1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mutex.h"
18
19 #include <errno.h>
20 #include <sys/time.h>
21
22 #include "android-base/stringprintf.h"
23
24 #include "base/atomic.h"
25 #include "base/logging.h"
26 #include "base/systrace.h"
27 #include "base/time_utils.h"
28 #include "base/value_object.h"
29 #include "mutex-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "thread-inl.h"
32
33 namespace art {
34
35 using android::base::StringPrintf;
36
37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
38
39 Mutex* Locks::abort_lock_ = nullptr;
40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
45 Mutex* Locks::deoptimization_lock_ = nullptr;
46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
48 Mutex* Locks::intern_table_lock_ = nullptr;
49 Mutex* Locks::jni_function_table_lock_ = nullptr;
50 Mutex* Locks::jni_libraries_lock_ = nullptr;
51 Mutex* Locks::logging_lock_ = nullptr;
52 Mutex* Locks::modify_ldt_lock_ = nullptr;
53 MutatorMutex* Locks::mutator_lock_ = nullptr;
54 Mutex* Locks::profiler_lock_ = nullptr;
55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
58 Mutex* Locks::reference_processor_lock_ = nullptr;
59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
65 Mutex* Locks::cha_lock_ = nullptr;
66 Mutex* Locks::subtype_check_lock_ = nullptr;
67 Mutex* Locks::thread_list_lock_ = nullptr;
68 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
69 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
70 Mutex* Locks::trace_lock_ = nullptr;
71 Mutex* Locks::unexpected_signal_lock_ = nullptr;
72 Mutex* Locks::user_code_suspension_lock_ = nullptr;
73 Uninterruptible Roles::uninterruptible_;
74 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
75 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
76 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
77 Mutex* Locks::native_debug_interface_lock_ = nullptr;
78 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
79 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
80
81 struct AllMutexData {
82 // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
83 Atomic<const BaseMutex*> all_mutexes_guard;
84 // All created mutexes guarded by all_mutexes_guard_.
85 std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData86 AllMutexData() : all_mutexes(nullptr) {}
87 };
88 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
89
90 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)91 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
92 const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds.
93 result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
94 result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
95 if (result_ts->tv_nsec < 0) {
96 result_ts->tv_sec--;
97 result_ts->tv_nsec += one_sec;
98 } else if (result_ts->tv_nsec > one_sec) {
99 result_ts->tv_sec++;
100 result_ts->tv_nsec -= one_sec;
101 }
102 return result_ts->tv_sec < 0;
103 }
104 #endif
105
106 // Wait for an amount of time that roughly increases in the argument i.
107 // Spin for small arguments and yield/sleep for longer ones.
BackOff(uint32_t i)108 static void BackOff(uint32_t i) {
109 static constexpr uint32_t kSpinMax = 10;
110 static constexpr uint32_t kYieldMax = 20;
111 if (i <= kSpinMax) {
112 // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
113 // test-and-test-and-set loop in the caller. Possibly skip entirely on a uniprocessor.
114 volatile uint32_t x = 0;
115 const uint32_t spin_count = 10 * i;
116 for (uint32_t spin = 0; spin < spin_count; ++spin) {
117 ++x; // Volatile; hence should not be optimized away.
118 }
119 // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
120 } else if (i <= kYieldMax) {
121 sched_yield();
122 } else {
123 NanoSleep(1000ull * (i - kYieldMax));
124 }
125 }
126
127 class ScopedAllMutexesLock FINAL {
128 public:
ScopedAllMutexesLock(const BaseMutex * mutex)129 explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
130 for (uint32_t i = 0;
131 !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(0, mutex);
132 ++i) {
133 BackOff(i);
134 }
135 }
136
~ScopedAllMutexesLock()137 ~ScopedAllMutexesLock() {
138 DCHECK_EQ(gAllMutexData->all_mutexes_guard.LoadRelaxed(), mutex_);
139 gAllMutexData->all_mutexes_guard.StoreRelease(0);
140 }
141
142 private:
143 const BaseMutex* const mutex_;
144 };
145
146 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
147 public:
ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex * mutex)148 explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
149 for (uint32_t i = 0;
150 !Locks::expected_mutexes_on_weak_ref_access_guard_.CompareAndSetWeakAcquire(0, mutex);
151 ++i) {
152 BackOff(i);
153 }
154 }
155
~ScopedExpectedMutexesOnWeakRefAccessLock()156 ~ScopedExpectedMutexesOnWeakRefAccessLock() {
157 DCHECK_EQ(Locks::expected_mutexes_on_weak_ref_access_guard_.LoadRelaxed(), mutex_);
158 Locks::expected_mutexes_on_weak_ref_access_guard_.StoreRelease(0);
159 }
160
161 private:
162 const BaseMutex* const mutex_;
163 };
164
165 // Scoped class that generates events at the beginning and end of lock contention.
166 class ScopedContentionRecorder FINAL : public ValueObject {
167 public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)168 ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
169 : mutex_(kLogLockContentions ? mutex : nullptr),
170 blocked_tid_(kLogLockContentions ? blocked_tid : 0),
171 owner_tid_(kLogLockContentions ? owner_tid : 0),
172 start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
173 if (ATRACE_ENABLED()) {
174 std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
175 mutex->GetName(), owner_tid);
176 ATRACE_BEGIN(msg.c_str());
177 }
178 }
179
~ScopedContentionRecorder()180 ~ScopedContentionRecorder() {
181 ATRACE_END();
182 if (kLogLockContentions) {
183 uint64_t end_nano_time = NanoTime();
184 mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
185 }
186 }
187
188 private:
189 BaseMutex* const mutex_;
190 const uint64_t blocked_tid_;
191 const uint64_t owner_tid_;
192 const uint64_t start_nano_time_;
193 };
194
BaseMutex(const char * name,LockLevel level)195 BaseMutex::BaseMutex(const char* name, LockLevel level)
196 : level_(level),
197 name_(name),
198 should_respond_to_empty_checkpoint_request_(false) {
199 if (kLogLockContentions) {
200 ScopedAllMutexesLock mu(this);
201 std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
202 if (*all_mutexes_ptr == nullptr) {
203 // We leak the global set of all mutexes to avoid ordering issues in global variable
204 // construction/destruction.
205 *all_mutexes_ptr = new std::set<BaseMutex*>();
206 }
207 (*all_mutexes_ptr)->insert(this);
208 }
209 }
210
~BaseMutex()211 BaseMutex::~BaseMutex() {
212 if (kLogLockContentions) {
213 ScopedAllMutexesLock mu(this);
214 gAllMutexData->all_mutexes->erase(this);
215 }
216 }
217
DumpAll(std::ostream & os)218 void BaseMutex::DumpAll(std::ostream& os) {
219 if (kLogLockContentions) {
220 os << "Mutex logging:\n";
221 ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
222 std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
223 if (all_mutexes == nullptr) {
224 // No mutexes have been created yet during at startup.
225 return;
226 }
227 typedef std::set<BaseMutex*>::const_iterator It;
228 os << "(Contended)\n";
229 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
230 BaseMutex* mutex = *it;
231 if (mutex->HasEverContended()) {
232 mutex->Dump(os);
233 os << "\n";
234 }
235 }
236 os << "(Never contented)\n";
237 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
238 BaseMutex* mutex = *it;
239 if (!mutex->HasEverContended()) {
240 mutex->Dump(os);
241 os << "\n";
242 }
243 }
244 }
245 }
246
CheckSafeToWait(Thread * self)247 void BaseMutex::CheckSafeToWait(Thread* self) {
248 if (self == nullptr) {
249 CheckUnattachedThread(level_);
250 return;
251 }
252 if (kDebugLocking) {
253 CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
254 << "Waiting on unacquired mutex: " << name_;
255 bool bad_mutexes_held = false;
256 for (int i = kLockLevelCount - 1; i >= 0; --i) {
257 if (i != level_) {
258 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
259 // We allow the thread to wait even if the user_code_suspension_lock_ is held so long as we
260 // are some thread's resume_cond_ (level_ == kThreadSuspendCountLock). This just means that
261 // gc or some other internal process is suspending the thread while it is trying to suspend
262 // some other thread. So long as the current thread is not being suspended by a
263 // SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear) this is
264 // fine.
265 if (held_mutex == Locks::user_code_suspension_lock_ && level_ == kThreadSuspendCountLock) {
266 // No thread safety analysis is fine since we have both the user_code_suspension_lock_
267 // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
268 // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
269 auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
270 return self->GetUserCodeSuspendCount() != 0;
271 };
272 if (is_suspending_for_user_code()) {
273 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
274 << "(level " << LockLevel(i) << ") while performing wait on "
275 << "\"" << name_ << "\" (level " << level_ << ") "
276 << "with SuspendReason::kForUserCode pending suspensions";
277 bad_mutexes_held = true;
278 }
279 } else if (held_mutex != nullptr) {
280 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
281 << "(level " << LockLevel(i) << ") while performing wait on "
282 << "\"" << name_ << "\" (level " << level_ << ")";
283 bad_mutexes_held = true;
284 }
285 }
286 }
287 if (gAborting == 0) { // Avoid recursive aborts.
288 CHECK(!bad_mutexes_held) << this;
289 }
290 }
291 }
292
AddToWaitTime(uint64_t value)293 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
294 if (kLogLockContentions) {
295 // Atomically add value to wait_time.
296 wait_time.FetchAndAddSequentiallyConsistent(value);
297 }
298 }
299
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)300 void BaseMutex::RecordContention(uint64_t blocked_tid,
301 uint64_t owner_tid,
302 uint64_t nano_time_blocked) {
303 if (kLogLockContentions) {
304 ContentionLogData* data = contention_log_data_;
305 ++(data->contention_count);
306 data->AddToWaitTime(nano_time_blocked);
307 ContentionLogEntry* log = data->contention_log;
308 // This code is intentionally racy as it is only used for diagnostics.
309 uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
310 if (log[slot].blocked_tid == blocked_tid &&
311 log[slot].owner_tid == blocked_tid) {
312 ++log[slot].count;
313 } else {
314 uint32_t new_slot;
315 do {
316 slot = data->cur_content_log_entry.LoadRelaxed();
317 new_slot = (slot + 1) % kContentionLogSize;
318 } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
319 log[new_slot].blocked_tid = blocked_tid;
320 log[new_slot].owner_tid = owner_tid;
321 log[new_slot].count.StoreRelaxed(1);
322 }
323 }
324 }
325
DumpContention(std::ostream & os) const326 void BaseMutex::DumpContention(std::ostream& os) const {
327 if (kLogLockContentions) {
328 const ContentionLogData* data = contention_log_data_;
329 const ContentionLogEntry* log = data->contention_log;
330 uint64_t wait_time = data->wait_time.LoadRelaxed();
331 uint32_t contention_count = data->contention_count.LoadRelaxed();
332 if (contention_count == 0) {
333 os << "never contended";
334 } else {
335 os << "contended " << contention_count
336 << " total wait of contender " << PrettyDuration(wait_time)
337 << " average " << PrettyDuration(wait_time / contention_count);
338 SafeMap<uint64_t, size_t> most_common_blocker;
339 SafeMap<uint64_t, size_t> most_common_blocked;
340 for (size_t i = 0; i < kContentionLogSize; ++i) {
341 uint64_t blocked_tid = log[i].blocked_tid;
342 uint64_t owner_tid = log[i].owner_tid;
343 uint32_t count = log[i].count.LoadRelaxed();
344 if (count > 0) {
345 auto it = most_common_blocked.find(blocked_tid);
346 if (it != most_common_blocked.end()) {
347 most_common_blocked.Overwrite(blocked_tid, it->second + count);
348 } else {
349 most_common_blocked.Put(blocked_tid, count);
350 }
351 it = most_common_blocker.find(owner_tid);
352 if (it != most_common_blocker.end()) {
353 most_common_blocker.Overwrite(owner_tid, it->second + count);
354 } else {
355 most_common_blocker.Put(owner_tid, count);
356 }
357 }
358 }
359 uint64_t max_tid = 0;
360 size_t max_tid_count = 0;
361 for (const auto& pair : most_common_blocked) {
362 if (pair.second > max_tid_count) {
363 max_tid = pair.first;
364 max_tid_count = pair.second;
365 }
366 }
367 if (max_tid != 0) {
368 os << " sample shows most blocked tid=" << max_tid;
369 }
370 max_tid = 0;
371 max_tid_count = 0;
372 for (const auto& pair : most_common_blocker) {
373 if (pair.second > max_tid_count) {
374 max_tid = pair.first;
375 max_tid_count = pair.second;
376 }
377 }
378 if (max_tid != 0) {
379 os << " sample shows tid=" << max_tid << " owning during this time";
380 }
381 }
382 }
383 }
384
385
Mutex(const char * name,LockLevel level,bool recursive)386 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
387 : BaseMutex(name, level), exclusive_owner_(0), recursive_(recursive), recursion_count_(0) {
388 #if ART_USE_FUTEXES
389 DCHECK_EQ(0, state_.LoadRelaxed());
390 DCHECK_EQ(0, num_contenders_.LoadRelaxed());
391 #else
392 CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
393 #endif
394 }
395
396 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()397 static bool IsSafeToCallAbortSafe() {
398 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
399 return Locks::IsSafeToCallAbortRacy();
400 }
401
~Mutex()402 Mutex::~Mutex() {
403 bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
404 #if ART_USE_FUTEXES
405 if (state_.LoadRelaxed() != 0) {
406 LOG(safe_to_call_abort ? FATAL : WARNING)
407 << "destroying mutex with owner: " << GetExclusiveOwnerTid();
408 } else {
409 if (GetExclusiveOwnerTid() != 0) {
410 LOG(safe_to_call_abort ? FATAL : WARNING)
411 << "unexpectedly found an owner on unlocked mutex " << name_;
412 }
413 if (num_contenders_.LoadSequentiallyConsistent() != 0) {
414 LOG(safe_to_call_abort ? FATAL : WARNING)
415 << "unexpectedly found a contender on mutex " << name_;
416 }
417 }
418 #else
419 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
420 // may still be using locks.
421 int rc = pthread_mutex_destroy(&mutex_);
422 if (rc != 0) {
423 errno = rc;
424 PLOG(safe_to_call_abort ? FATAL : WARNING)
425 << "pthread_mutex_destroy failed for " << name_;
426 }
427 #endif
428 }
429
ExclusiveLock(Thread * self)430 void Mutex::ExclusiveLock(Thread* self) {
431 DCHECK(self == nullptr || self == Thread::Current());
432 if (kDebugLocking && !recursive_) {
433 AssertNotHeld(self);
434 }
435 if (!recursive_ || !IsExclusiveHeld(self)) {
436 #if ART_USE_FUTEXES
437 bool done = false;
438 do {
439 int32_t cur_state = state_.LoadRelaxed();
440 if (LIKELY(cur_state == 0)) {
441 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
442 done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, 1 /* new state */);
443 } else {
444 // Failed to acquire, hang up.
445 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
446 num_contenders_++;
447 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
448 self->CheckEmptyCheckpointFromMutex();
449 }
450 if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
451 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
452 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
453 if ((errno != EAGAIN) && (errno != EINTR)) {
454 PLOG(FATAL) << "futex wait failed for " << name_;
455 }
456 }
457 num_contenders_--;
458 }
459 } while (!done);
460 DCHECK_EQ(state_.LoadRelaxed(), 1);
461 #else
462 CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
463 #endif
464 DCHECK_EQ(GetExclusiveOwnerTid(), 0);
465 exclusive_owner_.StoreRelaxed(SafeGetTid(self));
466 RegisterAsLocked(self);
467 }
468 recursion_count_++;
469 if (kDebugLocking) {
470 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
471 << name_ << " " << recursion_count_;
472 AssertHeld(self);
473 }
474 }
475
ExclusiveTryLock(Thread * self)476 bool Mutex::ExclusiveTryLock(Thread* self) {
477 DCHECK(self == nullptr || self == Thread::Current());
478 if (kDebugLocking && !recursive_) {
479 AssertNotHeld(self);
480 }
481 if (!recursive_ || !IsExclusiveHeld(self)) {
482 #if ART_USE_FUTEXES
483 bool done = false;
484 do {
485 int32_t cur_state = state_.LoadRelaxed();
486 if (cur_state == 0) {
487 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
488 done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, 1 /* new state */);
489 } else {
490 return false;
491 }
492 } while (!done);
493 DCHECK_EQ(state_.LoadRelaxed(), 1);
494 #else
495 int result = pthread_mutex_trylock(&mutex_);
496 if (result == EBUSY) {
497 return false;
498 }
499 if (result != 0) {
500 errno = result;
501 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
502 }
503 #endif
504 DCHECK_EQ(GetExclusiveOwnerTid(), 0);
505 exclusive_owner_.StoreRelaxed(SafeGetTid(self));
506 RegisterAsLocked(self);
507 }
508 recursion_count_++;
509 if (kDebugLocking) {
510 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
511 << name_ << " " << recursion_count_;
512 AssertHeld(self);
513 }
514 return true;
515 }
516
ExclusiveUnlock(Thread * self)517 void Mutex::ExclusiveUnlock(Thread* self) {
518 if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
519 std::string name1 = "<null>";
520 std::string name2 = "<null>";
521 if (self != nullptr) {
522 self->GetThreadName(name1);
523 }
524 if (Thread::Current() != nullptr) {
525 Thread::Current()->GetThreadName(name2);
526 }
527 LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
528 << " Thread::Current()=" << name2;
529 }
530 AssertHeld(self);
531 DCHECK_NE(GetExclusiveOwnerTid(), 0);
532 recursion_count_--;
533 if (!recursive_ || recursion_count_ == 0) {
534 if (kDebugLocking) {
535 CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
536 << name_ << " " << recursion_count_;
537 }
538 RegisterAsUnlocked(self);
539 #if ART_USE_FUTEXES
540 bool done = false;
541 do {
542 int32_t cur_state = state_.LoadRelaxed();
543 if (LIKELY(cur_state == 1)) {
544 // We're no longer the owner.
545 exclusive_owner_.StoreRelaxed(0);
546 // Change state to 0 and impose load/store ordering appropriate for lock release.
547 // Note, the relaxed loads below mustn't reorder before the CompareAndSet.
548 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
549 // a status bit into the state on contention.
550 done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, 0 /* new state */);
551 if (LIKELY(done)) { // Spurious fail?
552 // Wake a contender.
553 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
554 futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
555 }
556 }
557 } else {
558 // Logging acquires the logging lock, avoid infinite recursion in that case.
559 if (this != Locks::logging_lock_) {
560 LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
561 } else {
562 LogHelper::LogLineLowStack(__FILE__,
563 __LINE__,
564 ::android::base::FATAL_WITHOUT_ABORT,
565 StringPrintf("Unexpected state_ %d in unlock for %s",
566 cur_state, name_).c_str());
567 _exit(1);
568 }
569 }
570 } while (!done);
571 #else
572 exclusive_owner_.StoreRelaxed(0);
573 CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
574 #endif
575 }
576 }
577
Dump(std::ostream & os) const578 void Mutex::Dump(std::ostream& os) const {
579 os << (recursive_ ? "recursive " : "non-recursive ")
580 << name_
581 << " level=" << static_cast<int>(level_)
582 << " rec=" << recursion_count_
583 << " owner=" << GetExclusiveOwnerTid() << " ";
584 DumpContention(os);
585 }
586
operator <<(std::ostream & os,const Mutex & mu)587 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
588 mu.Dump(os);
589 return os;
590 }
591
WakeupToRespondToEmptyCheckpoint()592 void Mutex::WakeupToRespondToEmptyCheckpoint() {
593 #if ART_USE_FUTEXES
594 // Wake up all the waiters so they will respond to the emtpy checkpoint.
595 DCHECK(should_respond_to_empty_checkpoint_request_);
596 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
597 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
598 }
599 #else
600 LOG(FATAL) << "Non futex case isn't supported.";
601 #endif
602 }
603
ReaderWriterMutex(const char * name,LockLevel level)604 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
605 : BaseMutex(name, level)
606 #if ART_USE_FUTEXES
607 , state_(0), num_pending_readers_(0), num_pending_writers_(0)
608 #endif
609 {
610 #if !ART_USE_FUTEXES
611 CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
612 #endif
613 exclusive_owner_.StoreRelaxed(0);
614 }
615
~ReaderWriterMutex()616 ReaderWriterMutex::~ReaderWriterMutex() {
617 #if ART_USE_FUTEXES
618 CHECK_EQ(state_.LoadRelaxed(), 0);
619 CHECK_EQ(GetExclusiveOwnerTid(), 0);
620 CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
621 CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
622 #else
623 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
624 // may still be using locks.
625 int rc = pthread_rwlock_destroy(&rwlock_);
626 if (rc != 0) {
627 errno = rc;
628 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
629 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
630 }
631 #endif
632 }
633
ExclusiveLock(Thread * self)634 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
635 DCHECK(self == nullptr || self == Thread::Current());
636 AssertNotExclusiveHeld(self);
637 #if ART_USE_FUTEXES
638 bool done = false;
639 do {
640 int32_t cur_state = state_.LoadRelaxed();
641 if (LIKELY(cur_state == 0)) {
642 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
643 done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
644 } else {
645 // Failed to acquire, hang up.
646 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
647 ++num_pending_writers_;
648 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
649 self->CheckEmptyCheckpointFromMutex();
650 }
651 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
652 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
653 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
654 if ((errno != EAGAIN) && (errno != EINTR)) {
655 PLOG(FATAL) << "futex wait failed for " << name_;
656 }
657 }
658 --num_pending_writers_;
659 }
660 } while (!done);
661 DCHECK_EQ(state_.LoadRelaxed(), -1);
662 #else
663 CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
664 #endif
665 DCHECK_EQ(GetExclusiveOwnerTid(), 0);
666 exclusive_owner_.StoreRelaxed(SafeGetTid(self));
667 RegisterAsLocked(self);
668 AssertExclusiveHeld(self);
669 }
670
ExclusiveUnlock(Thread * self)671 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
672 DCHECK(self == nullptr || self == Thread::Current());
673 AssertExclusiveHeld(self);
674 RegisterAsUnlocked(self);
675 DCHECK_NE(GetExclusiveOwnerTid(), 0);
676 #if ART_USE_FUTEXES
677 bool done = false;
678 do {
679 int32_t cur_state = state_.LoadRelaxed();
680 if (LIKELY(cur_state == -1)) {
681 // We're no longer the owner.
682 exclusive_owner_.StoreRelaxed(0);
683 // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
684 // Note, the relaxed loads below musn't reorder before the CompareAndSet.
685 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
686 // a status bit into the state on contention.
687 done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
688 if (LIKELY(done)) { // Weak CAS may fail spuriously.
689 // Wake any waiters.
690 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
691 num_pending_writers_.LoadRelaxed() > 0)) {
692 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
693 }
694 }
695 } else {
696 LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
697 }
698 } while (!done);
699 #else
700 exclusive_owner_.StoreRelaxed(0);
701 CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
702 #endif
703 }
704
705 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)706 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
707 DCHECK(self == nullptr || self == Thread::Current());
708 #if ART_USE_FUTEXES
709 bool done = false;
710 timespec end_abs_ts;
711 InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
712 do {
713 int32_t cur_state = state_.LoadRelaxed();
714 if (cur_state == 0) {
715 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
716 done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
717 } else {
718 // Failed to acquire, hang up.
719 timespec now_abs_ts;
720 InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
721 timespec rel_ts;
722 if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
723 return false; // Timed out.
724 }
725 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
726 ++num_pending_writers_;
727 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
728 self->CheckEmptyCheckpointFromMutex();
729 }
730 if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
731 if (errno == ETIMEDOUT) {
732 --num_pending_writers_;
733 return false; // Timed out.
734 } else if ((errno != EAGAIN) && (errno != EINTR)) {
735 // EAGAIN and EINTR both indicate a spurious failure,
736 // recompute the relative time out from now and try again.
737 // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
738 PLOG(FATAL) << "timed futex wait failed for " << name_;
739 }
740 }
741 --num_pending_writers_;
742 }
743 } while (!done);
744 #else
745 timespec ts;
746 InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
747 int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
748 if (result == ETIMEDOUT) {
749 return false;
750 }
751 if (result != 0) {
752 errno = result;
753 PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
754 }
755 #endif
756 exclusive_owner_.StoreRelaxed(SafeGetTid(self));
757 RegisterAsLocked(self);
758 AssertSharedHeld(self);
759 return true;
760 }
761 #endif
762
763 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)764 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
765 // Owner holds it exclusively, hang up.
766 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
767 ++num_pending_readers_;
768 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
769 self->CheckEmptyCheckpointFromMutex();
770 }
771 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
772 if (errno != EAGAIN && errno != EINTR) {
773 PLOG(FATAL) << "futex wait failed for " << name_;
774 }
775 }
776 --num_pending_readers_;
777 }
778 #endif
779
SharedTryLock(Thread * self)780 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
781 DCHECK(self == nullptr || self == Thread::Current());
782 #if ART_USE_FUTEXES
783 bool done = false;
784 do {
785 int32_t cur_state = state_.LoadRelaxed();
786 if (cur_state >= 0) {
787 // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
788 done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
789 } else {
790 // Owner holds it exclusively.
791 return false;
792 }
793 } while (!done);
794 #else
795 int result = pthread_rwlock_tryrdlock(&rwlock_);
796 if (result == EBUSY) {
797 return false;
798 }
799 if (result != 0) {
800 errno = result;
801 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
802 }
803 #endif
804 RegisterAsLocked(self);
805 AssertSharedHeld(self);
806 return true;
807 }
808
IsSharedHeld(const Thread * self) const809 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
810 DCHECK(self == nullptr || self == Thread::Current());
811 bool result;
812 if (UNLIKELY(self == nullptr)) { // Handle unattached threads.
813 result = IsExclusiveHeld(self); // TODO: a better best effort here.
814 } else {
815 result = (self->GetHeldMutex(level_) == this);
816 }
817 return result;
818 }
819
Dump(std::ostream & os) const820 void ReaderWriterMutex::Dump(std::ostream& os) const {
821 os << name_
822 << " level=" << static_cast<int>(level_)
823 << " owner=" << GetExclusiveOwnerTid()
824 #if ART_USE_FUTEXES
825 << " state=" << state_.LoadSequentiallyConsistent()
826 << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
827 << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
828 #endif
829 << " ";
830 DumpContention(os);
831 }
832
operator <<(std::ostream & os,const ReaderWriterMutex & mu)833 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
834 mu.Dump(os);
835 return os;
836 }
837
operator <<(std::ostream & os,const MutatorMutex & mu)838 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
839 mu.Dump(os);
840 return os;
841 }
842
WakeupToRespondToEmptyCheckpoint()843 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
844 #if ART_USE_FUTEXES
845 // Wake up all the waiters so they will respond to the emtpy checkpoint.
846 DCHECK(should_respond_to_empty_checkpoint_request_);
847 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
848 num_pending_writers_.LoadRelaxed() > 0)) {
849 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
850 }
851 #else
852 LOG(FATAL) << "Non futex case isn't supported.";
853 #endif
854 }
855
ConditionVariable(const char * name,Mutex & guard)856 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
857 : name_(name), guard_(guard) {
858 #if ART_USE_FUTEXES
859 DCHECK_EQ(0, sequence_.LoadRelaxed());
860 num_waiters_ = 0;
861 #else
862 pthread_condattr_t cond_attrs;
863 CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
864 #if !defined(__APPLE__)
865 // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
866 CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
867 #endif
868 CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
869 #endif
870 }
871
~ConditionVariable()872 ConditionVariable::~ConditionVariable() {
873 #if ART_USE_FUTEXES
874 if (num_waiters_!= 0) {
875 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
876 LOG(is_safe_to_call_abort ? FATAL : WARNING)
877 << "ConditionVariable::~ConditionVariable for " << name_
878 << " called with " << num_waiters_ << " waiters.";
879 }
880 #else
881 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
882 // may still be using condition variables.
883 int rc = pthread_cond_destroy(&cond_);
884 if (rc != 0) {
885 errno = rc;
886 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
887 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
888 }
889 #endif
890 }
891
Broadcast(Thread * self)892 void ConditionVariable::Broadcast(Thread* self) {
893 DCHECK(self == nullptr || self == Thread::Current());
894 // TODO: enable below, there's a race in thread creation that causes false failures currently.
895 // guard_.AssertExclusiveHeld(self);
896 DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
897 #if ART_USE_FUTEXES
898 if (num_waiters_ > 0) {
899 sequence_++; // Indicate the broadcast occurred.
900 bool done = false;
901 do {
902 int32_t cur_sequence = sequence_.LoadRelaxed();
903 // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
904 // mutex unlocks will awaken the requeued waiter thread.
905 done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
906 reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
907 guard_.state_.Address(), cur_sequence) != -1;
908 if (!done) {
909 if (errno != EAGAIN && errno != EINTR) {
910 PLOG(FATAL) << "futex cmp requeue failed for " << name_;
911 }
912 }
913 } while (!done);
914 }
915 #else
916 CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
917 #endif
918 }
919
Signal(Thread * self)920 void ConditionVariable::Signal(Thread* self) {
921 DCHECK(self == nullptr || self == Thread::Current());
922 guard_.AssertExclusiveHeld(self);
923 #if ART_USE_FUTEXES
924 if (num_waiters_ > 0) {
925 sequence_++; // Indicate a signal occurred.
926 // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
927 // to avoid this, however, requeueing can only move all waiters.
928 int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
929 // Check something was woken or else we changed sequence_ before they had chance to wait.
930 CHECK((num_woken == 0) || (num_woken == 1));
931 }
932 #else
933 CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
934 #endif
935 }
936
Wait(Thread * self)937 void ConditionVariable::Wait(Thread* self) {
938 guard_.CheckSafeToWait(self);
939 WaitHoldingLocks(self);
940 }
941
WaitHoldingLocks(Thread * self)942 void ConditionVariable::WaitHoldingLocks(Thread* self) {
943 DCHECK(self == nullptr || self == Thread::Current());
944 guard_.AssertExclusiveHeld(self);
945 unsigned int old_recursion_count = guard_.recursion_count_;
946 #if ART_USE_FUTEXES
947 num_waiters_++;
948 // Ensure the Mutex is contended so that requeued threads are awoken.
949 guard_.num_contenders_++;
950 guard_.recursion_count_ = 1;
951 int32_t cur_sequence = sequence_.LoadRelaxed();
952 guard_.ExclusiveUnlock(self);
953 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
954 // Futex failed, check it is an expected error.
955 // EAGAIN == EWOULDBLK, so we let the caller try again.
956 // EINTR implies a signal was sent to this thread.
957 if ((errno != EINTR) && (errno != EAGAIN)) {
958 PLOG(FATAL) << "futex wait failed for " << name_;
959 }
960 }
961 if (self != nullptr) {
962 JNIEnvExt* const env = self->GetJniEnv();
963 if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
964 CHECK(self->IsDaemon());
965 // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
966 // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
967 // --host and --gdb.
968 // After we wake up, the runtime may have been shutdown, which means that this condition may
969 // have been deleted. It is not safe to retry the wait.
970 SleepForever();
971 }
972 }
973 guard_.ExclusiveLock(self);
974 CHECK_GE(num_waiters_, 0);
975 num_waiters_--;
976 // We awoke and so no longer require awakes from the guard_'s unlock.
977 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
978 guard_.num_contenders_--;
979 #else
980 pid_t old_owner = guard_.GetExclusiveOwnerTid();
981 guard_.exclusive_owner_.StoreRelaxed(0);
982 guard_.recursion_count_ = 0;
983 CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
984 guard_.exclusive_owner_.StoreRelaxed(old_owner);
985 #endif
986 guard_.recursion_count_ = old_recursion_count;
987 }
988
TimedWait(Thread * self,int64_t ms,int32_t ns)989 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
990 DCHECK(self == nullptr || self == Thread::Current());
991 bool timed_out = false;
992 guard_.AssertExclusiveHeld(self);
993 guard_.CheckSafeToWait(self);
994 unsigned int old_recursion_count = guard_.recursion_count_;
995 #if ART_USE_FUTEXES
996 timespec rel_ts;
997 InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
998 num_waiters_++;
999 // Ensure the Mutex is contended so that requeued threads are awoken.
1000 guard_.num_contenders_++;
1001 guard_.recursion_count_ = 1;
1002 int32_t cur_sequence = sequence_.LoadRelaxed();
1003 guard_.ExclusiveUnlock(self);
1004 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
1005 if (errno == ETIMEDOUT) {
1006 // Timed out we're done.
1007 timed_out = true;
1008 } else if ((errno == EAGAIN) || (errno == EINTR)) {
1009 // A signal or ConditionVariable::Signal/Broadcast has come in.
1010 } else {
1011 PLOG(FATAL) << "timed futex wait failed for " << name_;
1012 }
1013 }
1014 guard_.ExclusiveLock(self);
1015 CHECK_GE(num_waiters_, 0);
1016 num_waiters_--;
1017 // We awoke and so no longer require awakes from the guard_'s unlock.
1018 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
1019 guard_.num_contenders_--;
1020 #else
1021 #if !defined(__APPLE__)
1022 int clock = CLOCK_MONOTONIC;
1023 #else
1024 int clock = CLOCK_REALTIME;
1025 #endif
1026 pid_t old_owner = guard_.GetExclusiveOwnerTid();
1027 guard_.exclusive_owner_.StoreRelaxed(0);
1028 guard_.recursion_count_ = 0;
1029 timespec ts;
1030 InitTimeSpec(true, clock, ms, ns, &ts);
1031 int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
1032 if (rc == ETIMEDOUT) {
1033 timed_out = true;
1034 } else if (rc != 0) {
1035 errno = rc;
1036 PLOG(FATAL) << "TimedWait failed for " << name_;
1037 }
1038 guard_.exclusive_owner_.StoreRelaxed(old_owner);
1039 #endif
1040 guard_.recursion_count_ = old_recursion_count;
1041 return timed_out;
1042 }
1043
Init()1044 void Locks::Init() {
1045 if (logging_lock_ != nullptr) {
1046 // Already initialized.
1047 if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
1048 DCHECK(modify_ldt_lock_ != nullptr);
1049 } else {
1050 DCHECK(modify_ldt_lock_ == nullptr);
1051 }
1052 DCHECK(abort_lock_ != nullptr);
1053 DCHECK(alloc_tracker_lock_ != nullptr);
1054 DCHECK(allocated_monitor_ids_lock_ != nullptr);
1055 DCHECK(allocated_thread_ids_lock_ != nullptr);
1056 DCHECK(breakpoint_lock_ != nullptr);
1057 DCHECK(classlinker_classes_lock_ != nullptr);
1058 DCHECK(deoptimization_lock_ != nullptr);
1059 DCHECK(heap_bitmap_lock_ != nullptr);
1060 DCHECK(oat_file_manager_lock_ != nullptr);
1061 DCHECK(verifier_deps_lock_ != nullptr);
1062 DCHECK(host_dlopen_handles_lock_ != nullptr);
1063 DCHECK(intern_table_lock_ != nullptr);
1064 DCHECK(jni_function_table_lock_ != nullptr);
1065 DCHECK(jni_libraries_lock_ != nullptr);
1066 DCHECK(logging_lock_ != nullptr);
1067 DCHECK(mutator_lock_ != nullptr);
1068 DCHECK(profiler_lock_ != nullptr);
1069 DCHECK(cha_lock_ != nullptr);
1070 DCHECK(subtype_check_lock_ != nullptr);
1071 DCHECK(thread_list_lock_ != nullptr);
1072 DCHECK(thread_suspend_count_lock_ != nullptr);
1073 DCHECK(trace_lock_ != nullptr);
1074 DCHECK(unexpected_signal_lock_ != nullptr);
1075 DCHECK(user_code_suspension_lock_ != nullptr);
1076 DCHECK(dex_lock_ != nullptr);
1077 DCHECK(native_debug_interface_lock_ != nullptr);
1078 } else {
1079 // Create global locks in level order from highest lock level to lowest.
1080 LockLevel current_lock_level = kInstrumentEntrypointsLock;
1081 DCHECK(instrument_entrypoints_lock_ == nullptr);
1082 instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
1083
1084 #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
1085 if ((new_level) >= current_lock_level) { \
1086 /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
1087 fprintf(stderr, "New local level %d is not less than current level %d\n", \
1088 new_level, current_lock_level); \
1089 exit(1); \
1090 } \
1091 current_lock_level = new_level;
1092
1093 UPDATE_CURRENT_LOCK_LEVEL(kUserCodeSuspensionLock);
1094 DCHECK(user_code_suspension_lock_ == nullptr);
1095 user_code_suspension_lock_ = new Mutex("user code suspension lock", current_lock_level);
1096
1097 UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
1098 DCHECK(mutator_lock_ == nullptr);
1099 mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
1100
1101 UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
1102 DCHECK(heap_bitmap_lock_ == nullptr);
1103 heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
1104
1105 UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
1106 DCHECK(trace_lock_ == nullptr);
1107 trace_lock_ = new Mutex("trace lock", current_lock_level);
1108
1109 UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
1110 DCHECK(runtime_shutdown_lock_ == nullptr);
1111 runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
1112
1113 UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
1114 DCHECK(profiler_lock_ == nullptr);
1115 profiler_lock_ = new Mutex("profiler lock", current_lock_level);
1116
1117 UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
1118 DCHECK(deoptimization_lock_ == nullptr);
1119 deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
1120
1121 UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
1122 DCHECK(alloc_tracker_lock_ == nullptr);
1123 alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
1124
1125 UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
1126 DCHECK(thread_list_lock_ == nullptr);
1127 thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
1128
1129 UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
1130 DCHECK(jni_libraries_lock_ == nullptr);
1131 jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
1132
1133 UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
1134 DCHECK(breakpoint_lock_ == nullptr);
1135 breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
1136
1137 UPDATE_CURRENT_LOCK_LEVEL(kSubtypeCheckLock);
1138 DCHECK(subtype_check_lock_ == nullptr);
1139 subtype_check_lock_ = new Mutex("SubtypeCheck lock", current_lock_level);
1140
1141 UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
1142 DCHECK(cha_lock_ == nullptr);
1143 cha_lock_ = new Mutex("CHA lock", current_lock_level);
1144
1145 UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
1146 DCHECK(classlinker_classes_lock_ == nullptr);
1147 classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
1148 current_lock_level);
1149
1150 UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
1151 DCHECK(allocated_monitor_ids_lock_ == nullptr);
1152 allocated_monitor_ids_lock_ = new Mutex("allocated monitor ids lock", current_lock_level);
1153
1154 UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
1155 DCHECK(allocated_thread_ids_lock_ == nullptr);
1156 allocated_thread_ids_lock_ = new Mutex("allocated thread ids lock", current_lock_level);
1157
1158 if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
1159 UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
1160 DCHECK(modify_ldt_lock_ == nullptr);
1161 modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
1162 }
1163
1164 UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
1165 DCHECK(dex_lock_ == nullptr);
1166 dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
1167
1168 UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
1169 DCHECK(oat_file_manager_lock_ == nullptr);
1170 oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
1171
1172 UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
1173 DCHECK(verifier_deps_lock_ == nullptr);
1174 verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
1175
1176 UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
1177 DCHECK(host_dlopen_handles_lock_ == nullptr);
1178 host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
1179
1180 UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
1181 DCHECK(intern_table_lock_ == nullptr);
1182 intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
1183
1184 UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
1185 DCHECK(reference_processor_lock_ == nullptr);
1186 reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
1187
1188 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
1189 DCHECK(reference_queue_cleared_references_lock_ == nullptr);
1190 reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1191
1192 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
1193 DCHECK(reference_queue_weak_references_lock_ == nullptr);
1194 reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1195
1196 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
1197 DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
1198 reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
1199
1200 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
1201 DCHECK(reference_queue_phantom_references_lock_ == nullptr);
1202 reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
1203
1204 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
1205 DCHECK(reference_queue_soft_references_lock_ == nullptr);
1206 reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
1207
1208 UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
1209 DCHECK(jni_globals_lock_ == nullptr);
1210 jni_globals_lock_ =
1211 new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
1212
1213 UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
1214 DCHECK(jni_weak_globals_lock_ == nullptr);
1215 jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
1216
1217 UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
1218 DCHECK(jni_function_table_lock_ == nullptr);
1219 jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
1220
1221 UPDATE_CURRENT_LOCK_LEVEL(kNativeDebugInterfaceLock);
1222 DCHECK(native_debug_interface_lock_ == nullptr);
1223 native_debug_interface_lock_ = new Mutex("Native debug interface lock", current_lock_level);
1224
1225 UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
1226 DCHECK(abort_lock_ == nullptr);
1227 abort_lock_ = new Mutex("abort lock", current_lock_level, true);
1228
1229 UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
1230 DCHECK(thread_suspend_count_lock_ == nullptr);
1231 thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
1232
1233 UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
1234 DCHECK(unexpected_signal_lock_ == nullptr);
1235 unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
1236
1237 UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
1238 DCHECK(logging_lock_ == nullptr);
1239 logging_lock_ = new Mutex("logging lock", current_lock_level, true);
1240
1241 #undef UPDATE_CURRENT_LOCK_LEVEL
1242
1243 // List of mutexes that we may hold when accessing a weak ref.
1244 AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
1245 AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
1246 AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
1247
1248 InitConditions();
1249 }
1250 }
1251
InitConditions()1252 void Locks::InitConditions() {
1253 thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
1254 }
1255
SetClientCallback(ClientCallback * safe_to_call_abort_cb)1256 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
1257 safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
1258 }
1259
1260 // Helper to allow checking shutdown while ignoring locking requirements.
IsSafeToCallAbortRacy()1261 bool Locks::IsSafeToCallAbortRacy() {
1262 Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
1263 return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
1264 }
1265
AddToExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1266 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1267 if (need_lock) {
1268 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1269 mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1270 expected_mutexes_on_weak_ref_access_.push_back(mutex);
1271 } else {
1272 mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1273 expected_mutexes_on_weak_ref_access_.push_back(mutex);
1274 }
1275 }
1276
RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1277 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1278 if (need_lock) {
1279 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1280 mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1281 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1282 auto it = std::find(list.begin(), list.end(), mutex);
1283 DCHECK(it != list.end());
1284 list.erase(it);
1285 } else {
1286 mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1287 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1288 auto it = std::find(list.begin(), list.end(), mutex);
1289 DCHECK(it != list.end());
1290 list.erase(it);
1291 }
1292 }
1293
IsExpectedOnWeakRefAccess(BaseMutex * mutex)1294 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
1295 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1296 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1297 return std::find(list.begin(), list.end(), mutex) != list.end();
1298 }
1299
1300 } // namespace art
1301