1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/epoll.h>
28 #include <sys/limits.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/utsname.h>
32 #include <unistd.h>
33 
34 #define LOG_TAG "EventHub"
35 
36 // #define LOG_NDEBUG 0
37 
38 #include "EventHub.h"
39 
40 #include <hardware_legacy/power.h>
41 
42 #include <android-base/stringprintf.h>
43 #include <cutils/properties.h>
44 #include <openssl/sha.h>
45 #include <utils/Log.h>
46 #include <utils/Timers.h>
47 #include <utils/threads.h>
48 #include <utils/Errors.h>
49 
50 #include <input/KeyLayoutMap.h>
51 #include <input/KeyCharacterMap.h>
52 #include <input/VirtualKeyMap.h>
53 
54 /* this macro is used to tell if "bit" is set in "array"
55  * it selects a byte from the array, and does a boolean AND
56  * operation with a byte that only has the relevant bit set.
57  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
58  */
59 #define test_bit(bit, array)    ((array)[(bit)/8] & (1<<((bit)%8)))
60 
61 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
62 #define sizeof_bit_array(bits)  (((bits) + 7) / 8)
63 
64 #define INDENT "  "
65 #define INDENT2 "    "
66 #define INDENT3 "      "
67 
68 using android::base::StringPrintf;
69 
70 namespace android {
71 
72 static const char *WAKE_LOCK_ID = "KeyEvents";
73 static const char *DEVICE_PATH = "/dev/input";
74 
toString(bool value)75 static inline const char* toString(bool value) {
76     return value ? "true" : "false";
77 }
78 
sha1(const String8 & in)79 static String8 sha1(const String8& in) {
80     SHA_CTX ctx;
81     SHA1_Init(&ctx);
82     SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
83     u_char digest[SHA_DIGEST_LENGTH];
84     SHA1_Final(digest, &ctx);
85 
86     String8 out;
87     for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
88         out.appendFormat("%02x", digest[i]);
89     }
90     return out;
91 }
92 
getLinuxRelease(int * major,int * minor)93 static void getLinuxRelease(int* major, int* minor) {
94     struct utsname info;
95     if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
96         *major = 0, *minor = 0;
97         ALOGE("Could not get linux version: %s", strerror(errno));
98     }
99 }
100 
101 // --- Global Functions ---
102 
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)103 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
104     // Touch devices get dibs on touch-related axes.
105     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
106         switch (axis) {
107         case ABS_X:
108         case ABS_Y:
109         case ABS_PRESSURE:
110         case ABS_TOOL_WIDTH:
111         case ABS_DISTANCE:
112         case ABS_TILT_X:
113         case ABS_TILT_Y:
114         case ABS_MT_SLOT:
115         case ABS_MT_TOUCH_MAJOR:
116         case ABS_MT_TOUCH_MINOR:
117         case ABS_MT_WIDTH_MAJOR:
118         case ABS_MT_WIDTH_MINOR:
119         case ABS_MT_ORIENTATION:
120         case ABS_MT_POSITION_X:
121         case ABS_MT_POSITION_Y:
122         case ABS_MT_TOOL_TYPE:
123         case ABS_MT_BLOB_ID:
124         case ABS_MT_TRACKING_ID:
125         case ABS_MT_PRESSURE:
126         case ABS_MT_DISTANCE:
127             return INPUT_DEVICE_CLASS_TOUCH;
128         }
129     }
130 
131     // External stylus gets the pressure axis
132     if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
133         if (axis == ABS_PRESSURE) {
134             return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
135         }
136     }
137 
138     // Joystick devices get the rest.
139     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
140 }
141 
142 // --- EventHub::Device ---
143 
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)144 EventHub::Device::Device(int fd, int32_t id, const String8& path,
145         const InputDeviceIdentifier& identifier) :
146         next(NULL),
147         fd(fd), id(id), path(path), identifier(identifier),
148         classes(0), configuration(NULL), virtualKeyMap(NULL),
149         ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
150         timestampOverrideSec(0), timestampOverrideUsec(0), enabled(true),
151         isVirtual(fd < 0) {
152     memset(keyBitmask, 0, sizeof(keyBitmask));
153     memset(absBitmask, 0, sizeof(absBitmask));
154     memset(relBitmask, 0, sizeof(relBitmask));
155     memset(swBitmask, 0, sizeof(swBitmask));
156     memset(ledBitmask, 0, sizeof(ledBitmask));
157     memset(ffBitmask, 0, sizeof(ffBitmask));
158     memset(propBitmask, 0, sizeof(propBitmask));
159 }
160 
~Device()161 EventHub::Device::~Device() {
162     close();
163     delete configuration;
164     delete virtualKeyMap;
165 }
166 
close()167 void EventHub::Device::close() {
168     if (fd >= 0) {
169         ::close(fd);
170         fd = -1;
171     }
172 }
173 
enable()174 status_t EventHub::Device::enable() {
175     fd = open(path, O_RDWR | O_CLOEXEC | O_NONBLOCK);
176     if(fd < 0) {
177         ALOGE("could not open %s, %s\n", path.string(), strerror(errno));
178         return -errno;
179     }
180     enabled = true;
181     return OK;
182 }
183 
disable()184 status_t EventHub::Device::disable() {
185     close();
186     enabled = false;
187     return OK;
188 }
189 
hasValidFd()190 bool EventHub::Device::hasValidFd() {
191     return !isVirtual && enabled;
192 }
193 
194 // --- EventHub ---
195 
196 const uint32_t EventHub::EPOLL_ID_INOTIFY;
197 const uint32_t EventHub::EPOLL_ID_WAKE;
198 const int EventHub::EPOLL_SIZE_HINT;
199 const int EventHub::EPOLL_MAX_EVENTS;
200 
EventHub(void)201 EventHub::EventHub(void) :
202         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
203         mOpeningDevices(0), mClosingDevices(0),
204         mNeedToSendFinishedDeviceScan(false),
205         mNeedToReopenDevices(false), mNeedToScanDevices(true),
206         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
207     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
208 
209     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
210     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
211 
212     mINotifyFd = inotify_init();
213     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
214     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
215             DEVICE_PATH, errno);
216 
217     struct epoll_event eventItem;
218     memset(&eventItem, 0, sizeof(eventItem));
219     eventItem.events = EPOLLIN;
220     eventItem.data.u32 = EPOLL_ID_INOTIFY;
221     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
222     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
223 
224     int wakeFds[2];
225     result = pipe(wakeFds);
226     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
227 
228     mWakeReadPipeFd = wakeFds[0];
229     mWakeWritePipeFd = wakeFds[1];
230 
231     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
232     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
233             errno);
234 
235     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
236     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
237             errno);
238 
239     eventItem.data.u32 = EPOLL_ID_WAKE;
240     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
241     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
242             errno);
243 
244     int major, minor;
245     getLinuxRelease(&major, &minor);
246     // EPOLLWAKEUP was introduced in kernel 3.5
247     mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
248 }
249 
~EventHub(void)250 EventHub::~EventHub(void) {
251     closeAllDevicesLocked();
252 
253     while (mClosingDevices) {
254         Device* device = mClosingDevices;
255         mClosingDevices = device->next;
256         delete device;
257     }
258 
259     ::close(mEpollFd);
260     ::close(mINotifyFd);
261     ::close(mWakeReadPipeFd);
262     ::close(mWakeWritePipeFd);
263 
264     release_wake_lock(WAKE_LOCK_ID);
265 }
266 
getDeviceIdentifier(int32_t deviceId) const267 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
268     AutoMutex _l(mLock);
269     Device* device = getDeviceLocked(deviceId);
270     if (device == NULL) return InputDeviceIdentifier();
271     return device->identifier;
272 }
273 
getDeviceClasses(int32_t deviceId) const274 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
275     AutoMutex _l(mLock);
276     Device* device = getDeviceLocked(deviceId);
277     if (device == NULL) return 0;
278     return device->classes;
279 }
280 
getDeviceControllerNumber(int32_t deviceId) const281 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
282     AutoMutex _l(mLock);
283     Device* device = getDeviceLocked(deviceId);
284     if (device == NULL) return 0;
285     return device->controllerNumber;
286 }
287 
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const288 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
289     AutoMutex _l(mLock);
290     Device* device = getDeviceLocked(deviceId);
291     if (device && device->configuration) {
292         *outConfiguration = *device->configuration;
293     } else {
294         outConfiguration->clear();
295     }
296 }
297 
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const298 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
299         RawAbsoluteAxisInfo* outAxisInfo) const {
300     outAxisInfo->clear();
301 
302     if (axis >= 0 && axis <= ABS_MAX) {
303         AutoMutex _l(mLock);
304 
305         Device* device = getDeviceLocked(deviceId);
306         if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
307             struct input_absinfo info;
308             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
309                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
310                      axis, device->identifier.name.string(), device->fd, errno);
311                 return -errno;
312             }
313 
314             if (info.minimum != info.maximum) {
315                 outAxisInfo->valid = true;
316                 outAxisInfo->minValue = info.minimum;
317                 outAxisInfo->maxValue = info.maximum;
318                 outAxisInfo->flat = info.flat;
319                 outAxisInfo->fuzz = info.fuzz;
320                 outAxisInfo->resolution = info.resolution;
321             }
322             return OK;
323         }
324     }
325     return -1;
326 }
327 
hasRelativeAxis(int32_t deviceId,int axis) const328 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
329     if (axis >= 0 && axis <= REL_MAX) {
330         AutoMutex _l(mLock);
331 
332         Device* device = getDeviceLocked(deviceId);
333         if (device) {
334             return test_bit(axis, device->relBitmask);
335         }
336     }
337     return false;
338 }
339 
hasInputProperty(int32_t deviceId,int property) const340 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
341     if (property >= 0 && property <= INPUT_PROP_MAX) {
342         AutoMutex _l(mLock);
343 
344         Device* device = getDeviceLocked(deviceId);
345         if (device) {
346             return test_bit(property, device->propBitmask);
347         }
348     }
349     return false;
350 }
351 
getScanCodeState(int32_t deviceId,int32_t scanCode) const352 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
353     if (scanCode >= 0 && scanCode <= KEY_MAX) {
354         AutoMutex _l(mLock);
355 
356         Device* device = getDeviceLocked(deviceId);
357         if (device && device->hasValidFd() && test_bit(scanCode, device->keyBitmask)) {
358             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
359             memset(keyState, 0, sizeof(keyState));
360             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
361                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
362             }
363         }
364     }
365     return AKEY_STATE_UNKNOWN;
366 }
367 
getKeyCodeState(int32_t deviceId,int32_t keyCode) const368 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
369     AutoMutex _l(mLock);
370 
371     Device* device = getDeviceLocked(deviceId);
372     if (device && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
373         Vector<int32_t> scanCodes;
374         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
375         if (scanCodes.size() != 0) {
376             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
377             memset(keyState, 0, sizeof(keyState));
378             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
379                 for (size_t i = 0; i < scanCodes.size(); i++) {
380                     int32_t sc = scanCodes.itemAt(i);
381                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
382                         return AKEY_STATE_DOWN;
383                     }
384                 }
385                 return AKEY_STATE_UP;
386             }
387         }
388     }
389     return AKEY_STATE_UNKNOWN;
390 }
391 
getSwitchState(int32_t deviceId,int32_t sw) const392 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
393     if (sw >= 0 && sw <= SW_MAX) {
394         AutoMutex _l(mLock);
395 
396         Device* device = getDeviceLocked(deviceId);
397         if (device && device->hasValidFd() && test_bit(sw, device->swBitmask)) {
398             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
399             memset(swState, 0, sizeof(swState));
400             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
401                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
402             }
403         }
404     }
405     return AKEY_STATE_UNKNOWN;
406 }
407 
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const408 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
409     *outValue = 0;
410 
411     if (axis >= 0 && axis <= ABS_MAX) {
412         AutoMutex _l(mLock);
413 
414         Device* device = getDeviceLocked(deviceId);
415         if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
416             struct input_absinfo info;
417             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
418                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
419                      axis, device->identifier.name.string(), device->fd, errno);
420                 return -errno;
421             }
422 
423             *outValue = info.value;
424             return OK;
425         }
426     }
427     return -1;
428 }
429 
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const430 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
431         const int32_t* keyCodes, uint8_t* outFlags) const {
432     AutoMutex _l(mLock);
433 
434     Device* device = getDeviceLocked(deviceId);
435     if (device && device->keyMap.haveKeyLayout()) {
436         Vector<int32_t> scanCodes;
437         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
438             scanCodes.clear();
439 
440             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
441                     keyCodes[codeIndex], &scanCodes);
442             if (! err) {
443                 // check the possible scan codes identified by the layout map against the
444                 // map of codes actually emitted by the driver
445                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
446                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
447                         outFlags[codeIndex] = 1;
448                         break;
449                     }
450                 }
451             }
452         }
453         return true;
454     }
455     return false;
456 }
457 
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const458 status_t EventHub::mapKey(int32_t deviceId,
459         int32_t scanCode, int32_t usageCode, int32_t metaState,
460         int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
461     AutoMutex _l(mLock);
462     Device* device = getDeviceLocked(deviceId);
463     status_t status = NAME_NOT_FOUND;
464 
465     if (device) {
466         // Check the key character map first.
467         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
468         if (kcm != NULL) {
469             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
470                 *outFlags = 0;
471                 status = NO_ERROR;
472             }
473         }
474 
475         // Check the key layout next.
476         if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
477             if (!device->keyMap.keyLayoutMap->mapKey(
478                     scanCode, usageCode, outKeycode, outFlags)) {
479                 status = NO_ERROR;
480             }
481         }
482 
483         if (status == NO_ERROR) {
484             if (kcm != NULL) {
485                 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
486             } else {
487                 *outMetaState = metaState;
488             }
489         }
490     }
491 
492     if (status != NO_ERROR) {
493         *outKeycode = 0;
494         *outFlags = 0;
495         *outMetaState = metaState;
496     }
497 
498     return status;
499 }
500 
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const501 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
502     AutoMutex _l(mLock);
503     Device* device = getDeviceLocked(deviceId);
504 
505     if (device && device->keyMap.haveKeyLayout()) {
506         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
507         if (err == NO_ERROR) {
508             return NO_ERROR;
509         }
510     }
511 
512     return NAME_NOT_FOUND;
513 }
514 
setExcludedDevices(const Vector<String8> & devices)515 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
516     AutoMutex _l(mLock);
517 
518     mExcludedDevices = devices;
519 }
520 
hasScanCode(int32_t deviceId,int32_t scanCode) const521 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
522     AutoMutex _l(mLock);
523     Device* device = getDeviceLocked(deviceId);
524     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
525         if (test_bit(scanCode, device->keyBitmask)) {
526             return true;
527         }
528     }
529     return false;
530 }
531 
hasLed(int32_t deviceId,int32_t led) const532 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
533     AutoMutex _l(mLock);
534     Device* device = getDeviceLocked(deviceId);
535     int32_t sc;
536     if (device && mapLed(device, led, &sc) == NO_ERROR) {
537         if (test_bit(sc, device->ledBitmask)) {
538             return true;
539         }
540     }
541     return false;
542 }
543 
setLedState(int32_t deviceId,int32_t led,bool on)544 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
545     AutoMutex _l(mLock);
546     Device* device = getDeviceLocked(deviceId);
547     setLedStateLocked(device, led, on);
548 }
549 
setLedStateLocked(Device * device,int32_t led,bool on)550 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
551     int32_t sc;
552     if (device && device->hasValidFd() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
553         struct input_event ev;
554         ev.time.tv_sec = 0;
555         ev.time.tv_usec = 0;
556         ev.type = EV_LED;
557         ev.code = sc;
558         ev.value = on ? 1 : 0;
559 
560         ssize_t nWrite;
561         do {
562             nWrite = write(device->fd, &ev, sizeof(struct input_event));
563         } while (nWrite == -1 && errno == EINTR);
564     }
565 }
566 
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const567 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
568         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
569     outVirtualKeys.clear();
570 
571     AutoMutex _l(mLock);
572     Device* device = getDeviceLocked(deviceId);
573     if (device && device->virtualKeyMap) {
574         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
575     }
576 }
577 
getKeyCharacterMap(int32_t deviceId) const578 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
579     AutoMutex _l(mLock);
580     Device* device = getDeviceLocked(deviceId);
581     if (device) {
582         return device->getKeyCharacterMap();
583     }
584     return NULL;
585 }
586 
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)587 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
588         const sp<KeyCharacterMap>& map) {
589     AutoMutex _l(mLock);
590     Device* device = getDeviceLocked(deviceId);
591     if (device) {
592         if (map != device->overlayKeyMap) {
593             device->overlayKeyMap = map;
594             device->combinedKeyMap = KeyCharacterMap::combine(
595                     device->keyMap.keyCharacterMap, map);
596             return true;
597         }
598     }
599     return false;
600 }
601 
generateDescriptor(InputDeviceIdentifier & identifier)602 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
603     String8 rawDescriptor;
604     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
605             identifier.product);
606     // TODO add handling for USB devices to not uniqueify kbs that show up twice
607     if (!identifier.uniqueId.isEmpty()) {
608         rawDescriptor.append("uniqueId:");
609         rawDescriptor.append(identifier.uniqueId);
610     } else if (identifier.nonce != 0) {
611         rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
612     }
613 
614     if (identifier.vendor == 0 && identifier.product == 0) {
615         // If we don't know the vendor and product id, then the device is probably
616         // built-in so we need to rely on other information to uniquely identify
617         // the input device.  Usually we try to avoid relying on the device name or
618         // location but for built-in input device, they are unlikely to ever change.
619         if (!identifier.name.isEmpty()) {
620             rawDescriptor.append("name:");
621             rawDescriptor.append(identifier.name);
622         } else if (!identifier.location.isEmpty()) {
623             rawDescriptor.append("location:");
624             rawDescriptor.append(identifier.location);
625         }
626     }
627     identifier.descriptor = sha1(rawDescriptor);
628     return rawDescriptor;
629 }
630 
assignDescriptorLocked(InputDeviceIdentifier & identifier)631 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
632     // Compute a device descriptor that uniquely identifies the device.
633     // The descriptor is assumed to be a stable identifier.  Its value should not
634     // change between reboots, reconnections, firmware updates or new releases
635     // of Android. In practice we sometimes get devices that cannot be uniquely
636     // identified. In this case we enforce uniqueness between connected devices.
637     // Ideally, we also want the descriptor to be short and relatively opaque.
638 
639     identifier.nonce = 0;
640     String8 rawDescriptor = generateDescriptor(identifier);
641     if (identifier.uniqueId.isEmpty()) {
642         // If it didn't have a unique id check for conflicts and enforce
643         // uniqueness if necessary.
644         while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
645             identifier.nonce++;
646             rawDescriptor = generateDescriptor(identifier);
647         }
648     }
649     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
650             identifier.descriptor.string());
651 }
652 
vibrate(int32_t deviceId,nsecs_t duration)653 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
654     AutoMutex _l(mLock);
655     Device* device = getDeviceLocked(deviceId);
656     if (device && device->hasValidFd()) {
657         ff_effect effect;
658         memset(&effect, 0, sizeof(effect));
659         effect.type = FF_RUMBLE;
660         effect.id = device->ffEffectId;
661         effect.u.rumble.strong_magnitude = 0xc000;
662         effect.u.rumble.weak_magnitude = 0xc000;
663         effect.replay.length = (duration + 999999LL) / 1000000LL;
664         effect.replay.delay = 0;
665         if (ioctl(device->fd, EVIOCSFF, &effect)) {
666             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
667                     device->identifier.name.string(), errno);
668             return;
669         }
670         device->ffEffectId = effect.id;
671 
672         struct input_event ev;
673         ev.time.tv_sec = 0;
674         ev.time.tv_usec = 0;
675         ev.type = EV_FF;
676         ev.code = device->ffEffectId;
677         ev.value = 1;
678         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
679             ALOGW("Could not start force feedback effect on device %s due to error %d.",
680                     device->identifier.name.string(), errno);
681             return;
682         }
683         device->ffEffectPlaying = true;
684     }
685 }
686 
cancelVibrate(int32_t deviceId)687 void EventHub::cancelVibrate(int32_t deviceId) {
688     AutoMutex _l(mLock);
689     Device* device = getDeviceLocked(deviceId);
690     if (device && device->hasValidFd()) {
691         if (device->ffEffectPlaying) {
692             device->ffEffectPlaying = false;
693 
694             struct input_event ev;
695             ev.time.tv_sec = 0;
696             ev.time.tv_usec = 0;
697             ev.type = EV_FF;
698             ev.code = device->ffEffectId;
699             ev.value = 0;
700             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
701                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
702                         device->identifier.name.string(), errno);
703                 return;
704             }
705         }
706     }
707 }
708 
getDeviceByDescriptorLocked(String8 & descriptor) const709 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
710     size_t size = mDevices.size();
711     for (size_t i = 0; i < size; i++) {
712         Device* device = mDevices.valueAt(i);
713         if (descriptor.compare(device->identifier.descriptor) == 0) {
714             return device;
715         }
716     }
717     return NULL;
718 }
719 
getDeviceLocked(int32_t deviceId) const720 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
721     if (deviceId == BUILT_IN_KEYBOARD_ID) {
722         deviceId = mBuiltInKeyboardId;
723     }
724     ssize_t index = mDevices.indexOfKey(deviceId);
725     return index >= 0 ? mDevices.valueAt(index) : NULL;
726 }
727 
getDeviceByPathLocked(const char * devicePath) const728 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
729     for (size_t i = 0; i < mDevices.size(); i++) {
730         Device* device = mDevices.valueAt(i);
731         if (device->path == devicePath) {
732             return device;
733         }
734     }
735     return NULL;
736 }
737 
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)738 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
739     ALOG_ASSERT(bufferSize >= 1);
740 
741     AutoMutex _l(mLock);
742 
743     struct input_event readBuffer[bufferSize];
744 
745     RawEvent* event = buffer;
746     size_t capacity = bufferSize;
747     bool awoken = false;
748     for (;;) {
749         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
750 
751         // Reopen input devices if needed.
752         if (mNeedToReopenDevices) {
753             mNeedToReopenDevices = false;
754 
755             ALOGI("Reopening all input devices due to a configuration change.");
756 
757             closeAllDevicesLocked();
758             mNeedToScanDevices = true;
759             break; // return to the caller before we actually rescan
760         }
761 
762         // Report any devices that had last been added/removed.
763         while (mClosingDevices) {
764             Device* device = mClosingDevices;
765             ALOGV("Reporting device closed: id=%d, name=%s\n",
766                  device->id, device->path.string());
767             mClosingDevices = device->next;
768             event->when = now;
769             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
770             event->type = DEVICE_REMOVED;
771             event += 1;
772             delete device;
773             mNeedToSendFinishedDeviceScan = true;
774             if (--capacity == 0) {
775                 break;
776             }
777         }
778 
779         if (mNeedToScanDevices) {
780             mNeedToScanDevices = false;
781             scanDevicesLocked();
782             mNeedToSendFinishedDeviceScan = true;
783         }
784 
785         while (mOpeningDevices != NULL) {
786             Device* device = mOpeningDevices;
787             ALOGV("Reporting device opened: id=%d, name=%s\n",
788                  device->id, device->path.string());
789             mOpeningDevices = device->next;
790             event->when = now;
791             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
792             event->type = DEVICE_ADDED;
793             event += 1;
794             mNeedToSendFinishedDeviceScan = true;
795             if (--capacity == 0) {
796                 break;
797             }
798         }
799 
800         if (mNeedToSendFinishedDeviceScan) {
801             mNeedToSendFinishedDeviceScan = false;
802             event->when = now;
803             event->type = FINISHED_DEVICE_SCAN;
804             event += 1;
805             if (--capacity == 0) {
806                 break;
807             }
808         }
809 
810         // Grab the next input event.
811         bool deviceChanged = false;
812         while (mPendingEventIndex < mPendingEventCount) {
813             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
814             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
815                 if (eventItem.events & EPOLLIN) {
816                     mPendingINotify = true;
817                 } else {
818                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
819                 }
820                 continue;
821             }
822 
823             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
824                 if (eventItem.events & EPOLLIN) {
825                     ALOGV("awoken after wake()");
826                     awoken = true;
827                     char buffer[16];
828                     ssize_t nRead;
829                     do {
830                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
831                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
832                 } else {
833                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
834                             eventItem.events);
835                 }
836                 continue;
837             }
838 
839             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
840             if (deviceIndex < 0) {
841                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
842                         eventItem.events, eventItem.data.u32);
843                 continue;
844             }
845 
846             Device* device = mDevices.valueAt(deviceIndex);
847             if (eventItem.events & EPOLLIN) {
848                 int32_t readSize = read(device->fd, readBuffer,
849                         sizeof(struct input_event) * capacity);
850                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
851                     // Device was removed before INotify noticed.
852                     ALOGW("could not get event, removed? (fd: %d size: %" PRId32
853                             " bufferSize: %zu capacity: %zu errno: %d)\n",
854                             device->fd, readSize, bufferSize, capacity, errno);
855                     deviceChanged = true;
856                     closeDeviceLocked(device);
857                 } else if (readSize < 0) {
858                     if (errno != EAGAIN && errno != EINTR) {
859                         ALOGW("could not get event (errno=%d)", errno);
860                     }
861                 } else if ((readSize % sizeof(struct input_event)) != 0) {
862                     ALOGE("could not get event (wrong size: %d)", readSize);
863                 } else {
864                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
865 
866                     size_t count = size_t(readSize) / sizeof(struct input_event);
867                     for (size_t i = 0; i < count; i++) {
868                         struct input_event& iev = readBuffer[i];
869                         ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
870                                 device->path.string(),
871                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
872                                 iev.type, iev.code, iev.value);
873 
874                         // Some input devices may have a better concept of the time
875                         // when an input event was actually generated than the kernel
876                         // which simply timestamps all events on entry to evdev.
877                         // This is a custom Android extension of the input protocol
878                         // mainly intended for use with uinput based device drivers.
879                         if (iev.type == EV_MSC) {
880                             if (iev.code == MSC_ANDROID_TIME_SEC) {
881                                 device->timestampOverrideSec = iev.value;
882                                 continue;
883                             } else if (iev.code == MSC_ANDROID_TIME_USEC) {
884                                 device->timestampOverrideUsec = iev.value;
885                                 continue;
886                             }
887                         }
888                         if (device->timestampOverrideSec || device->timestampOverrideUsec) {
889                             iev.time.tv_sec = device->timestampOverrideSec;
890                             iev.time.tv_usec = device->timestampOverrideUsec;
891                             if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
892                                 device->timestampOverrideSec = 0;
893                                 device->timestampOverrideUsec = 0;
894                             }
895                             ALOGV("applied override time %d.%06d",
896                                     int(iev.time.tv_sec), int(iev.time.tv_usec));
897                         }
898 
899                         // Use the time specified in the event instead of the current time
900                         // so that downstream code can get more accurate estimates of
901                         // event dispatch latency from the time the event is enqueued onto
902                         // the evdev client buffer.
903                         //
904                         // The event's timestamp fortuitously uses the same monotonic clock
905                         // time base as the rest of Android.  The kernel event device driver
906                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
907                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
908                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
909                         // system call that also queries ktime_get_ts().
910                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
911                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
912                         ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
913 
914                         // Bug 7291243: Add a guard in case the kernel generates timestamps
915                         // that appear to be far into the future because they were generated
916                         // using the wrong clock source.
917                         //
918                         // This can happen because when the input device is initially opened
919                         // it has a default clock source of CLOCK_REALTIME.  Any input events
920                         // enqueued right after the device is opened will have timestamps
921                         // generated using CLOCK_REALTIME.  We later set the clock source
922                         // to CLOCK_MONOTONIC but it is already too late.
923                         //
924                         // Invalid input event timestamps can result in ANRs, crashes and
925                         // and other issues that are hard to track down.  We must not let them
926                         // propagate through the system.
927                         //
928                         // Log a warning so that we notice the problem and recover gracefully.
929                         if (event->when >= now + 10 * 1000000000LL) {
930                             // Double-check.  Time may have moved on.
931                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
932                             if (event->when > time) {
933                                 ALOGW("An input event from %s has a timestamp that appears to "
934                                         "have been generated using the wrong clock source "
935                                         "(expected CLOCK_MONOTONIC): "
936                                         "event time %" PRId64 ", current time %" PRId64
937                                         ", call time %" PRId64 ".  "
938                                         "Using current time instead.",
939                                         device->path.string(), event->when, time, now);
940                                 event->when = time;
941                             } else {
942                                 ALOGV("Event time is ok but failed the fast path and required "
943                                         "an extra call to systemTime: "
944                                         "event time %" PRId64 ", current time %" PRId64
945                                         ", call time %" PRId64 ".",
946                                         event->when, time, now);
947                             }
948                         }
949                         event->deviceId = deviceId;
950                         event->type = iev.type;
951                         event->code = iev.code;
952                         event->value = iev.value;
953                         event += 1;
954                         capacity -= 1;
955                     }
956                     if (capacity == 0) {
957                         // The result buffer is full.  Reset the pending event index
958                         // so we will try to read the device again on the next iteration.
959                         mPendingEventIndex -= 1;
960                         break;
961                     }
962                 }
963             } else if (eventItem.events & EPOLLHUP) {
964                 ALOGI("Removing device %s due to epoll hang-up event.",
965                         device->identifier.name.string());
966                 deviceChanged = true;
967                 closeDeviceLocked(device);
968             } else {
969                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
970                         eventItem.events, device->identifier.name.string());
971             }
972         }
973 
974         // readNotify() will modify the list of devices so this must be done after
975         // processing all other events to ensure that we read all remaining events
976         // before closing the devices.
977         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
978             mPendingINotify = false;
979             readNotifyLocked();
980             deviceChanged = true;
981         }
982 
983         // Report added or removed devices immediately.
984         if (deviceChanged) {
985             continue;
986         }
987 
988         // Return now if we have collected any events or if we were explicitly awoken.
989         if (event != buffer || awoken) {
990             break;
991         }
992 
993         // Poll for events.  Mind the wake lock dance!
994         // We hold a wake lock at all times except during epoll_wait().  This works due to some
995         // subtle choreography.  When a device driver has pending (unread) events, it acquires
996         // a kernel wake lock.  However, once the last pending event has been read, the device
997         // driver will release the kernel wake lock.  To prevent the system from going to sleep
998         // when this happens, the EventHub holds onto its own user wake lock while the client
999         // is processing events.  Thus the system can only sleep if there are no events
1000         // pending or currently being processed.
1001         //
1002         // The timeout is advisory only.  If the device is asleep, it will not wake just to
1003         // service the timeout.
1004         mPendingEventIndex = 0;
1005 
1006         mLock.unlock(); // release lock before poll, must be before release_wake_lock
1007         release_wake_lock(WAKE_LOCK_ID);
1008 
1009         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
1010 
1011         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
1012         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
1013 
1014         if (pollResult == 0) {
1015             // Timed out.
1016             mPendingEventCount = 0;
1017             break;
1018         }
1019 
1020         if (pollResult < 0) {
1021             // An error occurred.
1022             mPendingEventCount = 0;
1023 
1024             // Sleep after errors to avoid locking up the system.
1025             // Hopefully the error is transient.
1026             if (errno != EINTR) {
1027                 ALOGW("poll failed (errno=%d)\n", errno);
1028                 usleep(100000);
1029             }
1030         } else {
1031             // Some events occurred.
1032             mPendingEventCount = size_t(pollResult);
1033         }
1034     }
1035 
1036     // All done, return the number of events we read.
1037     return event - buffer;
1038 }
1039 
wake()1040 void EventHub::wake() {
1041     ALOGV("wake() called");
1042 
1043     ssize_t nWrite;
1044     do {
1045         nWrite = write(mWakeWritePipeFd, "W", 1);
1046     } while (nWrite == -1 && errno == EINTR);
1047 
1048     if (nWrite != 1 && errno != EAGAIN) {
1049         ALOGW("Could not write wake signal, errno=%d", errno);
1050     }
1051 }
1052 
scanDevicesLocked()1053 void EventHub::scanDevicesLocked() {
1054     status_t res = scanDirLocked(DEVICE_PATH);
1055     if(res < 0) {
1056         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1057     }
1058     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1059         createVirtualKeyboardLocked();
1060     }
1061 }
1062 
1063 // ----------------------------------------------------------------------------
1064 
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)1065 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1066     const uint8_t* end = array + endIndex;
1067     array += startIndex;
1068     while (array != end) {
1069         if (*(array++) != 0) {
1070             return true;
1071         }
1072     }
1073     return false;
1074 }
1075 
1076 static const int32_t GAMEPAD_KEYCODES[] = {
1077         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1078         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1079         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1080         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1081         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1082         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1083 };
1084 
registerDeviceForEpollLocked(Device * device)1085 status_t EventHub::registerDeviceForEpollLocked(Device* device) {
1086     struct epoll_event eventItem;
1087     memset(&eventItem, 0, sizeof(eventItem));
1088     eventItem.events = EPOLLIN;
1089     if (mUsingEpollWakeup) {
1090         eventItem.events |= EPOLLWAKEUP;
1091     }
1092     eventItem.data.u32 = device->id;
1093     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, device->fd, &eventItem)) {
1094         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1095         return -errno;
1096     }
1097     return OK;
1098 }
1099 
unregisterDeviceFromEpollLocked(Device * device)1100 status_t EventHub::unregisterDeviceFromEpollLocked(Device* device) {
1101     if (device->hasValidFd()) {
1102         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1103             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1104             return -errno;
1105         }
1106     }
1107     return OK;
1108 }
1109 
openDeviceLocked(const char * devicePath)1110 status_t EventHub::openDeviceLocked(const char *devicePath) {
1111     char buffer[80];
1112 
1113     ALOGV("Opening device: %s", devicePath);
1114 
1115     int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK);
1116     if(fd < 0) {
1117         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1118         return -1;
1119     }
1120 
1121     InputDeviceIdentifier identifier;
1122 
1123     // Get device name.
1124     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1125         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1126     } else {
1127         buffer[sizeof(buffer) - 1] = '\0';
1128         identifier.name.setTo(buffer);
1129     }
1130 
1131     // Check to see if the device is on our excluded list
1132     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1133         const String8& item = mExcludedDevices.itemAt(i);
1134         if (identifier.name == item) {
1135             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1136             close(fd);
1137             return -1;
1138         }
1139     }
1140 
1141     // Get device driver version.
1142     int driverVersion;
1143     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1144         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1145         close(fd);
1146         return -1;
1147     }
1148 
1149     // Get device identifier.
1150     struct input_id inputId;
1151     if(ioctl(fd, EVIOCGID, &inputId)) {
1152         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1153         close(fd);
1154         return -1;
1155     }
1156     identifier.bus = inputId.bustype;
1157     identifier.product = inputId.product;
1158     identifier.vendor = inputId.vendor;
1159     identifier.version = inputId.version;
1160 
1161     // Get device physical location.
1162     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1163         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1164     } else {
1165         buffer[sizeof(buffer) - 1] = '\0';
1166         identifier.location.setTo(buffer);
1167     }
1168 
1169     // Get device unique id.
1170     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1171         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1172     } else {
1173         buffer[sizeof(buffer) - 1] = '\0';
1174         identifier.uniqueId.setTo(buffer);
1175     }
1176 
1177     // Fill in the descriptor.
1178     assignDescriptorLocked(identifier);
1179 
1180     // Allocate device.  (The device object takes ownership of the fd at this point.)
1181     int32_t deviceId = mNextDeviceId++;
1182     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1183 
1184     ALOGV("add device %d: %s\n", deviceId, devicePath);
1185     ALOGV("  bus:        %04x\n"
1186          "  vendor      %04x\n"
1187          "  product     %04x\n"
1188          "  version     %04x\n",
1189         identifier.bus, identifier.vendor, identifier.product, identifier.version);
1190     ALOGV("  name:       \"%s\"\n", identifier.name.string());
1191     ALOGV("  location:   \"%s\"\n", identifier.location.string());
1192     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1193     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1194     ALOGV("  driver:     v%d.%d.%d\n",
1195         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1196 
1197     // Load the configuration file for the device.
1198     loadConfigurationLocked(device);
1199 
1200     // Figure out the kinds of events the device reports.
1201     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1202     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1203     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1204     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1205     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1206     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1207     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1208 
1209     // See if this is a keyboard.  Ignore everything in the button range except for
1210     // joystick and gamepad buttons which are handled like keyboards for the most part.
1211     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1212             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1213                     sizeof_bit_array(KEY_MAX + 1));
1214     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1215                     sizeof_bit_array(BTN_MOUSE))
1216             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1217                     sizeof_bit_array(BTN_DIGI));
1218     if (haveKeyboardKeys || haveGamepadButtons) {
1219         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1220     }
1221 
1222     // See if this is a cursor device such as a trackball or mouse.
1223     if (test_bit(BTN_MOUSE, device->keyBitmask)
1224             && test_bit(REL_X, device->relBitmask)
1225             && test_bit(REL_Y, device->relBitmask)) {
1226         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1227     }
1228 
1229     // See if this is a rotary encoder type device.
1230     String8 deviceType = String8();
1231     if (device->configuration &&
1232         device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
1233             if (!deviceType.compare(String8("rotaryEncoder"))) {
1234                 device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER;
1235             }
1236     }
1237 
1238     // See if this is a touch pad.
1239     // Is this a new modern multi-touch driver?
1240     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1241             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1242         // Some joysticks such as the PS3 controller report axes that conflict
1243         // with the ABS_MT range.  Try to confirm that the device really is
1244         // a touch screen.
1245         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1246             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1247         }
1248     // Is this an old style single-touch driver?
1249     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1250             && test_bit(ABS_X, device->absBitmask)
1251             && test_bit(ABS_Y, device->absBitmask)) {
1252         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1253     // Is this a BT stylus?
1254     } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1255                 test_bit(BTN_TOUCH, device->keyBitmask))
1256             && !test_bit(ABS_X, device->absBitmask)
1257             && !test_bit(ABS_Y, device->absBitmask)) {
1258         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1259         // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1260         // can fuse it with the touch screen data, so just take them back. Note this means an
1261         // external stylus cannot also be a keyboard device.
1262         device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1263     }
1264 
1265     // See if this device is a joystick.
1266     // Assumes that joysticks always have gamepad buttons in order to distinguish them
1267     // from other devices such as accelerometers that also have absolute axes.
1268     if (haveGamepadButtons) {
1269         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1270         for (int i = 0; i <= ABS_MAX; i++) {
1271             if (test_bit(i, device->absBitmask)
1272                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1273                 device->classes = assumedClasses;
1274                 break;
1275             }
1276         }
1277     }
1278 
1279     // Check whether this device has switches.
1280     for (int i = 0; i <= SW_MAX; i++) {
1281         if (test_bit(i, device->swBitmask)) {
1282             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1283             break;
1284         }
1285     }
1286 
1287     // Check whether this device supports the vibrator.
1288     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1289         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1290     }
1291 
1292     // Configure virtual keys.
1293     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1294         // Load the virtual keys for the touch screen, if any.
1295         // We do this now so that we can make sure to load the keymap if necessary.
1296         status_t status = loadVirtualKeyMapLocked(device);
1297         if (!status) {
1298             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1299         }
1300     }
1301 
1302     // Load the key map.
1303     // We need to do this for joysticks too because the key layout may specify axes.
1304     status_t keyMapStatus = NAME_NOT_FOUND;
1305     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1306         // Load the keymap for the device.
1307         keyMapStatus = loadKeyMapLocked(device);
1308     }
1309 
1310     // Configure the keyboard, gamepad or virtual keyboard.
1311     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1312         // Register the keyboard as a built-in keyboard if it is eligible.
1313         if (!keyMapStatus
1314                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1315                 && isEligibleBuiltInKeyboard(device->identifier,
1316                         device->configuration, &device->keyMap)) {
1317             mBuiltInKeyboardId = device->id;
1318         }
1319 
1320         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1321         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1322             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1323         }
1324 
1325         // See if this device has a DPAD.
1326         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1327                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1328                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1329                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1330                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1331             device->classes |= INPUT_DEVICE_CLASS_DPAD;
1332         }
1333 
1334         // See if this device has a gamepad.
1335         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1336             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1337                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1338                 break;
1339             }
1340         }
1341     }
1342 
1343     // If the device isn't recognized as something we handle, don't monitor it.
1344     if (device->classes == 0) {
1345         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1346                 deviceId, devicePath, device->identifier.name.string());
1347         delete device;
1348         return -1;
1349     }
1350 
1351     // Determine whether the device has a mic.
1352     if (deviceHasMicLocked(device)) {
1353         device->classes |= INPUT_DEVICE_CLASS_MIC;
1354     }
1355 
1356     // Determine whether the device is external or internal.
1357     if (isExternalDeviceLocked(device)) {
1358         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1359     }
1360 
1361     if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1362             && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1363         device->controllerNumber = getNextControllerNumberLocked(device);
1364         setLedForControllerLocked(device);
1365     }
1366 
1367 
1368     if (registerDeviceForEpollLocked(device) != OK) {
1369         delete device;
1370         return -1;
1371     }
1372 
1373     configureFd(device);
1374 
1375     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1376             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
1377          deviceId, fd, devicePath, device->identifier.name.string(),
1378          device->classes,
1379          device->configurationFile.string(),
1380          device->keyMap.keyLayoutFile.string(),
1381          device->keyMap.keyCharacterMapFile.string(),
1382          toString(mBuiltInKeyboardId == deviceId));
1383 
1384     addDeviceLocked(device);
1385     return OK;
1386 }
1387 
configureFd(Device * device)1388 void EventHub::configureFd(Device* device) {
1389     // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
1390     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1391         // Disable kernel key repeat since we handle it ourselves
1392         unsigned int repeatRate[] = {0, 0};
1393         if (ioctl(device->fd, EVIOCSREP, repeatRate)) {
1394             ALOGW("Unable to disable kernel key repeat for %s: %s",
1395                   device->path.string(), strerror(errno));
1396         }
1397     }
1398 
1399     String8 wakeMechanism("EPOLLWAKEUP");
1400     if (!mUsingEpollWakeup) {
1401 #ifndef EVIOCSSUSPENDBLOCK
1402         // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1403         // will use an epoll flag instead, so as long as we want to support
1404         // this feature, we need to be prepared to define the ioctl ourselves.
1405 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1406 #endif
1407         if (ioctl(device->fd, EVIOCSSUSPENDBLOCK, 1)) {
1408             wakeMechanism = "<none>";
1409         } else {
1410             wakeMechanism = "EVIOCSSUSPENDBLOCK";
1411         }
1412     }
1413     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1414     // associated with input events.  This is important because the input system
1415     // uses the timestamps extensively and assumes they were recorded using the monotonic
1416     // clock.
1417     int clockId = CLOCK_MONOTONIC;
1418     bool usingClockIoctl = !ioctl(device->fd, EVIOCSCLOCKID, &clockId);
1419     ALOGI("wakeMechanism=%s, usingClockIoctl=%s", wakeMechanism.string(),
1420           toString(usingClockIoctl));
1421 }
1422 
isDeviceEnabled(int32_t deviceId)1423 bool EventHub::isDeviceEnabled(int32_t deviceId) {
1424     AutoMutex _l(mLock);
1425     Device* device = getDeviceLocked(deviceId);
1426     if (device == NULL) {
1427         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1428         return false;
1429     }
1430     return device->enabled;
1431 }
1432 
enableDevice(int32_t deviceId)1433 status_t EventHub::enableDevice(int32_t deviceId) {
1434     AutoMutex _l(mLock);
1435     Device* device = getDeviceLocked(deviceId);
1436     if (device == NULL) {
1437         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1438         return BAD_VALUE;
1439     }
1440     if (device->enabled) {
1441         ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
1442         return OK;
1443     }
1444     status_t result = device->enable();
1445     if (result != OK) {
1446         ALOGE("Failed to enable device %" PRId32, deviceId);
1447         return result;
1448     }
1449 
1450     configureFd(device);
1451 
1452     return registerDeviceForEpollLocked(device);
1453 }
1454 
disableDevice(int32_t deviceId)1455 status_t EventHub::disableDevice(int32_t deviceId) {
1456     AutoMutex _l(mLock);
1457     Device* device = getDeviceLocked(deviceId);
1458     if (device == NULL) {
1459         ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1460         return BAD_VALUE;
1461     }
1462     if (!device->enabled) {
1463         ALOGW("Duplicate call to %s, input device already disabled", __func__);
1464         return OK;
1465     }
1466     unregisterDeviceFromEpollLocked(device);
1467     return device->disable();
1468 }
1469 
createVirtualKeyboardLocked()1470 void EventHub::createVirtualKeyboardLocked() {
1471     InputDeviceIdentifier identifier;
1472     identifier.name = "Virtual";
1473     identifier.uniqueId = "<virtual>";
1474     assignDescriptorLocked(identifier);
1475 
1476     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1477     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1478             | INPUT_DEVICE_CLASS_ALPHAKEY
1479             | INPUT_DEVICE_CLASS_DPAD
1480             | INPUT_DEVICE_CLASS_VIRTUAL;
1481     loadKeyMapLocked(device);
1482     addDeviceLocked(device);
1483 }
1484 
addDeviceLocked(Device * device)1485 void EventHub::addDeviceLocked(Device* device) {
1486     mDevices.add(device->id, device);
1487     device->next = mOpeningDevices;
1488     mOpeningDevices = device;
1489 }
1490 
loadConfigurationLocked(Device * device)1491 void EventHub::loadConfigurationLocked(Device* device) {
1492     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1493             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1494     if (device->configurationFile.isEmpty()) {
1495         ALOGD("No input device configuration file found for device '%s'.",
1496                 device->identifier.name.string());
1497     } else {
1498         status_t status = PropertyMap::load(device->configurationFile,
1499                 &device->configuration);
1500         if (status) {
1501             ALOGE("Error loading input device configuration file for device '%s'.  "
1502                     "Using default configuration.",
1503                     device->identifier.name.string());
1504         }
1505     }
1506 }
1507 
loadVirtualKeyMapLocked(Device * device)1508 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1509     // The virtual key map is supplied by the kernel as a system board property file.
1510     String8 path;
1511     path.append("/sys/board_properties/virtualkeys.");
1512     path.append(device->identifier.name);
1513     if (access(path.string(), R_OK)) {
1514         return NAME_NOT_FOUND;
1515     }
1516     return VirtualKeyMap::load(path, &device->virtualKeyMap);
1517 }
1518 
loadKeyMapLocked(Device * device)1519 status_t EventHub::loadKeyMapLocked(Device* device) {
1520     return device->keyMap.load(device->identifier, device->configuration);
1521 }
1522 
isExternalDeviceLocked(Device * device)1523 bool EventHub::isExternalDeviceLocked(Device* device) {
1524     if (device->configuration) {
1525         bool value;
1526         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1527             return !value;
1528         }
1529     }
1530     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1531 }
1532 
deviceHasMicLocked(Device * device)1533 bool EventHub::deviceHasMicLocked(Device* device) {
1534     if (device->configuration) {
1535         bool value;
1536         if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1537             return value;
1538         }
1539     }
1540     return false;
1541 }
1542 
getNextControllerNumberLocked(Device * device)1543 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1544     if (mControllerNumbers.isFull()) {
1545         ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1546                 device->identifier.name.string());
1547         return 0;
1548     }
1549     // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1550     // one
1551     return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1552 }
1553 
releaseControllerNumberLocked(Device * device)1554 void EventHub::releaseControllerNumberLocked(Device* device) {
1555     int32_t num = device->controllerNumber;
1556     device->controllerNumber= 0;
1557     if (num == 0) {
1558         return;
1559     }
1560     mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1561 }
1562 
setLedForControllerLocked(Device * device)1563 void EventHub::setLedForControllerLocked(Device* device) {
1564     for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1565         setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1566     }
1567 }
1568 
hasKeycodeLocked(Device * device,int keycode) const1569 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1570     if (!device->keyMap.haveKeyLayout()) {
1571         return false;
1572     }
1573 
1574     Vector<int32_t> scanCodes;
1575     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1576     const size_t N = scanCodes.size();
1577     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1578         int32_t sc = scanCodes.itemAt(i);
1579         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1580             return true;
1581         }
1582     }
1583 
1584     return false;
1585 }
1586 
mapLed(Device * device,int32_t led,int32_t * outScanCode) const1587 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1588     if (!device->keyMap.haveKeyLayout()) {
1589         return NAME_NOT_FOUND;
1590     }
1591 
1592     int32_t scanCode;
1593     if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1594         if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1595             *outScanCode = scanCode;
1596             return NO_ERROR;
1597         }
1598     }
1599     return NAME_NOT_FOUND;
1600 }
1601 
closeDeviceByPathLocked(const char * devicePath)1602 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1603     Device* device = getDeviceByPathLocked(devicePath);
1604     if (device) {
1605         closeDeviceLocked(device);
1606         return 0;
1607     }
1608     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1609     return -1;
1610 }
1611 
closeAllDevicesLocked()1612 void EventHub::closeAllDevicesLocked() {
1613     while (mDevices.size() > 0) {
1614         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1615     }
1616 }
1617 
closeDeviceLocked(Device * device)1618 void EventHub::closeDeviceLocked(Device* device) {
1619     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1620          device->path.string(), device->identifier.name.string(), device->id,
1621          device->fd, device->classes);
1622 
1623     if (device->id == mBuiltInKeyboardId) {
1624         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1625                 device->path.string(), mBuiltInKeyboardId);
1626         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1627     }
1628 
1629     unregisterDeviceFromEpollLocked(device);
1630 
1631     releaseControllerNumberLocked(device);
1632 
1633     mDevices.removeItem(device->id);
1634     device->close();
1635 
1636     // Unlink for opening devices list if it is present.
1637     Device* pred = NULL;
1638     bool found = false;
1639     for (Device* entry = mOpeningDevices; entry != NULL; ) {
1640         if (entry == device) {
1641             found = true;
1642             break;
1643         }
1644         pred = entry;
1645         entry = entry->next;
1646     }
1647     if (found) {
1648         // Unlink the device from the opening devices list then delete it.
1649         // We don't need to tell the client that the device was closed because
1650         // it does not even know it was opened in the first place.
1651         ALOGI("Device %s was immediately closed after opening.", device->path.string());
1652         if (pred) {
1653             pred->next = device->next;
1654         } else {
1655             mOpeningDevices = device->next;
1656         }
1657         delete device;
1658     } else {
1659         // Link into closing devices list.
1660         // The device will be deleted later after we have informed the client.
1661         device->next = mClosingDevices;
1662         mClosingDevices = device;
1663     }
1664 }
1665 
readNotifyLocked()1666 status_t EventHub::readNotifyLocked() {
1667     int res;
1668     char devname[PATH_MAX];
1669     char *filename;
1670     char event_buf[512];
1671     int event_size;
1672     int event_pos = 0;
1673     struct inotify_event *event;
1674 
1675     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1676     res = read(mINotifyFd, event_buf, sizeof(event_buf));
1677     if(res < (int)sizeof(*event)) {
1678         if(errno == EINTR)
1679             return 0;
1680         ALOGW("could not get event, %s\n", strerror(errno));
1681         return -1;
1682     }
1683     //printf("got %d bytes of event information\n", res);
1684 
1685     strcpy(devname, DEVICE_PATH);
1686     filename = devname + strlen(devname);
1687     *filename++ = '/';
1688 
1689     while(res >= (int)sizeof(*event)) {
1690         event = (struct inotify_event *)(event_buf + event_pos);
1691         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1692         if(event->len) {
1693             strcpy(filename, event->name);
1694             if(event->mask & IN_CREATE) {
1695                 openDeviceLocked(devname);
1696             } else {
1697                 ALOGI("Removing device '%s' due to inotify event\n", devname);
1698                 closeDeviceByPathLocked(devname);
1699             }
1700         }
1701         event_size = sizeof(*event) + event->len;
1702         res -= event_size;
1703         event_pos += event_size;
1704     }
1705     return 0;
1706 }
1707 
scanDirLocked(const char * dirname)1708 status_t EventHub::scanDirLocked(const char *dirname)
1709 {
1710     char devname[PATH_MAX];
1711     char *filename;
1712     DIR *dir;
1713     struct dirent *de;
1714     dir = opendir(dirname);
1715     if(dir == NULL)
1716         return -1;
1717     strcpy(devname, dirname);
1718     filename = devname + strlen(devname);
1719     *filename++ = '/';
1720     while((de = readdir(dir))) {
1721         if(de->d_name[0] == '.' &&
1722            (de->d_name[1] == '\0' ||
1723             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1724             continue;
1725         strcpy(filename, de->d_name);
1726         openDeviceLocked(devname);
1727     }
1728     closedir(dir);
1729     return 0;
1730 }
1731 
requestReopenDevices()1732 void EventHub::requestReopenDevices() {
1733     ALOGV("requestReopenDevices() called");
1734 
1735     AutoMutex _l(mLock);
1736     mNeedToReopenDevices = true;
1737 }
1738 
dump(std::string & dump)1739 void EventHub::dump(std::string& dump) {
1740     dump += "Event Hub State:\n";
1741 
1742     { // acquire lock
1743         AutoMutex _l(mLock);
1744 
1745         dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1746 
1747         dump += INDENT "Devices:\n";
1748 
1749         for (size_t i = 0; i < mDevices.size(); i++) {
1750             const Device* device = mDevices.valueAt(i);
1751             if (mBuiltInKeyboardId == device->id) {
1752                 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1753                         device->id, device->identifier.name.string());
1754             } else {
1755                 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
1756                         device->identifier.name.string());
1757             }
1758             dump += StringPrintf(INDENT3 "Classes: 0x%08x\n", device->classes);
1759             dump += StringPrintf(INDENT3 "Path: %s\n", device->path.string());
1760             dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
1761             dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1762             dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.string());
1763             dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1764             dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1765             dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1766                     "product=0x%04x, version=0x%04x\n",
1767                     device->identifier.bus, device->identifier.vendor,
1768                     device->identifier.product, device->identifier.version);
1769             dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
1770                     device->keyMap.keyLayoutFile.string());
1771             dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
1772                     device->keyMap.keyCharacterMapFile.string());
1773             dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
1774                     device->configurationFile.string());
1775             dump += StringPrintf(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1776                     toString(device->overlayKeyMap != NULL));
1777         }
1778     } // release lock
1779 }
1780 
monitor()1781 void EventHub::monitor() {
1782     // Acquire and release the lock to ensure that the event hub has not deadlocked.
1783     mLock.lock();
1784     mLock.unlock();
1785 }
1786 
1787 
1788 }; // namespace android
1789