1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 19 20 #include <stdint.h> 21 22 #include <iosfwd> 23 #include <limits> 24 #include <string> 25 26 #include <android-base/logging.h> 27 28 #include "base/bit_utils.h" 29 #include "base/macros.h" 30 #include "base/mutex.h" 31 #include "gc_root.h" 32 #include "obj_ptr.h" 33 #include "offsets.h" 34 #include "read_barrier_option.h" 35 36 namespace art { 37 38 class RootInfo; 39 40 namespace mirror { 41 class Object; 42 } // namespace mirror 43 44 class MemMap; 45 46 // Maintain a table of indirect references. Used for local/global JNI references. 47 // 48 // The table contains object references, where the strong (local/global) references are part of the 49 // GC root set (but not the weak global references). When an object is added we return an 50 // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time. 51 // Conversions to and from indirect references are performed on upcalls and downcalls, so they need 52 // to be very fast. 53 // 54 // To be efficient for JNI local variable storage, we need to provide operations that allow us to 55 // operate on segments of the table, where segments are pushed and popped as if on a stack. For 56 // example, deletion of an entry should only succeed if it appears in the current segment, and we 57 // want to be able to strip off the current segment quickly when a method returns. Additions to the 58 // table must be made in the current segment even if space is available in an earlier area. 59 // 60 // A new segment is created when we call into native code from interpreted code, or when we handle 61 // the JNI PushLocalFrame function. 62 // 63 // The GC must be able to scan the entire table quickly. 64 // 65 // In summary, these must be very fast: 66 // - adding or removing a segment 67 // - adding references to a new segment 68 // - converting an indirect reference back to an Object 69 // These can be a little slower, but must still be pretty quick: 70 // - adding references to a "mature" segment 71 // - removing individual references 72 // - scanning the entire table straight through 73 // 74 // If there's more than one segment, we don't guarantee that the table will fill completely before 75 // we fail due to lack of space. We do ensure that the current segment will pack tightly, which 76 // should satisfy JNI requirements (e.g. EnsureLocalCapacity). 77 // 78 // Only SynchronizedGet is synchronized. 79 80 // Indirect reference definition. This must be interchangeable with JNI's jobject, and it's 81 // convenient to let null be null, so we use void*. 82 // 83 // We need a (potentially) large table index and a 2-bit reference type (global, local, weak 84 // global). We also reserve some bits to be used to detect stale indirect references: we put a 85 // serial number in the extra bits, and keep a copy of the serial number in the table. This requires 86 // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch 87 // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj, 88 // lookup iref1. A pattern based on object bits will miss this. 89 typedef void* IndirectRef; 90 91 // Indirect reference kind, used as the two low bits of IndirectRef. 92 // 93 // For convenience these match up with enum jobjectRefType from jni.h. 94 enum IndirectRefKind { 95 kHandleScopeOrInvalid = 0, // <<stack indirect reference table or invalid reference>> 96 kLocal = 1, // <<local reference>> 97 kGlobal = 2, // <<global reference>> 98 kWeakGlobal = 3, // <<weak global reference>> 99 kLastKind = kWeakGlobal 100 }; 101 std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs); 102 const char* GetIndirectRefKindString(const IndirectRefKind& kind); 103 104 // Table definition. 105 // 106 // For the global reference table, the expected common operations are adding a new entry and 107 // removing a recently-added entry (usually the most-recently-added entry). For JNI local 108 // references, the common operations are adding a new entry and removing an entire table segment. 109 // 110 // If we delete entries from the middle of the list, we will be left with "holes". We track the 111 // number of holes so that, when adding new elements, we can quickly decide to do a trivial append 112 // or go slot-hunting. 113 // 114 // When the top-most entry is removed, any holes immediately below it are also removed. Thus, 115 // deletion of an entry may reduce "top_index" by more than one. 116 // 117 // To get the desired behavior for JNI locals, we need to know the bottom and top of the current 118 // "segment". The top is managed internally, and the bottom is passed in as a function argument. 119 // When we call a native method or push a local frame, the current top index gets pushed on, and 120 // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top 121 // index, and the value stored in the previous frame becomes the new bottom. 122 // 123 // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and 124 // number of holes, which restricts us to 16 bits for the top index. The value is cached within the 125 // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for 126 // adding and removing references needs to detect the change of a segment. Helper fields are used 127 // for this detection. 128 // 129 // Common alternative implementation: make IndirectRef a pointer to the actual reference slot. 130 // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like 131 // determining the type and deleting the reference are more expensive because the table must be 132 // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move 133 // the table when expanding it (so realloc() is out), and tricks like serial number checking to 134 // detect stale references aren't possible (though we may be able to get similar benefits with other 135 // approaches). 136 // 137 // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a 138 // delete; must invalidate after segment pop might be worth only using it for JNI globals. 139 // 140 // TODO: may want completely different add/remove algorithms for global and local refs to improve 141 // performance. A large circular buffer might reduce the amortized cost of adding global 142 // references. 143 144 // The state of the current segment. We only store the index. Splitting it for index and hole 145 // count restricts the range too much. 146 struct IRTSegmentState { 147 uint32_t top_index; 148 }; 149 150 // Use as initial value for "cookie", and when table has only one segment. 151 static constexpr IRTSegmentState kIRTFirstSegment = { 0 }; 152 153 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2. 154 // Contains multiple entries but only one active one, this helps us detect use after free errors 155 // since the serial stored in the indirect ref wont match. 156 static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3; 157 158 class IrtEntry { 159 public: 160 void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 161 GetReference()162 GcRoot<mirror::Object>* GetReference() { 163 DCHECK_LT(serial_, kIRTPrevCount); 164 return &references_[serial_]; 165 } 166 GetReference()167 const GcRoot<mirror::Object>* GetReference() const { 168 DCHECK_LT(serial_, kIRTPrevCount); 169 return &references_[serial_]; 170 } 171 GetSerial()172 uint32_t GetSerial() const { 173 return serial_; 174 } 175 176 void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 177 178 private: 179 uint32_t serial_; 180 GcRoot<mirror::Object> references_[kIRTPrevCount]; 181 }; 182 static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t), 183 "Unexpected sizeof(IrtEntry)"); 184 static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)"); 185 186 class IrtIterator { 187 public: IrtIterator(IrtEntry * table,size_t i,size_t capacity)188 IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_) 189 : table_(table), i_(i), capacity_(capacity) { 190 // capacity_ is used in some target; has warning with unused attribute. 191 UNUSED(capacity_); 192 } 193 194 IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) { 195 ++i_; 196 return *this; 197 } 198 REQUIRES_SHARED(Locks::mutator_lock_)199 GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) { 200 // This does not have a read barrier as this is used to visit roots. 201 return table_[i_].GetReference(); 202 } 203 equals(const IrtIterator & rhs)204 bool equals(const IrtIterator& rhs) const { 205 return (i_ == rhs.i_ && table_ == rhs.table_); 206 } 207 208 private: 209 IrtEntry* const table_; 210 size_t i_; 211 const size_t capacity_; 212 }; 213 214 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) { 215 return lhs.equals(rhs); 216 } 217 218 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) { 219 return !lhs.equals(rhs); 220 } 221 222 class IndirectReferenceTable { 223 public: 224 enum class ResizableCapacity { 225 kNo, 226 kYes 227 }; 228 229 // WARNING: Construction of the IndirectReferenceTable may fail. 230 // error_msg must not be null. If error_msg is set by the constructor, then 231 // construction has failed and the IndirectReferenceTable will be in an 232 // invalid state. Use IsValid to check whether the object is in an invalid 233 // state. 234 IndirectReferenceTable(size_t max_count, 235 IndirectRefKind kind, 236 ResizableCapacity resizable, 237 std::string* error_msg); 238 239 ~IndirectReferenceTable(); 240 241 /* 242 * Checks whether construction of the IndirectReferenceTable succeeded. 243 * 244 * This object must only be used if IsValid() returns true. It is safe to 245 * call IsValid from multiple threads without locking or other explicit 246 * synchronization. 247 */ 248 bool IsValid() const; 249 250 // Add a new entry. "obj" must be a valid non-null object reference. This function will 251 // return null if an error happened (with an appropriate error message set). 252 IndirectRef Add(IRTSegmentState previous_state, 253 ObjPtr<mirror::Object> obj, 254 std::string* error_msg) 255 REQUIRES_SHARED(Locks::mutator_lock_); 256 257 // Given an IndirectRef in the table, return the Object it refers to. 258 // 259 // This function may abort under error conditions. 260 template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> 261 ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_) 262 ALWAYS_INLINE; 263 264 // Synchronized get which reads a reference, acquiring a lock if necessary. 265 template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> SynchronizedGet(IndirectRef iref)266 ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const 267 REQUIRES_SHARED(Locks::mutator_lock_) { 268 return Get<kReadBarrierOption>(iref); 269 } 270 271 // Updates an existing indirect reference to point to a new object. 272 void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 273 274 // Remove an existing entry. 275 // 276 // If the entry is not between the current top index and the bottom index 277 // specified by the cookie, we don't remove anything. This is the behavior 278 // required by JNI's DeleteLocalRef function. 279 // 280 // Returns "false" if nothing was removed. 281 bool Remove(IRTSegmentState previous_state, IndirectRef iref); 282 283 void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_); 284 285 void Dump(std::ostream& os) const 286 REQUIRES_SHARED(Locks::mutator_lock_) 287 REQUIRES(!Locks::alloc_tracker_lock_); 288 289 // Return the #of entries in the entire table. This includes holes, and 290 // so may be larger than the actual number of "live" entries. Capacity()291 size_t Capacity() const { 292 return segment_state_.top_index; 293 } 294 295 // Ensure that at least free_capacity elements are available, or return false. 296 bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) 297 REQUIRES_SHARED(Locks::mutator_lock_); 298 // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free, 299 // without recovering holes. Thus this is a conservative estimate. 300 size_t FreeCapacity() const; 301 302 // Note IrtIterator does not have a read barrier as it's used to visit roots. begin()303 IrtIterator begin() { 304 return IrtIterator(table_, 0, Capacity()); 305 } 306 end()307 IrtIterator end() { 308 return IrtIterator(table_, Capacity(), Capacity()); 309 } 310 311 void VisitRoots(RootVisitor* visitor, const RootInfo& root_info) 312 REQUIRES_SHARED(Locks::mutator_lock_); 313 GetSegmentState()314 IRTSegmentState GetSegmentState() const { 315 return segment_state_; 316 } 317 318 void SetSegmentState(IRTSegmentState new_state); 319 SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED)320 static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) { 321 // Note: Currently segment_state_ is at offset 0. We're testing the expected value in 322 // jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that 323 // is not pointer-size-safe. 324 return Offset(0); 325 } 326 327 // Release pages past the end of the table that may have previously held references. 328 void Trim() REQUIRES_SHARED(Locks::mutator_lock_); 329 330 // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind. GetIndirectRefKind(IndirectRef iref)331 ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) { 332 return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref)); 333 } 334 335 private: 336 static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount); 337 static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1; 338 339 static constexpr size_t kKindBits = MinimumBitsToStore( 340 static_cast<uint32_t>(IndirectRefKind::kLastKind)); 341 static constexpr uint32_t kKindMask = (1u << kKindBits) - 1; 342 EncodeIndex(uint32_t table_index)343 static constexpr uintptr_t EncodeIndex(uint32_t table_index) { 344 static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size"); 345 DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kSerialBits - kKindBits); 346 return (static_cast<uintptr_t>(table_index) << kKindBits << kSerialBits); 347 } DecodeIndex(uintptr_t uref)348 static constexpr uint32_t DecodeIndex(uintptr_t uref) { 349 return static_cast<uint32_t>((uref >> kKindBits) >> kSerialBits); 350 } 351 EncodeIndirectRefKind(IndirectRefKind kind)352 static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) { 353 return static_cast<uintptr_t>(kind); 354 } DecodeIndirectRefKind(uintptr_t uref)355 static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) { 356 return static_cast<IndirectRefKind>(uref & kKindMask); 357 } 358 EncodeSerial(uint32_t serial)359 static constexpr uintptr_t EncodeSerial(uint32_t serial) { 360 DCHECK_LE(MinimumBitsToStore(serial), kSerialBits); 361 return serial << kKindBits; 362 } DecodeSerial(uintptr_t uref)363 static constexpr uint32_t DecodeSerial(uintptr_t uref) { 364 return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask; 365 } 366 EncodeIndirectRef(uint32_t table_index,uint32_t serial)367 constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const { 368 DCHECK_LT(table_index, max_entries_); 369 return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_); 370 } 371 372 static void ConstexprChecks(); 373 374 // Extract the table index from an indirect reference. ExtractIndex(IndirectRef iref)375 ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) { 376 return DecodeIndex(reinterpret_cast<uintptr_t>(iref)); 377 } 378 ToIndirectRef(uint32_t table_index)379 IndirectRef ToIndirectRef(uint32_t table_index) const { 380 DCHECK_LT(table_index, max_entries_); 381 uint32_t serial = table_[table_index].GetSerial(); 382 return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial)); 383 } 384 385 // Resize the backing table. Currently must be larger than the current size. 386 bool Resize(size_t new_size, std::string* error_msg); 387 388 void RecoverHoles(IRTSegmentState from); 389 390 // Abort if check_jni is not enabled. Otherwise, just log as an error. 391 static void AbortIfNoCheckJNI(const std::string& msg); 392 393 /* extra debugging checks */ 394 bool GetChecked(IndirectRef) const REQUIRES_SHARED(Locks::mutator_lock_); 395 bool CheckEntry(const char*, IndirectRef, uint32_t) const; 396 397 /// semi-public - read/write by jni down calls. 398 IRTSegmentState segment_state_; 399 400 // Mem map where we store the indirect refs. 401 std::unique_ptr<MemMap> table_mem_map_; 402 // bottom of the stack. Do not directly access the object references 403 // in this as they are roots. Use Get() that has a read barrier. 404 IrtEntry* table_; 405 // bit mask, ORed into all irefs. 406 const IndirectRefKind kind_; 407 408 // max #of entries allowed (modulo resizing). 409 size_t max_entries_; 410 411 // Some values to retain old behavior with holes. Description of the algorithm is in the .cc 412 // file. 413 // TODO: Consider other data structures for compact tables, e.g., free lists. 414 size_t current_num_holes_; 415 IRTSegmentState last_known_previous_state_; 416 417 // Whether the table's capacity may be resized. As there are no locks used, it is the caller's 418 // responsibility to ensure thread-safety. 419 ResizableCapacity resizable_; 420 }; 421 422 } // namespace art 423 424 #endif // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 425