1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "debug_print.h"
23 #include "debugger.h"
24 #include "dex/dex_file-inl.h"
25 #include "dex/dex_file_types.h"
26 #include "dex/dex_instruction-inl.h"
27 #include "dex/method_reference.h"
28 #include "entrypoints/entrypoint_utils-inl.h"
29 #include "entrypoints/runtime_asm_entrypoints.h"
30 #include "gc/accounting/card_table-inl.h"
31 #include "imt_conflict_table.h"
32 #include "imtable-inl.h"
33 #include "index_bss_mapping.h"
34 #include "instrumentation.h"
35 #include "interpreter/interpreter.h"
36 #include "jit/jit.h"
37 #include "linear_alloc.h"
38 #include "method_handles.h"
39 #include "mirror/class-inl.h"
40 #include "mirror/dex_cache-inl.h"
41 #include "mirror/method.h"
42 #include "mirror/method_handle_impl.h"
43 #include "mirror/object-inl.h"
44 #include "mirror/object_array-inl.h"
45 #include "oat_file.h"
46 #include "oat_quick_method_header.h"
47 #include "quick_exception_handler.h"
48 #include "runtime.h"
49 #include "scoped_thread_state_change-inl.h"
50 #include "stack.h"
51 #include "thread-inl.h"
52 #include "well_known_classes.h"
53
54 namespace art {
55
56 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
57 class QuickArgumentVisitor {
58 // Number of bytes for each out register in the caller method's frame.
59 static constexpr size_t kBytesStackArgLocation = 4;
60 // Frame size in bytes of a callee-save frame for RefsAndArgs.
61 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
62 GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
63 #if defined(__arm__)
64 // The callee save frame is pointed to by SP.
65 // | argN | |
66 // | ... | |
67 // | arg4 | |
68 // | arg3 spill | | Caller's frame
69 // | arg2 spill | |
70 // | arg1 spill | |
71 // | Method* | ---
72 // | LR |
73 // | ... | 4x6 bytes callee saves
74 // | R3 |
75 // | R2 |
76 // | R1 |
77 // | S15 |
78 // | : |
79 // | S0 |
80 // | | 4x2 bytes padding
81 // | Method* | <- sp
82 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
83 static constexpr bool kAlignPairRegister = true;
84 static constexpr bool kQuickSoftFloatAbi = false;
85 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
86 static constexpr bool kQuickSkipOddFpRegisters = false;
87 static constexpr size_t kNumQuickGprArgs = 3;
88 static constexpr size_t kNumQuickFprArgs = 16;
89 static constexpr bool kGprFprLockstep = false;
90 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
91 arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs); // Offset of first FPR arg.
92 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
93 arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs); // Offset of first GPR arg.
94 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
95 arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs); // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)96 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
97 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
98 }
99 #elif defined(__aarch64__)
100 // The callee save frame is pointed to by SP.
101 // | argN | |
102 // | ... | |
103 // | arg4 | |
104 // | arg3 spill | | Caller's frame
105 // | arg2 spill | |
106 // | arg1 spill | |
107 // | Method* | ---
108 // | LR |
109 // | X29 |
110 // | : |
111 // | X20 |
112 // | X7 |
113 // | : |
114 // | X1 |
115 // | D7 |
116 // | : |
117 // | D0 |
118 // | | padding
119 // | Method* | <- sp
120 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
121 static constexpr bool kAlignPairRegister = false;
122 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
123 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
124 static constexpr bool kQuickSkipOddFpRegisters = false;
125 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
126 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
127 static constexpr bool kGprFprLockstep = false;
128 // Offset of first FPR arg.
129 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
130 arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
131 // Offset of first GPR arg.
132 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
133 arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
134 // Offset of return address.
135 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
136 arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
GprIndexToGprOffset(uint32_t gpr_index)137 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
138 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
139 }
140 #elif defined(__mips__) && !defined(__LP64__)
141 // The callee save frame is pointed to by SP.
142 // | argN | |
143 // | ... | |
144 // | arg4 | |
145 // | arg3 spill | | Caller's frame
146 // | arg2 spill | |
147 // | arg1 spill | |
148 // | Method* | ---
149 // | RA |
150 // | ... | callee saves
151 // | T1 | arg5
152 // | T0 | arg4
153 // | A3 | arg3
154 // | A2 | arg2
155 // | A1 | arg1
156 // | F19 |
157 // | F18 | f_arg5
158 // | F17 |
159 // | F16 | f_arg4
160 // | F15 |
161 // | F14 | f_arg3
162 // | F13 |
163 // | F12 | f_arg2
164 // | F11 |
165 // | F10 | f_arg1
166 // | F9 |
167 // | F8 | f_arg0
168 // | | padding
169 // | A0/Method* | <- sp
170 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
171 static constexpr bool kAlignPairRegister = true;
172 static constexpr bool kQuickSoftFloatAbi = false;
173 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
174 static constexpr bool kQuickSkipOddFpRegisters = true;
175 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
176 static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be
177 // passed only in even numbered registers and each
178 // double occupies two registers.
179 static constexpr bool kGprFprLockstep = false;
180 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8; // Offset of first FPR arg.
181 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56; // Offset of first GPR arg.
182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)183 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
184 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
185 }
186 #elif defined(__mips__) && defined(__LP64__)
187 // The callee save frame is pointed to by SP.
188 // | argN | |
189 // | ... | |
190 // | arg4 | |
191 // | arg3 spill | | Caller's frame
192 // | arg2 spill | |
193 // | arg1 spill | |
194 // | Method* | ---
195 // | RA |
196 // | ... | callee saves
197 // | A7 | arg7
198 // | A6 | arg6
199 // | A5 | arg5
200 // | A4 | arg4
201 // | A3 | arg3
202 // | A2 | arg2
203 // | A1 | arg1
204 // | F19 | f_arg7
205 // | F18 | f_arg6
206 // | F17 | f_arg5
207 // | F16 | f_arg4
208 // | F15 | f_arg3
209 // | F14 | f_arg2
210 // | F13 | f_arg1
211 // | F12 | f_arg0
212 // | | padding
213 // | A0/Method* | <- sp
214 // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
215 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
216 static constexpr bool kAlignPairRegister = false;
217 static constexpr bool kQuickSoftFloatAbi = false;
218 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
219 static constexpr bool kQuickSkipOddFpRegisters = false;
220 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
221 static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs.
222 static constexpr bool kGprFprLockstep = true;
223
224 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F13).
225 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1).
226 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)227 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
228 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
229 }
230 #elif defined(__i386__)
231 // The callee save frame is pointed to by SP.
232 // | argN | |
233 // | ... | |
234 // | arg4 | |
235 // | arg3 spill | | Caller's frame
236 // | arg2 spill | |
237 // | arg1 spill | |
238 // | Method* | ---
239 // | Return |
240 // | EBP,ESI,EDI | callee saves
241 // | EBX | arg3
242 // | EDX | arg2
243 // | ECX | arg1
244 // | XMM3 | float arg 4
245 // | XMM2 | float arg 3
246 // | XMM1 | float arg 2
247 // | XMM0 | float arg 1
248 // | EAX/Method* | <- sp
249 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
250 static constexpr bool kAlignPairRegister = false;
251 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
252 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
253 static constexpr bool kQuickSkipOddFpRegisters = false;
254 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
255 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
256 static constexpr bool kGprFprLockstep = false;
257 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg.
258 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg.
259 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)260 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
261 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
262 }
263 #elif defined(__x86_64__)
264 // The callee save frame is pointed to by SP.
265 // | argN | |
266 // | ... | |
267 // | reg. arg spills | | Caller's frame
268 // | Method* | ---
269 // | Return |
270 // | R15 | callee save
271 // | R14 | callee save
272 // | R13 | callee save
273 // | R12 | callee save
274 // | R9 | arg5
275 // | R8 | arg4
276 // | RSI/R6 | arg1
277 // | RBP/R5 | callee save
278 // | RBX/R3 | callee save
279 // | RDX/R2 | arg2
280 // | RCX/R1 | arg3
281 // | XMM7 | float arg 8
282 // | XMM6 | float arg 7
283 // | XMM5 | float arg 6
284 // | XMM4 | float arg 5
285 // | XMM3 | float arg 4
286 // | XMM2 | float arg 3
287 // | XMM1 | float arg 2
288 // | XMM0 | float arg 1
289 // | Padding |
290 // | RDI/Method* | <- sp
291 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
292 static constexpr bool kAlignPairRegister = false;
293 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
294 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
295 static constexpr bool kQuickSkipOddFpRegisters = false;
296 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
297 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
298 static constexpr bool kGprFprLockstep = false;
299 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
300 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg.
301 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)302 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
303 switch (gpr_index) {
304 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
305 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
306 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
307 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
308 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
309 default:
310 LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
311 return 0;
312 }
313 }
314 #else
315 #error "Unsupported architecture"
316 #endif
317
318 public:
319 // Special handling for proxy methods. Proxy methods are instance methods so the
320 // 'this' object is the 1st argument. They also have the same frame layout as the
321 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
322 // 1st GPR.
GetProxyThisObjectReference(ArtMethod ** sp)323 static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
324 REQUIRES_SHARED(Locks::mutator_lock_) {
325 CHECK((*sp)->IsProxyMethod());
326 CHECK_GT(kNumQuickGprArgs, 0u);
327 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
328 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
329 GprIndexToGprOffset(kThisGprIndex);
330 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
331 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
332 }
333
GetCallingMethod(ArtMethod ** sp)334 static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
335 DCHECK((*sp)->IsCalleeSaveMethod());
336 return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
337 }
338
GetOuterMethod(ArtMethod ** sp)339 static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
340 DCHECK((*sp)->IsCalleeSaveMethod());
341 uint8_t* previous_sp =
342 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
343 return *reinterpret_cast<ArtMethod**>(previous_sp);
344 }
345
GetCallingDexPc(ArtMethod ** sp)346 static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
347 DCHECK((*sp)->IsCalleeSaveMethod());
348 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
349 CalleeSaveType::kSaveRefsAndArgs);
350 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
351 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
352 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
353 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
354 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
355
356 if (current_code->IsOptimized()) {
357 CodeInfo code_info = current_code->GetOptimizedCodeInfo();
358 CodeInfoEncoding encoding = code_info.ExtractEncoding();
359 StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
360 DCHECK(stack_map.IsValid());
361 if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
362 InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
363 return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
364 inline_info.GetDepth(encoding.inline_info.encoding)-1);
365 } else {
366 return stack_map.GetDexPc(encoding.stack_map.encoding);
367 }
368 } else {
369 return current_code->ToDexPc(*caller_sp, outer_pc);
370 }
371 }
372
GetInvokeType(ArtMethod ** sp,InvokeType * invoke_type,uint32_t * dex_method_index)373 static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
374 REQUIRES_SHARED(Locks::mutator_lock_) {
375 DCHECK((*sp)->IsCalleeSaveMethod());
376 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
377 CalleeSaveType::kSaveRefsAndArgs);
378 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
379 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
380 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
381 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
382 if (!current_code->IsOptimized()) {
383 return false;
384 }
385 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
386 CodeInfo code_info = current_code->GetOptimizedCodeInfo();
387 CodeInfoEncoding encoding = code_info.ExtractEncoding();
388 MethodInfo method_info = current_code->GetOptimizedMethodInfo();
389 InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
390 if (invoke.IsValid()) {
391 *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
392 *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
393 return true;
394 }
395 return false;
396 }
397
398 // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)399 static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
400 DCHECK((*sp)->IsCalleeSaveMethod());
401 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
402 return *reinterpret_cast<uintptr_t*>(lr);
403 }
404
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)405 QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
406 uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
407 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
408 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
409 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
410 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
411 + sizeof(ArtMethod*)), // Skip ArtMethod*.
412 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
413 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
414 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
415 "Number of Quick FPR arguments unexpected");
416 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
417 "Double alignment unexpected");
418 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
419 // next register is even.
420 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
421 "Number of Quick FPR arguments not even");
422 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
423 }
424
~QuickArgumentVisitor()425 virtual ~QuickArgumentVisitor() {}
426
427 virtual void Visit() = 0;
428
GetParamPrimitiveType() const429 Primitive::Type GetParamPrimitiveType() const {
430 return cur_type_;
431 }
432
GetParamAddress() const433 uint8_t* GetParamAddress() const {
434 if (!kQuickSoftFloatAbi) {
435 Primitive::Type type = GetParamPrimitiveType();
436 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
437 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
438 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
439 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
440 }
441 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
442 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
443 }
444 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
445 }
446 }
447 if (gpr_index_ < kNumQuickGprArgs) {
448 return gpr_args_ + GprIndexToGprOffset(gpr_index_);
449 }
450 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
451 }
452
IsSplitLongOrDouble() const453 bool IsSplitLongOrDouble() const {
454 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
455 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
456 return is_split_long_or_double_;
457 } else {
458 return false; // An optimization for when GPR and FPRs are 64bit.
459 }
460 }
461
IsParamAReference() const462 bool IsParamAReference() const {
463 return GetParamPrimitiveType() == Primitive::kPrimNot;
464 }
465
IsParamALongOrDouble() const466 bool IsParamALongOrDouble() const {
467 Primitive::Type type = GetParamPrimitiveType();
468 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
469 }
470
ReadSplitLongParam() const471 uint64_t ReadSplitLongParam() const {
472 // The splitted long is always available through the stack.
473 return *reinterpret_cast<uint64_t*>(stack_args_
474 + stack_index_ * kBytesStackArgLocation);
475 }
476
IncGprIndex()477 void IncGprIndex() {
478 gpr_index_++;
479 if (kGprFprLockstep) {
480 fpr_index_++;
481 }
482 }
483
IncFprIndex()484 void IncFprIndex() {
485 fpr_index_++;
486 if (kGprFprLockstep) {
487 gpr_index_++;
488 }
489 }
490
VisitArguments()491 void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
492 // (a) 'stack_args_' should point to the first method's argument
493 // (b) whatever the argument type it is, the 'stack_index_' should
494 // be moved forward along with every visiting.
495 gpr_index_ = 0;
496 fpr_index_ = 0;
497 if (kQuickDoubleRegAlignedFloatBackFilled) {
498 fpr_double_index_ = 0;
499 }
500 stack_index_ = 0;
501 if (!is_static_) { // Handle this.
502 cur_type_ = Primitive::kPrimNot;
503 is_split_long_or_double_ = false;
504 Visit();
505 stack_index_++;
506 if (kNumQuickGprArgs > 0) {
507 IncGprIndex();
508 }
509 }
510 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
511 cur_type_ = Primitive::GetType(shorty_[shorty_index]);
512 switch (cur_type_) {
513 case Primitive::kPrimNot:
514 case Primitive::kPrimBoolean:
515 case Primitive::kPrimByte:
516 case Primitive::kPrimChar:
517 case Primitive::kPrimShort:
518 case Primitive::kPrimInt:
519 is_split_long_or_double_ = false;
520 Visit();
521 stack_index_++;
522 if (gpr_index_ < kNumQuickGprArgs) {
523 IncGprIndex();
524 }
525 break;
526 case Primitive::kPrimFloat:
527 is_split_long_or_double_ = false;
528 Visit();
529 stack_index_++;
530 if (kQuickSoftFloatAbi) {
531 if (gpr_index_ < kNumQuickGprArgs) {
532 IncGprIndex();
533 }
534 } else {
535 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
536 IncFprIndex();
537 if (kQuickDoubleRegAlignedFloatBackFilled) {
538 // Double should not overlap with float.
539 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
540 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
541 // Float should not overlap with double.
542 if (fpr_index_ % 2 == 0) {
543 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
544 }
545 } else if (kQuickSkipOddFpRegisters) {
546 IncFprIndex();
547 }
548 }
549 }
550 break;
551 case Primitive::kPrimDouble:
552 case Primitive::kPrimLong:
553 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
554 if (cur_type_ == Primitive::kPrimLong &&
555 #if defined(__mips__) && !defined(__LP64__)
556 (gpr_index_ == 0 || gpr_index_ == 2) &&
557 #else
558 gpr_index_ == 0 &&
559 #endif
560 kAlignPairRegister) {
561 // Currently, this is only for ARM and MIPS, where we align long parameters with
562 // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
563 // R2 (on ARM) or A2(T0) (on MIPS) instead.
564 IncGprIndex();
565 }
566 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
567 ((gpr_index_ + 1) == kNumQuickGprArgs);
568 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
569 // We don't want to split this. Pass over this register.
570 gpr_index_++;
571 is_split_long_or_double_ = false;
572 }
573 Visit();
574 if (kBytesStackArgLocation == 4) {
575 stack_index_+= 2;
576 } else {
577 CHECK_EQ(kBytesStackArgLocation, 8U);
578 stack_index_++;
579 }
580 if (gpr_index_ < kNumQuickGprArgs) {
581 IncGprIndex();
582 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
583 if (gpr_index_ < kNumQuickGprArgs) {
584 IncGprIndex();
585 }
586 }
587 }
588 } else {
589 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
590 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
591 Visit();
592 if (kBytesStackArgLocation == 4) {
593 stack_index_+= 2;
594 } else {
595 CHECK_EQ(kBytesStackArgLocation, 8U);
596 stack_index_++;
597 }
598 if (kQuickDoubleRegAlignedFloatBackFilled) {
599 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
600 fpr_double_index_ += 2;
601 // Float should not overlap with double.
602 if (fpr_index_ % 2 == 0) {
603 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
604 }
605 }
606 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
607 IncFprIndex();
608 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
609 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
610 IncFprIndex();
611 }
612 }
613 }
614 }
615 break;
616 default:
617 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
618 }
619 }
620 }
621
622 protected:
623 const bool is_static_;
624 const char* const shorty_;
625 const uint32_t shorty_len_;
626
627 private:
628 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
629 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
630 uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
631 uint32_t gpr_index_; // Index into spilled GPRs.
632 // Index into spilled FPRs.
633 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
634 // holds a higher register number.
635 uint32_t fpr_index_;
636 // Index into spilled FPRs for aligned double.
637 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
638 // terms of singles, may be behind fpr_index.
639 uint32_t fpr_double_index_;
640 uint32_t stack_index_; // Index into arguments on the stack.
641 // The current type of argument during VisitArguments.
642 Primitive::Type cur_type_;
643 // Does a 64bit parameter straddle the register and stack arguments?
644 bool is_split_long_or_double_;
645 };
646
647 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
648 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)649 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
650 REQUIRES_SHARED(Locks::mutator_lock_) {
651 return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
652 }
653
654 // Visits arguments on the stack placing them into the shadow frame.
655 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
656 public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)657 BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
658 uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
659 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
660
661 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
662
663 private:
664 ShadowFrame* const sf_;
665 uint32_t cur_reg_;
666
667 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
668 };
669
Visit()670 void BuildQuickShadowFrameVisitor::Visit() {
671 Primitive::Type type = GetParamPrimitiveType();
672 switch (type) {
673 case Primitive::kPrimLong: // Fall-through.
674 case Primitive::kPrimDouble:
675 if (IsSplitLongOrDouble()) {
676 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
677 } else {
678 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
679 }
680 ++cur_reg_;
681 break;
682 case Primitive::kPrimNot: {
683 StackReference<mirror::Object>* stack_ref =
684 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
685 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
686 }
687 break;
688 case Primitive::kPrimBoolean: // Fall-through.
689 case Primitive::kPrimByte: // Fall-through.
690 case Primitive::kPrimChar: // Fall-through.
691 case Primitive::kPrimShort: // Fall-through.
692 case Primitive::kPrimInt: // Fall-through.
693 case Primitive::kPrimFloat:
694 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
695 break;
696 case Primitive::kPrimVoid:
697 LOG(FATAL) << "UNREACHABLE";
698 UNREACHABLE();
699 }
700 ++cur_reg_;
701 }
702
703 // Don't inline. See b/65159206.
704 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)705 static void HandleDeoptimization(JValue* result,
706 ArtMethod* method,
707 ShadowFrame* deopt_frame,
708 ManagedStack* fragment)
709 REQUIRES_SHARED(Locks::mutator_lock_) {
710 // Coming from partial-fragment deopt.
711 Thread* self = Thread::Current();
712 if (kIsDebugBuild) {
713 // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
714 // of the call-stack) corresponds to the called method.
715 ShadowFrame* linked = deopt_frame;
716 while (linked->GetLink() != nullptr) {
717 linked = linked->GetLink();
718 }
719 CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
720 << ArtMethod::PrettyMethod(linked->GetMethod());
721 }
722
723 if (VLOG_IS_ON(deopt)) {
724 // Print out the stack to verify that it was a partial-fragment deopt.
725 LOG(INFO) << "Continue-ing from deopt. Stack is:";
726 QuickExceptionHandler::DumpFramesWithType(self, true);
727 }
728
729 ObjPtr<mirror::Throwable> pending_exception;
730 bool from_code = false;
731 DeoptimizationMethodType method_type;
732 self->PopDeoptimizationContext(/* out */ result,
733 /* out */ &pending_exception,
734 /* out */ &from_code,
735 /* out */ &method_type);
736
737 // Push a transition back into managed code onto the linked list in thread.
738 self->PushManagedStackFragment(fragment);
739
740 // Ensure that the stack is still in order.
741 if (kIsDebugBuild) {
742 class DummyStackVisitor : public StackVisitor {
743 public:
744 explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
745 : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
746
747 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
748 // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
749 // logic. Just always say we want to continue.
750 return true;
751 }
752 };
753 DummyStackVisitor dsv(self);
754 dsv.WalkStack();
755 }
756
757 // Restore the exception that was pending before deoptimization then interpret the
758 // deoptimized frames.
759 if (pending_exception != nullptr) {
760 self->SetException(pending_exception);
761 }
762 interpreter::EnterInterpreterFromDeoptimize(self,
763 deopt_frame,
764 result,
765 from_code,
766 DeoptimizationMethodType::kDefault);
767 }
768
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)769 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
770 REQUIRES_SHARED(Locks::mutator_lock_) {
771 // Ensure we don't get thread suspension until the object arguments are safely in the shadow
772 // frame.
773 ScopedQuickEntrypointChecks sqec(self);
774
775 if (UNLIKELY(!method->IsInvokable())) {
776 method->ThrowInvocationTimeError();
777 return 0;
778 }
779
780 JValue tmp_value;
781 ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
782 StackedShadowFrameType::kDeoptimizationShadowFrame, false);
783 ManagedStack fragment;
784
785 DCHECK(!method->IsNative()) << method->PrettyMethod();
786 uint32_t shorty_len = 0;
787 ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
788 DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
789 CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
790 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
791
792 JValue result;
793
794 if (UNLIKELY(deopt_frame != nullptr)) {
795 HandleDeoptimization(&result, method, deopt_frame, &fragment);
796 } else {
797 const char* old_cause = self->StartAssertNoThreadSuspension(
798 "Building interpreter shadow frame");
799 uint16_t num_regs = accessor.RegistersSize();
800 // No last shadow coming from quick.
801 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
802 CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
803 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
804 size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
805 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
806 shadow_frame, first_arg_reg);
807 shadow_frame_builder.VisitArguments();
808 const bool needs_initialization =
809 method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
810 // Push a transition back into managed code onto the linked list in thread.
811 self->PushManagedStackFragment(&fragment);
812 self->PushShadowFrame(shadow_frame);
813 self->EndAssertNoThreadSuspension(old_cause);
814
815 if (needs_initialization) {
816 // Ensure static method's class is initialized.
817 StackHandleScope<1> hs(self);
818 Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
819 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
820 DCHECK(Thread::Current()->IsExceptionPending())
821 << shadow_frame->GetMethod()->PrettyMethod();
822 self->PopManagedStackFragment(fragment);
823 return 0;
824 }
825 }
826
827 result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
828 }
829
830 // Pop transition.
831 self->PopManagedStackFragment(fragment);
832
833 // Request a stack deoptimization if needed
834 ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
835 uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
836 // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
837 // should be done and it knows the real return pc.
838 if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
839 Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
840 if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
841 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
842 << caller->PrettyMethod();
843 } else {
844 // Push the context of the deoptimization stack so we can restore the return value and the
845 // exception before executing the deoptimized frames.
846 self->PushDeoptimizationContext(
847 result,
848 shorty[0] == 'L' || shorty[0] == '[', /* class or array */
849 self->GetException(),
850 false /* from_code */,
851 DeoptimizationMethodType::kDefault);
852
853 // Set special exception to cause deoptimization.
854 self->SetException(Thread::GetDeoptimizationException());
855 }
856 }
857
858 // No need to restore the args since the method has already been run by the interpreter.
859 return result.GetJ();
860 }
861
862 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
863 // to jobjects.
864 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
865 public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)866 BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
867 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
868 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
869
870 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
871
872 private:
873 ScopedObjectAccessUnchecked* const soa_;
874 std::vector<jvalue>* const args_;
875
876 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
877 };
878
Visit()879 void BuildQuickArgumentVisitor::Visit() {
880 jvalue val;
881 Primitive::Type type = GetParamPrimitiveType();
882 switch (type) {
883 case Primitive::kPrimNot: {
884 StackReference<mirror::Object>* stack_ref =
885 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
886 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
887 break;
888 }
889 case Primitive::kPrimLong: // Fall-through.
890 case Primitive::kPrimDouble:
891 if (IsSplitLongOrDouble()) {
892 val.j = ReadSplitLongParam();
893 } else {
894 val.j = *reinterpret_cast<jlong*>(GetParamAddress());
895 }
896 break;
897 case Primitive::kPrimBoolean: // Fall-through.
898 case Primitive::kPrimByte: // Fall-through.
899 case Primitive::kPrimChar: // Fall-through.
900 case Primitive::kPrimShort: // Fall-through.
901 case Primitive::kPrimInt: // Fall-through.
902 case Primitive::kPrimFloat:
903 val.i = *reinterpret_cast<jint*>(GetParamAddress());
904 break;
905 case Primitive::kPrimVoid:
906 LOG(FATAL) << "UNREACHABLE";
907 UNREACHABLE();
908 }
909 args_->push_back(val);
910 }
911
912 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
913 // which is responsible for recording callee save registers. We explicitly place into jobjects the
914 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
915 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)916 extern "C" uint64_t artQuickProxyInvokeHandler(
917 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
918 REQUIRES_SHARED(Locks::mutator_lock_) {
919 DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
920 DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
921 // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
922 const char* old_cause =
923 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
924 // Register the top of the managed stack, making stack crawlable.
925 DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
926 self->VerifyStack();
927 // Start new JNI local reference state.
928 JNIEnvExt* env = self->GetJniEnv();
929 ScopedObjectAccessUnchecked soa(env);
930 ScopedJniEnvLocalRefState env_state(env);
931 // Create local ref. copies of proxy method and the receiver.
932 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
933
934 // Placing arguments into args vector and remove the receiver.
935 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
936 CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
937 << non_proxy_method->PrettyMethod();
938 std::vector<jvalue> args;
939 uint32_t shorty_len = 0;
940 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
941 BuildQuickArgumentVisitor local_ref_visitor(
942 sp, /* is_static */ false, shorty, shorty_len, &soa, &args);
943
944 local_ref_visitor.VisitArguments();
945 DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
946 args.erase(args.begin());
947
948 // Convert proxy method into expected interface method.
949 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
950 DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
951 DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
952 self->EndAssertNoThreadSuspension(old_cause);
953 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
954 DCHECK(!Runtime::Current()->IsActiveTransaction());
955 ObjPtr<mirror::Method> interface_reflect_method =
956 mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
957 if (interface_reflect_method == nullptr) {
958 soa.Self()->AssertPendingOOMException();
959 return 0;
960 }
961 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
962
963 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
964 // that performs allocations.
965 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
966 return result.GetJ();
967 }
968
969 // Visitor returning a reference argument at a given position in a Quick stack frame.
970 // NOTE: Only used for testing purposes.
971 class GetQuickReferenceArgumentAtVisitor FINAL : public QuickArgumentVisitor {
972 public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)973 GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
974 const char* shorty,
975 uint32_t shorty_len,
976 size_t arg_pos)
977 : QuickArgumentVisitor(sp, /* is_static */ false, shorty, shorty_len),
978 cur_pos_(0u),
979 arg_pos_(arg_pos),
980 ref_arg_(nullptr) {
981 CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
982 }
983
Visit()984 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
985 if (cur_pos_ == arg_pos_) {
986 Primitive::Type type = GetParamPrimitiveType();
987 CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
988 ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
989 }
990 ++cur_pos_;
991 }
992
GetReferenceArgument()993 StackReference<mirror::Object>* GetReferenceArgument() {
994 return ref_arg_;
995 }
996
997 private:
998 // The position of the currently visited argument.
999 size_t cur_pos_;
1000 // The position of the searched argument.
1001 const size_t arg_pos_;
1002 // The reference argument, if found.
1003 StackReference<mirror::Object>* ref_arg_;
1004
1005 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
1006 };
1007
1008 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
1009 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)1010 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
1011 ArtMethod** sp)
1012 REQUIRES_SHARED(Locks::mutator_lock_) {
1013 ArtMethod* proxy_method = *sp;
1014 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1015 CHECK(!non_proxy_method->IsStatic())
1016 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1017 uint32_t shorty_len = 0;
1018 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1019 GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
1020 ref_arg_visitor.VisitArguments();
1021 StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
1022 return ref_arg;
1023 }
1024
1025 // Visitor returning all the reference arguments in a Quick stack frame.
1026 class GetQuickReferenceArgumentsVisitor FINAL : public QuickArgumentVisitor {
1027 public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)1028 GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
1029 bool is_static,
1030 const char* shorty,
1031 uint32_t shorty_len)
1032 : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
1033
Visit()1034 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
1035 Primitive::Type type = GetParamPrimitiveType();
1036 if (type == Primitive::kPrimNot) {
1037 StackReference<mirror::Object>* ref_arg =
1038 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1039 ref_args_.push_back(ref_arg);
1040 }
1041 }
1042
GetReferenceArguments()1043 std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
1044 return ref_args_;
1045 }
1046
1047 private:
1048 // The reference arguments.
1049 std::vector<StackReference<mirror::Object>*> ref_args_;
1050
1051 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
1052 };
1053
1054 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)1055 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
1056 REQUIRES_SHARED(Locks::mutator_lock_) {
1057 ArtMethod* proxy_method = *sp;
1058 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1059 CHECK(!non_proxy_method->IsStatic())
1060 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1061 uint32_t shorty_len = 0;
1062 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1063 GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /* is_static */ false, shorty, shorty_len);
1064 ref_args_visitor.VisitArguments();
1065 std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
1066 return ref_args;
1067 }
1068
1069 // Read object references held in arguments from quick frames and place in a JNI local references,
1070 // so they don't get garbage collected.
1071 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
1072 public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)1073 RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
1074 uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
1075 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
1076
1077 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1078
1079 void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1080
1081 private:
1082 ScopedObjectAccessUnchecked* const soa_;
1083 // References which we must update when exiting in case the GC moved the objects.
1084 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1085
1086 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1087 };
1088
Visit()1089 void RememberForGcArgumentVisitor::Visit() {
1090 if (IsParamAReference()) {
1091 StackReference<mirror::Object>* stack_ref =
1092 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1093 jobject reference =
1094 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1095 references_.push_back(std::make_pair(reference, stack_ref));
1096 }
1097 }
1098
FixupReferences()1099 void RememberForGcArgumentVisitor::FixupReferences() {
1100 // Fixup any references which may have changed.
1101 for (const auto& pair : references_) {
1102 pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1103 soa_->Env()->DeleteLocalRef(pair.first);
1104 }
1105 }
1106
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)1107 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1108 mirror::Object* this_object,
1109 Thread* self,
1110 ArtMethod** sp)
1111 REQUIRES_SHARED(Locks::mutator_lock_) {
1112 const void* result;
1113 // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1114 // that part.
1115 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1116 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1117 if (instrumentation->IsDeoptimized(method)) {
1118 result = GetQuickToInterpreterBridge();
1119 } else {
1120 result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1121 DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1122 }
1123
1124 bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1125 bool is_static = method->IsStatic();
1126 uint32_t shorty_len;
1127 const char* shorty =
1128 method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1129
1130 ScopedObjectAccessUnchecked soa(self);
1131 RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1132 visitor.VisitArguments();
1133
1134 instrumentation->PushInstrumentationStackFrame(self,
1135 is_static ? nullptr : this_object,
1136 method,
1137 QuickArgumentVisitor::GetCallingPc(sp),
1138 interpreter_entry);
1139
1140 visitor.FixupReferences();
1141 if (UNLIKELY(self->IsExceptionPending())) {
1142 return nullptr;
1143 }
1144 CHECK(result != nullptr) << method->PrettyMethod();
1145 return result;
1146 }
1147
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1148 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1149 ArtMethod** sp,
1150 uint64_t* gpr_result,
1151 uint64_t* fpr_result)
1152 REQUIRES_SHARED(Locks::mutator_lock_) {
1153 DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1154 CHECK(gpr_result != nullptr);
1155 CHECK(fpr_result != nullptr);
1156 // Instrumentation exit stub must not be entered with a pending exception.
1157 CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1158 << self->GetException()->Dump();
1159 // Compute address of return PC and sanity check that it currently holds 0.
1160 size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA,
1161 CalleeSaveType::kSaveEverything);
1162 uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1163 return_pc_offset);
1164 CHECK_EQ(*return_pc, 0U);
1165
1166 // Pop the frame filling in the return pc. The low half of the return value is 0 when
1167 // deoptimization shouldn't be performed with the high-half having the return address. When
1168 // deoptimization should be performed the low half is zero and the high-half the address of the
1169 // deoptimization entry point.
1170 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1171 TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1172 self, return_pc, gpr_result, fpr_result);
1173 if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1174 return GetTwoWordFailureValue();
1175 }
1176 return return_or_deoptimize_pc;
1177 }
1178
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1179 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1180 REQUIRES_SHARED(Locks::mutator_lock_) {
1181 if (dex_pc == static_cast<uint32_t>(-1)) {
1182 CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1183 return "<native>";
1184 } else {
1185 CodeItemInstructionAccessor accessor = method->DexInstructions();
1186 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1187 return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1188 }
1189 }
1190
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1191 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1192 REQUIRES_SHARED(Locks::mutator_lock_) {
1193 std::string storage;
1194 const char* descriptor = klass->GetDescriptor(&storage);
1195 LOG(FATAL_WITHOUT_ABORT) << " " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1196 const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1197 if (oat_dex_file != nullptr) {
1198 const OatFile* oat_file = oat_dex_file->GetOatFile();
1199 const char* dex2oat_cmdline =
1200 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1201 LOG(FATAL_WITHOUT_ABORT) << " OatFile: " << oat_file->GetLocation()
1202 << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1203 }
1204 }
1205
DumpB74410240DebugData(ArtMethod ** sp)1206 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1207 // Mimick the search for the caller and dump some data while doing so.
1208 LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1209
1210 constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1211 CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1212
1213 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, type);
1214 auto** caller_sp = reinterpret_cast<ArtMethod**>(
1215 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1216 const size_t callee_return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, type);
1217 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1218 (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1219 ArtMethod* outer_method = *caller_sp;
1220
1221 if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1222 LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1223 << " native pc: " << caller_pc << " Instrumented!";
1224 return;
1225 }
1226
1227 const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1228 CHECK(current_code != nullptr);
1229 CHECK(current_code->IsOptimized());
1230 uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1231 CodeInfo code_info = current_code->GetOptimizedCodeInfo();
1232 MethodInfo method_info = current_code->GetOptimizedMethodInfo();
1233 CodeInfoEncoding encoding = code_info.ExtractEncoding();
1234 StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
1235 CHECK(stack_map.IsValid());
1236 uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map.encoding);
1237
1238 // Log the outer method and its associated dex file and class table pointer which can be used
1239 // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1240 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1241 LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1242 << " native pc: " << caller_pc
1243 << " dex pc: " << dex_pc
1244 << " dex file: " << outer_method->GetDexFile()->GetLocation()
1245 << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1246 DumpB74410240ClassData(outer_method->GetDeclaringClass());
1247 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(outer_method, dex_pc);
1248
1249 ArtMethod* caller = outer_method;
1250 if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
1251 InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
1252 const InlineInfoEncoding& inline_info_encoding = encoding.inline_info.encoding;
1253 size_t depth = inline_info.GetDepth(inline_info_encoding);
1254 for (size_t d = 0; d < depth; ++d) {
1255 const char* tag = "";
1256 dex_pc = inline_info.GetDexPcAtDepth(inline_info_encoding, d);
1257 if (inline_info.EncodesArtMethodAtDepth(inline_info_encoding, d)) {
1258 tag = "encoded ";
1259 caller = inline_info.GetArtMethodAtDepth(inline_info_encoding, d);
1260 } else {
1261 uint32_t method_index = inline_info.GetMethodIndexAtDepth(inline_info_encoding,
1262 method_info,
1263 d);
1264 if (dex_pc == static_cast<uint32_t>(-1)) {
1265 tag = "special ";
1266 CHECK_EQ(d + 1u, depth);
1267 caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1268 CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1269 } else {
1270 ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1271 ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1272 caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1273 CHECK(caller != nullptr);
1274 }
1275 }
1276 LOG(FATAL_WITHOUT_ABORT) << "Inlined method #" << d << ": " << tag << caller->PrettyMethod()
1277 << " dex pc: " << dex_pc
1278 << " dex file: " << caller->GetDexFile()->GetLocation()
1279 << " class table: "
1280 << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1281 DumpB74410240ClassData(caller->GetDeclaringClass());
1282 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(caller, dex_pc);
1283 }
1284 }
1285 }
1286
1287 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1288 extern "C" const void* artQuickResolutionTrampoline(
1289 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1290 REQUIRES_SHARED(Locks::mutator_lock_) {
1291 // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1292 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1293 // does not have the same stack layout as the callee-save method).
1294 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1295 // Start new JNI local reference state
1296 JNIEnvExt* env = self->GetJniEnv();
1297 ScopedObjectAccessUnchecked soa(env);
1298 ScopedJniEnvLocalRefState env_state(env);
1299 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1300
1301 // Compute details about the called method (avoid GCs)
1302 ClassLinker* linker = Runtime::Current()->GetClassLinker();
1303 InvokeType invoke_type;
1304 MethodReference called_method(nullptr, 0);
1305 const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1306 ArtMethod* caller = nullptr;
1307 if (!called_method_known_on_entry) {
1308 caller = QuickArgumentVisitor::GetCallingMethod(sp);
1309 called_method.dex_file = caller->GetDexFile();
1310
1311 InvokeType stack_map_invoke_type;
1312 uint32_t stack_map_dex_method_idx;
1313 const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1314 &stack_map_invoke_type,
1315 &stack_map_dex_method_idx);
1316 // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1317 // code.
1318 if (!found_stack_map || kIsDebugBuild) {
1319 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1320 CodeItemInstructionAccessor accessor(caller->DexInstructions());
1321 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1322 const Instruction& instr = accessor.InstructionAt(dex_pc);
1323 Instruction::Code instr_code = instr.Opcode();
1324 bool is_range;
1325 switch (instr_code) {
1326 case Instruction::INVOKE_DIRECT:
1327 invoke_type = kDirect;
1328 is_range = false;
1329 break;
1330 case Instruction::INVOKE_DIRECT_RANGE:
1331 invoke_type = kDirect;
1332 is_range = true;
1333 break;
1334 case Instruction::INVOKE_STATIC:
1335 invoke_type = kStatic;
1336 is_range = false;
1337 break;
1338 case Instruction::INVOKE_STATIC_RANGE:
1339 invoke_type = kStatic;
1340 is_range = true;
1341 break;
1342 case Instruction::INVOKE_SUPER:
1343 invoke_type = kSuper;
1344 is_range = false;
1345 break;
1346 case Instruction::INVOKE_SUPER_RANGE:
1347 invoke_type = kSuper;
1348 is_range = true;
1349 break;
1350 case Instruction::INVOKE_VIRTUAL:
1351 invoke_type = kVirtual;
1352 is_range = false;
1353 break;
1354 case Instruction::INVOKE_VIRTUAL_RANGE:
1355 invoke_type = kVirtual;
1356 is_range = true;
1357 break;
1358 case Instruction::INVOKE_INTERFACE:
1359 invoke_type = kInterface;
1360 is_range = false;
1361 break;
1362 case Instruction::INVOKE_INTERFACE_RANGE:
1363 invoke_type = kInterface;
1364 is_range = true;
1365 break;
1366 default:
1367 DumpB74410240DebugData(sp);
1368 LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1369 UNREACHABLE();
1370 }
1371 called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1372 // Check that the invoke matches what we expected, note that this path only happens for debug
1373 // builds.
1374 if (found_stack_map) {
1375 DCHECK_EQ(stack_map_invoke_type, invoke_type);
1376 if (invoke_type != kSuper) {
1377 // Super may be sharpened.
1378 DCHECK_EQ(stack_map_dex_method_idx, called_method.index)
1379 << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1380 << called_method.PrettyMethod();
1381 }
1382 } else {
1383 VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1384 << called_method.index;
1385 }
1386 } else {
1387 invoke_type = stack_map_invoke_type;
1388 called_method.index = stack_map_dex_method_idx;
1389 }
1390 } else {
1391 invoke_type = kStatic;
1392 called_method.dex_file = called->GetDexFile();
1393 called_method.index = called->GetDexMethodIndex();
1394 }
1395 uint32_t shorty_len;
1396 const char* shorty =
1397 called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1398 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1399 visitor.VisitArguments();
1400 self->EndAssertNoThreadSuspension(old_cause);
1401 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1402 // Resolve method filling in dex cache.
1403 if (!called_method_known_on_entry) {
1404 StackHandleScope<1> hs(self);
1405 mirror::Object* dummy = nullptr;
1406 HandleWrapper<mirror::Object> h_receiver(
1407 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1408 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1409 called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1410 self, called_method.index, caller, invoke_type);
1411
1412 // Update .bss entry in oat file if any.
1413 if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1414 size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
1415 called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
1416 called_method.index,
1417 called_method.dex_file->NumMethodIds(),
1418 static_cast<size_t>(kRuntimePointerSize));
1419 if (bss_offset != IndexBssMappingLookup::npos) {
1420 DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1421 const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1422 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1423 oat_file->BssBegin() + bss_offset));
1424 DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1425 DCHECK_LT(method_entry,
1426 oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1427 *method_entry = called;
1428 }
1429 }
1430 }
1431 const void* code = nullptr;
1432 if (LIKELY(!self->IsExceptionPending())) {
1433 // Incompatible class change should have been handled in resolve method.
1434 CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1435 << called->PrettyMethod() << " " << invoke_type;
1436 if (virtual_or_interface || invoke_type == kSuper) {
1437 // Refine called method based on receiver for kVirtual/kInterface, and
1438 // caller for kSuper.
1439 ArtMethod* orig_called = called;
1440 if (invoke_type == kVirtual) {
1441 CHECK(receiver != nullptr) << invoke_type;
1442 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1443 } else if (invoke_type == kInterface) {
1444 CHECK(receiver != nullptr) << invoke_type;
1445 called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1446 } else {
1447 DCHECK_EQ(invoke_type, kSuper);
1448 CHECK(caller != nullptr) << invoke_type;
1449 ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1450 caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1451 if (ref_class->IsInterface()) {
1452 called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1453 } else {
1454 called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1455 called->GetMethodIndex(), kRuntimePointerSize);
1456 }
1457 }
1458
1459 CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1460 << mirror::Object::PrettyTypeOf(receiver) << " "
1461 << invoke_type << " " << orig_called->GetVtableIndex();
1462 }
1463
1464 // Ensure that the called method's class is initialized.
1465 StackHandleScope<1> hs(soa.Self());
1466 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1467 linker->EnsureInitialized(soa.Self(), called_class, true, true);
1468 if (LIKELY(called_class->IsInitialized())) {
1469 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1470 // If we are single-stepping or the called method is deoptimized (by a
1471 // breakpoint, for example), then we have to execute the called method
1472 // with the interpreter.
1473 code = GetQuickToInterpreterBridge();
1474 } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1475 // If the caller is deoptimized (by a breakpoint, for example), we have to
1476 // continue its execution with interpreter when returning from the called
1477 // method. Because we do not want to execute the called method with the
1478 // interpreter, we wrap its execution into the instrumentation stubs.
1479 // When the called method returns, it will execute the instrumentation
1480 // exit hook that will determine the need of the interpreter with a call
1481 // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1482 // it is needed.
1483 code = GetQuickInstrumentationEntryPoint();
1484 } else {
1485 code = called->GetEntryPointFromQuickCompiledCode();
1486 }
1487 } else if (called_class->IsInitializing()) {
1488 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1489 // If we are single-stepping or the called method is deoptimized (by a
1490 // breakpoint, for example), then we have to execute the called method
1491 // with the interpreter.
1492 code = GetQuickToInterpreterBridge();
1493 } else if (invoke_type == kStatic) {
1494 // Class is still initializing, go to oat and grab code (trampoline must be left in place
1495 // until class is initialized to stop races between threads).
1496 code = linker->GetQuickOatCodeFor(called);
1497 } else {
1498 // No trampoline for non-static methods.
1499 code = called->GetEntryPointFromQuickCompiledCode();
1500 }
1501 } else {
1502 DCHECK(called_class->IsErroneous());
1503 }
1504 }
1505 CHECK_EQ(code == nullptr, self->IsExceptionPending());
1506 // Fixup any locally saved objects may have moved during a GC.
1507 visitor.FixupReferences();
1508 // Place called method in callee-save frame to be placed as first argument to quick method.
1509 *sp = called;
1510
1511 return code;
1512 }
1513
1514 /*
1515 * This class uses a couple of observations to unite the different calling conventions through
1516 * a few constants.
1517 *
1518 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1519 * possible alignment.
1520 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1521 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1522 * when we have to split things
1523 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1524 * and we can use Int handling directly.
1525 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1526 * necessary when widening. Also, widening of Ints will take place implicitly, and the
1527 * extension should be compatible with Aarch64, which mandates copying the available bits
1528 * into LSB and leaving the rest unspecified.
1529 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1530 * the stack.
1531 * 6) There is only little endian.
1532 *
1533 *
1534 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1535 * follows:
1536 *
1537 * void PushGpr(uintptr_t): Add a value for the next GPR
1538 *
1539 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
1540 * padding, that is, think the architecture is 32b and aligns 64b.
1541 *
1542 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
1543 * split this if necessary. The current state will have aligned, if
1544 * necessary.
1545 *
1546 * void PushStack(uintptr_t): Push a value to the stack.
1547 *
1548 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1549 * as this might be important for null initialization.
1550 * Must return the jobject, that is, the reference to the
1551 * entry in the HandleScope (nullptr if necessary).
1552 *
1553 */
1554 template<class T> class BuildNativeCallFrameStateMachine {
1555 public:
1556 #if defined(__arm__)
1557 // TODO: These are all dummy values!
1558 static constexpr bool kNativeSoftFloatAbi = true;
1559 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
1560 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1561
1562 static constexpr size_t kRegistersNeededForLong = 2;
1563 static constexpr size_t kRegistersNeededForDouble = 2;
1564 static constexpr bool kMultiRegistersAligned = true;
1565 static constexpr bool kMultiFPRegistersWidened = false;
1566 static constexpr bool kMultiGPRegistersWidened = false;
1567 static constexpr bool kAlignLongOnStack = true;
1568 static constexpr bool kAlignDoubleOnStack = true;
1569 #elif defined(__aarch64__)
1570 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1571 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
1572 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1573
1574 static constexpr size_t kRegistersNeededForLong = 1;
1575 static constexpr size_t kRegistersNeededForDouble = 1;
1576 static constexpr bool kMultiRegistersAligned = false;
1577 static constexpr bool kMultiFPRegistersWidened = false;
1578 static constexpr bool kMultiGPRegistersWidened = false;
1579 static constexpr bool kAlignLongOnStack = false;
1580 static constexpr bool kAlignDoubleOnStack = false;
1581 #elif defined(__mips__) && !defined(__LP64__)
1582 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
1583 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs.
1584 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1585
1586 static constexpr size_t kRegistersNeededForLong = 2;
1587 static constexpr size_t kRegistersNeededForDouble = 2;
1588 static constexpr bool kMultiRegistersAligned = true;
1589 static constexpr bool kMultiFPRegistersWidened = true;
1590 static constexpr bool kMultiGPRegistersWidened = false;
1591 static constexpr bool kAlignLongOnStack = true;
1592 static constexpr bool kAlignDoubleOnStack = true;
1593 #elif defined(__mips__) && defined(__LP64__)
1594 // Let the code prepare GPRs only and we will load the FPRs with same data.
1595 static constexpr bool kNativeSoftFloatAbi = true;
1596 static constexpr size_t kNumNativeGprArgs = 8;
1597 static constexpr size_t kNumNativeFprArgs = 0;
1598
1599 static constexpr size_t kRegistersNeededForLong = 1;
1600 static constexpr size_t kRegistersNeededForDouble = 1;
1601 static constexpr bool kMultiRegistersAligned = false;
1602 static constexpr bool kMultiFPRegistersWidened = false;
1603 static constexpr bool kMultiGPRegistersWidened = true;
1604 static constexpr bool kAlignLongOnStack = false;
1605 static constexpr bool kAlignDoubleOnStack = false;
1606 #elif defined(__i386__)
1607 // TODO: Check these!
1608 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
1609 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
1610 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
1611
1612 static constexpr size_t kRegistersNeededForLong = 2;
1613 static constexpr size_t kRegistersNeededForDouble = 2;
1614 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
1615 static constexpr bool kMultiFPRegistersWidened = false;
1616 static constexpr bool kMultiGPRegistersWidened = false;
1617 static constexpr bool kAlignLongOnStack = false;
1618 static constexpr bool kAlignDoubleOnStack = false;
1619 #elif defined(__x86_64__)
1620 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1621 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
1622 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1623
1624 static constexpr size_t kRegistersNeededForLong = 1;
1625 static constexpr size_t kRegistersNeededForDouble = 1;
1626 static constexpr bool kMultiRegistersAligned = false;
1627 static constexpr bool kMultiFPRegistersWidened = false;
1628 static constexpr bool kMultiGPRegistersWidened = false;
1629 static constexpr bool kAlignLongOnStack = false;
1630 static constexpr bool kAlignDoubleOnStack = false;
1631 #else
1632 #error "Unsupported architecture"
1633 #endif
1634
1635 public:
BuildNativeCallFrameStateMachine(T * delegate)1636 explicit BuildNativeCallFrameStateMachine(T* delegate)
1637 : gpr_index_(kNumNativeGprArgs),
1638 fpr_index_(kNumNativeFprArgs),
1639 stack_entries_(0),
1640 delegate_(delegate) {
1641 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1642 // the next register is even; counting down is just to make the compiler happy...
1643 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1644 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1645 }
1646
~BuildNativeCallFrameStateMachine()1647 virtual ~BuildNativeCallFrameStateMachine() {}
1648
HavePointerGpr() const1649 bool HavePointerGpr() const {
1650 return gpr_index_ > 0;
1651 }
1652
AdvancePointer(const void * val)1653 void AdvancePointer(const void* val) {
1654 if (HavePointerGpr()) {
1655 gpr_index_--;
1656 PushGpr(reinterpret_cast<uintptr_t>(val));
1657 } else {
1658 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
1659 PushStack(reinterpret_cast<uintptr_t>(val));
1660 gpr_index_ = 0;
1661 }
1662 }
1663
HaveHandleScopeGpr() const1664 bool HaveHandleScopeGpr() const {
1665 return gpr_index_ > 0;
1666 }
1667
AdvanceHandleScope(mirror::Object * ptr)1668 void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1669 uintptr_t handle = PushHandle(ptr);
1670 if (HaveHandleScopeGpr()) {
1671 gpr_index_--;
1672 PushGpr(handle);
1673 } else {
1674 stack_entries_++;
1675 PushStack(handle);
1676 gpr_index_ = 0;
1677 }
1678 }
1679
HaveIntGpr() const1680 bool HaveIntGpr() const {
1681 return gpr_index_ > 0;
1682 }
1683
AdvanceInt(uint32_t val)1684 void AdvanceInt(uint32_t val) {
1685 if (HaveIntGpr()) {
1686 gpr_index_--;
1687 if (kMultiGPRegistersWidened) {
1688 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1689 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1690 } else {
1691 PushGpr(val);
1692 }
1693 } else {
1694 stack_entries_++;
1695 if (kMultiGPRegistersWidened) {
1696 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1697 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1698 } else {
1699 PushStack(val);
1700 }
1701 gpr_index_ = 0;
1702 }
1703 }
1704
HaveLongGpr() const1705 bool HaveLongGpr() const {
1706 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1707 }
1708
LongGprNeedsPadding() const1709 bool LongGprNeedsPadding() const {
1710 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1711 kAlignLongOnStack && // and when it needs alignment
1712 (gpr_index_ & 1) == 1; // counter is odd, see constructor
1713 }
1714
LongStackNeedsPadding() const1715 bool LongStackNeedsPadding() const {
1716 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1717 kAlignLongOnStack && // and when it needs 8B alignment
1718 (stack_entries_ & 1) == 1; // counter is odd
1719 }
1720
AdvanceLong(uint64_t val)1721 void AdvanceLong(uint64_t val) {
1722 if (HaveLongGpr()) {
1723 if (LongGprNeedsPadding()) {
1724 PushGpr(0);
1725 gpr_index_--;
1726 }
1727 if (kRegistersNeededForLong == 1) {
1728 PushGpr(static_cast<uintptr_t>(val));
1729 } else {
1730 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1731 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1732 }
1733 gpr_index_ -= kRegistersNeededForLong;
1734 } else {
1735 if (LongStackNeedsPadding()) {
1736 PushStack(0);
1737 stack_entries_++;
1738 }
1739 if (kRegistersNeededForLong == 1) {
1740 PushStack(static_cast<uintptr_t>(val));
1741 stack_entries_++;
1742 } else {
1743 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1744 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1745 stack_entries_ += 2;
1746 }
1747 gpr_index_ = 0;
1748 }
1749 }
1750
HaveFloatFpr() const1751 bool HaveFloatFpr() const {
1752 return fpr_index_ > 0;
1753 }
1754
AdvanceFloat(float val)1755 void AdvanceFloat(float val) {
1756 if (kNativeSoftFloatAbi) {
1757 AdvanceInt(bit_cast<uint32_t, float>(val));
1758 } else {
1759 if (HaveFloatFpr()) {
1760 fpr_index_--;
1761 if (kRegistersNeededForDouble == 1) {
1762 if (kMultiFPRegistersWidened) {
1763 PushFpr8(bit_cast<uint64_t, double>(val));
1764 } else {
1765 // No widening, just use the bits.
1766 PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1767 }
1768 } else {
1769 PushFpr4(val);
1770 }
1771 } else {
1772 stack_entries_++;
1773 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1774 // Need to widen before storing: Note the "double" in the template instantiation.
1775 // Note: We need to jump through those hoops to make the compiler happy.
1776 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1777 PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1778 } else {
1779 PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1780 }
1781 fpr_index_ = 0;
1782 }
1783 }
1784 }
1785
HaveDoubleFpr() const1786 bool HaveDoubleFpr() const {
1787 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1788 }
1789
DoubleFprNeedsPadding() const1790 bool DoubleFprNeedsPadding() const {
1791 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1792 kAlignDoubleOnStack && // and when it needs alignment
1793 (fpr_index_ & 1) == 1; // counter is odd, see constructor
1794 }
1795
DoubleStackNeedsPadding() const1796 bool DoubleStackNeedsPadding() const {
1797 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1798 kAlignDoubleOnStack && // and when it needs 8B alignment
1799 (stack_entries_ & 1) == 1; // counter is odd
1800 }
1801
AdvanceDouble(uint64_t val)1802 void AdvanceDouble(uint64_t val) {
1803 if (kNativeSoftFloatAbi) {
1804 AdvanceLong(val);
1805 } else {
1806 if (HaveDoubleFpr()) {
1807 if (DoubleFprNeedsPadding()) {
1808 PushFpr4(0);
1809 fpr_index_--;
1810 }
1811 PushFpr8(val);
1812 fpr_index_ -= kRegistersNeededForDouble;
1813 } else {
1814 if (DoubleStackNeedsPadding()) {
1815 PushStack(0);
1816 stack_entries_++;
1817 }
1818 if (kRegistersNeededForDouble == 1) {
1819 PushStack(static_cast<uintptr_t>(val));
1820 stack_entries_++;
1821 } else {
1822 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1823 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1824 stack_entries_ += 2;
1825 }
1826 fpr_index_ = 0;
1827 }
1828 }
1829 }
1830
GetStackEntries() const1831 uint32_t GetStackEntries() const {
1832 return stack_entries_;
1833 }
1834
GetNumberOfUsedGprs() const1835 uint32_t GetNumberOfUsedGprs() const {
1836 return kNumNativeGprArgs - gpr_index_;
1837 }
1838
GetNumberOfUsedFprs() const1839 uint32_t GetNumberOfUsedFprs() const {
1840 return kNumNativeFprArgs - fpr_index_;
1841 }
1842
1843 private:
PushGpr(uintptr_t val)1844 void PushGpr(uintptr_t val) {
1845 delegate_->PushGpr(val);
1846 }
PushFpr4(float val)1847 void PushFpr4(float val) {
1848 delegate_->PushFpr4(val);
1849 }
PushFpr8(uint64_t val)1850 void PushFpr8(uint64_t val) {
1851 delegate_->PushFpr8(val);
1852 }
PushStack(uintptr_t val)1853 void PushStack(uintptr_t val) {
1854 delegate_->PushStack(val);
1855 }
PushHandle(mirror::Object * ref)1856 uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1857 return delegate_->PushHandle(ref);
1858 }
1859
1860 uint32_t gpr_index_; // Number of free GPRs
1861 uint32_t fpr_index_; // Number of free FPRs
1862 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
1863 // extended
1864 T* const delegate_; // What Push implementation gets called
1865 };
1866
1867 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1868 // in subclasses.
1869 //
1870 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1871 // them with handles.
1872 class ComputeNativeCallFrameSize {
1873 public:
ComputeNativeCallFrameSize()1874 ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1875
~ComputeNativeCallFrameSize()1876 virtual ~ComputeNativeCallFrameSize() {}
1877
GetStackSize() const1878 uint32_t GetStackSize() const {
1879 return num_stack_entries_ * sizeof(uintptr_t);
1880 }
1881
LayoutCallStack(uint8_t * sp8) const1882 uint8_t* LayoutCallStack(uint8_t* sp8) const {
1883 sp8 -= GetStackSize();
1884 // Align by kStackAlignment.
1885 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1886 return sp8;
1887 }
1888
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1889 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1890 const {
1891 // Assumption is OK right now, as we have soft-float arm
1892 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1893 sp8 -= fregs * sizeof(uintptr_t);
1894 *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1895 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1896 sp8 -= iregs * sizeof(uintptr_t);
1897 *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1898 return sp8;
1899 }
1900
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1901 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1902 uint32_t** start_fpr) const {
1903 // Native call stack.
1904 sp8 = LayoutCallStack(sp8);
1905 *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1906
1907 // Put fprs and gprs below.
1908 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1909
1910 // Return the new bottom.
1911 return sp8;
1912 }
1913
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1914 virtual void WalkHeader(
1915 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1916 REQUIRES_SHARED(Locks::mutator_lock_) {
1917 }
1918
Walk(const char * shorty,uint32_t shorty_len)1919 void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1920 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1921
1922 WalkHeader(&sm);
1923
1924 for (uint32_t i = 1; i < shorty_len; ++i) {
1925 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1926 switch (cur_type_) {
1927 case Primitive::kPrimNot:
1928 // TODO: fix abuse of mirror types.
1929 sm.AdvanceHandleScope(
1930 reinterpret_cast<mirror::Object*>(0x12345678));
1931 break;
1932
1933 case Primitive::kPrimBoolean:
1934 case Primitive::kPrimByte:
1935 case Primitive::kPrimChar:
1936 case Primitive::kPrimShort:
1937 case Primitive::kPrimInt:
1938 sm.AdvanceInt(0);
1939 break;
1940 case Primitive::kPrimFloat:
1941 sm.AdvanceFloat(0);
1942 break;
1943 case Primitive::kPrimDouble:
1944 sm.AdvanceDouble(0);
1945 break;
1946 case Primitive::kPrimLong:
1947 sm.AdvanceLong(0);
1948 break;
1949 default:
1950 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1951 UNREACHABLE();
1952 }
1953 }
1954
1955 num_stack_entries_ = sm.GetStackEntries();
1956 }
1957
PushGpr(uintptr_t)1958 void PushGpr(uintptr_t /* val */) {
1959 // not optimizing registers, yet
1960 }
1961
PushFpr4(float)1962 void PushFpr4(float /* val */) {
1963 // not optimizing registers, yet
1964 }
1965
PushFpr8(uint64_t)1966 void PushFpr8(uint64_t /* val */) {
1967 // not optimizing registers, yet
1968 }
1969
PushStack(uintptr_t)1970 void PushStack(uintptr_t /* val */) {
1971 // counting is already done in the superclass
1972 }
1973
PushHandle(mirror::Object *)1974 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1975 return reinterpret_cast<uintptr_t>(nullptr);
1976 }
1977
1978 protected:
1979 uint32_t num_stack_entries_;
1980 };
1981
1982 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1983 public:
ComputeGenericJniFrameSize(bool critical_native)1984 explicit ComputeGenericJniFrameSize(bool critical_native)
1985 : num_handle_scope_references_(0), critical_native_(critical_native) {}
1986
1987 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1988 // is at *m = sp. Will update to point to the bottom of the save frame.
1989 //
1990 // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1991 void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1992 REQUIRES_SHARED(Locks::mutator_lock_) {
1993 ArtMethod* method = **m;
1994
1995 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1996
1997 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1998
1999 // First, fix up the layout of the callee-save frame.
2000 // We have to squeeze in the HandleScope, and relocate the method pointer.
2001
2002 // "Free" the slot for the method.
2003 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer.
2004
2005 // Under the callee saves put handle scope and new method stack reference.
2006 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
2007 size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
2008
2009 sp8 -= scope_and_method;
2010 // Align by kStackAlignment.
2011 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
2012
2013 uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
2014 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
2015 num_handle_scope_references_);
2016
2017 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
2018 uint8_t* method_pointer = sp8;
2019 auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
2020 *new_method_ref = method;
2021 *m = new_method_ref;
2022 }
2023
2024 // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const2025 void LayoutCookie(uint8_t** sp) const {
2026 // Reference cookie and padding
2027 *sp -= 8;
2028 }
2029
2030 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
2031 // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)2032 uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
2033 REQUIRES_SHARED(Locks::mutator_lock_) {
2034 // First, fix up the layout of the callee-save frame.
2035 // We have to squeeze in the HandleScope, and relocate the method pointer.
2036 LayoutCalleeSaveFrame(self, m, sp, handle_scope);
2037
2038 // The bottom of the callee-save frame is now where the method is, *m.
2039 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
2040
2041 // Add space for cookie.
2042 LayoutCookie(&sp8);
2043
2044 return sp8;
2045 }
2046
2047 // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)2048 uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
2049 HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
2050 uint32_t** start_fpr)
2051 REQUIRES_SHARED(Locks::mutator_lock_) {
2052 Walk(shorty, shorty_len);
2053
2054 // JNI part.
2055 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
2056
2057 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
2058
2059 // Return the new bottom.
2060 return sp8;
2061 }
2062
2063 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
2064
2065 // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
2066 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
2067 REQUIRES_SHARED(Locks::mutator_lock_);
2068
2069 private:
2070 uint32_t num_handle_scope_references_;
2071 const bool critical_native_;
2072 };
2073
PushHandle(mirror::Object *)2074 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
2075 num_handle_scope_references_++;
2076 return reinterpret_cast<uintptr_t>(nullptr);
2077 }
2078
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)2079 void ComputeGenericJniFrameSize::WalkHeader(
2080 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
2081 // First 2 parameters are always excluded for @CriticalNative.
2082 if (UNLIKELY(critical_native_)) {
2083 return;
2084 }
2085
2086 // JNIEnv
2087 sm->AdvancePointer(nullptr);
2088
2089 // Class object or this as first argument
2090 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
2091 }
2092
2093 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
2094 // the template requirements of BuildGenericJniFrameStateMachine.
2095 class FillNativeCall {
2096 public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2097 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
2098 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
2099
~FillNativeCall()2100 virtual ~FillNativeCall() {}
2101
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2102 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
2103 cur_gpr_reg_ = gpr_regs;
2104 cur_fpr_reg_ = fpr_regs;
2105 cur_stack_arg_ = stack_args;
2106 }
2107
PushGpr(uintptr_t val)2108 void PushGpr(uintptr_t val) {
2109 *cur_gpr_reg_ = val;
2110 cur_gpr_reg_++;
2111 }
2112
PushFpr4(float val)2113 void PushFpr4(float val) {
2114 *cur_fpr_reg_ = val;
2115 cur_fpr_reg_++;
2116 }
2117
PushFpr8(uint64_t val)2118 void PushFpr8(uint64_t val) {
2119 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
2120 *tmp = val;
2121 cur_fpr_reg_ += 2;
2122 }
2123
PushStack(uintptr_t val)2124 void PushStack(uintptr_t val) {
2125 *cur_stack_arg_ = val;
2126 cur_stack_arg_++;
2127 }
2128
PushHandle(mirror::Object *)2129 virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
2130 LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
2131 UNREACHABLE();
2132 }
2133
2134 private:
2135 uintptr_t* cur_gpr_reg_;
2136 uint32_t* cur_fpr_reg_;
2137 uintptr_t* cur_stack_arg_;
2138 };
2139
2140 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
2141 // of transitioning into native code.
2142 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
2143 public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)2144 BuildGenericJniFrameVisitor(Thread* self,
2145 bool is_static,
2146 bool critical_native,
2147 const char* shorty,
2148 uint32_t shorty_len,
2149 ArtMethod*** sp)
2150 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
2151 jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
2152 sm_(&jni_call_) {
2153 ComputeGenericJniFrameSize fsc(critical_native);
2154 uintptr_t* start_gpr_reg;
2155 uint32_t* start_fpr_reg;
2156 uintptr_t* start_stack_arg;
2157 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
2158 &handle_scope_,
2159 &start_stack_arg,
2160 &start_gpr_reg, &start_fpr_reg);
2161
2162 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
2163
2164 // First 2 parameters are always excluded for CriticalNative methods.
2165 if (LIKELY(!critical_native)) {
2166 // jni environment is always first argument
2167 sm_.AdvancePointer(self->GetJniEnv());
2168
2169 if (is_static) {
2170 sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
2171 } // else "this" reference is already handled by QuickArgumentVisitor.
2172 }
2173 }
2174
2175 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
2176
2177 void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
2178
GetFirstHandleScopeEntry()2179 StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
2180 return handle_scope_->GetHandle(0).GetReference();
2181 }
2182
GetFirstHandleScopeJObject() const2183 jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2184 return handle_scope_->GetHandle(0).ToJObject();
2185 }
2186
GetBottomOfUsedArea() const2187 void* GetBottomOfUsedArea() const {
2188 return bottom_of_used_area_;
2189 }
2190
2191 private:
2192 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2193 class FillJniCall FINAL : public FillNativeCall {
2194 public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope,bool critical_native)2195 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2196 HandleScope* handle_scope, bool critical_native)
2197 : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2198 handle_scope_(handle_scope),
2199 cur_entry_(0),
2200 critical_native_(critical_native) {}
2201
2202 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
2203
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)2204 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2205 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2206 handle_scope_ = scope;
2207 cur_entry_ = 0U;
2208 }
2209
ResetRemainingScopeSlots()2210 void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2211 // Initialize padding entries.
2212 size_t expected_slots = handle_scope_->NumberOfReferences();
2213 while (cur_entry_ < expected_slots) {
2214 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2215 }
2216
2217 if (!critical_native_) {
2218 // Non-critical natives have at least the self class (jclass) or this (jobject).
2219 DCHECK_NE(cur_entry_, 0U);
2220 }
2221 }
2222
CriticalNative() const2223 bool CriticalNative() const {
2224 return critical_native_;
2225 }
2226
2227 private:
2228 HandleScope* handle_scope_;
2229 size_t cur_entry_;
2230 const bool critical_native_;
2231 };
2232
2233 HandleScope* handle_scope_;
2234 FillJniCall jni_call_;
2235 void* bottom_of_used_area_;
2236
2237 BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2238
2239 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2240 };
2241
PushHandle(mirror::Object * ref)2242 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2243 uintptr_t tmp;
2244 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2245 h.Assign(ref);
2246 tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2247 cur_entry_++;
2248 return tmp;
2249 }
2250
Visit()2251 void BuildGenericJniFrameVisitor::Visit() {
2252 Primitive::Type type = GetParamPrimitiveType();
2253 switch (type) {
2254 case Primitive::kPrimLong: {
2255 jlong long_arg;
2256 if (IsSplitLongOrDouble()) {
2257 long_arg = ReadSplitLongParam();
2258 } else {
2259 long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2260 }
2261 sm_.AdvanceLong(long_arg);
2262 break;
2263 }
2264 case Primitive::kPrimDouble: {
2265 uint64_t double_arg;
2266 if (IsSplitLongOrDouble()) {
2267 // Read into union so that we don't case to a double.
2268 double_arg = ReadSplitLongParam();
2269 } else {
2270 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2271 }
2272 sm_.AdvanceDouble(double_arg);
2273 break;
2274 }
2275 case Primitive::kPrimNot: {
2276 StackReference<mirror::Object>* stack_ref =
2277 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2278 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2279 break;
2280 }
2281 case Primitive::kPrimFloat:
2282 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2283 break;
2284 case Primitive::kPrimBoolean: // Fall-through.
2285 case Primitive::kPrimByte: // Fall-through.
2286 case Primitive::kPrimChar: // Fall-through.
2287 case Primitive::kPrimShort: // Fall-through.
2288 case Primitive::kPrimInt: // Fall-through.
2289 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2290 break;
2291 case Primitive::kPrimVoid:
2292 LOG(FATAL) << "UNREACHABLE";
2293 UNREACHABLE();
2294 }
2295 }
2296
FinalizeHandleScope(Thread * self)2297 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2298 // Clear out rest of the scope.
2299 jni_call_.ResetRemainingScopeSlots();
2300 if (!jni_call_.CriticalNative()) {
2301 // Install HandleScope.
2302 self->PushHandleScope(handle_scope_);
2303 }
2304 }
2305
2306 #if defined(__arm__) || defined(__aarch64__)
2307 extern "C" const void* artFindNativeMethod();
2308 #else
2309 extern "C" const void* artFindNativeMethod(Thread* self);
2310 #endif
2311
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,bool fast_native ATTRIBUTE_UNUSED,jobject l,jobject lock)2312 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2313 uint32_t cookie,
2314 bool fast_native ATTRIBUTE_UNUSED,
2315 jobject l,
2316 jobject lock) {
2317 // TODO: add entrypoints for @FastNative returning objects.
2318 if (lock != nullptr) {
2319 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2320 } else {
2321 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2322 }
2323 }
2324
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,bool fast_native,jobject lock)2325 static void artQuickGenericJniEndJNINonRef(Thread* self,
2326 uint32_t cookie,
2327 bool fast_native,
2328 jobject lock) {
2329 if (lock != nullptr) {
2330 JniMethodEndSynchronized(cookie, lock, self);
2331 // Ignore "fast_native" here because synchronized functions aren't very fast.
2332 } else {
2333 if (UNLIKELY(fast_native)) {
2334 JniMethodFastEnd(cookie, self);
2335 } else {
2336 JniMethodEnd(cookie, self);
2337 }
2338 }
2339 }
2340
2341 /*
2342 * Initializes an alloca region assumed to be directly below sp for a native call:
2343 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2344 * The final element on the stack is a pointer to the native code.
2345 *
2346 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2347 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2348 *
2349 * The return of this function denotes:
2350 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2351 * 2) An error, if the value is negative.
2352 */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)2353 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2354 REQUIRES_SHARED(Locks::mutator_lock_) {
2355 // Note: We cannot walk the stack properly until fixed up below.
2356 ArtMethod* called = *sp;
2357 DCHECK(called->IsNative()) << called->PrettyMethod(true);
2358 Runtime* runtime = Runtime::Current();
2359 jit::Jit* jit = runtime->GetJit();
2360 if (jit != nullptr) {
2361 jit->AddSamples(self, called, 1u, /*with_backedges*/ false);
2362 }
2363 uint32_t shorty_len = 0;
2364 const char* shorty = called->GetShorty(&shorty_len);
2365 bool critical_native = called->IsCriticalNative();
2366 bool fast_native = called->IsFastNative();
2367 bool normal_native = !critical_native && !fast_native;
2368
2369 // Run the visitor and update sp.
2370 BuildGenericJniFrameVisitor visitor(self,
2371 called->IsStatic(),
2372 critical_native,
2373 shorty,
2374 shorty_len,
2375 &sp);
2376 {
2377 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2378 visitor.VisitArguments();
2379 // FinalizeHandleScope pushes the handle scope on the thread.
2380 visitor.FinalizeHandleScope(self);
2381 }
2382
2383 // Fix up managed-stack things in Thread. After this we can walk the stack.
2384 self->SetTopOfStackTagged(sp);
2385
2386 self->VerifyStack();
2387
2388 uint32_t cookie;
2389 uint32_t* sp32;
2390 // Skip calling JniMethodStart for @CriticalNative.
2391 if (LIKELY(!critical_native)) {
2392 // Start JNI, save the cookie.
2393 if (called->IsSynchronized()) {
2394 DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2395 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2396 if (self->IsExceptionPending()) {
2397 self->PopHandleScope();
2398 // A negative value denotes an error.
2399 return GetTwoWordFailureValue();
2400 }
2401 } else {
2402 if (fast_native) {
2403 cookie = JniMethodFastStart(self);
2404 } else {
2405 DCHECK(normal_native);
2406 cookie = JniMethodStart(self);
2407 }
2408 }
2409 sp32 = reinterpret_cast<uint32_t*>(sp);
2410 *(sp32 - 1) = cookie;
2411 }
2412
2413 // Retrieve the stored native code.
2414 void const* nativeCode = called->GetEntryPointFromJni();
2415
2416 // There are two cases for the content of nativeCode:
2417 // 1) Pointer to the native function.
2418 // 2) Pointer to the trampoline for native code binding.
2419 // In the second case, we need to execute the binding and continue with the actual native function
2420 // pointer.
2421 DCHECK(nativeCode != nullptr);
2422 if (nativeCode == GetJniDlsymLookupStub()) {
2423 #if defined(__arm__) || defined(__aarch64__)
2424 nativeCode = artFindNativeMethod();
2425 #else
2426 nativeCode = artFindNativeMethod(self);
2427 #endif
2428
2429 if (nativeCode == nullptr) {
2430 DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
2431
2432 // @CriticalNative calls do not need to call back into JniMethodEnd.
2433 if (LIKELY(!critical_native)) {
2434 // End JNI, as the assembly will move to deliver the exception.
2435 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2436 if (shorty[0] == 'L') {
2437 artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2438 } else {
2439 artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2440 }
2441 }
2442
2443 return GetTwoWordFailureValue();
2444 }
2445 // Note that the native code pointer will be automatically set by artFindNativeMethod().
2446 }
2447
2448 #if defined(__mips__) && !defined(__LP64__)
2449 // On MIPS32 if the first two arguments are floating-point, we need to know their types
2450 // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2451 // and load into floating-point registers.
2452 // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2453 // view):
2454 // (1)
2455 // | DOUBLE | DOUBLE | other args, if any
2456 // | F12 | F13 | F14 | F15 |
2457 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
2458 // (2)
2459 // | DOUBLE | FLOAT | (PAD) | other args, if any
2460 // | F12 | F13 | F14 | |
2461 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
2462 // (3)
2463 // | FLOAT | (PAD) | DOUBLE | other args, if any
2464 // | F12 | | F14 | F15 |
2465 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
2466 // (4)
2467 // | FLOAT | FLOAT | other args, if any
2468 // | F12 | F14 |
2469 // | SP+0 | SP+4 | SP+8
2470 // As you can see, only the last case (4) is special. In all others we can just
2471 // load F12/F13 and F14/F15 in the same manner.
2472 // Set bit 0 of the native code address to 1 in this case (valid code addresses
2473 // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2474 if (nativeCode != nullptr &&
2475 shorty != nullptr &&
2476 shorty_len >= 3 &&
2477 shorty[1] == 'F' &&
2478 shorty[2] == 'F') {
2479 nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2480 }
2481 #endif
2482
2483 // Return native code addr(lo) and bottom of alloca address(hi).
2484 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2485 reinterpret_cast<uintptr_t>(nativeCode));
2486 }
2487
2488 // Defined in quick_jni_entrypoints.cc.
2489 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2490 jvalue result, uint64_t result_f, ArtMethod* called,
2491 HandleScope* handle_scope);
2492 /*
2493 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2494 * unlocking.
2495 */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2496 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2497 jvalue result,
2498 uint64_t result_f) {
2499 // We're here just back from a native call. We don't have the shared mutator lock at this point
2500 // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2501 // anything that requires a mutator lock before that would cause problems as GC may have the
2502 // exclusive mutator lock and may be moving objects, etc.
2503 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2504 DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2505 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2506 ArtMethod* called = *sp;
2507 uint32_t cookie = *(sp32 - 1);
2508 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2509 return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2510 }
2511
2512 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2513 // for the method pointer.
2514 //
2515 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2516 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2517
2518 template <InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2519 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2520 ObjPtr<mirror::Object> this_object,
2521 Thread* self,
2522 ArtMethod** sp) {
2523 ScopedQuickEntrypointChecks sqec(self);
2524 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2525 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2526 ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2527 if (UNLIKELY(method == nullptr)) {
2528 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2529 uint32_t shorty_len;
2530 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2531 {
2532 // Remember the args in case a GC happens in FindMethodFromCode.
2533 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2534 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2535 visitor.VisitArguments();
2536 method = FindMethodFromCode<type, access_check>(method_idx,
2537 &this_object,
2538 caller_method,
2539 self);
2540 visitor.FixupReferences();
2541 }
2542
2543 if (UNLIKELY(method == nullptr)) {
2544 CHECK(self->IsExceptionPending());
2545 return GetTwoWordFailureValue(); // Failure.
2546 }
2547 }
2548 DCHECK(!self->IsExceptionPending());
2549 const void* code = method->GetEntryPointFromQuickCompiledCode();
2550
2551 // When we return, the caller will branch to this address, so it had better not be 0!
2552 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2553 << " location: "
2554 << method->GetDexFile()->GetLocation();
2555
2556 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2557 reinterpret_cast<uintptr_t>(method));
2558 }
2559
2560 // Explicit artInvokeCommon template function declarations to please analysis tool.
2561 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
2562 template REQUIRES_SHARED(Locks::mutator_lock_) \
2563 TwoWordReturn artInvokeCommon<type, access_check>( \
2564 uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2565
2566 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2567 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2568 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2569 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2570 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2571 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2572 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2573 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2574 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2575 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2576 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2577
2578 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2579 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2580 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2581 REQUIRES_SHARED(Locks::mutator_lock_) {
2582 return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2583 }
2584
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2585 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2586 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2587 REQUIRES_SHARED(Locks::mutator_lock_) {
2588 return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2589 }
2590
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2591 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2592 uint32_t method_idx,
2593 mirror::Object* this_object ATTRIBUTE_UNUSED,
2594 Thread* self,
2595 ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2596 // For static, this_object is not required and may be random garbage. Don't pass it down so that
2597 // it doesn't cause ObjPtr alignment failure check.
2598 return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2599 }
2600
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2601 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2602 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2603 REQUIRES_SHARED(Locks::mutator_lock_) {
2604 return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2605 }
2606
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2607 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2608 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2609 REQUIRES_SHARED(Locks::mutator_lock_) {
2610 return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2611 }
2612
2613 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
artLookupResolvedMethod(uint32_t method_index,ArtMethod * referrer)2614 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2615 REQUIRES_SHARED(Locks::mutator_lock_) {
2616 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2617 DCHECK(!referrer->IsProxyMethod());
2618 ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2619 method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2620 DCHECK(result == nullptr ||
2621 result->GetDeclaringClass()->IsInterface() ||
2622 result->GetDeclaringClass() ==
2623 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2624 << result->PrettyMethod();
2625 return result;
2626 }
2627
2628 // Determine target of interface dispatch. The interface method and this object are known non-null.
2629 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2630 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2631 mirror::Object* raw_this_object,
2632 Thread* self,
2633 ArtMethod** sp)
2634 REQUIRES_SHARED(Locks::mutator_lock_) {
2635 ScopedQuickEntrypointChecks sqec(self);
2636 StackHandleScope<2> hs(self);
2637 Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2638 Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2639
2640 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2641 ArtMethod* method = nullptr;
2642 ImTable* imt = cls->GetImt(kRuntimePointerSize);
2643
2644 if (UNLIKELY(interface_method == nullptr)) {
2645 // The interface method is unresolved, so resolve it in the dex file of the caller.
2646 // Fetch the dex_method_idx of the target interface method from the caller.
2647 uint32_t dex_method_idx;
2648 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2649 const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2650 Instruction::Code instr_code = instr.Opcode();
2651 DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2652 instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2653 << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2654 if (instr_code == Instruction::INVOKE_INTERFACE) {
2655 dex_method_idx = instr.VRegB_35c();
2656 } else {
2657 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2658 dex_method_idx = instr.VRegB_3rc();
2659 }
2660
2661 const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
2662 uint32_t shorty_len;
2663 const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2664 &shorty_len);
2665 {
2666 // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2667 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2668 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2669 visitor.VisitArguments();
2670 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2671 interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2672 self, dex_method_idx, caller_method, kInterface);
2673 visitor.FixupReferences();
2674 }
2675
2676 if (UNLIKELY(interface_method == nullptr)) {
2677 CHECK(self->IsExceptionPending());
2678 return GetTwoWordFailureValue(); // Failure.
2679 }
2680 }
2681
2682 DCHECK(!interface_method->IsRuntimeMethod());
2683 // Look whether we have a match in the ImtConflictTable.
2684 uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2685 ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2686 if (LIKELY(conflict_method->IsRuntimeMethod())) {
2687 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2688 DCHECK(current_table != nullptr);
2689 method = current_table->Lookup(interface_method, kRuntimePointerSize);
2690 } else {
2691 // It seems we aren't really a conflict method!
2692 if (kIsDebugBuild) {
2693 ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2694 CHECK_EQ(conflict_method, m)
2695 << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2696 << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2697 }
2698 method = conflict_method;
2699 }
2700 if (method != nullptr) {
2701 return GetTwoWordSuccessValue(
2702 reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2703 reinterpret_cast<uintptr_t>(method));
2704 }
2705
2706 // No match, use the IfTable.
2707 method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2708 if (UNLIKELY(method == nullptr)) {
2709 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2710 interface_method, this_object.Get(), caller_method);
2711 return GetTwoWordFailureValue(); // Failure.
2712 }
2713
2714 // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2715 // We create a new table with the new pair { interface_method, method }.
2716 DCHECK(conflict_method->IsRuntimeMethod());
2717 ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2718 cls.Get(),
2719 conflict_method,
2720 interface_method,
2721 method,
2722 /*force_new_conflict_method*/false);
2723 if (new_conflict_method != conflict_method) {
2724 // Update the IMT if we create a new conflict method. No fence needed here, as the
2725 // data is consistent.
2726 imt->Set(imt_index,
2727 new_conflict_method,
2728 kRuntimePointerSize);
2729 }
2730
2731 const void* code = method->GetEntryPointFromQuickCompiledCode();
2732
2733 // When we return, the caller will branch to this address, so it had better not be 0!
2734 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2735 << " location: " << method->GetDexFile()->GetLocation();
2736
2737 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2738 reinterpret_cast<uintptr_t>(method));
2739 }
2740
2741 // Returns shorty type so the caller can determine how to put |result|
2742 // into expected registers. The shorty type is static so the compiler
2743 // could call different flavors of this code path depending on the
2744 // shorty type though this would require different entry points for
2745 // each type.
artInvokePolymorphic(JValue * result,mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2746 extern "C" uintptr_t artInvokePolymorphic(
2747 JValue* result,
2748 mirror::Object* raw_receiver,
2749 Thread* self,
2750 ArtMethod** sp)
2751 REQUIRES_SHARED(Locks::mutator_lock_) {
2752 ScopedQuickEntrypointChecks sqec(self);
2753 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2754
2755 // Start new JNI local reference state
2756 JNIEnvExt* env = self->GetJniEnv();
2757 ScopedObjectAccessUnchecked soa(env);
2758 ScopedJniEnvLocalRefState env_state(env);
2759 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2760
2761 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2762 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2763 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2764 const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2765 DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2766 inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2767 const uint32_t proto_idx = inst.VRegH();
2768 const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2769 const size_t shorty_length = strlen(shorty);
2770 static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
2771 RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2772 gc_visitor.VisitArguments();
2773
2774 // Wrap raw_receiver in a Handle for safety.
2775 StackHandleScope<3> hs(self);
2776 Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2777 raw_receiver = nullptr;
2778 self->EndAssertNoThreadSuspension(old_cause);
2779
2780 // Resolve method.
2781 ClassLinker* linker = Runtime::Current()->GetClassLinker();
2782 ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2783 self, inst.VRegB(), caller_method, kVirtual);
2784
2785 if (UNLIKELY(receiver_handle.IsNull())) {
2786 ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2787 return static_cast<uintptr_t>('V');
2788 }
2789
2790 // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996).
2791 DCHECK_EQ(resolved_method->GetDeclaringClass(),
2792 WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle));
2793
2794 Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2795 ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get()))));
2796
2797 Handle<mirror::MethodType> method_type(
2798 hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2799
2800 // This implies we couldn't resolve one or more types in this method handle.
2801 if (UNLIKELY(method_type.IsNull())) {
2802 CHECK(self->IsExceptionPending());
2803 return static_cast<uintptr_t>('V');
2804 }
2805
2806 DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2807 DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2808
2809 // Fix references before constructing the shadow frame.
2810 gc_visitor.FixupReferences();
2811
2812 // Construct shadow frame placing arguments consecutively from |first_arg|.
2813 const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2814 const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2815 const size_t first_arg = 0;
2816 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2817 CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2818 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2819 ScopedStackedShadowFramePusher
2820 frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2821 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2822 kMethodIsStatic,
2823 shorty,
2824 strlen(shorty),
2825 shadow_frame,
2826 first_arg);
2827 shadow_frame_builder.VisitArguments();
2828
2829 // Push a transition back into managed code onto the linked list in thread.
2830 ManagedStack fragment;
2831 self->PushManagedStackFragment(&fragment);
2832
2833 // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2834 // consecutive order.
2835 RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2836 bool isExact = (jni::EncodeArtMethod(resolved_method) ==
2837 WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact);
2838 bool success = false;
2839 if (isExact) {
2840 success = MethodHandleInvokeExact(self,
2841 *shadow_frame,
2842 method_handle,
2843 method_type,
2844 &operands,
2845 result);
2846 } else {
2847 success = MethodHandleInvoke(self,
2848 *shadow_frame,
2849 method_handle,
2850 method_type,
2851 &operands,
2852 result);
2853 }
2854 DCHECK(success || self->IsExceptionPending());
2855
2856 // Pop transition record.
2857 self->PopManagedStackFragment(fragment);
2858
2859 return static_cast<uintptr_t>(shorty[0]);
2860 }
2861
2862 } // namespace art
2863