1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <string>
18
19 #include "scheduler.h"
20
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "data_type-inl.h"
24 #include "prepare_for_register_allocation.h"
25
26 #ifdef ART_ENABLE_CODEGEN_arm64
27 #include "scheduler_arm64.h"
28 #endif
29
30 #ifdef ART_ENABLE_CODEGEN_arm
31 #include "scheduler_arm.h"
32 #endif
33
34 namespace art {
35
AddDependency(SchedulingNode * node,SchedulingNode * dependency,bool is_data_dependency)36 void SchedulingGraph::AddDependency(SchedulingNode* node,
37 SchedulingNode* dependency,
38 bool is_data_dependency) {
39 if (node == nullptr || dependency == nullptr) {
40 // A `nullptr` node indicates an instruction out of scheduling range (eg. in
41 // an other block), so we do not need to add a dependency edge to the graph.
42 return;
43 }
44
45 if (is_data_dependency) {
46 if (!HasImmediateDataDependency(node, dependency)) {
47 node->AddDataPredecessor(dependency);
48 }
49 } else if (!HasImmediateOtherDependency(node, dependency)) {
50 node->AddOtherPredecessor(dependency);
51 }
52 }
53
MayHaveReorderingDependency(SideEffects node,SideEffects other)54 static bool MayHaveReorderingDependency(SideEffects node, SideEffects other) {
55 // Read after write.
56 if (node.MayDependOn(other)) {
57 return true;
58 }
59
60 // Write after read.
61 if (other.MayDependOn(node)) {
62 return true;
63 }
64
65 // Memory write after write.
66 if (node.DoesAnyWrite() && other.DoesAnyWrite()) {
67 return true;
68 }
69
70 return false;
71 }
72
ArrayAccessHeapLocation(HInstruction * array,HInstruction * index) const73 size_t SchedulingGraph::ArrayAccessHeapLocation(HInstruction* array, HInstruction* index) const {
74 DCHECK(heap_location_collector_ != nullptr);
75 size_t heap_loc = heap_location_collector_->GetArrayHeapLocation(array, index);
76 // This array access should be analyzed and added to HeapLocationCollector before.
77 DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound);
78 return heap_loc;
79 }
80
ArrayAccessMayAlias(const HInstruction * node,const HInstruction * other) const81 bool SchedulingGraph::ArrayAccessMayAlias(const HInstruction* node,
82 const HInstruction* other) const {
83 DCHECK(heap_location_collector_ != nullptr);
84 size_t node_heap_loc = ArrayAccessHeapLocation(node->InputAt(0), node->InputAt(1));
85 size_t other_heap_loc = ArrayAccessHeapLocation(other->InputAt(0), other->InputAt(1));
86
87 // For example: arr[0] and arr[0]
88 if (node_heap_loc == other_heap_loc) {
89 return true;
90 }
91
92 // For example: arr[0] and arr[i]
93 if (heap_location_collector_->MayAlias(node_heap_loc, other_heap_loc)) {
94 return true;
95 }
96
97 return false;
98 }
99
IsArrayAccess(const HInstruction * instruction)100 static bool IsArrayAccess(const HInstruction* instruction) {
101 return instruction->IsArrayGet() || instruction->IsArraySet();
102 }
103
IsInstanceFieldAccess(const HInstruction * instruction)104 static bool IsInstanceFieldAccess(const HInstruction* instruction) {
105 return instruction->IsInstanceFieldGet() ||
106 instruction->IsInstanceFieldSet() ||
107 instruction->IsUnresolvedInstanceFieldGet() ||
108 instruction->IsUnresolvedInstanceFieldSet();
109 }
110
IsStaticFieldAccess(const HInstruction * instruction)111 static bool IsStaticFieldAccess(const HInstruction* instruction) {
112 return instruction->IsStaticFieldGet() ||
113 instruction->IsStaticFieldSet() ||
114 instruction->IsUnresolvedStaticFieldGet() ||
115 instruction->IsUnresolvedStaticFieldSet();
116 }
117
IsResolvedFieldAccess(const HInstruction * instruction)118 static bool IsResolvedFieldAccess(const HInstruction* instruction) {
119 return instruction->IsInstanceFieldGet() ||
120 instruction->IsInstanceFieldSet() ||
121 instruction->IsStaticFieldGet() ||
122 instruction->IsStaticFieldSet();
123 }
124
IsUnresolvedFieldAccess(const HInstruction * instruction)125 static bool IsUnresolvedFieldAccess(const HInstruction* instruction) {
126 return instruction->IsUnresolvedInstanceFieldGet() ||
127 instruction->IsUnresolvedInstanceFieldSet() ||
128 instruction->IsUnresolvedStaticFieldGet() ||
129 instruction->IsUnresolvedStaticFieldSet();
130 }
131
IsFieldAccess(const HInstruction * instruction)132 static bool IsFieldAccess(const HInstruction* instruction) {
133 return IsResolvedFieldAccess(instruction) || IsUnresolvedFieldAccess(instruction);
134 }
135
GetFieldInfo(const HInstruction * instruction)136 static const FieldInfo* GetFieldInfo(const HInstruction* instruction) {
137 if (instruction->IsInstanceFieldGet()) {
138 return &instruction->AsInstanceFieldGet()->GetFieldInfo();
139 } else if (instruction->IsInstanceFieldSet()) {
140 return &instruction->AsInstanceFieldSet()->GetFieldInfo();
141 } else if (instruction->IsStaticFieldGet()) {
142 return &instruction->AsStaticFieldGet()->GetFieldInfo();
143 } else if (instruction->IsStaticFieldSet()) {
144 return &instruction->AsStaticFieldSet()->GetFieldInfo();
145 } else {
146 LOG(FATAL) << "Unexpected field access type";
147 UNREACHABLE();
148 }
149 }
150
FieldAccessHeapLocation(HInstruction * obj,const FieldInfo * field) const151 size_t SchedulingGraph::FieldAccessHeapLocation(HInstruction* obj, const FieldInfo* field) const {
152 DCHECK(obj != nullptr);
153 DCHECK(field != nullptr);
154 DCHECK(heap_location_collector_ != nullptr);
155
156 size_t heap_loc = heap_location_collector_->GetFieldHeapLocation(obj, field);
157 // This field access should be analyzed and added to HeapLocationCollector before.
158 DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound);
159
160 return heap_loc;
161 }
162
FieldAccessMayAlias(const HInstruction * node,const HInstruction * other) const163 bool SchedulingGraph::FieldAccessMayAlias(const HInstruction* node,
164 const HInstruction* other) const {
165 DCHECK(heap_location_collector_ != nullptr);
166
167 // Static and instance field accesses should not alias.
168 if ((IsInstanceFieldAccess(node) && IsStaticFieldAccess(other)) ||
169 (IsStaticFieldAccess(node) && IsInstanceFieldAccess(other))) {
170 return false;
171 }
172
173 // If either of the field accesses is unresolved.
174 if (IsUnresolvedFieldAccess(node) || IsUnresolvedFieldAccess(other)) {
175 // Conservatively treat these two accesses may alias.
176 return true;
177 }
178
179 // If both fields accesses are resolved.
180 const FieldInfo* node_field = GetFieldInfo(node);
181 const FieldInfo* other_field = GetFieldInfo(other);
182
183 size_t node_loc = FieldAccessHeapLocation(node->InputAt(0), node_field);
184 size_t other_loc = FieldAccessHeapLocation(other->InputAt(0), other_field);
185
186 if (node_loc == other_loc) {
187 return true;
188 }
189
190 if (!heap_location_collector_->MayAlias(node_loc, other_loc)) {
191 return false;
192 }
193
194 return true;
195 }
196
HasMemoryDependency(const HInstruction * node,const HInstruction * other) const197 bool SchedulingGraph::HasMemoryDependency(const HInstruction* node,
198 const HInstruction* other) const {
199 if (!MayHaveReorderingDependency(node->GetSideEffects(), other->GetSideEffects())) {
200 return false;
201 }
202
203 if (heap_location_collector_ == nullptr ||
204 heap_location_collector_->GetNumberOfHeapLocations() == 0) {
205 // Without HeapLocation information from load store analysis,
206 // we cannot do further disambiguation analysis on these two instructions.
207 // Just simply say that those two instructions have memory dependency.
208 return true;
209 }
210
211 if (IsArrayAccess(node) && IsArrayAccess(other)) {
212 return ArrayAccessMayAlias(node, other);
213 }
214 if (IsFieldAccess(node) && IsFieldAccess(other)) {
215 return FieldAccessMayAlias(node, other);
216 }
217
218 // TODO(xueliang): LSA to support alias analysis among HVecLoad, HVecStore and ArrayAccess
219 if (node->IsVecMemoryOperation() && other->IsVecMemoryOperation()) {
220 return true;
221 }
222 if (node->IsVecMemoryOperation() && IsArrayAccess(other)) {
223 return true;
224 }
225 if (IsArrayAccess(node) && other->IsVecMemoryOperation()) {
226 return true;
227 }
228
229 // Heap accesses of different kinds should not alias.
230 if (IsArrayAccess(node) && IsFieldAccess(other)) {
231 return false;
232 }
233 if (IsFieldAccess(node) && IsArrayAccess(other)) {
234 return false;
235 }
236 if (node->IsVecMemoryOperation() && IsFieldAccess(other)) {
237 return false;
238 }
239 if (IsFieldAccess(node) && other->IsVecMemoryOperation()) {
240 return false;
241 }
242
243 // We conservatively treat all other cases having dependency,
244 // for example, Invoke and ArrayGet.
245 return true;
246 }
247
HasExceptionDependency(const HInstruction * node,const HInstruction * other) const248 bool SchedulingGraph::HasExceptionDependency(const HInstruction* node,
249 const HInstruction* other) const {
250 if (other->CanThrow() && node->GetSideEffects().DoesAnyWrite()) {
251 return true;
252 }
253 if (other->GetSideEffects().DoesAnyWrite() && node->CanThrow()) {
254 return true;
255 }
256 if (other->CanThrow() && node->CanThrow()) {
257 return true;
258 }
259
260 // Above checks should cover all cases where we cannot reorder two
261 // instructions which may throw exception.
262 return false;
263 }
264
265 // Check whether `node` depends on `other`, taking into account `SideEffect`
266 // information and `CanThrow` information.
HasSideEffectDependency(const HInstruction * node,const HInstruction * other) const267 bool SchedulingGraph::HasSideEffectDependency(const HInstruction* node,
268 const HInstruction* other) const {
269 if (HasMemoryDependency(node, other)) {
270 return true;
271 }
272
273 // Even if above memory dependency check has passed, it is still necessary to
274 // check dependencies between instructions that can throw and instructions
275 // that write to memory.
276 if (HasExceptionDependency(node, other)) {
277 return true;
278 }
279
280 return false;
281 }
282
AddDependencies(HInstruction * instruction,bool is_scheduling_barrier)283 void SchedulingGraph::AddDependencies(HInstruction* instruction, bool is_scheduling_barrier) {
284 SchedulingNode* instruction_node = GetNode(instruction);
285
286 // Define-use dependencies.
287 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
288 AddDataDependency(GetNode(use.GetUser()), instruction_node);
289 }
290
291 // Scheduling barrier dependencies.
292 DCHECK(!is_scheduling_barrier || contains_scheduling_barrier_);
293 if (contains_scheduling_barrier_) {
294 // A barrier depends on instructions after it. And instructions before the
295 // barrier depend on it.
296 for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) {
297 SchedulingNode* other_node = GetNode(other);
298 CHECK(other_node != nullptr)
299 << other->DebugName()
300 << " is in block " << other->GetBlock()->GetBlockId()
301 << ", and expected in block " << instruction->GetBlock()->GetBlockId();
302 bool other_is_barrier = other_node->IsSchedulingBarrier();
303 if (is_scheduling_barrier || other_is_barrier) {
304 AddOtherDependency(other_node, instruction_node);
305 }
306 if (other_is_barrier) {
307 // This other scheduling barrier guarantees ordering of instructions after
308 // it, so avoid creating additional useless dependencies in the graph.
309 // For example if we have
310 // instr_1
311 // barrier_2
312 // instr_3
313 // barrier_4
314 // instr_5
315 // we only create the following non-data dependencies
316 // 1 -> 2
317 // 2 -> 3
318 // 2 -> 4
319 // 3 -> 4
320 // 4 -> 5
321 // and do not create
322 // 1 -> 4
323 // 2 -> 5
324 // Note that in this example we could also avoid creating the dependency
325 // `2 -> 4`. But if we remove `instr_3` that dependency is required to
326 // order the barriers. So we generate it to avoid a special case.
327 break;
328 }
329 }
330 }
331
332 // Side effect dependencies.
333 if (!instruction->GetSideEffects().DoesNothing() || instruction->CanThrow()) {
334 for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) {
335 SchedulingNode* other_node = GetNode(other);
336 if (other_node->IsSchedulingBarrier()) {
337 // We have reached a scheduling barrier so we can stop further
338 // processing.
339 DCHECK(HasImmediateOtherDependency(other_node, instruction_node));
340 break;
341 }
342 if (HasSideEffectDependency(other, instruction)) {
343 AddOtherDependency(other_node, instruction_node);
344 }
345 }
346 }
347
348 // Environment dependencies.
349 // We do not need to process those if the instruction is a scheduling barrier,
350 // since the barrier already has non-data dependencies on all following
351 // instructions.
352 if (!is_scheduling_barrier) {
353 for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
354 // Note that here we could stop processing if the environment holder is
355 // across a scheduling barrier. But checking this would likely require
356 // more work than simply iterating through environment uses.
357 AddOtherDependency(GetNode(use.GetUser()->GetHolder()), instruction_node);
358 }
359 }
360 }
361
HasImmediateDataDependency(const SchedulingNode * node,const SchedulingNode * other) const362 bool SchedulingGraph::HasImmediateDataDependency(const SchedulingNode* node,
363 const SchedulingNode* other) const {
364 return ContainsElement(node->GetDataPredecessors(), other);
365 }
366
HasImmediateDataDependency(const HInstruction * instruction,const HInstruction * other_instruction) const367 bool SchedulingGraph::HasImmediateDataDependency(const HInstruction* instruction,
368 const HInstruction* other_instruction) const {
369 const SchedulingNode* node = GetNode(instruction);
370 const SchedulingNode* other = GetNode(other_instruction);
371 if (node == nullptr || other == nullptr) {
372 // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
373 // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
374 // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
375 // instruction and other_instruction are in different basic blocks.
376 return false;
377 }
378 return HasImmediateDataDependency(node, other);
379 }
380
HasImmediateOtherDependency(const SchedulingNode * node,const SchedulingNode * other) const381 bool SchedulingGraph::HasImmediateOtherDependency(const SchedulingNode* node,
382 const SchedulingNode* other) const {
383 return ContainsElement(node->GetOtherPredecessors(), other);
384 }
385
HasImmediateOtherDependency(const HInstruction * instruction,const HInstruction * other_instruction) const386 bool SchedulingGraph::HasImmediateOtherDependency(const HInstruction* instruction,
387 const HInstruction* other_instruction) const {
388 const SchedulingNode* node = GetNode(instruction);
389 const SchedulingNode* other = GetNode(other_instruction);
390 if (node == nullptr || other == nullptr) {
391 // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
392 // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
393 // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
394 // instruction and other_instruction are in different basic blocks.
395 return false;
396 }
397 return HasImmediateOtherDependency(node, other);
398 }
399
InstructionTypeId(const HInstruction * instruction)400 static const std::string InstructionTypeId(const HInstruction* instruction) {
401 return DataType::TypeId(instruction->GetType()) + std::to_string(instruction->GetId());
402 }
403
404 // Ideally we would reuse the graph visualizer code, but it is not available
405 // from here and it is not worth moving all that code only for our use.
DumpAsDotNode(std::ostream & output,const SchedulingNode * node)406 static void DumpAsDotNode(std::ostream& output, const SchedulingNode* node) {
407 const HInstruction* instruction = node->GetInstruction();
408 // Use the instruction typed id as the node identifier.
409 std::string instruction_id = InstructionTypeId(instruction);
410 output << instruction_id << "[shape=record, label=\""
411 << instruction_id << ' ' << instruction->DebugName() << " [";
412 // List the instruction's inputs in its description. When visualizing the
413 // graph this helps differentiating data inputs from other dependencies.
414 const char* seperator = "";
415 for (const HInstruction* input : instruction->GetInputs()) {
416 output << seperator << InstructionTypeId(input);
417 seperator = ",";
418 }
419 output << "]";
420 // Other properties of the node.
421 output << "\\ninternal_latency: " << node->GetInternalLatency();
422 output << "\\ncritical_path: " << node->GetCriticalPath();
423 if (node->IsSchedulingBarrier()) {
424 output << "\\n(barrier)";
425 }
426 output << "\"];\n";
427 // We want program order to go from top to bottom in the graph output, so we
428 // reverse the edges and specify `dir=back`.
429 for (const SchedulingNode* predecessor : node->GetDataPredecessors()) {
430 const HInstruction* predecessor_instruction = predecessor->GetInstruction();
431 output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n "
432 << "[label=\"" << predecessor->GetLatency() << "\",dir=back]\n";
433 }
434 for (const SchedulingNode* predecessor : node->GetOtherPredecessors()) {
435 const HInstruction* predecessor_instruction = predecessor->GetInstruction();
436 output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n "
437 << "[dir=back,color=blue]\n";
438 }
439 }
440
DumpAsDotGraph(const std::string & description,const ScopedArenaVector<SchedulingNode * > & initial_candidates)441 void SchedulingGraph::DumpAsDotGraph(const std::string& description,
442 const ScopedArenaVector<SchedulingNode*>& initial_candidates) {
443 // TODO(xueliang): ideally we should move scheduling information into HInstruction, after that
444 // we should move this dotty graph dump feature to visualizer, and have a compiler option for it.
445 std::ofstream output("scheduling_graphs.dot", std::ofstream::out | std::ofstream::app);
446 // Description of this graph, as a comment.
447 output << "// " << description << "\n";
448 // Start the dot graph. Use an increasing index for easier differentiation.
449 output << "digraph G {\n";
450 for (const auto& entry : nodes_map_) {
451 SchedulingNode* node = entry.second.get();
452 DumpAsDotNode(output, node);
453 }
454 // Create a fake 'end_of_scheduling' node to help visualization of critical_paths.
455 for (SchedulingNode* node : initial_candidates) {
456 const HInstruction* instruction = node->GetInstruction();
457 output << InstructionTypeId(instruction) << ":s -> end_of_scheduling:n "
458 << "[label=\"" << node->GetLatency() << "\",dir=back]\n";
459 }
460 // End of the dot graph.
461 output << "}\n";
462 output.close();
463 }
464
SelectMaterializedCondition(ScopedArenaVector<SchedulingNode * > * nodes,const SchedulingGraph & graph) const465 SchedulingNode* CriticalPathSchedulingNodeSelector::SelectMaterializedCondition(
466 ScopedArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) const {
467 // Schedule condition inputs that can be materialized immediately before their use.
468 // In following example, after we've scheduled HSelect, we want LessThan to be scheduled
469 // immediately, because it is a materialized condition, and will be emitted right before HSelect
470 // in codegen phase.
471 //
472 // i20 HLessThan [...] HLessThan HAdd HAdd
473 // i21 HAdd [...] ===> | | |
474 // i22 HAdd [...] +----------+---------+
475 // i23 HSelect [i21, i22, i20] HSelect
476
477 if (prev_select_ == nullptr) {
478 return nullptr;
479 }
480
481 const HInstruction* instruction = prev_select_->GetInstruction();
482 const HCondition* condition = nullptr;
483 DCHECK(instruction != nullptr);
484
485 if (instruction->IsIf()) {
486 condition = instruction->AsIf()->InputAt(0)->AsCondition();
487 } else if (instruction->IsSelect()) {
488 condition = instruction->AsSelect()->GetCondition()->AsCondition();
489 }
490
491 SchedulingNode* condition_node = (condition != nullptr) ? graph.GetNode(condition) : nullptr;
492
493 if ((condition_node != nullptr) &&
494 condition->HasOnlyOneNonEnvironmentUse() &&
495 ContainsElement(*nodes, condition_node)) {
496 DCHECK(!condition_node->HasUnscheduledSuccessors());
497 // Remove the condition from the list of candidates and schedule it.
498 RemoveElement(*nodes, condition_node);
499 return condition_node;
500 }
501
502 return nullptr;
503 }
504
PopHighestPriorityNode(ScopedArenaVector<SchedulingNode * > * nodes,const SchedulingGraph & graph)505 SchedulingNode* CriticalPathSchedulingNodeSelector::PopHighestPriorityNode(
506 ScopedArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) {
507 DCHECK(!nodes->empty());
508 SchedulingNode* select_node = nullptr;
509
510 // Optimize for materialized condition and its emit before use scenario.
511 select_node = SelectMaterializedCondition(nodes, graph);
512
513 if (select_node == nullptr) {
514 // Get highest priority node based on critical path information.
515 select_node = (*nodes)[0];
516 size_t select = 0;
517 for (size_t i = 1, e = nodes->size(); i < e; i++) {
518 SchedulingNode* check = (*nodes)[i];
519 SchedulingNode* candidate = (*nodes)[select];
520 select_node = GetHigherPrioritySchedulingNode(candidate, check);
521 if (select_node == check) {
522 select = i;
523 }
524 }
525 DeleteNodeAtIndex(nodes, select);
526 }
527
528 prev_select_ = select_node;
529 return select_node;
530 }
531
GetHigherPrioritySchedulingNode(SchedulingNode * candidate,SchedulingNode * check) const532 SchedulingNode* CriticalPathSchedulingNodeSelector::GetHigherPrioritySchedulingNode(
533 SchedulingNode* candidate, SchedulingNode* check) const {
534 uint32_t candidate_path = candidate->GetCriticalPath();
535 uint32_t check_path = check->GetCriticalPath();
536 // First look at the critical_path.
537 if (check_path != candidate_path) {
538 return check_path < candidate_path ? check : candidate;
539 }
540 // If both critical paths are equal, schedule instructions with a higher latency
541 // first in program order.
542 return check->GetLatency() < candidate->GetLatency() ? check : candidate;
543 }
544
Schedule(HGraph * graph)545 void HScheduler::Schedule(HGraph* graph) {
546 // We run lsa here instead of in a separate pass to better control whether we
547 // should run the analysis or not.
548 LoadStoreAnalysis lsa(graph);
549 if (!only_optimize_loop_blocks_ || graph->HasLoops()) {
550 lsa.Run();
551 scheduling_graph_.SetHeapLocationCollector(lsa.GetHeapLocationCollector());
552 }
553
554 for (HBasicBlock* block : graph->GetReversePostOrder()) {
555 if (IsSchedulable(block)) {
556 Schedule(block);
557 }
558 }
559 }
560
Schedule(HBasicBlock * block)561 void HScheduler::Schedule(HBasicBlock* block) {
562 ScopedArenaVector<SchedulingNode*> scheduling_nodes(allocator_->Adapter(kArenaAllocScheduler));
563
564 // Build the scheduling graph.
565 scheduling_graph_.Clear();
566 for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
567 HInstruction* instruction = it.Current();
568 CHECK_EQ(instruction->GetBlock(), block)
569 << instruction->DebugName()
570 << " is in block " << instruction->GetBlock()->GetBlockId()
571 << ", and expected in block " << block->GetBlockId();
572 SchedulingNode* node = scheduling_graph_.AddNode(instruction, IsSchedulingBarrier(instruction));
573 CalculateLatency(node);
574 scheduling_nodes.push_back(node);
575 }
576
577 if (scheduling_graph_.Size() <= 1) {
578 scheduling_graph_.Clear();
579 return;
580 }
581
582 cursor_ = block->GetLastInstruction();
583
584 // Find the initial candidates for scheduling.
585 candidates_.clear();
586 for (SchedulingNode* node : scheduling_nodes) {
587 if (!node->HasUnscheduledSuccessors()) {
588 node->MaybeUpdateCriticalPath(node->GetLatency());
589 candidates_.push_back(node);
590 }
591 }
592
593 ScopedArenaVector<SchedulingNode*> initial_candidates(allocator_->Adapter(kArenaAllocScheduler));
594 if (kDumpDotSchedulingGraphs) {
595 // Remember the list of initial candidates for debug output purposes.
596 initial_candidates.assign(candidates_.begin(), candidates_.end());
597 }
598
599 // Schedule all nodes.
600 while (!candidates_.empty()) {
601 Schedule(selector_->PopHighestPriorityNode(&candidates_, scheduling_graph_));
602 }
603
604 if (kDumpDotSchedulingGraphs) {
605 // Dump the graph in `dot` format.
606 HGraph* graph = block->GetGraph();
607 std::stringstream description;
608 description << graph->GetDexFile().PrettyMethod(graph->GetMethodIdx())
609 << " B" << block->GetBlockId();
610 scheduling_graph_.DumpAsDotGraph(description.str(), initial_candidates);
611 }
612 }
613
Schedule(SchedulingNode * scheduling_node)614 void HScheduler::Schedule(SchedulingNode* scheduling_node) {
615 // Check whether any of the node's predecessors will be valid candidates after
616 // this node is scheduled.
617 uint32_t path_to_node = scheduling_node->GetCriticalPath();
618 for (SchedulingNode* predecessor : scheduling_node->GetDataPredecessors()) {
619 predecessor->MaybeUpdateCriticalPath(
620 path_to_node + predecessor->GetInternalLatency() + predecessor->GetLatency());
621 predecessor->DecrementNumberOfUnscheduledSuccessors();
622 if (!predecessor->HasUnscheduledSuccessors()) {
623 candidates_.push_back(predecessor);
624 }
625 }
626 for (SchedulingNode* predecessor : scheduling_node->GetOtherPredecessors()) {
627 // Do not update the critical path.
628 // The 'other' (so 'non-data') dependencies (usually) do not represent a
629 // 'material' dependency of nodes on others. They exist for program
630 // correctness. So we do not use them to compute the critical path.
631 predecessor->DecrementNumberOfUnscheduledSuccessors();
632 if (!predecessor->HasUnscheduledSuccessors()) {
633 candidates_.push_back(predecessor);
634 }
635 }
636
637 Schedule(scheduling_node->GetInstruction());
638 }
639
640 // Move an instruction after cursor instruction inside one basic block.
MoveAfterInBlock(HInstruction * instruction,HInstruction * cursor)641 static void MoveAfterInBlock(HInstruction* instruction, HInstruction* cursor) {
642 DCHECK_EQ(instruction->GetBlock(), cursor->GetBlock());
643 DCHECK_NE(cursor, cursor->GetBlock()->GetLastInstruction());
644 DCHECK(!instruction->IsControlFlow());
645 DCHECK(!cursor->IsControlFlow());
646 instruction->MoveBefore(cursor->GetNext(), /* do_checks */ false);
647 }
648
Schedule(HInstruction * instruction)649 void HScheduler::Schedule(HInstruction* instruction) {
650 if (instruction == cursor_) {
651 cursor_ = cursor_->GetPrevious();
652 } else {
653 MoveAfterInBlock(instruction, cursor_);
654 }
655 }
656
IsSchedulable(const HInstruction * instruction) const657 bool HScheduler::IsSchedulable(const HInstruction* instruction) const {
658 // We want to avoid exhaustively listing all instructions, so we first check
659 // for instruction categories that we know are safe.
660 if (instruction->IsControlFlow() ||
661 instruction->IsConstant()) {
662 return true;
663 }
664 // Currently all unary and binary operations are safe to schedule, so avoid
665 // checking for each of them individually.
666 // Since nothing prevents a new scheduling-unsafe HInstruction to subclass
667 // HUnaryOperation (or HBinaryOperation), check in debug mode that we have
668 // the exhaustive lists here.
669 if (instruction->IsUnaryOperation()) {
670 DCHECK(instruction->IsBooleanNot() ||
671 instruction->IsNot() ||
672 instruction->IsNeg()) << "unexpected instruction " << instruction->DebugName();
673 return true;
674 }
675 if (instruction->IsBinaryOperation()) {
676 DCHECK(instruction->IsAdd() ||
677 instruction->IsAnd() ||
678 instruction->IsCompare() ||
679 instruction->IsCondition() ||
680 instruction->IsDiv() ||
681 instruction->IsMul() ||
682 instruction->IsOr() ||
683 instruction->IsRem() ||
684 instruction->IsRor() ||
685 instruction->IsShl() ||
686 instruction->IsShr() ||
687 instruction->IsSub() ||
688 instruction->IsUShr() ||
689 instruction->IsXor()) << "unexpected instruction " << instruction->DebugName();
690 return true;
691 }
692 // The scheduler should not see any of these.
693 DCHECK(!instruction->IsParallelMove()) << "unexpected instruction " << instruction->DebugName();
694 // List of instructions explicitly excluded:
695 // HClearException
696 // HClinitCheck
697 // HDeoptimize
698 // HLoadClass
699 // HLoadException
700 // HMemoryBarrier
701 // HMonitorOperation
702 // HNativeDebugInfo
703 // HThrow
704 // HTryBoundary
705 // TODO: Some of the instructions above may be safe to schedule (maybe as
706 // scheduling barriers).
707 return instruction->IsArrayGet() ||
708 instruction->IsArraySet() ||
709 instruction->IsArrayLength() ||
710 instruction->IsBoundType() ||
711 instruction->IsBoundsCheck() ||
712 instruction->IsCheckCast() ||
713 instruction->IsClassTableGet() ||
714 instruction->IsCurrentMethod() ||
715 instruction->IsDivZeroCheck() ||
716 (instruction->IsInstanceFieldGet() && !instruction->AsInstanceFieldGet()->IsVolatile()) ||
717 (instruction->IsInstanceFieldSet() && !instruction->AsInstanceFieldSet()->IsVolatile()) ||
718 instruction->IsInstanceOf() ||
719 instruction->IsInvokeInterface() ||
720 instruction->IsInvokeStaticOrDirect() ||
721 instruction->IsInvokeUnresolved() ||
722 instruction->IsInvokeVirtual() ||
723 instruction->IsLoadString() ||
724 instruction->IsNewArray() ||
725 instruction->IsNewInstance() ||
726 instruction->IsNullCheck() ||
727 instruction->IsPackedSwitch() ||
728 instruction->IsParameterValue() ||
729 instruction->IsPhi() ||
730 instruction->IsReturn() ||
731 instruction->IsReturnVoid() ||
732 instruction->IsSelect() ||
733 (instruction->IsStaticFieldGet() && !instruction->AsStaticFieldGet()->IsVolatile()) ||
734 (instruction->IsStaticFieldSet() && !instruction->AsStaticFieldSet()->IsVolatile()) ||
735 instruction->IsSuspendCheck() ||
736 instruction->IsTypeConversion();
737 }
738
IsSchedulable(const HBasicBlock * block) const739 bool HScheduler::IsSchedulable(const HBasicBlock* block) const {
740 // We may be only interested in loop blocks.
741 if (only_optimize_loop_blocks_ && !block->IsInLoop()) {
742 return false;
743 }
744 if (block->GetTryCatchInformation() != nullptr) {
745 // Do not schedule blocks that are part of try-catch.
746 // Because scheduler cannot see if catch block has assumptions on the instruction order in
747 // the try block. In following example, if we enable scheduler for the try block,
748 // MulitiplyAccumulate may be scheduled before DivZeroCheck,
749 // which can result in an incorrect value in the catch block.
750 // try {
751 // a = a/b; // DivZeroCheck
752 // // Div
753 // c = c*d+e; // MulitiplyAccumulate
754 // } catch {System.out.print(c); }
755 return false;
756 }
757 // Check whether all instructions in this block are schedulable.
758 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
759 if (!IsSchedulable(it.Current())) {
760 return false;
761 }
762 }
763 return true;
764 }
765
IsSchedulingBarrier(const HInstruction * instr) const766 bool HScheduler::IsSchedulingBarrier(const HInstruction* instr) const {
767 return instr->IsControlFlow() ||
768 // Don't break calling convention.
769 instr->IsParameterValue() ||
770 // Code generation of goto relies on SuspendCheck's position.
771 instr->IsSuspendCheck();
772 }
773
Run(bool only_optimize_loop_blocks,bool schedule_randomly)774 void HInstructionScheduling::Run(bool only_optimize_loop_blocks,
775 bool schedule_randomly) {
776 #if defined(ART_ENABLE_CODEGEN_arm64) || defined(ART_ENABLE_CODEGEN_arm)
777 // Phase-local allocator that allocates scheduler internal data structures like
778 // scheduling nodes, internel nodes map, dependencies, etc.
779 ScopedArenaAllocator allocator(graph_->GetArenaStack());
780 CriticalPathSchedulingNodeSelector critical_path_selector;
781 RandomSchedulingNodeSelector random_selector;
782 SchedulingNodeSelector* selector = schedule_randomly
783 ? static_cast<SchedulingNodeSelector*>(&random_selector)
784 : static_cast<SchedulingNodeSelector*>(&critical_path_selector);
785 #else
786 // Avoid compilation error when compiling for unsupported instruction set.
787 UNUSED(only_optimize_loop_blocks);
788 UNUSED(schedule_randomly);
789 UNUSED(codegen_);
790 #endif
791
792 switch (instruction_set_) {
793 #ifdef ART_ENABLE_CODEGEN_arm64
794 case InstructionSet::kArm64: {
795 arm64::HSchedulerARM64 scheduler(&allocator, selector);
796 scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks);
797 scheduler.Schedule(graph_);
798 break;
799 }
800 #endif
801 #if defined(ART_ENABLE_CODEGEN_arm)
802 case InstructionSet::kThumb2:
803 case InstructionSet::kArm: {
804 arm::SchedulingLatencyVisitorARM arm_latency_visitor(codegen_);
805 arm::HSchedulerARM scheduler(&allocator, selector, &arm_latency_visitor);
806 scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks);
807 scheduler.Schedule(graph_);
808 break;
809 }
810 #endif
811 default:
812 break;
813 }
814 }
815
816 } // namespace art
817