 #include <cutils/native_handle.h>
45 #include <cutils/properties.h>
46
47 #include <math.h>
48 #include <stdlib.h>
49 #include <mutex>
50
51 namespace android {
52
BufferLayer(SurfaceFlinger * flinger,const sp<Client> & client,const String8 & name,uint32_t w,uint32_t h,uint32_t flags)53 BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name,
54 uint32_t w, uint32_t h, uint32_t flags)
55 : Layer(flinger, client, name, w, h, flags),
56 mConsumer(nullptr),
57 mTextureName(UINT32_MAX),
58 mFormat(PIXEL_FORMAT_NONE),
59 mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
60 mBufferLatched(false),
61 mPreviousFrameNumber(0),
62 mUpdateTexImageFailed(false),
63 mRefreshPending(false) {
64 ALOGV("Creating Layer %s", name.string());
65
66 mFlinger->getRenderEngine().genTextures(1, &mTextureName);
67 mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
68
69 if (flags & ISurfaceComposerClient::eNonPremultiplied) mPremultipliedAlpha = false;
70
71 mCurrentState.requested = mCurrentState.active;
72
73 // drawing state & current state are identical
74 mDrawingState = mCurrentState;
75 }
76
~BufferLayer()77 BufferLayer::~BufferLayer() {
78 mFlinger->deleteTextureAsync(mTextureName);
79
80 if (!getBE().mHwcLayers.empty()) {
81 ALOGE("Found stale hardware composer layers when destroying "
82 "surface flinger layer %s",
83 mName.string());
84 destroyAllHwcLayers();
85 }
86 }
87
useSurfaceDamage()88 void BufferLayer::useSurfaceDamage() {
89 if (mFlinger->mForceFullDamage) {
90 surfaceDamageRegion = Region::INVALID_REGION;
91 } else {
92 surfaceDamageRegion = mConsumer->getSurfaceDamage();
93 }
94 }
95
useEmptyDamage()96 void BufferLayer::useEmptyDamage() {
97 surfaceDamageRegion.clear();
98 }
99
isProtected() const100 bool BufferLayer::isProtected() const {
101 const sp<GraphicBuffer>& buffer(getBE().compositionInfo.mBuffer);
102 return (buffer != 0) &&
103 (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
104 }
105
isVisible() const106 bool BufferLayer::isVisible() const {
107 return !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
108 (getBE().compositionInfo.mBuffer != nullptr ||
109 getBE().compositionInfo.hwc.sidebandStream != nullptr);
110 }
111
isFixedSize() const112 bool BufferLayer::isFixedSize() const {
113 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
114 }
115
setBuffers(uint32_t w,uint32_t h,PixelFormat format,uint32_t flags)116 status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) {
117 uint32_t const maxSurfaceDims =
118 min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
119
120 // never allow a surface larger than what our underlying GL implementation
121 // can handle.
122 if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) {
123 ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
124 return BAD_VALUE;
125 }
126
127 mFormat = format;
128
129 mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
130 mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
131 mCurrentOpacity = getOpacityForFormat(format);
132
133 mConsumer->setDefaultBufferSize(w, h);
134 mConsumer->setDefaultBufferFormat(format);
135 mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
136
137 return NO_ERROR;
138 }
139
inverseOrientation(uint32_t transform)140 static constexpr mat4 inverseOrientation(uint32_t transform) {
141 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
142 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
143 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
144 mat4 tr;
145
146 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
147 tr = tr * rot90;
148 }
149 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
150 tr = tr * flipH;
151 }
152 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
153 tr = tr * flipV;
154 }
155 return inverse(tr);
156 }
157
158 /*
159 * onDraw will draw the current layer onto the presentable buffer
160 */
onDraw(const RenderArea & renderArea,const Region & clip,bool useIdentityTransform) const161 void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip,
162 bool useIdentityTransform) const {
163 ATRACE_CALL();
164
165 if (CC_UNLIKELY(getBE().compositionInfo.mBuffer == 0)) {
166 // the texture has not been created yet, this Layer has
167 // in fact never been drawn into. This happens frequently with
168 // SurfaceView because the WindowManager can't know when the client
169 // has drawn the first time.
170
171 // If there is nothing under us, we paint the screen in black, otherwise
172 // we just skip this update.
173
174 // figure out if there is something below us
175 Region under;
176 bool finished = false;
177 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
178 if (finished || layer == static_cast<BufferLayer const*>(this)) {
179 finished = true;
180 return;
181 }
182 under.orSelf(renderArea.getTransform().transform(layer->visibleRegion));
183 });
184 // if not everything below us is covered, we plug the holes!
185 Region holes(clip.subtract(under));
186 if (!holes.isEmpty()) {
187 clearWithOpenGL(renderArea, 0, 0, 0, 1);
188 }
189 return;
190 }
191
192 // Bind the current buffer to the GL texture, and wait for it to be
193 // ready for us to draw into.
194 status_t err = mConsumer->bindTextureImage();
195 if (err != NO_ERROR) {
196 ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
197 // Go ahead and draw the buffer anyway; no matter what we do the screen
198 // is probably going to have something visibly wrong.
199 }
200
201 bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure());
202
203 auto& engine(mFlinger->getRenderEngine());
204
205 if (!blackOutLayer) {
206 // TODO: we could be more subtle with isFixedSize()
207 const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize();
208
209 // Query the texture matrix given our current filtering mode.
210 float textureMatrix[16];
211 mConsumer->setFilteringEnabled(useFiltering);
212 mConsumer->getTransformMatrix(textureMatrix);
213
214 if (getTransformToDisplayInverse()) {
215 /*
216 * the code below applies the primary display's inverse transform to
217 * the texture transform
218 */
219 uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
220 mat4 tr = inverseOrientation(transform);
221
222 /**
223 * TODO(b/36727915): This is basically a hack.
224 *
225 * Ensure that regardless of the parent transformation,
226 * this buffer is always transformed from native display
227 * orientation to display orientation. For example, in the case
228 * of a camera where the buffer remains in native orientation,
229 * we want the pixels to always be upright.
230 */
231 sp<Layer> p = mDrawingParent.promote();
232 if (p != nullptr) {
233 const auto parentTransform = p->getTransform();
234 tr = tr * inverseOrientation(parentTransform.getOrientation());
235 }
236
237 // and finally apply it to the original texture matrix
238 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
239 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
240 }
241
242 // Set things up for texturing.
243 mTexture.setDimensions(getBE().compositionInfo.mBuffer->getWidth(),
244 getBE().compositionInfo.mBuffer->getHeight());
245 mTexture.setFiltering(useFiltering);
246 mTexture.setMatrix(textureMatrix);
247
248 engine.setupLayerTexturing(mTexture);
249 } else {
250 engine.setupLayerBlackedOut();
251 }
252 drawWithOpenGL(renderArea, useIdentityTransform);
253 engine.disableTexturing();
254 }
255
onLayerDisplayed(const sp<Fence> & releaseFence)256 void BufferLayer::onLayerDisplayed(const sp<Fence>& releaseFence) {
257 mConsumer->setReleaseFence(releaseFence);
258 }
259
abandon()260 void BufferLayer::abandon() {
261 mConsumer->abandon();
262 }
263
shouldPresentNow(const DispSync & dispSync) const264 bool BufferLayer::shouldPresentNow(const DispSync& dispSync) const {
265 if (mSidebandStreamChanged || mAutoRefresh) {
266 return true;
267 }
268
269 Mutex::Autolock lock(mQueueItemLock);
270 if (mQueueItems.empty()) {
271 return false;
272 }
273 auto timestamp = mQueueItems[0].mTimestamp;
274 nsecs_t expectedPresent = mConsumer->computeExpectedPresent(dispSync);
275
276 // Ignore timestamps more than a second in the future
277 bool isPlausible = timestamp < (expectedPresent + s2ns(1));
278 ALOGW_IF(!isPlausible,
279 "[%s] Timestamp %" PRId64 " seems implausible "
280 "relative to expectedPresent %" PRId64,
281 mName.string(), timestamp, expectedPresent);
282
283 bool isDue = timestamp < expectedPresent;
284 return isDue || !isPlausible;
285 }
286
setTransformHint(uint32_t orientation) const287 void BufferLayer::setTransformHint(uint32_t orientation) const {
288 mConsumer->setTransformHint(orientation);
289 }
290
onPreComposition(nsecs_t refreshStartTime)291 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
292 if (mBufferLatched) {
293 Mutex::Autolock lock(mFrameEventHistoryMutex);
294 mFrameEventHistory.addPreComposition(mCurrentFrameNumber,
295 refreshStartTime);
296 }
297 mRefreshPending = false;
298 return mQueuedFrames > 0 || mSidebandStreamChanged ||
299 mAutoRefresh;
300 }
onPostComposition(const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)301 bool BufferLayer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
302 const std::shared_ptr<FenceTime>& presentFence,
303 const CompositorTiming& compositorTiming) {
304 // mFrameLatencyNeeded is true when a new frame was latched for the
305 // composition.
306 if (!mFrameLatencyNeeded) return false;
307
308 // Update mFrameEventHistory.
309 {
310 Mutex::Autolock lock(mFrameEventHistoryMutex);
311 mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence,
312 presentFence, compositorTiming);
313 }
314
315 // Update mFrameTracker.
316 nsecs_t desiredPresentTime = mConsumer->getTimestamp();
317 mFrameTracker.setDesiredPresentTime(desiredPresentTime);
318
319 const std::string layerName(getName().c_str());
320 mTimeStats.setDesiredTime(layerName, mCurrentFrameNumber, desiredPresentTime);
321
322 std::shared_ptr<FenceTime> frameReadyFence = mConsumer->getCurrentFenceTime();
323 if (frameReadyFence->isValid()) {
324 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
325 } else {
326 // There was no fence for this frame, so assume that it was ready
327 // to be presented at the desired present time.
328 mFrameTracker.setFrameReadyTime(desiredPresentTime);
329 }
330
331 if (presentFence->isValid()) {
332 mTimeStats.setPresentFence(layerName, mCurrentFrameNumber, presentFence);
333 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
334 } else {
335 // The HWC doesn't support present fences, so use the refresh
336 // timestamp instead.
337 const nsecs_t actualPresentTime =
338 mFlinger->getHwComposer().getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
339 mTimeStats.setPresentTime(layerName, mCurrentFrameNumber, actualPresentTime);
340 mFrameTracker.setActualPresentTime(actualPresentTime);
341 }
342
343 mFrameTracker.advanceFrame();
344 mFrameLatencyNeeded = false;
345 return true;
346 }
347
getOccupancyHistory(bool forceFlush)348 std::vector<OccupancyTracker::Segment> BufferLayer::getOccupancyHistory(bool forceFlush) {
349 std::vector<OccupancyTracker::Segment> history;
350 status_t result = mConsumer->getOccupancyHistory(forceFlush, &history);
351 if (result != NO_ERROR) {
352 ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result);
353 return {};
354 }
355 return history;
356 }
357
getTransformToDisplayInverse() const358 bool BufferLayer::getTransformToDisplayInverse() const {
359 return mConsumer->getTransformToDisplayInverse();
360 }
361
releasePendingBuffer(nsecs_t dequeueReadyTime)362 void BufferLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
363 if (!mConsumer->releasePendingBuffer()) {
364 return;
365 }
366
367 auto releaseFenceTime =
368 std::make_shared<FenceTime>(mConsumer->getPrevFinalReleaseFence());
369 mReleaseTimeline.updateSignalTimes();
370 mReleaseTimeline.push(releaseFenceTime);
371
372 Mutex::Autolock lock(mFrameEventHistoryMutex);
373 if (mPreviousFrameNumber != 0) {
374 mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime,
375 std::move(releaseFenceTime));
376 }
377 }
378
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime)379 Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
380 ATRACE_CALL();
381
382 if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
383 // mSidebandStreamChanged was true
384 mSidebandStream = mConsumer->getSidebandStream();
385 // replicated in LayerBE until FE/BE is ready to be synchronized
386 getBE().compositionInfo.hwc.sidebandStream = mSidebandStream;
387 if (getBE().compositionInfo.hwc.sidebandStream != nullptr) {
388 setTransactionFlags(eTransactionNeeded);
389 mFlinger->setTransactionFlags(eTraversalNeeded);
390 }
391 recomputeVisibleRegions = true;
392
393 const State& s(getDrawingState());
394 return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
395 }
396
397 Region outDirtyRegion;
398 if (mQueuedFrames <= 0 && !mAutoRefresh) {
399 return outDirtyRegion;
400 }
401
402 // if we've already called updateTexImage() without going through
403 // a composition step, we have to skip this layer at this point
404 // because we cannot call updateTeximage() without a corresponding
405 // compositionComplete() call.
406 // we'll trigger an update in onPreComposition().
407 if (mRefreshPending) {
408 return outDirtyRegion;
409 }
410
411 // If the head buffer's acquire fence hasn't signaled yet, return and
412 // try again later
413 if (!headFenceHasSignaled()) {
414 mFlinger->signalLayerUpdate();
415 return outDirtyRegion;
416 }
417
418 // Capture the old state of the layer for comparisons later
419 const State& s(getDrawingState());
420 const bool oldOpacity = isOpaque(s);
421 sp<GraphicBuffer> oldBuffer = getBE().compositionInfo.mBuffer;
422
423 if (!allTransactionsSignaled()) {
424 mFlinger->signalLayerUpdate();
425 return outDirtyRegion;
426 }
427
428 // This boolean is used to make sure that SurfaceFlinger's shadow copy
429 // of the buffer queue isn't modified when the buffer queue is returning
430 // BufferItem's that weren't actually queued. This can happen in shared
431 // buffer mode.
432 bool queuedBuffer = false;
433 LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
434 getProducerStickyTransform() != 0, mName.string(),
435 mOverrideScalingMode, mFreezeGeometryUpdates);
436 status_t updateResult =
437 mConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync,
438 &mAutoRefresh, &queuedBuffer,
439 mLastFrameNumberReceived);
440 if (updateResult == BufferQueue::PRESENT_LATER) {
441 // Producer doesn't want buffer to be displayed yet. Signal a
442 // layer update so we check again at the next opportunity.
443 mFlinger->signalLayerUpdate();
444 return outDirtyRegion;
445 } else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) {
446 // If the buffer has been rejected, remove it from the shadow queue
447 // and return early
448 if (queuedBuffer) {
449 Mutex::Autolock lock(mQueueItemLock);
450 mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
451 mQueueItems.removeAt(0);
452 android_atomic_dec(&mQueuedFrames);
453 }
454 return outDirtyRegion;
455 } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
456 // This can occur if something goes wrong when trying to create the
457 // EGLImage for this buffer. If this happens, the buffer has already
458 // been released, so we need to clean up the queue and bug out
459 // early.
460 if (queuedBuffer) {
461 Mutex::Autolock lock(mQueueItemLock);
462 mQueueItems.clear();
463 android_atomic_and(0, &mQueuedFrames);
464 mTimeStats.clearLayerRecord(getName().c_str());
465 }
466
467 // Once we have hit this state, the shadow queue may no longer
468 // correctly reflect the incoming BufferQueue's contents, so even if
469 // updateTexImage starts working, the only safe course of action is
470 // to continue to ignore updates.
471 mUpdateTexImageFailed = true;
472
473 return outDirtyRegion;
474 }
475
476 if (queuedBuffer) {
477 // Autolock scope
478 auto currentFrameNumber = mConsumer->getFrameNumber();
479
480 Mutex::Autolock lock(mQueueItemLock);
481
482 // Remove any stale buffers that have been dropped during
483 // updateTexImage
484 while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
485 mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
486 mQueueItems.removeAt(0);
487 android_atomic_dec(&mQueuedFrames);
488 }
489
490 const std::string layerName(getName().c_str());
491 mTimeStats.setAcquireFence(layerName, currentFrameNumber, mQueueItems[0].mFenceTime);
492 mTimeStats.setLatchTime(layerName, currentFrameNumber, latchTime);
493
494 mQueueItems.removeAt(0);
495 }
496
497 // Decrement the queued-frames count. Signal another event if we
498 // have more frames pending.
499 if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) ||
500 mAutoRefresh) {
501 mFlinger->signalLayerUpdate();
502 }
503
504 // update the active buffer
505 getBE().compositionInfo.mBuffer =
506 mConsumer->getCurrentBuffer(&getBE().compositionInfo.mBufferSlot);
507 // replicated in LayerBE until FE/BE is ready to be synchronized
508 mActiveBuffer = getBE().compositionInfo.mBuffer;
509 if (getBE().compositionInfo.mBuffer == nullptr) {
510 // this can only happen if the very first buffer was rejected.
511 return outDirtyRegion;
512 }
513
514 mBufferLatched = true;
515 mPreviousFrameNumber = mCurrentFrameNumber;
516 mCurrentFrameNumber = mConsumer->getFrameNumber();
517
518 {
519 Mutex::Autolock lock(mFrameEventHistoryMutex);
520 mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
521 }
522
523 mRefreshPending = true;
524 mFrameLatencyNeeded = true;
525 if (oldBuffer == nullptr) {
526 // the first time we receive a buffer, we need to trigger a
527 // geometry invalidation.
528 recomputeVisibleRegions = true;
529 }
530
531 ui::Dataspace dataSpace = mConsumer->getCurrentDataSpace();
532 // treat modern dataspaces as legacy dataspaces whenever possible, until
533 // we can trust the buffer producers
534 switch (dataSpace) {
535 case ui::Dataspace::V0_SRGB:
536 dataSpace = ui::Dataspace::SRGB;
537 break;
538 case ui::Dataspace::V0_SRGB_LINEAR:
539 dataSpace = ui::Dataspace::SRGB_LINEAR;
540 break;
541 case ui::Dataspace::V0_JFIF:
542 dataSpace = ui::Dataspace::JFIF;
543 break;
544 case ui::Dataspace::V0_BT601_625:
545 dataSpace = ui::Dataspace::BT601_625;
546 break;
547 case ui::Dataspace::V0_BT601_525:
548 dataSpace = ui::Dataspace::BT601_525;
549 break;
550 case ui::Dataspace::V0_BT709:
551 dataSpace = ui::Dataspace::BT709;
552 break;
553 default:
554 break;
555 }
556 mCurrentDataSpace = dataSpace;
557
558 Rect crop(mConsumer->getCurrentCrop());
559 const uint32_t transform(mConsumer->getCurrentTransform());
560 const uint32_t scalingMode(mConsumer->getCurrentScalingMode());
561 if ((crop != mCurrentCrop) ||
562 (transform != mCurrentTransform) ||
563 (scalingMode != mCurrentScalingMode)) {
564 mCurrentCrop = crop;
565 mCurrentTransform = transform;
566 mCurrentScalingMode = scalingMode;
567 recomputeVisibleRegions = true;
568 }
569
570 if (oldBuffer != nullptr) {
571 uint32_t bufWidth = getBE().compositionInfo.mBuffer->getWidth();
572 uint32_t bufHeight = getBE().compositionInfo.mBuffer->getHeight();
573 if (bufWidth != uint32_t(oldBuffer->width) ||
574 bufHeight != uint32_t(oldBuffer->height)) {
575 recomputeVisibleRegions = true;
576 }
577 }
578
579 mCurrentOpacity = getOpacityForFormat(getBE().compositionInfo.mBuffer->format);
580 if (oldOpacity != isOpaque(s)) {
581 recomputeVisibleRegions = true;
582 }
583
584 // Remove any sync points corresponding to the buffer which was just
585 // latched
586 {
587 Mutex::Autolock lock(mLocalSyncPointMutex);
588 auto point = mLocalSyncPoints.begin();
589 while (point != mLocalSyncPoints.end()) {
590 if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
591 // This sync point must have been added since we started
592 // latching. Don't drop it yet.
593 ++point;
594 continue;
595 }
596
597 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
598 point = mLocalSyncPoints.erase(point);
599 } else {
600 ++point;
601 }
602 }
603 }
604
605 // FIXME: postedRegion should be dirty & bounds
606 Region dirtyRegion(Rect(s.active.w, s.active.h));
607
608 // transform the dirty region to window-manager space
609 outDirtyRegion = (getTransform().transform(dirtyRegion));
610
611 return outDirtyRegion;
612 }
613
setDefaultBufferSize(uint32_t w,uint32_t h)614 void BufferLayer::setDefaultBufferSize(uint32_t w, uint32_t h) {
615 mConsumer->setDefaultBufferSize(w, h);
616 }
617
setPerFrameData(const sp<const DisplayDevice> & displayDevice)618 void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
619 // Apply this display's projection's viewport to the visible region
620 // before giving it to the HWC HAL.
621 const Transform& tr = displayDevice->getTransform();
622 const auto& viewport = displayDevice->getViewport();
623 Region visible = tr.transform(visibleRegion.intersect(viewport));
624 auto hwcId = displayDevice->getHwcDisplayId();
625 auto& hwcInfo = getBE().mHwcLayers[hwcId];
626 auto& hwcLayer = hwcInfo.layer;
627 auto error = hwcLayer->setVisibleRegion(visible);
628 if (error != HWC2::Error::None) {
629 ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
630 to_string(error).c_str(), static_cast<int32_t>(error));
631 visible.dump(LOG_TAG);
632 }
633
634 error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
635 if (error != HWC2::Error::None) {
636 ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
637 to_string(error).c_str(), static_cast<int32_t>(error));
638 surfaceDamageRegion.dump(LOG_TAG);
639 }
640
641 // Sideband layers
642 if (getBE().compositionInfo.hwc.sidebandStream.get()) {
643 setCompositionType(hwcId, HWC2::Composition::Sideband);
644 ALOGV("[%s] Requesting Sideband composition", mName.string());
645 error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle());
646 if (error != HWC2::Error::None) {
647 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
648 getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(),
649 static_cast<int32_t>(error));
650 }
651 return;
652 }
653
654 // Device or Cursor layers
655 if (mPotentialCursor) {
656 ALOGV("[%s] Requesting Cursor composition", mName.string());
657 setCompositionType(hwcId, HWC2::Composition::Cursor);
658 } else {
659 ALOGV("[%s] Requesting Device composition", mName.string());
660 setCompositionType(hwcId, HWC2::Composition::Device);
661 }
662
663 ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace);
664 error = hwcLayer->setDataspace(mCurrentDataSpace);
665 if (error != HWC2::Error::None) {
666 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace,
667 to_string(error).c_str(), static_cast<int32_t>(error));
668 }
669
670 const HdrMetadata& metadata = mConsumer->getCurrentHdrMetadata();
671 error = hwcLayer->setPerFrameMetadata(displayDevice->getSupportedPerFrameMetadata(), metadata);
672 if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
673 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
674 to_string(error).c_str(), static_cast<int32_t>(error));
675 }
676
677 uint32_t hwcSlot = 0;
678 sp<GraphicBuffer> hwcBuffer;
679 hwcInfo.bufferCache.getHwcBuffer(getBE().compositionInfo.mBufferSlot,
680 getBE().compositionInfo.mBuffer, &hwcSlot, &hwcBuffer);
681
682 auto acquireFence = mConsumer->getCurrentFence();
683 error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
684 if (error != HWC2::Error::None) {
685 ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
686 getBE().compositionInfo.mBuffer->handle, to_string(error).c_str(),
687 static_cast<int32_t>(error));
688 }
689 }
690
isOpaque(const Layer::State & s) const691 bool BufferLayer::isOpaque(const Layer::State& s) const {
692 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
693 // layer's opaque flag.
694 if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (getBE().compositionInfo.mBuffer == nullptr)) {
695 return false;
696 }
697
698 // if the layer has the opaque flag, then we're always opaque,
699 // otherwise we use the current buffer's format.
700 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
701 }
702
onFirstRef()703 void BufferLayer::onFirstRef() {
704 // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
705 sp<IGraphicBufferProducer> producer;
706 sp<IGraphicBufferConsumer> consumer;
707 BufferQueue::createBufferQueue(&producer, &consumer, true);
708 mProducer = new MonitoredProducer(producer, mFlinger, this);
709 mConsumer = new BufferLayerConsumer(consumer,
710 mFlinger->getRenderEngine(), mTextureName, this);
711 mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
712 mConsumer->setContentsChangedListener(this);
713 mConsumer->setName(mName);
714
715 if (mFlinger->isLayerTripleBufferingDisabled()) {
716 mProducer->setMaxDequeuedBufferCount(2);
717 }
718
719 const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
720 updateTransformHint(hw);
721 }
722
723 // ---------------------------------------------------------------------------
724 // Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
725 // ---------------------------------------------------------------------------
726
onFrameAvailable(const BufferItem & item)727 void BufferLayer::onFrameAvailable(const BufferItem& item) {
728 // Add this buffer from our internal queue tracker
729 { // Autolock scope
730 Mutex::Autolock lock(mQueueItemLock);
731 mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
732 item.mGraphicBuffer->getHeight(),
733 item.mFrameNumber);
734 // Reset the frame number tracker when we receive the first buffer after
735 // a frame number reset
736 if (item.mFrameNumber == 1) {
737 mLastFrameNumberReceived = 0;
738 }
739
740 // Ensure that callbacks are handled in order
741 while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
742 status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
743 ms2ns(500));
744 if (result != NO_ERROR) {
745 ALOGE("[%s] Timed out waiting on callback", mName.string());
746 }
747 }
748
749 mQueueItems.push_back(item);
750 android_atomic_inc(&mQueuedFrames);
751
752 // Wake up any pending callbacks
753 mLastFrameNumberReceived = item.mFrameNumber;
754 mQueueItemCondition.broadcast();
755 }
756
757 mFlinger->signalLayerUpdate();
758 }
759
onFrameReplaced(const BufferItem & item)760 void BufferLayer::onFrameReplaced(const BufferItem& item) {
761 { // Autolock scope
762 Mutex::Autolock lock(mQueueItemLock);
763
764 // Ensure that callbacks are handled in order
765 while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
766 status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
767 ms2ns(500));
768 if (result != NO_ERROR) {
769 ALOGE("[%s] Timed out waiting on callback", mName.string());
770 }
771 }
772
773 if (mQueueItems.empty()) {
774 ALOGE("Can't replace a frame on an empty queue");
775 return;
776 }
777 mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
778
779 // Wake up any pending callbacks
780 mLastFrameNumberReceived = item.mFrameNumber;
781 mQueueItemCondition.broadcast();
782 }
783 }
784
onSidebandStreamChanged()785 void BufferLayer::onSidebandStreamChanged() {
786 if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
787 // mSidebandStreamChanged was false
788 mFlinger->signalLayerUpdate();
789 }
790 }
791
needsFiltering(const RenderArea & renderArea) const792 bool BufferLayer::needsFiltering(const RenderArea& renderArea) const {
793 return mNeedsFiltering || renderArea.needsFiltering();
794 }
795
796 // As documented in libhardware header, formats in the range
797 // 0x100 - 0x1FF are specific to the HAL implementation, and
798 // are known to have no alpha channel
799 // TODO: move definition for device-specific range into
800 // hardware.h, instead of using hard-coded values here.
801 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
802
getOpacityForFormat(uint32_t format)803 bool BufferLayer::getOpacityForFormat(uint32_t format) {
804 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
805 return true;
806 }
807 switch (format) {
808 case HAL_PIXEL_FORMAT_RGBA_8888:
809 case HAL_PIXEL_FORMAT_BGRA_8888:
810 case HAL_PIXEL_FORMAT_RGBA_FP16:
811 case HAL_PIXEL_FORMAT_RGBA_1010102:
812 return false;
813 }
814 // in all other case, we have no blending (also for unknown formats)
815 return true;
816 }
817
isHdrY410() const818 bool BufferLayer::isHdrY410() const {
819 // pixel format is HDR Y410 masquerading as RGBA_1010102
820 return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
821 mConsumer->getCurrentApi() == NATIVE_WINDOW_API_MEDIA &&
822 getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
823 }
824
drawWithOpenGL(const RenderArea & renderArea,bool useIdentityTransform) const825 void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const {
826 ATRACE_CALL();
827 const State& s(getDrawingState());
828
829 computeGeometry(renderArea, getBE().mMesh, useIdentityTransform);
830
831 /*
832 * NOTE: the way we compute the texture coordinates here produces
833 * different results than when we take the HWC path -- in the later case
834 * the "source crop" is rounded to texel boundaries.
835 * This can produce significantly different results when the texture
836 * is scaled by a large amount.
837 *
838 * The GL code below is more logical (imho), and the difference with
839 * HWC is due to a limitation of the HWC API to integers -- a question
840 * is suspend is whether we should ignore this problem or revert to
841 * GL composition when a buffer scaling is applied (maybe with some
842 * minimal value)? Or, we could make GL behave like HWC -- but this feel
843 * like more of a hack.
844 */
845 const Rect bounds{computeBounds()}; // Rounds from FloatRect
846
847 Transform t = getTransform();
848 Rect win = bounds;
849 if (!s.finalCrop.isEmpty()) {
850 win = t.transform(win);
851 if (!win.intersect(s.finalCrop, &win)) {
852 win.clear();
853 }
854 win = t.inverse().transform(win);
855 if (!win.intersect(bounds, &win)) {
856 win.clear();
857 }
858 }
859
860 float left = float(win.left) / float(s.active.w);
861 float top = float(win.top) / float(s.active.h);
862 float right = float(win.right) / float(s.active.w);
863 float bottom = float(win.bottom) / float(s.active.h);
864
865 // TODO: we probably want to generate the texture coords with the mesh
866 // here we assume that we only have 4 vertices
867 Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>());
868 texCoords[0] = vec2(left, 1.0f - top);
869 texCoords[1] = vec2(left, 1.0f - bottom);
870 texCoords[2] = vec2(right, 1.0f - bottom);
871 texCoords[3] = vec2(right, 1.0f - top);
872
873 auto& engine(mFlinger->getRenderEngine());
874 engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */,
875 getColor());
876 engine.setSourceDataSpace(mCurrentDataSpace);
877
878 if (isHdrY410()) {
879 engine.setSourceY410BT2020(true);
880 }
881
882 engine.drawMesh(getBE().mMesh);
883 engine.disableBlending();
884
885 engine.setSourceY410BT2020(false);
886 }
887
getProducerStickyTransform() const888 uint32_t BufferLayer::getProducerStickyTransform() const {
889 int producerStickyTransform = 0;
890 int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
891 if (ret != OK) {
892 ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
893 strerror(-ret), ret);
894 return 0;
895 }
896 return static_cast<uint32_t>(producerStickyTransform);
897 }
898
latchUnsignaledBuffers()899 bool BufferLayer::latchUnsignaledBuffers() {
900 static bool propertyLoaded = false;
901 static bool latch = false;
902 static std::mutex mutex;
903 std::lock_guard<std::mutex> lock(mutex);
904 if (!propertyLoaded) {
905 char value[PROPERTY_VALUE_MAX] = {};
906 property_get("debug.sf.latch_unsignaled", value, "0");
907 latch = atoi(value);
908 propertyLoaded = true;
909 }
910 return latch;
911 }
912
getHeadFrameNumber() const913 uint64_t BufferLayer::getHeadFrameNumber() const {
914 Mutex::Autolock lock(mQueueItemLock);
915 if (!mQueueItems.empty()) {
916 return mQueueItems[0].mFrameNumber;
917 } else {
918 return mCurrentFrameNumber;
919 }
920 }
921
headFenceHasSignaled() const922 bool BufferLayer::headFenceHasSignaled() const {
923 if (latchUnsignaledBuffers()) {
924 return true;
925 }
926
927 Mutex::Autolock lock(mQueueItemLock);
928 if (mQueueItems.empty()) {
929 return true;
930 }
931 if (mQueueItems[0].mIsDroppable) {
932 // Even though this buffer's fence may not have signaled yet, it could
933 // be replaced by another buffer before it has a chance to, which means
934 // that it's possible to get into a situation where a buffer is never
935 // able to be latched. To avoid this, grab this buffer anyway.
936 return true;
937 }
938 return mQueueItems[0].mFenceTime->getSignalTime() !=
939 Fence::SIGNAL_TIME_PENDING;
940 }
941
getEffectiveScalingMode() const942 uint32_t BufferLayer::getEffectiveScalingMode() const {
943 if (mOverrideScalingMode >= 0) {
944 return mOverrideScalingMode;
945 }
946 return mCurrentScalingMode;
947 }
948
949 // ----------------------------------------------------------------------------
950 // transaction
951 // ----------------------------------------------------------------------------
952
notifyAvailableFrames()953 void BufferLayer::notifyAvailableFrames() {
954 auto headFrameNumber = getHeadFrameNumber();
955 bool headFenceSignaled = headFenceHasSignaled();
956 Mutex::Autolock lock(mLocalSyncPointMutex);
957 for (auto& point : mLocalSyncPoints) {
958 if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
959 point->setFrameAvailable();
960 }
961 }
962 }
963
getProducer() const964 sp<IGraphicBufferProducer> BufferLayer::getProducer() const {
965 return mProducer;
966 }
967
968 // ---------------------------------------------------------------------------
969 // h/w composer set-up
970 // ---------------------------------------------------------------------------
971
allTransactionsSignaled()972 bool BufferLayer::allTransactionsSignaled() {
973 auto headFrameNumber = getHeadFrameNumber();
974 bool matchingFramesFound = false;
975 bool allTransactionsApplied = true;
976 Mutex::Autolock lock(mLocalSyncPointMutex);
977
978 for (auto& point : mLocalSyncPoints) {
979 if (point->getFrameNumber() > headFrameNumber) {
980 break;
981 }
982 matchingFramesFound = true;
983
984 if (!point->frameIsAvailable()) {
985 // We haven't notified the remote layer that the frame for
986 // this point is available yet. Notify it now, and then
987 // abort this attempt to latch.
988 point->setFrameAvailable();
989 allTransactionsApplied = false;
990 break;
991 }
992
993 allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
994 }
995 return !matchingFramesFound || allTransactionsApplied;
996 }
997
998 } // namespace android
999
1000 #if defined(__gl_h_)
1001 #error "don't include gl/gl.h in this file"
1002 #endif
1003
1004 #if defined(__gl2_h_)
1005 #error "don't include gl2/gl2.h in this file"
1006 #endif
1007