1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "debug_print.h"
23 #include "debugger.h"
24 #include "dex/dex_file-inl.h"
25 #include "dex/dex_file_types.h"
26 #include "dex/dex_instruction-inl.h"
27 #include "dex/method_reference.h"
28 #include "entrypoints/entrypoint_utils-inl.h"
29 #include "entrypoints/runtime_asm_entrypoints.h"
30 #include "gc/accounting/card_table-inl.h"
31 #include "imt_conflict_table.h"
32 #include "imtable-inl.h"
33 #include "index_bss_mapping.h"
34 #include "instrumentation.h"
35 #include "interpreter/interpreter.h"
36 #include "jit/jit.h"
37 #include "linear_alloc.h"
38 #include "method_handles.h"
39 #include "mirror/class-inl.h"
40 #include "mirror/dex_cache-inl.h"
41 #include "mirror/method.h"
42 #include "mirror/method_handle_impl.h"
43 #include "mirror/object-inl.h"
44 #include "mirror/object_array-inl.h"
45 #include "oat_file.h"
46 #include "oat_quick_method_header.h"
47 #include "quick_exception_handler.h"
48 #include "runtime.h"
49 #include "scoped_thread_state_change-inl.h"
50 #include "stack.h"
51 #include "thread-inl.h"
52 #include "well_known_classes.h"
53 
54 namespace art {
55 
56 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
57 class QuickArgumentVisitor {
58   // Number of bytes for each out register in the caller method's frame.
59   static constexpr size_t kBytesStackArgLocation = 4;
60   // Frame size in bytes of a callee-save frame for RefsAndArgs.
61   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
62       GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
63 #if defined(__arm__)
64   // The callee save frame is pointed to by SP.
65   // | argN       |  |
66   // | ...        |  |
67   // | arg4       |  |
68   // | arg3 spill |  |  Caller's frame
69   // | arg2 spill |  |
70   // | arg1 spill |  |
71   // | Method*    | ---
72   // | LR         |
73   // | ...        |    4x6 bytes callee saves
74   // | R3         |
75   // | R2         |
76   // | R1         |
77   // | S15        |
78   // | :          |
79   // | S0         |
80   // |            |    4x2 bytes padding
81   // | Method*    |  <- sp
82   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
83   static constexpr bool kAlignPairRegister = true;
84   static constexpr bool kQuickSoftFloatAbi = false;
85   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
86   static constexpr bool kQuickSkipOddFpRegisters = false;
87   static constexpr size_t kNumQuickGprArgs = 3;
88   static constexpr size_t kNumQuickFprArgs = 16;
89   static constexpr bool kGprFprLockstep = false;
90   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
91       arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
92   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
93       arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
94   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
95       arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)96   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
97     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
98   }
99 #elif defined(__aarch64__)
100   // The callee save frame is pointed to by SP.
101   // | argN       |  |
102   // | ...        |  |
103   // | arg4       |  |
104   // | arg3 spill |  |  Caller's frame
105   // | arg2 spill |  |
106   // | arg1 spill |  |
107   // | Method*    | ---
108   // | LR         |
109   // | X29        |
110   // |  :         |
111   // | X20        |
112   // | X7         |
113   // | :          |
114   // | X1         |
115   // | D7         |
116   // |  :         |
117   // | D0         |
118   // |            |    padding
119   // | Method*    |  <- sp
120   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
121   static constexpr bool kAlignPairRegister = false;
122   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
123   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
124   static constexpr bool kQuickSkipOddFpRegisters = false;
125   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
126   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
127   static constexpr bool kGprFprLockstep = false;
128   // Offset of first FPR arg.
129   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
130       arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
131   // Offset of first GPR arg.
132   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
133       arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
134   // Offset of return address.
135   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
136       arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
GprIndexToGprOffset(uint32_t gpr_index)137   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
138     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
139   }
140 #elif defined(__mips__) && !defined(__LP64__)
141   // The callee save frame is pointed to by SP.
142   // | argN       |  |
143   // | ...        |  |
144   // | arg4       |  |
145   // | arg3 spill |  |  Caller's frame
146   // | arg2 spill |  |
147   // | arg1 spill |  |
148   // | Method*    | ---
149   // | RA         |
150   // | ...        |    callee saves
151   // | T1         |    arg5
152   // | T0         |    arg4
153   // | A3         |    arg3
154   // | A2         |    arg2
155   // | A1         |    arg1
156   // | F19        |
157   // | F18        |    f_arg5
158   // | F17        |
159   // | F16        |    f_arg4
160   // | F15        |
161   // | F14        |    f_arg3
162   // | F13        |
163   // | F12        |    f_arg2
164   // | F11        |
165   // | F10        |    f_arg1
166   // | F9         |
167   // | F8         |    f_arg0
168   // |            |    padding
169   // | A0/Method* |  <- sp
170   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
171   static constexpr bool kAlignPairRegister = true;
172   static constexpr bool kQuickSoftFloatAbi = false;
173   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
174   static constexpr bool kQuickSkipOddFpRegisters = true;
175   static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
176   static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
177                                                   // passed only in even numbered registers and each
178                                                   // double occupies two registers.
179   static constexpr bool kGprFprLockstep = false;
180   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
181   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
182   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)183   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
184     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
185   }
186 #elif defined(__mips__) && defined(__LP64__)
187   // The callee save frame is pointed to by SP.
188   // | argN       |  |
189   // | ...        |  |
190   // | arg4       |  |
191   // | arg3 spill |  |  Caller's frame
192   // | arg2 spill |  |
193   // | arg1 spill |  |
194   // | Method*    | ---
195   // | RA         |
196   // | ...        |    callee saves
197   // | A7         |    arg7
198   // | A6         |    arg6
199   // | A5         |    arg5
200   // | A4         |    arg4
201   // | A3         |    arg3
202   // | A2         |    arg2
203   // | A1         |    arg1
204   // | F19        |    f_arg7
205   // | F18        |    f_arg6
206   // | F17        |    f_arg5
207   // | F16        |    f_arg4
208   // | F15        |    f_arg3
209   // | F14        |    f_arg2
210   // | F13        |    f_arg1
211   // | F12        |    f_arg0
212   // |            |    padding
213   // | A0/Method* |  <- sp
214   // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
215   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
216   static constexpr bool kAlignPairRegister = false;
217   static constexpr bool kQuickSoftFloatAbi = false;
218   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
219   static constexpr bool kQuickSkipOddFpRegisters = false;
220   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
221   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
222   static constexpr bool kGprFprLockstep = true;
223 
224   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
225   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
226   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)227   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
228     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
229   }
230 #elif defined(__i386__)
231   // The callee save frame is pointed to by SP.
232   // | argN        |  |
233   // | ...         |  |
234   // | arg4        |  |
235   // | arg3 spill  |  |  Caller's frame
236   // | arg2 spill  |  |
237   // | arg1 spill  |  |
238   // | Method*     | ---
239   // | Return      |
240   // | EBP,ESI,EDI |    callee saves
241   // | EBX         |    arg3
242   // | EDX         |    arg2
243   // | ECX         |    arg1
244   // | XMM3        |    float arg 4
245   // | XMM2        |    float arg 3
246   // | XMM1        |    float arg 2
247   // | XMM0        |    float arg 1
248   // | EAX/Method* |  <- sp
249   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
250   static constexpr bool kAlignPairRegister = false;
251   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
252   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
253   static constexpr bool kQuickSkipOddFpRegisters = false;
254   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
255   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
256   static constexpr bool kGprFprLockstep = false;
257   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
258   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
259   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)260   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
261     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
262   }
263 #elif defined(__x86_64__)
264   // The callee save frame is pointed to by SP.
265   // | argN            |  |
266   // | ...             |  |
267   // | reg. arg spills |  |  Caller's frame
268   // | Method*         | ---
269   // | Return          |
270   // | R15             |    callee save
271   // | R14             |    callee save
272   // | R13             |    callee save
273   // | R12             |    callee save
274   // | R9              |    arg5
275   // | R8              |    arg4
276   // | RSI/R6          |    arg1
277   // | RBP/R5          |    callee save
278   // | RBX/R3          |    callee save
279   // | RDX/R2          |    arg2
280   // | RCX/R1          |    arg3
281   // | XMM7            |    float arg 8
282   // | XMM6            |    float arg 7
283   // | XMM5            |    float arg 6
284   // | XMM4            |    float arg 5
285   // | XMM3            |    float arg 4
286   // | XMM2            |    float arg 3
287   // | XMM1            |    float arg 2
288   // | XMM0            |    float arg 1
289   // | Padding         |
290   // | RDI/Method*     |  <- sp
291   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
292   static constexpr bool kAlignPairRegister = false;
293   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
294   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
295   static constexpr bool kQuickSkipOddFpRegisters = false;
296   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
297   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
298   static constexpr bool kGprFprLockstep = false;
299   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
300   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
301   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)302   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
303     switch (gpr_index) {
304       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
305       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
306       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
307       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
308       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
309       default:
310       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
311       return 0;
312     }
313   }
314 #else
315 #error "Unsupported architecture"
316 #endif
317 
318  public:
319   // Special handling for proxy methods. Proxy methods are instance methods so the
320   // 'this' object is the 1st argument. They also have the same frame layout as the
321   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
322   // 1st GPR.
GetProxyThisObjectReference(ArtMethod ** sp)323   static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
324       REQUIRES_SHARED(Locks::mutator_lock_) {
325     CHECK((*sp)->IsProxyMethod());
326     CHECK_GT(kNumQuickGprArgs, 0u);
327     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
328     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
329         GprIndexToGprOffset(kThisGprIndex);
330     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
331     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
332   }
333 
GetCallingMethod(ArtMethod ** sp)334   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
335     DCHECK((*sp)->IsCalleeSaveMethod());
336     return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
337   }
338 
GetOuterMethod(ArtMethod ** sp)339   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
340     DCHECK((*sp)->IsCalleeSaveMethod());
341     uint8_t* previous_sp =
342         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
343     return *reinterpret_cast<ArtMethod**>(previous_sp);
344   }
345 
GetCallingDexPc(ArtMethod ** sp)346   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
347     DCHECK((*sp)->IsCalleeSaveMethod());
348     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
349                                                             CalleeSaveType::kSaveRefsAndArgs);
350     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
351         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
352     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
353     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
354     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
355 
356     if (current_code->IsOptimized()) {
357       CodeInfo code_info = current_code->GetOptimizedCodeInfo();
358       CodeInfoEncoding encoding = code_info.ExtractEncoding();
359       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
360       DCHECK(stack_map.IsValid());
361       if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
362         InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
363         return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
364                                            inline_info.GetDepth(encoding.inline_info.encoding)-1);
365       } else {
366         return stack_map.GetDexPc(encoding.stack_map.encoding);
367       }
368     } else {
369       return current_code->ToDexPc(*caller_sp, outer_pc);
370     }
371   }
372 
GetInvokeType(ArtMethod ** sp,InvokeType * invoke_type,uint32_t * dex_method_index)373   static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
374       REQUIRES_SHARED(Locks::mutator_lock_) {
375     DCHECK((*sp)->IsCalleeSaveMethod());
376     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
377                                                             CalleeSaveType::kSaveRefsAndArgs);
378     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
379         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
380     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
381     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
382     if (!current_code->IsOptimized()) {
383       return false;
384     }
385     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
386     CodeInfo code_info = current_code->GetOptimizedCodeInfo();
387     CodeInfoEncoding encoding = code_info.ExtractEncoding();
388     MethodInfo method_info = current_code->GetOptimizedMethodInfo();
389     InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
390     if (invoke.IsValid()) {
391       *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
392       *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
393       return true;
394     }
395     return false;
396   }
397 
398   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)399   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
400     DCHECK((*sp)->IsCalleeSaveMethod());
401     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
402     return *reinterpret_cast<uintptr_t*>(lr);
403   }
404 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)405   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
406                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
407           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
408           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
409           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
410           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
411               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
412           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
413           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
414     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
415                   "Number of Quick FPR arguments unexpected");
416     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
417                   "Double alignment unexpected");
418     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
419     // next register is even.
420     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
421                   "Number of Quick FPR arguments not even");
422     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
423   }
424 
~QuickArgumentVisitor()425   virtual ~QuickArgumentVisitor() {}
426 
427   virtual void Visit() = 0;
428 
GetParamPrimitiveType() const429   Primitive::Type GetParamPrimitiveType() const {
430     return cur_type_;
431   }
432 
GetParamAddress() const433   uint8_t* GetParamAddress() const {
434     if (!kQuickSoftFloatAbi) {
435       Primitive::Type type = GetParamPrimitiveType();
436       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
437         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
438           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
439             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
440           }
441         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
442           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
443         }
444         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
445       }
446     }
447     if (gpr_index_ < kNumQuickGprArgs) {
448       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
449     }
450     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
451   }
452 
IsSplitLongOrDouble() const453   bool IsSplitLongOrDouble() const {
454     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
455         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
456       return is_split_long_or_double_;
457     } else {
458       return false;  // An optimization for when GPR and FPRs are 64bit.
459     }
460   }
461 
IsParamAReference() const462   bool IsParamAReference() const {
463     return GetParamPrimitiveType() == Primitive::kPrimNot;
464   }
465 
IsParamALongOrDouble() const466   bool IsParamALongOrDouble() const {
467     Primitive::Type type = GetParamPrimitiveType();
468     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
469   }
470 
ReadSplitLongParam() const471   uint64_t ReadSplitLongParam() const {
472     // The splitted long is always available through the stack.
473     return *reinterpret_cast<uint64_t*>(stack_args_
474         + stack_index_ * kBytesStackArgLocation);
475   }
476 
IncGprIndex()477   void IncGprIndex() {
478     gpr_index_++;
479     if (kGprFprLockstep) {
480       fpr_index_++;
481     }
482   }
483 
IncFprIndex()484   void IncFprIndex() {
485     fpr_index_++;
486     if (kGprFprLockstep) {
487       gpr_index_++;
488     }
489   }
490 
VisitArguments()491   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
492     // (a) 'stack_args_' should point to the first method's argument
493     // (b) whatever the argument type it is, the 'stack_index_' should
494     //     be moved forward along with every visiting.
495     gpr_index_ = 0;
496     fpr_index_ = 0;
497     if (kQuickDoubleRegAlignedFloatBackFilled) {
498       fpr_double_index_ = 0;
499     }
500     stack_index_ = 0;
501     if (!is_static_) {  // Handle this.
502       cur_type_ = Primitive::kPrimNot;
503       is_split_long_or_double_ = false;
504       Visit();
505       stack_index_++;
506       if (kNumQuickGprArgs > 0) {
507         IncGprIndex();
508       }
509     }
510     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
511       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
512       switch (cur_type_) {
513         case Primitive::kPrimNot:
514         case Primitive::kPrimBoolean:
515         case Primitive::kPrimByte:
516         case Primitive::kPrimChar:
517         case Primitive::kPrimShort:
518         case Primitive::kPrimInt:
519           is_split_long_or_double_ = false;
520           Visit();
521           stack_index_++;
522           if (gpr_index_ < kNumQuickGprArgs) {
523             IncGprIndex();
524           }
525           break;
526         case Primitive::kPrimFloat:
527           is_split_long_or_double_ = false;
528           Visit();
529           stack_index_++;
530           if (kQuickSoftFloatAbi) {
531             if (gpr_index_ < kNumQuickGprArgs) {
532               IncGprIndex();
533             }
534           } else {
535             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
536               IncFprIndex();
537               if (kQuickDoubleRegAlignedFloatBackFilled) {
538                 // Double should not overlap with float.
539                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
540                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
541                 // Float should not overlap with double.
542                 if (fpr_index_ % 2 == 0) {
543                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
544                 }
545               } else if (kQuickSkipOddFpRegisters) {
546                 IncFprIndex();
547               }
548             }
549           }
550           break;
551         case Primitive::kPrimDouble:
552         case Primitive::kPrimLong:
553           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
554             if (cur_type_ == Primitive::kPrimLong &&
555 #if defined(__mips__) && !defined(__LP64__)
556                 (gpr_index_ == 0 || gpr_index_ == 2) &&
557 #else
558                 gpr_index_ == 0 &&
559 #endif
560                 kAlignPairRegister) {
561               // Currently, this is only for ARM and MIPS, where we align long parameters with
562               // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
563               // R2 (on ARM) or A2(T0) (on MIPS) instead.
564               IncGprIndex();
565             }
566             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
567                 ((gpr_index_ + 1) == kNumQuickGprArgs);
568             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
569               // We don't want to split this. Pass over this register.
570               gpr_index_++;
571               is_split_long_or_double_ = false;
572             }
573             Visit();
574             if (kBytesStackArgLocation == 4) {
575               stack_index_+= 2;
576             } else {
577               CHECK_EQ(kBytesStackArgLocation, 8U);
578               stack_index_++;
579             }
580             if (gpr_index_ < kNumQuickGprArgs) {
581               IncGprIndex();
582               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
583                 if (gpr_index_ < kNumQuickGprArgs) {
584                   IncGprIndex();
585                 }
586               }
587             }
588           } else {
589             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
590                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
591             Visit();
592             if (kBytesStackArgLocation == 4) {
593               stack_index_+= 2;
594             } else {
595               CHECK_EQ(kBytesStackArgLocation, 8U);
596               stack_index_++;
597             }
598             if (kQuickDoubleRegAlignedFloatBackFilled) {
599               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
600                 fpr_double_index_ += 2;
601                 // Float should not overlap with double.
602                 if (fpr_index_ % 2 == 0) {
603                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
604                 }
605               }
606             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
607               IncFprIndex();
608               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
609                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
610                   IncFprIndex();
611                 }
612               }
613             }
614           }
615           break;
616         default:
617           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
618       }
619     }
620   }
621 
622  protected:
623   const bool is_static_;
624   const char* const shorty_;
625   const uint32_t shorty_len_;
626 
627  private:
628   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
629   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
630   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
631   uint32_t gpr_index_;  // Index into spilled GPRs.
632   // Index into spilled FPRs.
633   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
634   // holds a higher register number.
635   uint32_t fpr_index_;
636   // Index into spilled FPRs for aligned double.
637   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
638   // terms of singles, may be behind fpr_index.
639   uint32_t fpr_double_index_;
640   uint32_t stack_index_;  // Index into arguments on the stack.
641   // The current type of argument during VisitArguments.
642   Primitive::Type cur_type_;
643   // Does a 64bit parameter straddle the register and stack arguments?
644   bool is_split_long_or_double_;
645 };
646 
647 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
648 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)649 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
650     REQUIRES_SHARED(Locks::mutator_lock_) {
651   return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
652 }
653 
654 // Visits arguments on the stack placing them into the shadow frame.
655 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
656  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)657   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
658                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
659       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
660 
661   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
662 
663  private:
664   ShadowFrame* const sf_;
665   uint32_t cur_reg_;
666 
667   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
668 };
669 
Visit()670 void BuildQuickShadowFrameVisitor::Visit() {
671   Primitive::Type type = GetParamPrimitiveType();
672   switch (type) {
673     case Primitive::kPrimLong:  // Fall-through.
674     case Primitive::kPrimDouble:
675       if (IsSplitLongOrDouble()) {
676         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
677       } else {
678         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
679       }
680       ++cur_reg_;
681       break;
682     case Primitive::kPrimNot: {
683         StackReference<mirror::Object>* stack_ref =
684             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
685         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
686       }
687       break;
688     case Primitive::kPrimBoolean:  // Fall-through.
689     case Primitive::kPrimByte:     // Fall-through.
690     case Primitive::kPrimChar:     // Fall-through.
691     case Primitive::kPrimShort:    // Fall-through.
692     case Primitive::kPrimInt:      // Fall-through.
693     case Primitive::kPrimFloat:
694       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
695       break;
696     case Primitive::kPrimVoid:
697       LOG(FATAL) << "UNREACHABLE";
698       UNREACHABLE();
699   }
700   ++cur_reg_;
701 }
702 
703 // Don't inline. See b/65159206.
704 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)705 static void HandleDeoptimization(JValue* result,
706                                  ArtMethod* method,
707                                  ShadowFrame* deopt_frame,
708                                  ManagedStack* fragment)
709     REQUIRES_SHARED(Locks::mutator_lock_) {
710   // Coming from partial-fragment deopt.
711   Thread* self = Thread::Current();
712   if (kIsDebugBuild) {
713     // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
714     // of the call-stack) corresponds to the called method.
715     ShadowFrame* linked = deopt_frame;
716     while (linked->GetLink() != nullptr) {
717       linked = linked->GetLink();
718     }
719     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
720         << ArtMethod::PrettyMethod(linked->GetMethod());
721   }
722 
723   if (VLOG_IS_ON(deopt)) {
724     // Print out the stack to verify that it was a partial-fragment deopt.
725     LOG(INFO) << "Continue-ing from deopt. Stack is:";
726     QuickExceptionHandler::DumpFramesWithType(self, true);
727   }
728 
729   ObjPtr<mirror::Throwable> pending_exception;
730   bool from_code = false;
731   DeoptimizationMethodType method_type;
732   self->PopDeoptimizationContext(/* out */ result,
733                                  /* out */ &pending_exception,
734                                  /* out */ &from_code,
735                                  /* out */ &method_type);
736 
737   // Push a transition back into managed code onto the linked list in thread.
738   self->PushManagedStackFragment(fragment);
739 
740   // Ensure that the stack is still in order.
741   if (kIsDebugBuild) {
742     class DummyStackVisitor : public StackVisitor {
743      public:
744       explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
745           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
746 
747       bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
748         // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
749         // logic. Just always say we want to continue.
750         return true;
751       }
752     };
753     DummyStackVisitor dsv(self);
754     dsv.WalkStack();
755   }
756 
757   // Restore the exception that was pending before deoptimization then interpret the
758   // deoptimized frames.
759   if (pending_exception != nullptr) {
760     self->SetException(pending_exception);
761   }
762   interpreter::EnterInterpreterFromDeoptimize(self,
763                                               deopt_frame,
764                                               result,
765                                               from_code,
766                                               DeoptimizationMethodType::kDefault);
767 }
768 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)769 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
770     REQUIRES_SHARED(Locks::mutator_lock_) {
771   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
772   // frame.
773   ScopedQuickEntrypointChecks sqec(self);
774 
775   if (UNLIKELY(!method->IsInvokable())) {
776     method->ThrowInvocationTimeError();
777     return 0;
778   }
779 
780   JValue tmp_value;
781   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
782       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
783   ManagedStack fragment;
784 
785   DCHECK(!method->IsNative()) << method->PrettyMethod();
786   uint32_t shorty_len = 0;
787   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
788   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
789   CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
790   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
791 
792   JValue result;
793 
794   if (UNLIKELY(deopt_frame != nullptr)) {
795     HandleDeoptimization(&result, method, deopt_frame, &fragment);
796   } else {
797     const char* old_cause = self->StartAssertNoThreadSuspension(
798         "Building interpreter shadow frame");
799     uint16_t num_regs = accessor.RegistersSize();
800     // No last shadow coming from quick.
801     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
802         CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
803     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
804     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
805     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
806                                                       shadow_frame, first_arg_reg);
807     shadow_frame_builder.VisitArguments();
808     const bool needs_initialization =
809         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
810     // Push a transition back into managed code onto the linked list in thread.
811     self->PushManagedStackFragment(&fragment);
812     self->PushShadowFrame(shadow_frame);
813     self->EndAssertNoThreadSuspension(old_cause);
814 
815     if (needs_initialization) {
816       // Ensure static method's class is initialized.
817       StackHandleScope<1> hs(self);
818       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
819       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
820         DCHECK(Thread::Current()->IsExceptionPending())
821             << shadow_frame->GetMethod()->PrettyMethod();
822         self->PopManagedStackFragment(fragment);
823         return 0;
824       }
825     }
826 
827     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
828   }
829 
830   // Pop transition.
831   self->PopManagedStackFragment(fragment);
832 
833   // Request a stack deoptimization if needed
834   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
835   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
836   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
837   // should be done and it knows the real return pc.
838   if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
839                Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
840     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
841       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
842                    << caller->PrettyMethod();
843     } else {
844       // Push the context of the deoptimization stack so we can restore the return value and the
845       // exception before executing the deoptimized frames.
846       self->PushDeoptimizationContext(
847           result,
848           shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
849           self->GetException(),
850           false /* from_code */,
851           DeoptimizationMethodType::kDefault);
852 
853       // Set special exception to cause deoptimization.
854       self->SetException(Thread::GetDeoptimizationException());
855     }
856   }
857 
858   // No need to restore the args since the method has already been run by the interpreter.
859   return result.GetJ();
860 }
861 
862 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
863 // to jobjects.
864 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
865  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)866   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
867                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
868       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
869 
870   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
871 
872  private:
873   ScopedObjectAccessUnchecked* const soa_;
874   std::vector<jvalue>* const args_;
875 
876   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
877 };
878 
Visit()879 void BuildQuickArgumentVisitor::Visit() {
880   jvalue val;
881   Primitive::Type type = GetParamPrimitiveType();
882   switch (type) {
883     case Primitive::kPrimNot: {
884       StackReference<mirror::Object>* stack_ref =
885           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
886       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
887       break;
888     }
889     case Primitive::kPrimLong:  // Fall-through.
890     case Primitive::kPrimDouble:
891       if (IsSplitLongOrDouble()) {
892         val.j = ReadSplitLongParam();
893       } else {
894         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
895       }
896       break;
897     case Primitive::kPrimBoolean:  // Fall-through.
898     case Primitive::kPrimByte:     // Fall-through.
899     case Primitive::kPrimChar:     // Fall-through.
900     case Primitive::kPrimShort:    // Fall-through.
901     case Primitive::kPrimInt:      // Fall-through.
902     case Primitive::kPrimFloat:
903       val.i = *reinterpret_cast<jint*>(GetParamAddress());
904       break;
905     case Primitive::kPrimVoid:
906       LOG(FATAL) << "UNREACHABLE";
907       UNREACHABLE();
908   }
909   args_->push_back(val);
910 }
911 
912 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
913 // which is responsible for recording callee save registers. We explicitly place into jobjects the
914 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
915 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)916 extern "C" uint64_t artQuickProxyInvokeHandler(
917     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
918     REQUIRES_SHARED(Locks::mutator_lock_) {
919   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
920   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
921   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
922   const char* old_cause =
923       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
924   // Register the top of the managed stack, making stack crawlable.
925   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
926   self->VerifyStack();
927   // Start new JNI local reference state.
928   JNIEnvExt* env = self->GetJniEnv();
929   ScopedObjectAccessUnchecked soa(env);
930   ScopedJniEnvLocalRefState env_state(env);
931   // Create local ref. copies of proxy method and the receiver.
932   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
933 
934   // Placing arguments into args vector and remove the receiver.
935   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
936   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
937                                        << non_proxy_method->PrettyMethod();
938   std::vector<jvalue> args;
939   uint32_t shorty_len = 0;
940   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
941   BuildQuickArgumentVisitor local_ref_visitor(
942       sp, /* is_static */ false, shorty, shorty_len, &soa, &args);
943 
944   local_ref_visitor.VisitArguments();
945   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
946   args.erase(args.begin());
947 
948   // Convert proxy method into expected interface method.
949   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
950   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
951   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
952   self->EndAssertNoThreadSuspension(old_cause);
953   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
954   DCHECK(!Runtime::Current()->IsActiveTransaction());
955   ObjPtr<mirror::Method> interface_reflect_method =
956       mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
957   if (interface_reflect_method == nullptr) {
958     soa.Self()->AssertPendingOOMException();
959     return 0;
960   }
961   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
962 
963   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
964   // that performs allocations.
965   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
966   return result.GetJ();
967 }
968 
969 // Visitor returning a reference argument at a given position in a Quick stack frame.
970 // NOTE: Only used for testing purposes.
971 class GetQuickReferenceArgumentAtVisitor FINAL : public QuickArgumentVisitor {
972  public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)973   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
974                                      const char* shorty,
975                                      uint32_t shorty_len,
976                                      size_t arg_pos)
977       : QuickArgumentVisitor(sp, /* is_static */ false, shorty, shorty_len),
978         cur_pos_(0u),
979         arg_pos_(arg_pos),
980         ref_arg_(nullptr) {
981           CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
982         }
983 
Visit()984   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
985     if (cur_pos_ == arg_pos_) {
986       Primitive::Type type = GetParamPrimitiveType();
987       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
988       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
989     }
990     ++cur_pos_;
991   }
992 
GetReferenceArgument()993   StackReference<mirror::Object>* GetReferenceArgument() {
994     return ref_arg_;
995   }
996 
997  private:
998   // The position of the currently visited argument.
999   size_t cur_pos_;
1000   // The position of the searched argument.
1001   const size_t arg_pos_;
1002   // The reference argument, if found.
1003   StackReference<mirror::Object>* ref_arg_;
1004 
1005   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
1006 };
1007 
1008 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
1009 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)1010 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
1011                                                                                ArtMethod** sp)
1012     REQUIRES_SHARED(Locks::mutator_lock_) {
1013   ArtMethod* proxy_method = *sp;
1014   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1015   CHECK(!non_proxy_method->IsStatic())
1016       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1017   uint32_t shorty_len = 0;
1018   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1019   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
1020   ref_arg_visitor.VisitArguments();
1021   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
1022   return ref_arg;
1023 }
1024 
1025 // Visitor returning all the reference arguments in a Quick stack frame.
1026 class GetQuickReferenceArgumentsVisitor FINAL : public QuickArgumentVisitor {
1027  public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)1028   GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
1029                                     bool is_static,
1030                                     const char* shorty,
1031                                     uint32_t shorty_len)
1032       : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
1033 
Visit()1034   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
1035     Primitive::Type type = GetParamPrimitiveType();
1036     if (type == Primitive::kPrimNot) {
1037       StackReference<mirror::Object>* ref_arg =
1038           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1039       ref_args_.push_back(ref_arg);
1040     }
1041   }
1042 
GetReferenceArguments()1043   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
1044     return ref_args_;
1045   }
1046 
1047  private:
1048   // The reference arguments.
1049   std::vector<StackReference<mirror::Object>*> ref_args_;
1050 
1051   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
1052 };
1053 
1054 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)1055 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
1056     REQUIRES_SHARED(Locks::mutator_lock_) {
1057   ArtMethod* proxy_method = *sp;
1058   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1059   CHECK(!non_proxy_method->IsStatic())
1060       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1061   uint32_t shorty_len = 0;
1062   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1063   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /* is_static */ false, shorty, shorty_len);
1064   ref_args_visitor.VisitArguments();
1065   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
1066   return ref_args;
1067 }
1068 
1069 // Read object references held in arguments from quick frames and place in a JNI local references,
1070 // so they don't get garbage collected.
1071 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
1072  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)1073   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
1074                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
1075       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
1076 
1077   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1078 
1079   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1080 
1081  private:
1082   ScopedObjectAccessUnchecked* const soa_;
1083   // References which we must update when exiting in case the GC moved the objects.
1084   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1085 
1086   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1087 };
1088 
Visit()1089 void RememberForGcArgumentVisitor::Visit() {
1090   if (IsParamAReference()) {
1091     StackReference<mirror::Object>* stack_ref =
1092         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1093     jobject reference =
1094         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1095     references_.push_back(std::make_pair(reference, stack_ref));
1096   }
1097 }
1098 
FixupReferences()1099 void RememberForGcArgumentVisitor::FixupReferences() {
1100   // Fixup any references which may have changed.
1101   for (const auto& pair : references_) {
1102     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1103     soa_->Env()->DeleteLocalRef(pair.first);
1104   }
1105 }
1106 
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)1107 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1108                                                              mirror::Object* this_object,
1109                                                              Thread* self,
1110                                                              ArtMethod** sp)
1111     REQUIRES_SHARED(Locks::mutator_lock_) {
1112   const void* result;
1113   // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1114   // that part.
1115   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1116   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1117   if (instrumentation->IsDeoptimized(method)) {
1118     result = GetQuickToInterpreterBridge();
1119   } else {
1120     result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1121     DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1122   }
1123 
1124   bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1125   bool is_static = method->IsStatic();
1126   uint32_t shorty_len;
1127   const char* shorty =
1128       method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1129 
1130   ScopedObjectAccessUnchecked soa(self);
1131   RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1132   visitor.VisitArguments();
1133 
1134   instrumentation->PushInstrumentationStackFrame(self,
1135                                                  is_static ? nullptr : this_object,
1136                                                  method,
1137                                                  QuickArgumentVisitor::GetCallingPc(sp),
1138                                                  interpreter_entry);
1139 
1140   visitor.FixupReferences();
1141   if (UNLIKELY(self->IsExceptionPending())) {
1142     return nullptr;
1143   }
1144   CHECK(result != nullptr) << method->PrettyMethod();
1145   return result;
1146 }
1147 
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1148 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1149                                                               ArtMethod** sp,
1150                                                               uint64_t* gpr_result,
1151                                                               uint64_t* fpr_result)
1152     REQUIRES_SHARED(Locks::mutator_lock_) {
1153   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1154   CHECK(gpr_result != nullptr);
1155   CHECK(fpr_result != nullptr);
1156   // Instrumentation exit stub must not be entered with a pending exception.
1157   CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1158                                      << self->GetException()->Dump();
1159   // Compute address of return PC and sanity check that it currently holds 0.
1160   size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA,
1161                                                         CalleeSaveType::kSaveEverything);
1162   uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1163                                                       return_pc_offset);
1164   CHECK_EQ(*return_pc, 0U);
1165 
1166   // Pop the frame filling in the return pc. The low half of the return value is 0 when
1167   // deoptimization shouldn't be performed with the high-half having the return address. When
1168   // deoptimization should be performed the low half is zero and the high-half the address of the
1169   // deoptimization entry point.
1170   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1171   TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1172       self, return_pc, gpr_result, fpr_result);
1173   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1174     return GetTwoWordFailureValue();
1175   }
1176   return return_or_deoptimize_pc;
1177 }
1178 
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1179 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1180     REQUIRES_SHARED(Locks::mutator_lock_) {
1181   if (dex_pc == static_cast<uint32_t>(-1)) {
1182     CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1183     return "<native>";
1184   } else {
1185     CodeItemInstructionAccessor accessor = method->DexInstructions();
1186     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1187     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1188   }
1189 }
1190 
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1191 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1192     REQUIRES_SHARED(Locks::mutator_lock_) {
1193   std::string storage;
1194   const char* descriptor = klass->GetDescriptor(&storage);
1195   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1196   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1197   if (oat_dex_file != nullptr) {
1198     const OatFile* oat_file = oat_dex_file->GetOatFile();
1199     const char* dex2oat_cmdline =
1200         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1201     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
1202         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1203   }
1204 }
1205 
DumpB74410240DebugData(ArtMethod ** sp)1206 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1207   // Mimick the search for the caller and dump some data while doing so.
1208   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1209 
1210   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1211   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1212 
1213   const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, type);
1214   auto** caller_sp = reinterpret_cast<ArtMethod**>(
1215       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1216   const size_t callee_return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, type);
1217   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1218       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1219   ArtMethod* outer_method = *caller_sp;
1220 
1221   if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1222     LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1223         << " native pc: " << caller_pc << " Instrumented!";
1224     return;
1225   }
1226 
1227   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1228   CHECK(current_code != nullptr);
1229   CHECK(current_code->IsOptimized());
1230   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1231   CodeInfo code_info = current_code->GetOptimizedCodeInfo();
1232   MethodInfo method_info = current_code->GetOptimizedMethodInfo();
1233   CodeInfoEncoding encoding = code_info.ExtractEncoding();
1234   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
1235   CHECK(stack_map.IsValid());
1236   uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map.encoding);
1237 
1238   // Log the outer method and its associated dex file and class table pointer which can be used
1239   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1240   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1241   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1242       << " native pc: " << caller_pc
1243       << " dex pc: " << dex_pc
1244       << " dex file: " << outer_method->GetDexFile()->GetLocation()
1245       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1246   DumpB74410240ClassData(outer_method->GetDeclaringClass());
1247   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
1248 
1249   ArtMethod* caller = outer_method;
1250   if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
1251     InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
1252     const InlineInfoEncoding& inline_info_encoding = encoding.inline_info.encoding;
1253     size_t depth = inline_info.GetDepth(inline_info_encoding);
1254     for (size_t d = 0; d < depth; ++d) {
1255       const char* tag = "";
1256       dex_pc = inline_info.GetDexPcAtDepth(inline_info_encoding, d);
1257       if (inline_info.EncodesArtMethodAtDepth(inline_info_encoding, d)) {
1258         tag = "encoded ";
1259         caller = inline_info.GetArtMethodAtDepth(inline_info_encoding, d);
1260       } else {
1261         uint32_t method_index = inline_info.GetMethodIndexAtDepth(inline_info_encoding,
1262                                                                   method_info,
1263                                                                   d);
1264         if (dex_pc == static_cast<uint32_t>(-1)) {
1265           tag = "special ";
1266           CHECK_EQ(d + 1u, depth);
1267           caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1268           CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1269         } else {
1270           ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1271           ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1272           caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1273           CHECK(caller != nullptr);
1274         }
1275       }
1276       LOG(FATAL_WITHOUT_ABORT) << "Inlined method #" << d << ": " << tag << caller->PrettyMethod()
1277           << " dex pc: " << dex_pc
1278           << " dex file: " << caller->GetDexFile()->GetLocation()
1279           << " class table: "
1280           << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1281       DumpB74410240ClassData(caller->GetDeclaringClass());
1282       LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
1283     }
1284   }
1285 }
1286 
1287 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1288 extern "C" const void* artQuickResolutionTrampoline(
1289     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1290     REQUIRES_SHARED(Locks::mutator_lock_) {
1291   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1292   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1293   // does not have the same stack layout as the callee-save method).
1294   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1295   // Start new JNI local reference state
1296   JNIEnvExt* env = self->GetJniEnv();
1297   ScopedObjectAccessUnchecked soa(env);
1298   ScopedJniEnvLocalRefState env_state(env);
1299   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1300 
1301   // Compute details about the called method (avoid GCs)
1302   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1303   InvokeType invoke_type;
1304   MethodReference called_method(nullptr, 0);
1305   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1306   ArtMethod* caller = nullptr;
1307   if (!called_method_known_on_entry) {
1308     caller = QuickArgumentVisitor::GetCallingMethod(sp);
1309     called_method.dex_file = caller->GetDexFile();
1310 
1311     InvokeType stack_map_invoke_type;
1312     uint32_t stack_map_dex_method_idx;
1313     const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1314                                                                      &stack_map_invoke_type,
1315                                                                      &stack_map_dex_method_idx);
1316     // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1317     // code.
1318     if (!found_stack_map || kIsDebugBuild) {
1319       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1320       CodeItemInstructionAccessor accessor(caller->DexInstructions());
1321       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1322       const Instruction& instr = accessor.InstructionAt(dex_pc);
1323       Instruction::Code instr_code = instr.Opcode();
1324       bool is_range;
1325       switch (instr_code) {
1326         case Instruction::INVOKE_DIRECT:
1327           invoke_type = kDirect;
1328           is_range = false;
1329           break;
1330         case Instruction::INVOKE_DIRECT_RANGE:
1331           invoke_type = kDirect;
1332           is_range = true;
1333           break;
1334         case Instruction::INVOKE_STATIC:
1335           invoke_type = kStatic;
1336           is_range = false;
1337           break;
1338         case Instruction::INVOKE_STATIC_RANGE:
1339           invoke_type = kStatic;
1340           is_range = true;
1341           break;
1342         case Instruction::INVOKE_SUPER:
1343           invoke_type = kSuper;
1344           is_range = false;
1345           break;
1346         case Instruction::INVOKE_SUPER_RANGE:
1347           invoke_type = kSuper;
1348           is_range = true;
1349           break;
1350         case Instruction::INVOKE_VIRTUAL:
1351           invoke_type = kVirtual;
1352           is_range = false;
1353           break;
1354         case Instruction::INVOKE_VIRTUAL_RANGE:
1355           invoke_type = kVirtual;
1356           is_range = true;
1357           break;
1358         case Instruction::INVOKE_INTERFACE:
1359           invoke_type = kInterface;
1360           is_range = false;
1361           break;
1362         case Instruction::INVOKE_INTERFACE_RANGE:
1363           invoke_type = kInterface;
1364           is_range = true;
1365           break;
1366         default:
1367           DumpB74410240DebugData(sp);
1368           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1369           UNREACHABLE();
1370       }
1371       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1372       // Check that the invoke matches what we expected, note that this path only happens for debug
1373       // builds.
1374       if (found_stack_map) {
1375         DCHECK_EQ(stack_map_invoke_type, invoke_type);
1376         if (invoke_type != kSuper) {
1377           // Super may be sharpened.
1378           DCHECK_EQ(stack_map_dex_method_idx, called_method.index)
1379               << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1380               << called_method.PrettyMethod();
1381         }
1382       } else {
1383         VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1384                   << called_method.index;
1385       }
1386     } else {
1387       invoke_type = stack_map_invoke_type;
1388       called_method.index = stack_map_dex_method_idx;
1389     }
1390   } else {
1391     invoke_type = kStatic;
1392     called_method.dex_file = called->GetDexFile();
1393     called_method.index = called->GetDexMethodIndex();
1394   }
1395   uint32_t shorty_len;
1396   const char* shorty =
1397       called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1398   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1399   visitor.VisitArguments();
1400   self->EndAssertNoThreadSuspension(old_cause);
1401   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1402   // Resolve method filling in dex cache.
1403   if (!called_method_known_on_entry) {
1404     StackHandleScope<1> hs(self);
1405     mirror::Object* dummy = nullptr;
1406     HandleWrapper<mirror::Object> h_receiver(
1407         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1408     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1409     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1410         self, called_method.index, caller, invoke_type);
1411 
1412     // Update .bss entry in oat file if any.
1413     if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1414       size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
1415           called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
1416           called_method.index,
1417           called_method.dex_file->NumMethodIds(),
1418           static_cast<size_t>(kRuntimePointerSize));
1419       if (bss_offset != IndexBssMappingLookup::npos) {
1420         DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1421         const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1422         ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1423             oat_file->BssBegin() + bss_offset));
1424         DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1425         DCHECK_LT(method_entry,
1426                   oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1427         *method_entry = called;
1428       }
1429     }
1430   }
1431   const void* code = nullptr;
1432   if (LIKELY(!self->IsExceptionPending())) {
1433     // Incompatible class change should have been handled in resolve method.
1434     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1435         << called->PrettyMethod() << " " << invoke_type;
1436     if (virtual_or_interface || invoke_type == kSuper) {
1437       // Refine called method based on receiver for kVirtual/kInterface, and
1438       // caller for kSuper.
1439       ArtMethod* orig_called = called;
1440       if (invoke_type == kVirtual) {
1441         CHECK(receiver != nullptr) << invoke_type;
1442         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1443       } else if (invoke_type == kInterface) {
1444         CHECK(receiver != nullptr) << invoke_type;
1445         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1446       } else {
1447         DCHECK_EQ(invoke_type, kSuper);
1448         CHECK(caller != nullptr) << invoke_type;
1449         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1450             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1451         if (ref_class->IsInterface()) {
1452           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1453         } else {
1454           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1455               called->GetMethodIndex(), kRuntimePointerSize);
1456         }
1457       }
1458 
1459       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1460                                << mirror::Object::PrettyTypeOf(receiver) << " "
1461                                << invoke_type << " " << orig_called->GetVtableIndex();
1462     }
1463 
1464     // Ensure that the called method's class is initialized.
1465     StackHandleScope<1> hs(soa.Self());
1466     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1467     linker->EnsureInitialized(soa.Self(), called_class, true, true);
1468     if (LIKELY(called_class->IsInitialized())) {
1469       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1470         // If we are single-stepping or the called method is deoptimized (by a
1471         // breakpoint, for example), then we have to execute the called method
1472         // with the interpreter.
1473         code = GetQuickToInterpreterBridge();
1474       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1475         // If the caller is deoptimized (by a breakpoint, for example), we have to
1476         // continue its execution with interpreter when returning from the called
1477         // method. Because we do not want to execute the called method with the
1478         // interpreter, we wrap its execution into the instrumentation stubs.
1479         // When the called method returns, it will execute the instrumentation
1480         // exit hook that will determine the need of the interpreter with a call
1481         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1482         // it is needed.
1483         code = GetQuickInstrumentationEntryPoint();
1484       } else {
1485         code = called->GetEntryPointFromQuickCompiledCode();
1486       }
1487     } else if (called_class->IsInitializing()) {
1488       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1489         // If we are single-stepping or the called method is deoptimized (by a
1490         // breakpoint, for example), then we have to execute the called method
1491         // with the interpreter.
1492         code = GetQuickToInterpreterBridge();
1493       } else if (invoke_type == kStatic) {
1494         // Class is still initializing, go to oat and grab code (trampoline must be left in place
1495         // until class is initialized to stop races between threads).
1496         code = linker->GetQuickOatCodeFor(called);
1497       } else {
1498         // No trampoline for non-static methods.
1499         code = called->GetEntryPointFromQuickCompiledCode();
1500       }
1501     } else {
1502       DCHECK(called_class->IsErroneous());
1503     }
1504   }
1505   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1506   // Fixup any locally saved objects may have moved during a GC.
1507   visitor.FixupReferences();
1508   // Place called method in callee-save frame to be placed as first argument to quick method.
1509   *sp = called;
1510 
1511   return code;
1512 }
1513 
1514 /*
1515  * This class uses a couple of observations to unite the different calling conventions through
1516  * a few constants.
1517  *
1518  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1519  *    possible alignment.
1520  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1521  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1522  *    when we have to split things
1523  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1524  *    and we can use Int handling directly.
1525  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1526  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1527  *    extension should be compatible with Aarch64, which mandates copying the available bits
1528  *    into LSB and leaving the rest unspecified.
1529  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1530  *    the stack.
1531  * 6) There is only little endian.
1532  *
1533  *
1534  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1535  * follows:
1536  *
1537  * void PushGpr(uintptr_t):   Add a value for the next GPR
1538  *
1539  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1540  *                            padding, that is, think the architecture is 32b and aligns 64b.
1541  *
1542  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1543  *                            split this if necessary. The current state will have aligned, if
1544  *                            necessary.
1545  *
1546  * void PushStack(uintptr_t): Push a value to the stack.
1547  *
1548  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1549  *                                          as this might be important for null initialization.
1550  *                                          Must return the jobject, that is, the reference to the
1551  *                                          entry in the HandleScope (nullptr if necessary).
1552  *
1553  */
1554 template<class T> class BuildNativeCallFrameStateMachine {
1555  public:
1556 #if defined(__arm__)
1557   // TODO: These are all dummy values!
1558   static constexpr bool kNativeSoftFloatAbi = true;
1559   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1560   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1561 
1562   static constexpr size_t kRegistersNeededForLong = 2;
1563   static constexpr size_t kRegistersNeededForDouble = 2;
1564   static constexpr bool kMultiRegistersAligned = true;
1565   static constexpr bool kMultiFPRegistersWidened = false;
1566   static constexpr bool kMultiGPRegistersWidened = false;
1567   static constexpr bool kAlignLongOnStack = true;
1568   static constexpr bool kAlignDoubleOnStack = true;
1569 #elif defined(__aarch64__)
1570   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1571   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1572   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1573 
1574   static constexpr size_t kRegistersNeededForLong = 1;
1575   static constexpr size_t kRegistersNeededForDouble = 1;
1576   static constexpr bool kMultiRegistersAligned = false;
1577   static constexpr bool kMultiFPRegistersWidened = false;
1578   static constexpr bool kMultiGPRegistersWidened = false;
1579   static constexpr bool kAlignLongOnStack = false;
1580   static constexpr bool kAlignDoubleOnStack = false;
1581 #elif defined(__mips__) && !defined(__LP64__)
1582   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1583   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1584   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1585 
1586   static constexpr size_t kRegistersNeededForLong = 2;
1587   static constexpr size_t kRegistersNeededForDouble = 2;
1588   static constexpr bool kMultiRegistersAligned = true;
1589   static constexpr bool kMultiFPRegistersWidened = true;
1590   static constexpr bool kMultiGPRegistersWidened = false;
1591   static constexpr bool kAlignLongOnStack = true;
1592   static constexpr bool kAlignDoubleOnStack = true;
1593 #elif defined(__mips__) && defined(__LP64__)
1594   // Let the code prepare GPRs only and we will load the FPRs with same data.
1595   static constexpr bool kNativeSoftFloatAbi = true;
1596   static constexpr size_t kNumNativeGprArgs = 8;
1597   static constexpr size_t kNumNativeFprArgs = 0;
1598 
1599   static constexpr size_t kRegistersNeededForLong = 1;
1600   static constexpr size_t kRegistersNeededForDouble = 1;
1601   static constexpr bool kMultiRegistersAligned = false;
1602   static constexpr bool kMultiFPRegistersWidened = false;
1603   static constexpr bool kMultiGPRegistersWidened = true;
1604   static constexpr bool kAlignLongOnStack = false;
1605   static constexpr bool kAlignDoubleOnStack = false;
1606 #elif defined(__i386__)
1607   // TODO: Check these!
1608   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1609   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1610   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1611 
1612   static constexpr size_t kRegistersNeededForLong = 2;
1613   static constexpr size_t kRegistersNeededForDouble = 2;
1614   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1615   static constexpr bool kMultiFPRegistersWidened = false;
1616   static constexpr bool kMultiGPRegistersWidened = false;
1617   static constexpr bool kAlignLongOnStack = false;
1618   static constexpr bool kAlignDoubleOnStack = false;
1619 #elif defined(__x86_64__)
1620   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1621   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1622   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1623 
1624   static constexpr size_t kRegistersNeededForLong = 1;
1625   static constexpr size_t kRegistersNeededForDouble = 1;
1626   static constexpr bool kMultiRegistersAligned = false;
1627   static constexpr bool kMultiFPRegistersWidened = false;
1628   static constexpr bool kMultiGPRegistersWidened = false;
1629   static constexpr bool kAlignLongOnStack = false;
1630   static constexpr bool kAlignDoubleOnStack = false;
1631 #else
1632 #error "Unsupported architecture"
1633 #endif
1634 
1635  public:
BuildNativeCallFrameStateMachine(T * delegate)1636   explicit BuildNativeCallFrameStateMachine(T* delegate)
1637       : gpr_index_(kNumNativeGprArgs),
1638         fpr_index_(kNumNativeFprArgs),
1639         stack_entries_(0),
1640         delegate_(delegate) {
1641     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1642     // the next register is even; counting down is just to make the compiler happy...
1643     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1644     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1645   }
1646 
~BuildNativeCallFrameStateMachine()1647   virtual ~BuildNativeCallFrameStateMachine() {}
1648 
HavePointerGpr() const1649   bool HavePointerGpr() const {
1650     return gpr_index_ > 0;
1651   }
1652 
AdvancePointer(const void * val)1653   void AdvancePointer(const void* val) {
1654     if (HavePointerGpr()) {
1655       gpr_index_--;
1656       PushGpr(reinterpret_cast<uintptr_t>(val));
1657     } else {
1658       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1659       PushStack(reinterpret_cast<uintptr_t>(val));
1660       gpr_index_ = 0;
1661     }
1662   }
1663 
HaveHandleScopeGpr() const1664   bool HaveHandleScopeGpr() const {
1665     return gpr_index_ > 0;
1666   }
1667 
AdvanceHandleScope(mirror::Object * ptr)1668   void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1669     uintptr_t handle = PushHandle(ptr);
1670     if (HaveHandleScopeGpr()) {
1671       gpr_index_--;
1672       PushGpr(handle);
1673     } else {
1674       stack_entries_++;
1675       PushStack(handle);
1676       gpr_index_ = 0;
1677     }
1678   }
1679 
HaveIntGpr() const1680   bool HaveIntGpr() const {
1681     return gpr_index_ > 0;
1682   }
1683 
AdvanceInt(uint32_t val)1684   void AdvanceInt(uint32_t val) {
1685     if (HaveIntGpr()) {
1686       gpr_index_--;
1687       if (kMultiGPRegistersWidened) {
1688         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1689         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1690       } else {
1691         PushGpr(val);
1692       }
1693     } else {
1694       stack_entries_++;
1695       if (kMultiGPRegistersWidened) {
1696         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1697         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1698       } else {
1699         PushStack(val);
1700       }
1701       gpr_index_ = 0;
1702     }
1703   }
1704 
HaveLongGpr() const1705   bool HaveLongGpr() const {
1706     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1707   }
1708 
LongGprNeedsPadding() const1709   bool LongGprNeedsPadding() const {
1710     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1711         kAlignLongOnStack &&                  // and when it needs alignment
1712         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1713   }
1714 
LongStackNeedsPadding() const1715   bool LongStackNeedsPadding() const {
1716     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1717         kAlignLongOnStack &&                  // and when it needs 8B alignment
1718         (stack_entries_ & 1) == 1;            // counter is odd
1719   }
1720 
AdvanceLong(uint64_t val)1721   void AdvanceLong(uint64_t val) {
1722     if (HaveLongGpr()) {
1723       if (LongGprNeedsPadding()) {
1724         PushGpr(0);
1725         gpr_index_--;
1726       }
1727       if (kRegistersNeededForLong == 1) {
1728         PushGpr(static_cast<uintptr_t>(val));
1729       } else {
1730         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1731         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1732       }
1733       gpr_index_ -= kRegistersNeededForLong;
1734     } else {
1735       if (LongStackNeedsPadding()) {
1736         PushStack(0);
1737         stack_entries_++;
1738       }
1739       if (kRegistersNeededForLong == 1) {
1740         PushStack(static_cast<uintptr_t>(val));
1741         stack_entries_++;
1742       } else {
1743         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1744         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1745         stack_entries_ += 2;
1746       }
1747       gpr_index_ = 0;
1748     }
1749   }
1750 
HaveFloatFpr() const1751   bool HaveFloatFpr() const {
1752     return fpr_index_ > 0;
1753   }
1754 
AdvanceFloat(float val)1755   void AdvanceFloat(float val) {
1756     if (kNativeSoftFloatAbi) {
1757       AdvanceInt(bit_cast<uint32_t, float>(val));
1758     } else {
1759       if (HaveFloatFpr()) {
1760         fpr_index_--;
1761         if (kRegistersNeededForDouble == 1) {
1762           if (kMultiFPRegistersWidened) {
1763             PushFpr8(bit_cast<uint64_t, double>(val));
1764           } else {
1765             // No widening, just use the bits.
1766             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1767           }
1768         } else {
1769           PushFpr4(val);
1770         }
1771       } else {
1772         stack_entries_++;
1773         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1774           // Need to widen before storing: Note the "double" in the template instantiation.
1775           // Note: We need to jump through those hoops to make the compiler happy.
1776           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1777           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1778         } else {
1779           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1780         }
1781         fpr_index_ = 0;
1782       }
1783     }
1784   }
1785 
HaveDoubleFpr() const1786   bool HaveDoubleFpr() const {
1787     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1788   }
1789 
DoubleFprNeedsPadding() const1790   bool DoubleFprNeedsPadding() const {
1791     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1792         kAlignDoubleOnStack &&                  // and when it needs alignment
1793         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1794   }
1795 
DoubleStackNeedsPadding() const1796   bool DoubleStackNeedsPadding() const {
1797     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1798         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1799         (stack_entries_ & 1) == 1;              // counter is odd
1800   }
1801 
AdvanceDouble(uint64_t val)1802   void AdvanceDouble(uint64_t val) {
1803     if (kNativeSoftFloatAbi) {
1804       AdvanceLong(val);
1805     } else {
1806       if (HaveDoubleFpr()) {
1807         if (DoubleFprNeedsPadding()) {
1808           PushFpr4(0);
1809           fpr_index_--;
1810         }
1811         PushFpr8(val);
1812         fpr_index_ -= kRegistersNeededForDouble;
1813       } else {
1814         if (DoubleStackNeedsPadding()) {
1815           PushStack(0);
1816           stack_entries_++;
1817         }
1818         if (kRegistersNeededForDouble == 1) {
1819           PushStack(static_cast<uintptr_t>(val));
1820           stack_entries_++;
1821         } else {
1822           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1823           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1824           stack_entries_ += 2;
1825         }
1826         fpr_index_ = 0;
1827       }
1828     }
1829   }
1830 
GetStackEntries() const1831   uint32_t GetStackEntries() const {
1832     return stack_entries_;
1833   }
1834 
GetNumberOfUsedGprs() const1835   uint32_t GetNumberOfUsedGprs() const {
1836     return kNumNativeGprArgs - gpr_index_;
1837   }
1838 
GetNumberOfUsedFprs() const1839   uint32_t GetNumberOfUsedFprs() const {
1840     return kNumNativeFprArgs - fpr_index_;
1841   }
1842 
1843  private:
PushGpr(uintptr_t val)1844   void PushGpr(uintptr_t val) {
1845     delegate_->PushGpr(val);
1846   }
PushFpr4(float val)1847   void PushFpr4(float val) {
1848     delegate_->PushFpr4(val);
1849   }
PushFpr8(uint64_t val)1850   void PushFpr8(uint64_t val) {
1851     delegate_->PushFpr8(val);
1852   }
PushStack(uintptr_t val)1853   void PushStack(uintptr_t val) {
1854     delegate_->PushStack(val);
1855   }
PushHandle(mirror::Object * ref)1856   uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1857     return delegate_->PushHandle(ref);
1858   }
1859 
1860   uint32_t gpr_index_;      // Number of free GPRs
1861   uint32_t fpr_index_;      // Number of free FPRs
1862   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1863                             // extended
1864   T* const delegate_;             // What Push implementation gets called
1865 };
1866 
1867 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1868 // in subclasses.
1869 //
1870 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1871 // them with handles.
1872 class ComputeNativeCallFrameSize {
1873  public:
ComputeNativeCallFrameSize()1874   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1875 
~ComputeNativeCallFrameSize()1876   virtual ~ComputeNativeCallFrameSize() {}
1877 
GetStackSize() const1878   uint32_t GetStackSize() const {
1879     return num_stack_entries_ * sizeof(uintptr_t);
1880   }
1881 
LayoutCallStack(uint8_t * sp8) const1882   uint8_t* LayoutCallStack(uint8_t* sp8) const {
1883     sp8 -= GetStackSize();
1884     // Align by kStackAlignment.
1885     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1886     return sp8;
1887   }
1888 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1889   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1890       const {
1891     // Assumption is OK right now, as we have soft-float arm
1892     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1893     sp8 -= fregs * sizeof(uintptr_t);
1894     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1895     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1896     sp8 -= iregs * sizeof(uintptr_t);
1897     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1898     return sp8;
1899   }
1900 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1901   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1902                             uint32_t** start_fpr) const {
1903     // Native call stack.
1904     sp8 = LayoutCallStack(sp8);
1905     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1906 
1907     // Put fprs and gprs below.
1908     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1909 
1910     // Return the new bottom.
1911     return sp8;
1912   }
1913 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1914   virtual void WalkHeader(
1915       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1916       REQUIRES_SHARED(Locks::mutator_lock_) {
1917   }
1918 
Walk(const char * shorty,uint32_t shorty_len)1919   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1920     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1921 
1922     WalkHeader(&sm);
1923 
1924     for (uint32_t i = 1; i < shorty_len; ++i) {
1925       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1926       switch (cur_type_) {
1927         case Primitive::kPrimNot:
1928           // TODO: fix abuse of mirror types.
1929           sm.AdvanceHandleScope(
1930               reinterpret_cast<mirror::Object*>(0x12345678));
1931           break;
1932 
1933         case Primitive::kPrimBoolean:
1934         case Primitive::kPrimByte:
1935         case Primitive::kPrimChar:
1936         case Primitive::kPrimShort:
1937         case Primitive::kPrimInt:
1938           sm.AdvanceInt(0);
1939           break;
1940         case Primitive::kPrimFloat:
1941           sm.AdvanceFloat(0);
1942           break;
1943         case Primitive::kPrimDouble:
1944           sm.AdvanceDouble(0);
1945           break;
1946         case Primitive::kPrimLong:
1947           sm.AdvanceLong(0);
1948           break;
1949         default:
1950           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1951           UNREACHABLE();
1952       }
1953     }
1954 
1955     num_stack_entries_ = sm.GetStackEntries();
1956   }
1957 
PushGpr(uintptr_t)1958   void PushGpr(uintptr_t /* val */) {
1959     // not optimizing registers, yet
1960   }
1961 
PushFpr4(float)1962   void PushFpr4(float /* val */) {
1963     // not optimizing registers, yet
1964   }
1965 
PushFpr8(uint64_t)1966   void PushFpr8(uint64_t /* val */) {
1967     // not optimizing registers, yet
1968   }
1969 
PushStack(uintptr_t)1970   void PushStack(uintptr_t /* val */) {
1971     // counting is already done in the superclass
1972   }
1973 
PushHandle(mirror::Object *)1974   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1975     return reinterpret_cast<uintptr_t>(nullptr);
1976   }
1977 
1978  protected:
1979   uint32_t num_stack_entries_;
1980 };
1981 
1982 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1983  public:
ComputeGenericJniFrameSize(bool critical_native)1984   explicit ComputeGenericJniFrameSize(bool critical_native)
1985     : num_handle_scope_references_(0), critical_native_(critical_native) {}
1986 
1987   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1988   // is at *m = sp. Will update to point to the bottom of the save frame.
1989   //
1990   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1991   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1992       REQUIRES_SHARED(Locks::mutator_lock_) {
1993     ArtMethod* method = **m;
1994 
1995     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1996 
1997     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1998 
1999     // First, fix up the layout of the callee-save frame.
2000     // We have to squeeze in the HandleScope, and relocate the method pointer.
2001 
2002     // "Free" the slot for the method.
2003     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
2004 
2005     // Under the callee saves put handle scope and new method stack reference.
2006     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
2007     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
2008 
2009     sp8 -= scope_and_method;
2010     // Align by kStackAlignment.
2011     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
2012 
2013     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
2014     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
2015                                         num_handle_scope_references_);
2016 
2017     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
2018     uint8_t* method_pointer = sp8;
2019     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
2020     *new_method_ref = method;
2021     *m = new_method_ref;
2022   }
2023 
2024   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const2025   void LayoutCookie(uint8_t** sp) const {
2026     // Reference cookie and padding
2027     *sp -= 8;
2028   }
2029 
2030   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
2031   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)2032   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
2033       REQUIRES_SHARED(Locks::mutator_lock_) {
2034     // First, fix up the layout of the callee-save frame.
2035     // We have to squeeze in the HandleScope, and relocate the method pointer.
2036     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
2037 
2038     // The bottom of the callee-save frame is now where the method is, *m.
2039     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
2040 
2041     // Add space for cookie.
2042     LayoutCookie(&sp8);
2043 
2044     return sp8;
2045   }
2046 
2047   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)2048   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
2049                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
2050                          uint32_t** start_fpr)
2051       REQUIRES_SHARED(Locks::mutator_lock_) {
2052     Walk(shorty, shorty_len);
2053 
2054     // JNI part.
2055     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
2056 
2057     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
2058 
2059     // Return the new bottom.
2060     return sp8;
2061   }
2062 
2063   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
2064 
2065   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
2066   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
2067       REQUIRES_SHARED(Locks::mutator_lock_);
2068 
2069  private:
2070   uint32_t num_handle_scope_references_;
2071   const bool critical_native_;
2072 };
2073 
PushHandle(mirror::Object *)2074 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
2075   num_handle_scope_references_++;
2076   return reinterpret_cast<uintptr_t>(nullptr);
2077 }
2078 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)2079 void ComputeGenericJniFrameSize::WalkHeader(
2080     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
2081   // First 2 parameters are always excluded for @CriticalNative.
2082   if (UNLIKELY(critical_native_)) {
2083     return;
2084   }
2085 
2086   // JNIEnv
2087   sm->AdvancePointer(nullptr);
2088 
2089   // Class object or this as first argument
2090   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
2091 }
2092 
2093 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
2094 // the template requirements of BuildGenericJniFrameStateMachine.
2095 class FillNativeCall {
2096  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2097   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
2098       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
2099 
~FillNativeCall()2100   virtual ~FillNativeCall() {}
2101 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2102   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
2103     cur_gpr_reg_ = gpr_regs;
2104     cur_fpr_reg_ = fpr_regs;
2105     cur_stack_arg_ = stack_args;
2106   }
2107 
PushGpr(uintptr_t val)2108   void PushGpr(uintptr_t val) {
2109     *cur_gpr_reg_ = val;
2110     cur_gpr_reg_++;
2111   }
2112 
PushFpr4(float val)2113   void PushFpr4(float val) {
2114     *cur_fpr_reg_ = val;
2115     cur_fpr_reg_++;
2116   }
2117 
PushFpr8(uint64_t val)2118   void PushFpr8(uint64_t val) {
2119     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
2120     *tmp = val;
2121     cur_fpr_reg_ += 2;
2122   }
2123 
PushStack(uintptr_t val)2124   void PushStack(uintptr_t val) {
2125     *cur_stack_arg_ = val;
2126     cur_stack_arg_++;
2127   }
2128 
PushHandle(mirror::Object *)2129   virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
2130     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
2131     UNREACHABLE();
2132   }
2133 
2134  private:
2135   uintptr_t* cur_gpr_reg_;
2136   uint32_t* cur_fpr_reg_;
2137   uintptr_t* cur_stack_arg_;
2138 };
2139 
2140 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
2141 // of transitioning into native code.
2142 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
2143  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)2144   BuildGenericJniFrameVisitor(Thread* self,
2145                               bool is_static,
2146                               bool critical_native,
2147                               const char* shorty,
2148                               uint32_t shorty_len,
2149                               ArtMethod*** sp)
2150      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
2151        jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
2152        sm_(&jni_call_) {
2153     ComputeGenericJniFrameSize fsc(critical_native);
2154     uintptr_t* start_gpr_reg;
2155     uint32_t* start_fpr_reg;
2156     uintptr_t* start_stack_arg;
2157     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
2158                                              &handle_scope_,
2159                                              &start_stack_arg,
2160                                              &start_gpr_reg, &start_fpr_reg);
2161 
2162     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
2163 
2164     // First 2 parameters are always excluded for CriticalNative methods.
2165     if (LIKELY(!critical_native)) {
2166       // jni environment is always first argument
2167       sm_.AdvancePointer(self->GetJniEnv());
2168 
2169       if (is_static) {
2170         sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
2171       }  // else "this" reference is already handled by QuickArgumentVisitor.
2172     }
2173   }
2174 
2175   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
2176 
2177   void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
2178 
GetFirstHandleScopeEntry()2179   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
2180     return handle_scope_->GetHandle(0).GetReference();
2181   }
2182 
GetFirstHandleScopeJObject() const2183   jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2184     return handle_scope_->GetHandle(0).ToJObject();
2185   }
2186 
GetBottomOfUsedArea() const2187   void* GetBottomOfUsedArea() const {
2188     return bottom_of_used_area_;
2189   }
2190 
2191  private:
2192   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2193   class FillJniCall FINAL : public FillNativeCall {
2194    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope,bool critical_native)2195     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2196                 HandleScope* handle_scope, bool critical_native)
2197       : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2198                        handle_scope_(handle_scope),
2199         cur_entry_(0),
2200         critical_native_(critical_native) {}
2201 
2202     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
2203 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)2204     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2205       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2206       handle_scope_ = scope;
2207       cur_entry_ = 0U;
2208     }
2209 
ResetRemainingScopeSlots()2210     void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2211       // Initialize padding entries.
2212       size_t expected_slots = handle_scope_->NumberOfReferences();
2213       while (cur_entry_ < expected_slots) {
2214         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2215       }
2216 
2217       if (!critical_native_) {
2218         // Non-critical natives have at least the self class (jclass) or this (jobject).
2219         DCHECK_NE(cur_entry_, 0U);
2220       }
2221     }
2222 
CriticalNative() const2223     bool CriticalNative() const {
2224       return critical_native_;
2225     }
2226 
2227    private:
2228     HandleScope* handle_scope_;
2229     size_t cur_entry_;
2230     const bool critical_native_;
2231   };
2232 
2233   HandleScope* handle_scope_;
2234   FillJniCall jni_call_;
2235   void* bottom_of_used_area_;
2236 
2237   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2238 
2239   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2240 };
2241 
PushHandle(mirror::Object * ref)2242 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2243   uintptr_t tmp;
2244   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2245   h.Assign(ref);
2246   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2247   cur_entry_++;
2248   return tmp;
2249 }
2250 
Visit()2251 void BuildGenericJniFrameVisitor::Visit() {
2252   Primitive::Type type = GetParamPrimitiveType();
2253   switch (type) {
2254     case Primitive::kPrimLong: {
2255       jlong long_arg;
2256       if (IsSplitLongOrDouble()) {
2257         long_arg = ReadSplitLongParam();
2258       } else {
2259         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2260       }
2261       sm_.AdvanceLong(long_arg);
2262       break;
2263     }
2264     case Primitive::kPrimDouble: {
2265       uint64_t double_arg;
2266       if (IsSplitLongOrDouble()) {
2267         // Read into union so that we don't case to a double.
2268         double_arg = ReadSplitLongParam();
2269       } else {
2270         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2271       }
2272       sm_.AdvanceDouble(double_arg);
2273       break;
2274     }
2275     case Primitive::kPrimNot: {
2276       StackReference<mirror::Object>* stack_ref =
2277           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2278       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2279       break;
2280     }
2281     case Primitive::kPrimFloat:
2282       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2283       break;
2284     case Primitive::kPrimBoolean:  // Fall-through.
2285     case Primitive::kPrimByte:     // Fall-through.
2286     case Primitive::kPrimChar:     // Fall-through.
2287     case Primitive::kPrimShort:    // Fall-through.
2288     case Primitive::kPrimInt:      // Fall-through.
2289       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2290       break;
2291     case Primitive::kPrimVoid:
2292       LOG(FATAL) << "UNREACHABLE";
2293       UNREACHABLE();
2294   }
2295 }
2296 
FinalizeHandleScope(Thread * self)2297 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2298   // Clear out rest of the scope.
2299   jni_call_.ResetRemainingScopeSlots();
2300   if (!jni_call_.CriticalNative()) {
2301     // Install HandleScope.
2302     self->PushHandleScope(handle_scope_);
2303   }
2304 }
2305 
2306 #if defined(__arm__) || defined(__aarch64__)
2307 extern "C" const void* artFindNativeMethod();
2308 #else
2309 extern "C" const void* artFindNativeMethod(Thread* self);
2310 #endif
2311 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,bool fast_native ATTRIBUTE_UNUSED,jobject l,jobject lock)2312 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2313                                             uint32_t cookie,
2314                                             bool fast_native ATTRIBUTE_UNUSED,
2315                                             jobject l,
2316                                             jobject lock) {
2317   // TODO: add entrypoints for @FastNative returning objects.
2318   if (lock != nullptr) {
2319     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2320   } else {
2321     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2322   }
2323 }
2324 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,bool fast_native,jobject lock)2325 static void artQuickGenericJniEndJNINonRef(Thread* self,
2326                                            uint32_t cookie,
2327                                            bool fast_native,
2328                                            jobject lock) {
2329   if (lock != nullptr) {
2330     JniMethodEndSynchronized(cookie, lock, self);
2331     // Ignore "fast_native" here because synchronized functions aren't very fast.
2332   } else {
2333     if (UNLIKELY(fast_native)) {
2334       JniMethodFastEnd(cookie, self);
2335     } else {
2336       JniMethodEnd(cookie, self);
2337     }
2338   }
2339 }
2340 
2341 /*
2342  * Initializes an alloca region assumed to be directly below sp for a native call:
2343  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2344  * The final element on the stack is a pointer to the native code.
2345  *
2346  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2347  * We need to fix this, as the handle scope needs to go into the callee-save frame.
2348  *
2349  * The return of this function denotes:
2350  * 1) How many bytes of the alloca can be released, if the value is non-negative.
2351  * 2) An error, if the value is negative.
2352  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)2353 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2354     REQUIRES_SHARED(Locks::mutator_lock_) {
2355   // Note: We cannot walk the stack properly until fixed up below.
2356   ArtMethod* called = *sp;
2357   DCHECK(called->IsNative()) << called->PrettyMethod(true);
2358   Runtime* runtime = Runtime::Current();
2359   jit::Jit* jit = runtime->GetJit();
2360   if (jit != nullptr) {
2361     jit->AddSamples(self, called, 1u, /*with_backedges*/ false);
2362   }
2363   uint32_t shorty_len = 0;
2364   const char* shorty = called->GetShorty(&shorty_len);
2365   bool critical_native = called->IsCriticalNative();
2366   bool fast_native = called->IsFastNative();
2367   bool normal_native = !critical_native && !fast_native;
2368 
2369   // Run the visitor and update sp.
2370   BuildGenericJniFrameVisitor visitor(self,
2371                                       called->IsStatic(),
2372                                       critical_native,
2373                                       shorty,
2374                                       shorty_len,
2375                                       &sp);
2376   {
2377     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2378     visitor.VisitArguments();
2379     // FinalizeHandleScope pushes the handle scope on the thread.
2380     visitor.FinalizeHandleScope(self);
2381   }
2382 
2383   // Fix up managed-stack things in Thread. After this we can walk the stack.
2384   self->SetTopOfStackTagged(sp);
2385 
2386   self->VerifyStack();
2387 
2388   uint32_t cookie;
2389   uint32_t* sp32;
2390   // Skip calling JniMethodStart for @CriticalNative.
2391   if (LIKELY(!critical_native)) {
2392     // Start JNI, save the cookie.
2393     if (called->IsSynchronized()) {
2394       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2395       cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2396       if (self->IsExceptionPending()) {
2397         self->PopHandleScope();
2398         // A negative value denotes an error.
2399         return GetTwoWordFailureValue();
2400       }
2401     } else {
2402       if (fast_native) {
2403         cookie = JniMethodFastStart(self);
2404       } else {
2405         DCHECK(normal_native);
2406         cookie = JniMethodStart(self);
2407       }
2408     }
2409     sp32 = reinterpret_cast<uint32_t*>(sp);
2410     *(sp32 - 1) = cookie;
2411   }
2412 
2413   // Retrieve the stored native code.
2414   void const* nativeCode = called->GetEntryPointFromJni();
2415 
2416   // There are two cases for the content of nativeCode:
2417   // 1) Pointer to the native function.
2418   // 2) Pointer to the trampoline for native code binding.
2419   // In the second case, we need to execute the binding and continue with the actual native function
2420   // pointer.
2421   DCHECK(nativeCode != nullptr);
2422   if (nativeCode == GetJniDlsymLookupStub()) {
2423 #if defined(__arm__) || defined(__aarch64__)
2424     nativeCode = artFindNativeMethod();
2425 #else
2426     nativeCode = artFindNativeMethod(self);
2427 #endif
2428 
2429     if (nativeCode == nullptr) {
2430       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2431 
2432       // @CriticalNative calls do not need to call back into JniMethodEnd.
2433       if (LIKELY(!critical_native)) {
2434         // End JNI, as the assembly will move to deliver the exception.
2435         jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2436         if (shorty[0] == 'L') {
2437           artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2438         } else {
2439           artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2440         }
2441       }
2442 
2443       return GetTwoWordFailureValue();
2444     }
2445     // Note that the native code pointer will be automatically set by artFindNativeMethod().
2446   }
2447 
2448 #if defined(__mips__) && !defined(__LP64__)
2449   // On MIPS32 if the first two arguments are floating-point, we need to know their types
2450   // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2451   // and load into floating-point registers.
2452   // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2453   // view):
2454   // (1)
2455   //  |     DOUBLE    |     DOUBLE    | other args, if any
2456   //  |  F12  |  F13  |  F14  |  F15  |
2457   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2458   // (2)
2459   //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2460   //  |  F12  |  F13  |  F14  |       |
2461   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2462   // (3)
2463   //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2464   //  |  F12  |       |  F14  |  F15  |
2465   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2466   // (4)
2467   //  | FLOAT | FLOAT | other args, if any
2468   //  |  F12  |  F14  |
2469   //  |  SP+0 |  SP+4 | SP+8
2470   // As you can see, only the last case (4) is special. In all others we can just
2471   // load F12/F13 and F14/F15 in the same manner.
2472   // Set bit 0 of the native code address to 1 in this case (valid code addresses
2473   // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2474   if (nativeCode != nullptr &&
2475       shorty != nullptr &&
2476       shorty_len >= 3 &&
2477       shorty[1] == 'F' &&
2478       shorty[2] == 'F') {
2479     nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2480   }
2481 #endif
2482 
2483   // Return native code addr(lo) and bottom of alloca address(hi).
2484   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2485                                 reinterpret_cast<uintptr_t>(nativeCode));
2486 }
2487 
2488 // Defined in quick_jni_entrypoints.cc.
2489 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2490                                     jvalue result, uint64_t result_f, ArtMethod* called,
2491                                     HandleScope* handle_scope);
2492 /*
2493  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2494  * unlocking.
2495  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2496 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2497                                                     jvalue result,
2498                                                     uint64_t result_f) {
2499   // We're here just back from a native call. We don't have the shared mutator lock at this point
2500   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2501   // anything that requires a mutator lock before that would cause problems as GC may have the
2502   // exclusive mutator lock and may be moving objects, etc.
2503   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2504   DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2505   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2506   ArtMethod* called = *sp;
2507   uint32_t cookie = *(sp32 - 1);
2508   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2509   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2510 }
2511 
2512 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2513 // for the method pointer.
2514 //
2515 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2516 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2517 
2518 template <InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2519 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2520                                      ObjPtr<mirror::Object> this_object,
2521                                      Thread* self,
2522                                      ArtMethod** sp) {
2523   ScopedQuickEntrypointChecks sqec(self);
2524   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2525   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2526   ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2527   if (UNLIKELY(method == nullptr)) {
2528     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2529     uint32_t shorty_len;
2530     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2531     {
2532       // Remember the args in case a GC happens in FindMethodFromCode.
2533       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2534       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2535       visitor.VisitArguments();
2536       method = FindMethodFromCode<type, access_check>(method_idx,
2537                                                       &this_object,
2538                                                       caller_method,
2539                                                       self);
2540       visitor.FixupReferences();
2541     }
2542 
2543     if (UNLIKELY(method == nullptr)) {
2544       CHECK(self->IsExceptionPending());
2545       return GetTwoWordFailureValue();  // Failure.
2546     }
2547   }
2548   DCHECK(!self->IsExceptionPending());
2549   const void* code = method->GetEntryPointFromQuickCompiledCode();
2550 
2551   // When we return, the caller will branch to this address, so it had better not be 0!
2552   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2553                           << " location: "
2554                           << method->GetDexFile()->GetLocation();
2555 
2556   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2557                                 reinterpret_cast<uintptr_t>(method));
2558 }
2559 
2560 // Explicit artInvokeCommon template function declarations to please analysis tool.
2561 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2562   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2563   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2564       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2565 
2566 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2567 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2568 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2569 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2570 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2571 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2572 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2573 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2574 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2575 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2576 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2577 
2578 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2579 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2580     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2581     REQUIRES_SHARED(Locks::mutator_lock_) {
2582   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2583 }
2584 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2585 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2586     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2587     REQUIRES_SHARED(Locks::mutator_lock_) {
2588   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2589 }
2590 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2591 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2592     uint32_t method_idx,
2593     mirror::Object* this_object ATTRIBUTE_UNUSED,
2594     Thread* self,
2595     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2596   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2597   // it doesn't cause ObjPtr alignment failure check.
2598   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2599 }
2600 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2601 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2602     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2603     REQUIRES_SHARED(Locks::mutator_lock_) {
2604   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2605 }
2606 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2607 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2608     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2609     REQUIRES_SHARED(Locks::mutator_lock_) {
2610   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2611 }
2612 
2613 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
artLookupResolvedMethod(uint32_t method_index,ArtMethod * referrer)2614 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2615     REQUIRES_SHARED(Locks::mutator_lock_) {
2616   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2617   DCHECK(!referrer->IsProxyMethod());
2618   ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2619       method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2620   DCHECK(result == nullptr ||
2621          result->GetDeclaringClass()->IsInterface() ||
2622          result->GetDeclaringClass() ==
2623              WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2624       << result->PrettyMethod();
2625   return result;
2626 }
2627 
2628 // Determine target of interface dispatch. The interface method and this object are known non-null.
2629 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2630 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2631                                                       mirror::Object* raw_this_object,
2632                                                       Thread* self,
2633                                                       ArtMethod** sp)
2634     REQUIRES_SHARED(Locks::mutator_lock_) {
2635   ScopedQuickEntrypointChecks sqec(self);
2636   StackHandleScope<2> hs(self);
2637   Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2638   Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2639 
2640   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2641   ArtMethod* method = nullptr;
2642   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2643 
2644   if (UNLIKELY(interface_method == nullptr)) {
2645     // The interface method is unresolved, so resolve it in the dex file of the caller.
2646     // Fetch the dex_method_idx of the target interface method from the caller.
2647     uint32_t dex_method_idx;
2648     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2649     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2650     Instruction::Code instr_code = instr.Opcode();
2651     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2652            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2653         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2654     if (instr_code == Instruction::INVOKE_INTERFACE) {
2655       dex_method_idx = instr.VRegB_35c();
2656     } else {
2657       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2658       dex_method_idx = instr.VRegB_3rc();
2659     }
2660 
2661     const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
2662     uint32_t shorty_len;
2663     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2664                                                   &shorty_len);
2665     {
2666       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2667       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2668       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2669       visitor.VisitArguments();
2670       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2671       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2672           self, dex_method_idx, caller_method, kInterface);
2673       visitor.FixupReferences();
2674     }
2675 
2676     if (UNLIKELY(interface_method == nullptr)) {
2677       CHECK(self->IsExceptionPending());
2678       return GetTwoWordFailureValue();  // Failure.
2679     }
2680   }
2681 
2682   DCHECK(!interface_method->IsRuntimeMethod());
2683   // Look whether we have a match in the ImtConflictTable.
2684   uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2685   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2686   if (LIKELY(conflict_method->IsRuntimeMethod())) {
2687     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2688     DCHECK(current_table != nullptr);
2689     method = current_table->Lookup(interface_method, kRuntimePointerSize);
2690   } else {
2691     // It seems we aren't really a conflict method!
2692     if (kIsDebugBuild) {
2693       ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2694       CHECK_EQ(conflict_method, m)
2695           << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2696           << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2697     }
2698     method = conflict_method;
2699   }
2700   if (method != nullptr) {
2701     return GetTwoWordSuccessValue(
2702         reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2703         reinterpret_cast<uintptr_t>(method));
2704   }
2705 
2706   // No match, use the IfTable.
2707   method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2708   if (UNLIKELY(method == nullptr)) {
2709     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2710         interface_method, this_object.Get(), caller_method);
2711     return GetTwoWordFailureValue();  // Failure.
2712   }
2713 
2714   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2715   // We create a new table with the new pair { interface_method, method }.
2716   DCHECK(conflict_method->IsRuntimeMethod());
2717   ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2718       cls.Get(),
2719       conflict_method,
2720       interface_method,
2721       method,
2722       /*force_new_conflict_method*/false);
2723   if (new_conflict_method != conflict_method) {
2724     // Update the IMT if we create a new conflict method. No fence needed here, as the
2725     // data is consistent.
2726     imt->Set(imt_index,
2727              new_conflict_method,
2728              kRuntimePointerSize);
2729   }
2730 
2731   const void* code = method->GetEntryPointFromQuickCompiledCode();
2732 
2733   // When we return, the caller will branch to this address, so it had better not be 0!
2734   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2735                           << " location: " << method->GetDexFile()->GetLocation();
2736 
2737   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2738                                 reinterpret_cast<uintptr_t>(method));
2739 }
2740 
2741 // Returns shorty type so the caller can determine how to put |result|
2742 // into expected registers. The shorty type is static so the compiler
2743 // could call different flavors of this code path depending on the
2744 // shorty type though this would require different entry points for
2745 // each type.
artInvokePolymorphic(JValue * result,mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2746 extern "C" uintptr_t artInvokePolymorphic(
2747     JValue* result,
2748     mirror::Object* raw_receiver,
2749     Thread* self,
2750     ArtMethod** sp)
2751     REQUIRES_SHARED(Locks::mutator_lock_) {
2752   ScopedQuickEntrypointChecks sqec(self);
2753   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2754 
2755   // Start new JNI local reference state
2756   JNIEnvExt* env = self->GetJniEnv();
2757   ScopedObjectAccessUnchecked soa(env);
2758   ScopedJniEnvLocalRefState env_state(env);
2759   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2760 
2761   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2762   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2763   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2764   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2765   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2766          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2767   const uint32_t proto_idx = inst.VRegH();
2768   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2769   const size_t shorty_length = strlen(shorty);
2770   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2771   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2772   gc_visitor.VisitArguments();
2773 
2774   // Wrap raw_receiver in a Handle for safety.
2775   StackHandleScope<3> hs(self);
2776   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2777   raw_receiver = nullptr;
2778   self->EndAssertNoThreadSuspension(old_cause);
2779 
2780   // Resolve method.
2781   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2782   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2783       self, inst.VRegB(), caller_method, kVirtual);
2784 
2785   if (UNLIKELY(receiver_handle.IsNull())) {
2786     ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2787     return static_cast<uintptr_t>('V');
2788   }
2789 
2790   // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996).
2791   DCHECK_EQ(resolved_method->GetDeclaringClass(),
2792             WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle));
2793 
2794   Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2795       ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get()))));
2796 
2797   Handle<mirror::MethodType> method_type(
2798       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2799 
2800   // This implies we couldn't resolve one or more types in this method handle.
2801   if (UNLIKELY(method_type.IsNull())) {
2802     CHECK(self->IsExceptionPending());
2803     return static_cast<uintptr_t>('V');
2804   }
2805 
2806   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2807   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2808 
2809   // Fix references before constructing the shadow frame.
2810   gc_visitor.FixupReferences();
2811 
2812   // Construct shadow frame placing arguments consecutively from |first_arg|.
2813   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2814   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2815   const size_t first_arg = 0;
2816   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2817       CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2818   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2819   ScopedStackedShadowFramePusher
2820       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2821   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2822                                                     kMethodIsStatic,
2823                                                     shorty,
2824                                                     strlen(shorty),
2825                                                     shadow_frame,
2826                                                     first_arg);
2827   shadow_frame_builder.VisitArguments();
2828 
2829   // Push a transition back into managed code onto the linked list in thread.
2830   ManagedStack fragment;
2831   self->PushManagedStackFragment(&fragment);
2832 
2833   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2834   // consecutive order.
2835   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2836   bool isExact = (jni::EncodeArtMethod(resolved_method) ==
2837                   WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact);
2838   bool success = false;
2839   if (isExact) {
2840     success = MethodHandleInvokeExact(self,
2841                                       *shadow_frame,
2842                                       method_handle,
2843                                       method_type,
2844                                       &operands,
2845                                       result);
2846   } else {
2847     success = MethodHandleInvoke(self,
2848                                  *shadow_frame,
2849                                  method_handle,
2850                                  method_type,
2851                                  &operands,
2852                                  result);
2853   }
2854   DCHECK(success || self->IsExceptionPending());
2855 
2856   // Pop transition record.
2857   self->PopManagedStackFragment(fragment);
2858 
2859   return static_cast<uintptr_t>(shorty[0]);
2860 }
2861 
2862 }  // namespace art
2863