1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
58 // the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
Eh_frame_hdr(Output_section * eh_frame_section,const Eh_frame * eh_frame_data)81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
86 fde_offsets_(),
87 any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
set_final_data_size()94 Eh_frame_hdr::set_final_data_size()
95 {
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
98 {
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
100 if (fde_count != 0)
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
103 }
104 this->set_data_size(data_size);
105 }
106
107 // Write the data to the file.
108
109 void
do_write(Output_file * of)110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112 switch (parameters->size_and_endianness())
113 {
114 #ifdef HAVE_TARGET_32_LITTLE
115 case Parameters::TARGET_32_LITTLE:
116 this->do_sized_write<32, false>(of);
117 break;
118 #endif
119 #ifdef HAVE_TARGET_32_BIG
120 case Parameters::TARGET_32_BIG:
121 this->do_sized_write<32, true>(of);
122 break;
123 #endif
124 #ifdef HAVE_TARGET_64_LITTLE
125 case Parameters::TARGET_64_LITTLE:
126 this->do_sized_write<64, false>(of);
127 break;
128 #endif
129 #ifdef HAVE_TARGET_64_BIG
130 case Parameters::TARGET_64_BIG:
131 this->do_sized_write<64, true>(of);
132 break;
133 #endif
134 default:
135 gold_unreachable();
136 }
137 }
138
139 // Write the data to the file with the right endianness.
140
141 template<int size, bool big_endian>
142 void
do_sized_write(Output_file * of)143 Eh_frame_hdr::do_sized_write(Output_file* of)
144 {
145 const off_t off = this->offset();
146 const off_t oview_size = this->data_size();
147 unsigned char* const oview = of->get_output_view(off, oview_size);
148
149 // Version number.
150 oview[0] = 1;
151
152 // Write out a 4 byte PC relative offset to the address of the
153 // .eh_frame section.
154 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155 uint64_t eh_frame_address = this->eh_frame_section_->address();
156 uint64_t eh_frame_hdr_address = this->address();
157 uint64_t eh_frame_offset = (eh_frame_address -
158 (eh_frame_hdr_address + 4));
159 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161 if (this->any_unrecognized_eh_frame_sections_
162 || this->fde_offsets_.empty())
163 {
164 // There are no FDEs, or we didn't recognize the format of the
165 // some of the .eh_frame sections, so we can't write out the
166 // sorted table.
167 oview[2] = elfcpp::DW_EH_PE_omit;
168 oview[3] = elfcpp::DW_EH_PE_omit;
169
170 gold_assert(oview_size == 8);
171 }
172 else
173 {
174 oview[2] = elfcpp::DW_EH_PE_udata4;
175 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178 this->fde_offsets_.size());
179
180 // We have the offsets of the FDEs in the .eh_frame section. We
181 // couldn't easily get the PC values before, as they depend on
182 // relocations which are, of course, target specific. This code
183 // is run after all those relocations have been applied to the
184 // output file. Here we read the output file again to find the
185 // PC values. Then we sort the list and write it out.
186
187 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189 &fde_addresses);
190
191 std::sort(fde_addresses.begin(), fde_addresses.end(),
192 Fde_address_compare<size>());
193
194 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195 output_address = this->address();
196
197 unsigned char* pfde = oview + 12;
198 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199 p != fde_addresses.end();
200 ++p)
201 {
202 elfcpp::Swap<32, big_endian>::writeval(pfde,
203 p->first - output_address);
204 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205 p->second - output_address);
206 pfde += 8;
207 }
208
209 gold_assert(pfde - oview == oview_size);
210 }
211
212 of->write_output_view(off, oview_size, oview);
213 }
214
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
218 // FDE's PC.
219
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
get_fde_pc(typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,const unsigned char * eh_frame_contents,section_offset_type fde_offset,unsigned char fde_encoding)222 Eh_frame_hdr::get_fde_pc(
223 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224 const unsigned char* eh_frame_contents,
225 section_offset_type fde_offset,
226 unsigned char fde_encoding)
227 {
228 // The FDE starts with a 4 byte length and a 4 byte offset to the
229 // CIE. The PC follows.
230 const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232 typename elfcpp::Elf_types<size>::Elf_Addr pc;
233 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234 int pc_size = fde_encoding & 7;
235 if (pc_size == elfcpp::DW_EH_PE_absptr)
236 {
237 if (size == 32)
238 pc_size = elfcpp::DW_EH_PE_udata4;
239 else if (size == 64)
240 pc_size = elfcpp::DW_EH_PE_udata8;
241 else
242 gold_unreachable();
243 }
244
245 switch (pc_size)
246 {
247 case elfcpp::DW_EH_PE_udata2:
248 pc = elfcpp::Swap<16, big_endian>::readval(p);
249 if (is_signed)
250 pc = (pc ^ 0x8000) - 0x8000;
251 break;
252
253 case elfcpp::DW_EH_PE_udata4:
254 pc = elfcpp::Swap<32, big_endian>::readval(p);
255 if (size > 32 && is_signed)
256 pc = (pc ^ 0x80000000) - 0x80000000;
257 break;
258
259 case elfcpp::DW_EH_PE_udata8:
260 gold_assert(size == 64);
261 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262 break;
263
264 default:
265 // All other cases were rejected in Eh_frame::read_cie.
266 gold_unreachable();
267 }
268
269 switch (fde_encoding & 0x70)
270 {
271 case 0:
272 break;
273
274 case elfcpp::DW_EH_PE_pcrel:
275 pc += eh_frame_address + fde_offset + 8;
276 break;
277
278 case elfcpp::DW_EH_PE_datarel:
279 pc += parameters->target().ehframe_datarel_base();
280 break;
281
282 default:
283 // If other cases arise, then we have to handle them, or we have
284 // to reject them by returning false in Eh_frame::read_cie.
285 gold_unreachable();
286 }
287
288 gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
290 return pc;
291 }
292
293 // Given an array of FDE offsets in the .eh_frame section, return an
294 // array of offsets from the exception frame header to the FDE's
295 // output PC and to the output address of the FDE itself. We get the
296 // FDE's PC by actually looking in the .eh_frame section we just wrote
297 // to the output file.
298
299 template<int size, bool big_endian>
300 void
get_fde_addresses(Output_file * of,const Fde_offsets * fde_offsets,Fde_addresses<size> * fde_addresses)301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
302 const Fde_offsets* fde_offsets,
303 Fde_addresses<size>* fde_addresses)
304 {
305 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306 eh_frame_address = this->eh_frame_section_->address();
307 off_t eh_frame_offset = this->eh_frame_section_->offset();
308 off_t eh_frame_size = this->eh_frame_section_->data_size();
309 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310 eh_frame_size);
311
312 for (Fde_offsets::const_iterator p = fde_offsets->begin();
313 p != fde_offsets->end();
314 ++p)
315 {
316 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318 eh_frame_contents,
319 p->first, p->second);
320 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321 }
322
323 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324 }
325
326 // Class Fde.
327
328 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
329 // offset of the CIE in OVIEW. OUTPUT_OFFSET is the offset of the
330 // Eh_frame section within the output section. FDE_ENCODING is the
331 // encoding, from the CIE. ADDRALIGN is the required alignment.
332 // ADDRESS is the virtual address of OVIEW. Record the FDE pc for
333 // EH_FRAME_HDR. Return the new offset.
334
335 template<int size, bool big_endian>
336 section_offset_type
write(unsigned char * oview,section_offset_type output_offset,section_offset_type offset,uint64_t address,unsigned int addralign,section_offset_type cie_offset,unsigned char fde_encoding,Eh_frame_hdr * eh_frame_hdr)337 Fde::write(unsigned char* oview, section_offset_type output_offset,
338 section_offset_type offset, uint64_t address, unsigned int addralign,
339 section_offset_type cie_offset, unsigned char fde_encoding,
340 Eh_frame_hdr* eh_frame_hdr)
341 {
342 gold_assert((offset & (addralign - 1)) == 0);
343
344 size_t length = this->contents_.length();
345
346 // We add 8 when getting the aligned length to account for the
347 // length word and the CIE offset.
348 size_t aligned_full_length = align_address(length + 8, addralign);
349
350 // Write the length of the FDE as a 32-bit word. The length word
351 // does not include the four bytes of the length word itself, but it
352 // does include the offset to the CIE.
353 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
354 aligned_full_length - 4);
355
356 // Write the offset to the CIE as a 32-bit word. This is the
357 // difference between the address of the offset word itself and the
358 // CIE address.
359 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
360 offset + 4 - cie_offset);
361
362 // Copy the rest of the FDE. Note that this is run before
363 // relocation processing is done on this section, so the relocations
364 // will later be applied to the FDE data.
365 memcpy(oview + offset + 8, this->contents_.data(), length);
366
367 // If this FDE is associated with a PLT, fill in the PLT's address
368 // and size.
369 if (this->object_ == NULL)
370 {
371 gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
372 uint64_t paddress;
373 off_t psize;
374 parameters->target().plt_fde_location(this->u_.from_linker.plt,
375 oview + offset + 8,
376 &paddress, &psize);
377 uint64_t poffset = paddress - (address + offset + 8);
378 int32_t spoffset = static_cast<int32_t>(poffset);
379 uint32_t upsize = static_cast<uint32_t>(psize);
380 if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
381 || static_cast<off_t>(upsize) != psize)
382 gold_warning(_("overflow in PLT unwind data; "
383 "unwinding through PLT may fail"));
384 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
385 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
386 }
387
388 if (aligned_full_length > length + 8)
389 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
390
391 // Tell the exception frame header about this FDE.
392 if (eh_frame_hdr != NULL)
393 eh_frame_hdr->record_fde(output_offset + offset, fde_encoding);
394
395 return offset + aligned_full_length;
396 }
397
398 // Class Cie.
399
400 // Destructor.
401
~Cie()402 Cie::~Cie()
403 {
404 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
405 p != this->fdes_.end();
406 ++p)
407 delete *p;
408 }
409
410 // Set the output offset of a CIE. Return the new output offset.
411
412 section_offset_type
set_output_offset(section_offset_type output_offset,unsigned int addralign,Output_section_data * output_data)413 Cie::set_output_offset(section_offset_type output_offset,
414 unsigned int addralign,
415 Output_section_data *output_data)
416 {
417 size_t length = this->contents_.length();
418
419 // Add 4 for length and 4 for zero CIE identifier tag.
420 length += 8;
421
422 if (this->object_ != NULL)
423 {
424 // Add a mapping so that relocations are applied correctly.
425 this->object_->add_merge_mapping(output_data, this->shndx_,
426 this->input_offset_, length,
427 output_offset);
428 }
429
430 length = align_address(length, addralign);
431
432 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
433 p != this->fdes_.end();
434 ++p)
435 {
436 (*p)->add_mapping(output_offset + length, output_data);
437
438 size_t fde_length = (*p)->length();
439 fde_length = align_address(fde_length, addralign);
440 length += fde_length;
441 }
442
443 return output_offset + length;
444 }
445
446 // Write the CIE to OVIEW starting at OFFSET. OUTPUT_OFFSET is the
447 // offset of the Eh_frame section within the output section. Round up
448 // the bytes to ADDRALIGN. ADDRESS is the virtual address of OVIEW.
449 // EH_FRAME_HDR is the exception frame header for FDE recording.
450 // POST_FDES stashes FDEs created after mappings were done, for later
451 // writing. Return the new offset.
452
453 template<int size, bool big_endian>
454 section_offset_type
write(unsigned char * oview,section_offset_type output_offset,section_offset_type offset,uint64_t address,unsigned int addralign,Eh_frame_hdr * eh_frame_hdr,Post_fdes * post_fdes)455 Cie::write(unsigned char* oview, section_offset_type output_offset,
456 section_offset_type offset, uint64_t address,
457 unsigned int addralign, Eh_frame_hdr* eh_frame_hdr,
458 Post_fdes* post_fdes)
459 {
460 gold_assert((offset & (addralign - 1)) == 0);
461
462 section_offset_type cie_offset = offset;
463
464 size_t length = this->contents_.length();
465
466 // We add 8 when getting the aligned length to account for the
467 // length word and the CIE tag.
468 size_t aligned_full_length = align_address(length + 8, addralign);
469
470 // Write the length of the CIE as a 32-bit word. The length word
471 // does not include the four bytes of the length word itself.
472 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
473 aligned_full_length - 4);
474
475 // Write the tag which marks this as a CIE: a 32-bit zero.
476 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
477
478 // Write out the CIE data.
479 memcpy(oview + offset + 8, this->contents_.data(), length);
480
481 if (aligned_full_length > length + 8)
482 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
483
484 offset += aligned_full_length;
485
486 // Write out the associated FDEs.
487 unsigned char fde_encoding = this->fde_encoding_;
488 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
489 p != this->fdes_.end();
490 ++p)
491 {
492 if ((*p)->post_map())
493 post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding));
494 else
495 offset = (*p)->write<size, big_endian>(oview, output_offset, offset,
496 address, addralign, cie_offset,
497 fde_encoding, eh_frame_hdr);
498 }
499
500 return offset;
501 }
502
503 // We track all the CIEs we see, and merge them when possible. This
504 // works because each FDE holds an offset to the relevant CIE: we
505 // rewrite the FDEs to point to the merged CIE. This is worthwhile
506 // because in a typical C++ program many FDEs in many different object
507 // files will use the same CIE.
508
509 // An equality operator for Cie.
510
511 bool
operator ==(const Cie & cie1,const Cie & cie2)512 operator==(const Cie& cie1, const Cie& cie2)
513 {
514 return (cie1.personality_name_ == cie2.personality_name_
515 && cie1.contents_ == cie2.contents_);
516 }
517
518 // A less-than operator for Cie.
519
520 bool
operator <(const Cie & cie1,const Cie & cie2)521 operator<(const Cie& cie1, const Cie& cie2)
522 {
523 if (cie1.personality_name_ != cie2.personality_name_)
524 return cie1.personality_name_ < cie2.personality_name_;
525 return cie1.contents_ < cie2.contents_;
526 }
527
528 // Class Eh_frame.
529
Eh_frame()530 Eh_frame::Eh_frame()
531 : Output_section_data(Output_data::default_alignment()),
532 eh_frame_hdr_(NULL),
533 cie_offsets_(),
534 unmergeable_cie_offsets_(),
535 mappings_are_done_(false),
536 final_data_size_(0)
537 {
538 }
539
540 // Skip an LEB128, updating *PP to point to the next character.
541 // Return false if we ran off the end of the string.
542
543 bool
skip_leb128(const unsigned char ** pp,const unsigned char * pend)544 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
545 {
546 const unsigned char* p;
547 for (p = *pp; p < pend; ++p)
548 {
549 if ((*p & 0x80) == 0)
550 {
551 *pp = p + 1;
552 return true;
553 }
554 }
555 return false;
556 }
557
558 // Add input section SHNDX in OBJECT to an exception frame section.
559 // SYMBOLS is the contents of the symbol table section (size
560 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
561 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
562 // section applying to SHNDX, or 0 if none, or -1U if more than one.
563 // RELOC_TYPE is the type of the reloc section if there is one, either
564 // SHT_REL or SHT_RELA. We try to parse the input exception frame
565 // data into our data structures. If we can't do it, we return false
566 // to mean that the section should be handled as a normal input
567 // section.
568
569 template<int size, bool big_endian>
570 Eh_frame::Eh_frame_section_disposition
add_ehframe_input_section(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,section_size_type symbols_size,const unsigned char * symbol_names,section_size_type symbol_names_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)571 Eh_frame::add_ehframe_input_section(
572 Sized_relobj_file<size, big_endian>* object,
573 const unsigned char* symbols,
574 section_size_type symbols_size,
575 const unsigned char* symbol_names,
576 section_size_type symbol_names_size,
577 unsigned int shndx,
578 unsigned int reloc_shndx,
579 unsigned int reloc_type)
580 {
581 // Get the section contents.
582 section_size_type contents_len;
583 const unsigned char* pcontents = object->section_contents(shndx,
584 &contents_len,
585 false);
586 if (contents_len == 0)
587 return EH_EMPTY_SECTION;
588
589 // If this is the marker section for the end of the data, then
590 // return false to force it to be handled as an ordinary input
591 // section. If we don't do this, we won't correctly handle the case
592 // of unrecognized .eh_frame sections.
593 if (contents_len == 4
594 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
595 return EH_END_MARKER_SECTION;
596
597 New_cies new_cies;
598 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
599 symbol_names, symbol_names_size,
600 shndx, reloc_shndx,
601 reloc_type, pcontents,
602 contents_len, &new_cies))
603 {
604 if (this->eh_frame_hdr_ != NULL)
605 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
606
607 for (New_cies::iterator p = new_cies.begin();
608 p != new_cies.end();
609 ++p)
610 delete p->first;
611
612 return EH_UNRECOGNIZED_SECTION;
613 }
614
615 // Now that we know we are using this section, record any new CIEs
616 // that we found.
617 for (New_cies::const_iterator p = new_cies.begin();
618 p != new_cies.end();
619 ++p)
620 {
621 if (p->second)
622 this->cie_offsets_.insert(p->first);
623 else
624 this->unmergeable_cie_offsets_.push_back(p->first);
625 }
626
627 return EH_OPTIMIZABLE_SECTION;
628 }
629
630 // The bulk of the implementation of add_ehframe_input_section.
631
632 template<int size, bool big_endian>
633 bool
do_add_ehframe_input_section(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,section_size_type symbols_size,const unsigned char * symbol_names,section_size_type symbol_names_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type,const unsigned char * pcontents,section_size_type contents_len,New_cies * new_cies)634 Eh_frame::do_add_ehframe_input_section(
635 Sized_relobj_file<size, big_endian>* object,
636 const unsigned char* symbols,
637 section_size_type symbols_size,
638 const unsigned char* symbol_names,
639 section_size_type symbol_names_size,
640 unsigned int shndx,
641 unsigned int reloc_shndx,
642 unsigned int reloc_type,
643 const unsigned char* pcontents,
644 section_size_type contents_len,
645 New_cies* new_cies)
646 {
647 Track_relocs<size, big_endian> relocs;
648
649 const unsigned char* p = pcontents;
650 const unsigned char* pend = p + contents_len;
651
652 // Get the contents of the reloc section if any.
653 if (!relocs.initialize(object, reloc_shndx, reloc_type))
654 return false;
655
656 // Keep track of which CIEs are at which offsets.
657 Offsets_to_cie cies;
658
659 while (p < pend)
660 {
661 if (pend - p < 4)
662 return false;
663
664 // There shouldn't be any relocations here.
665 if (relocs.advance(p + 4 - pcontents) > 0)
666 return false;
667
668 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
669 p += 4;
670 if (len == 0)
671 {
672 // We should only find a zero-length entry at the end of the
673 // section.
674 if (p < pend)
675 return false;
676 break;
677 }
678 // We don't support a 64-bit .eh_frame.
679 if (len == 0xffffffff)
680 return false;
681 if (static_cast<unsigned int>(pend - p) < len)
682 return false;
683
684 const unsigned char* const pentend = p + len;
685
686 if (pend - p < 4)
687 return false;
688 if (relocs.advance(p + 4 - pcontents) > 0)
689 return false;
690
691 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
692 p += 4;
693
694 if (id == 0)
695 {
696 // CIE.
697 if (!this->read_cie(object, shndx, symbols, symbols_size,
698 symbol_names, symbol_names_size,
699 pcontents, p, pentend, &relocs, &cies,
700 new_cies))
701 return false;
702 }
703 else
704 {
705 // FDE.
706 if (!this->read_fde(object, shndx, symbols, symbols_size,
707 pcontents, id, p, pentend, &relocs, &cies))
708 return false;
709 }
710
711 p = pentend;
712 }
713
714 return true;
715 }
716
717 // Read a CIE. Return false if we can't parse the information.
718
719 template<int size, bool big_endian>
720 bool
read_cie(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const unsigned char * symbols,section_size_type symbols_size,const unsigned char * symbol_names,section_size_type symbol_names_size,const unsigned char * pcontents,const unsigned char * pcie,const unsigned char * pcieend,Track_relocs<size,big_endian> * relocs,Offsets_to_cie * cies,New_cies * new_cies)721 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
722 unsigned int shndx,
723 const unsigned char* symbols,
724 section_size_type symbols_size,
725 const unsigned char* symbol_names,
726 section_size_type symbol_names_size,
727 const unsigned char* pcontents,
728 const unsigned char* pcie,
729 const unsigned char* pcieend,
730 Track_relocs<size, big_endian>* relocs,
731 Offsets_to_cie* cies,
732 New_cies* new_cies)
733 {
734 bool mergeable = true;
735
736 // We need to find the personality routine if there is one, since we
737 // can only merge CIEs which use the same routine. We also need to
738 // find the FDE encoding if there is one, so that we can read the PC
739 // from the FDE.
740
741 const unsigned char* p = pcie;
742
743 if (pcieend - p < 1)
744 return false;
745 unsigned char version = *p++;
746 if (version != 1 && version != 3)
747 return false;
748
749 const unsigned char* paug = p;
750 const void* paugendv = memchr(p, '\0', pcieend - p);
751 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
752 if (paugend == NULL)
753 return false;
754 p = paugend + 1;
755
756 if (paug[0] == 'e' && paug[1] == 'h')
757 {
758 // This is a CIE from gcc before version 3.0. We can't merge
759 // these. We can still read the FDEs.
760 mergeable = false;
761 paug += 2;
762 if (*paug != '\0')
763 return false;
764 if (pcieend - p < size / 8)
765 return false;
766 p += size / 8;
767 }
768
769 // Skip the code alignment.
770 if (!skip_leb128(&p, pcieend))
771 return false;
772
773 // Skip the data alignment.
774 if (!skip_leb128(&p, pcieend))
775 return false;
776
777 // Skip the return column.
778 if (version == 1)
779 {
780 if (pcieend - p < 1)
781 return false;
782 ++p;
783 }
784 else
785 {
786 if (!skip_leb128(&p, pcieend))
787 return false;
788 }
789
790 if (*paug == 'z')
791 {
792 ++paug;
793 // Skip the augmentation size.
794 if (!skip_leb128(&p, pcieend))
795 return false;
796 }
797
798 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
799 int per_offset = -1;
800 while (*paug != '\0')
801 {
802 switch (*paug)
803 {
804 case 'L': // LSDA encoding.
805 if (pcieend - p < 1)
806 return false;
807 ++p;
808 break;
809
810 case 'R': // FDE encoding.
811 if (pcieend - p < 1)
812 return false;
813 fde_encoding = *p;
814 switch (fde_encoding & 7)
815 {
816 case elfcpp::DW_EH_PE_absptr:
817 case elfcpp::DW_EH_PE_udata2:
818 case elfcpp::DW_EH_PE_udata4:
819 case elfcpp::DW_EH_PE_udata8:
820 break;
821 default:
822 // We don't expect to see any other cases here, and
823 // we're not prepared to handle them.
824 return false;
825 }
826 ++p;
827 break;
828
829 case 'S':
830 break;
831
832 case 'P':
833 // Personality encoding.
834 {
835 if (pcieend - p < 1)
836 return false;
837 unsigned char per_encoding = *p;
838 ++p;
839
840 if ((per_encoding & 0x60) == 0x60)
841 return false;
842 unsigned int per_width;
843 switch (per_encoding & 7)
844 {
845 case elfcpp::DW_EH_PE_udata2:
846 per_width = 2;
847 break;
848 case elfcpp::DW_EH_PE_udata4:
849 per_width = 4;
850 break;
851 case elfcpp::DW_EH_PE_udata8:
852 per_width = 8;
853 break;
854 case elfcpp::DW_EH_PE_absptr:
855 per_width = size / 8;
856 break;
857 default:
858 return false;
859 }
860
861 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
862 {
863 unsigned int len = p - pcie;
864 len += per_width - 1;
865 len &= ~ (per_width - 1);
866 if (static_cast<unsigned int>(pcieend - p) < len)
867 return false;
868 p += len;
869 }
870
871 per_offset = p - pcontents;
872
873 if (static_cast<unsigned int>(pcieend - p) < per_width)
874 return false;
875 p += per_width;
876 }
877 break;
878
879 default:
880 return false;
881 }
882
883 ++paug;
884 }
885
886 const char* personality_name = "";
887 if (per_offset != -1)
888 {
889 if (relocs->advance(per_offset) > 0)
890 return false;
891 if (relocs->next_offset() != per_offset)
892 return false;
893
894 unsigned int personality_symndx = relocs->next_symndx();
895 if (personality_symndx == -1U)
896 return false;
897
898 if (personality_symndx < object->local_symbol_count())
899 {
900 // We can only merge this CIE if the personality routine is
901 // a global symbol. We can still read the FDEs.
902 mergeable = false;
903 }
904 else
905 {
906 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
907 if (personality_symndx >= symbols_size / sym_size)
908 return false;
909 elfcpp::Sym<size, big_endian> sym(symbols
910 + (personality_symndx * sym_size));
911 unsigned int name_offset = sym.get_st_name();
912 if (name_offset >= symbol_names_size)
913 return false;
914 personality_name = (reinterpret_cast<const char*>(symbol_names)
915 + name_offset);
916 }
917
918 int r = relocs->advance(per_offset + 1);
919 gold_assert(r == 1);
920 }
921
922 if (relocs->advance(pcieend - pcontents) > 0)
923 return false;
924
925 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
926 personality_name, pcie, pcieend - pcie);
927 Cie* cie_pointer = NULL;
928 if (mergeable)
929 {
930 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
931 if (find_cie != this->cie_offsets_.end())
932 cie_pointer = *find_cie;
933 else
934 {
935 // See if we already saw this CIE in this object file.
936 for (New_cies::const_iterator pc = new_cies->begin();
937 pc != new_cies->end();
938 ++pc)
939 {
940 if (*(pc->first) == cie)
941 {
942 cie_pointer = pc->first;
943 break;
944 }
945 }
946 }
947 }
948
949 if (cie_pointer == NULL)
950 {
951 cie_pointer = new Cie(cie);
952 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
953 }
954 else
955 {
956 // We are deleting this CIE. Record that in our mapping from
957 // input sections to the output section. At this point we don't
958 // know for sure that we are doing a special mapping for this
959 // input section, but that's OK--if we don't do a special
960 // mapping, nobody will ever ask for the mapping we add here.
961 object->add_merge_mapping(this, shndx, (pcie - 8) - pcontents,
962 pcieend - (pcie - 8), -1);
963 }
964
965 // Record this CIE plus the offset in the input section.
966 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
967
968 return true;
969 }
970
971 // Read an FDE. Return false if we can't parse the information.
972
973 template<int size, bool big_endian>
974 bool
read_fde(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const unsigned char * symbols,section_size_type symbols_size,const unsigned char * pcontents,unsigned int offset,const unsigned char * pfde,const unsigned char * pfdeend,Track_relocs<size,big_endian> * relocs,Offsets_to_cie * cies)975 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
976 unsigned int shndx,
977 const unsigned char* symbols,
978 section_size_type symbols_size,
979 const unsigned char* pcontents,
980 unsigned int offset,
981 const unsigned char* pfde,
982 const unsigned char* pfdeend,
983 Track_relocs<size, big_endian>* relocs,
984 Offsets_to_cie* cies)
985 {
986 // OFFSET is the distance between the 4 bytes before PFDE to the
987 // start of the CIE. The offset we recorded for the CIE is 8 bytes
988 // after the start of the CIE--after the length and the zero tag.
989 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
990 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
991 if (pcie == cies->end())
992 return false;
993 Cie* cie = pcie->second;
994
995 int pc_size = 0;
996 switch (cie->fde_encoding() & 7)
997 {
998 case elfcpp::DW_EH_PE_udata2:
999 pc_size = 2;
1000 break;
1001 case elfcpp::DW_EH_PE_udata4:
1002 pc_size = 4;
1003 break;
1004 case elfcpp::DW_EH_PE_udata8:
1005 gold_assert(size == 64);
1006 pc_size = 8;
1007 break;
1008 case elfcpp::DW_EH_PE_absptr:
1009 pc_size = size == 32 ? 4 : 8;
1010 break;
1011 default:
1012 // All other cases were rejected in Eh_frame::read_cie.
1013 gold_unreachable();
1014 }
1015
1016 // The FDE should start with a reloc to the start of the code which
1017 // it describes.
1018 if (relocs->advance(pfde - pcontents) > 0)
1019 return false;
1020 if (relocs->next_offset() != pfde - pcontents)
1021 {
1022 // In an object produced by a relocatable link, gold may have
1023 // discarded a COMDAT group in the previous link, but not the
1024 // corresponding FDEs. In that case, gold will have discarded
1025 // the relocations, so the FDE will have a non-relocatable zero
1026 // (regardless of whether the PC encoding is absolute, pc-relative,
1027 // or data-relative) instead of a pointer to the start of the code.
1028
1029 uint64_t pc_value = 0;
1030 switch (pc_size)
1031 {
1032 case 2:
1033 pc_value = elfcpp::Swap<16, big_endian>::readval(pfde);
1034 break;
1035 case 4:
1036 pc_value = elfcpp::Swap<32, big_endian>::readval(pfde);
1037 break;
1038 case 8:
1039 pc_value = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde);
1040 break;
1041 default:
1042 gold_unreachable();
1043 }
1044
1045 if (pc_value == 0)
1046 {
1047 // This FDE applies to a discarded function. We
1048 // can discard this FDE.
1049 object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1050 pfdeend - (pfde - 8), -1);
1051 return true;
1052 }
1053
1054 // Otherwise, reject the FDE.
1055 return false;
1056 }
1057
1058 unsigned int symndx = relocs->next_symndx();
1059 if (symndx == -1U)
1060 return false;
1061
1062 // There can be another reloc in the FDE, if the CIE specifies an
1063 // LSDA (language specific data area). We currently don't care. We
1064 // will care later if we want to optimize the LSDA from an absolute
1065 // pointer to a PC relative offset when generating a shared library.
1066 relocs->advance(pfdeend - pcontents);
1067
1068 // Find the section index for code that this FDE describes.
1069 // If we have discarded the section, we can also discard the FDE.
1070 unsigned int fde_shndx;
1071 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1072 if (symndx >= symbols_size / sym_size)
1073 return false;
1074 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1075 bool is_ordinary;
1076 fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1077 &is_ordinary);
1078 bool is_discarded = (is_ordinary
1079 && fde_shndx != elfcpp::SHN_UNDEF
1080 && fde_shndx < object->shnum()
1081 && !object->is_section_included(fde_shndx));
1082
1083 // Fetch the address range field from the FDE. The offset and size
1084 // of the field depends on the PC encoding given in the CIE, but
1085 // it is always an absolute value. If the address range is 0, this
1086 // FDE corresponds to a function that was discarded during optimization
1087 // (too late to discard the corresponding FDE).
1088 uint64_t address_range = 0;
1089 switch (pc_size)
1090 {
1091 case 2:
1092 address_range = elfcpp::Swap<16, big_endian>::readval(pfde + 2);
1093 break;
1094 case 4:
1095 address_range = elfcpp::Swap<32, big_endian>::readval(pfde + 4);
1096 break;
1097 case 8:
1098 address_range = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde + 8);
1099 break;
1100 default:
1101 gold_unreachable();
1102 }
1103
1104 if (is_discarded || address_range == 0)
1105 {
1106 // This FDE applies to a discarded function. We
1107 // can discard this FDE.
1108 object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1109 pfdeend - (pfde - 8), -1);
1110 return true;
1111 }
1112
1113 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1114 pfde, pfdeend - pfde));
1115
1116 return true;
1117 }
1118
1119 // Add unwind information for a PLT.
1120
1121 void
add_ehframe_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length,const unsigned char * fde_data,size_t fde_length)1122 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1123 size_t cie_length, const unsigned char* fde_data,
1124 size_t fde_length)
1125 {
1126 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1127 cie_data, cie_length);
1128 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1129 Cie* pcie;
1130 if (find_cie != this->cie_offsets_.end())
1131 pcie = *find_cie;
1132 else
1133 {
1134 gold_assert(!this->mappings_are_done_);
1135 pcie = new Cie(cie);
1136 this->cie_offsets_.insert(pcie);
1137 }
1138
1139 Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1140 pcie->add_fde(fde);
1141
1142 if (this->mappings_are_done_)
1143 this->final_data_size_ += align_address(fde_length + 8, this->addralign());
1144 }
1145
1146 // Return the number of FDEs.
1147
1148 unsigned int
fde_count() const1149 Eh_frame::fde_count() const
1150 {
1151 unsigned int ret = 0;
1152 for (Unmergeable_cie_offsets::const_iterator p =
1153 this->unmergeable_cie_offsets_.begin();
1154 p != this->unmergeable_cie_offsets_.end();
1155 ++p)
1156 ret += (*p)->fde_count();
1157 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1158 p != this->cie_offsets_.end();
1159 ++p)
1160 ret += (*p)->fde_count();
1161 return ret;
1162 }
1163
1164 // Set the final data size.
1165
1166 void
set_final_data_size()1167 Eh_frame::set_final_data_size()
1168 {
1169 // We can be called more than once if Layout::set_segment_offsets
1170 // finds a better mapping. We don't want to add all the mappings
1171 // again.
1172 if (this->mappings_are_done_)
1173 {
1174 this->set_data_size(this->final_data_size_);
1175 return;
1176 }
1177
1178 section_offset_type output_start = 0;
1179 if (this->is_offset_valid())
1180 output_start = this->offset() - this->output_section()->offset();
1181 section_offset_type output_offset = output_start;
1182
1183 for (Unmergeable_cie_offsets::iterator p =
1184 this->unmergeable_cie_offsets_.begin();
1185 p != this->unmergeable_cie_offsets_.end();
1186 ++p)
1187 output_offset = (*p)->set_output_offset(output_offset,
1188 this->addralign(),
1189 this);
1190
1191 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1192 p != this->cie_offsets_.end();
1193 ++p)
1194 output_offset = (*p)->set_output_offset(output_offset,
1195 this->addralign(),
1196 this);
1197
1198 this->mappings_are_done_ = true;
1199 this->final_data_size_ = output_offset - output_start;
1200
1201 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1202 this->set_data_size(this->final_data_size_);
1203 }
1204
1205 // Return an output offset for an input offset.
1206
1207 bool
do_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const1208 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1209 section_offset_type offset,
1210 section_offset_type* poutput) const
1211 {
1212 return object->merge_output_offset(shndx, offset, poutput);
1213 }
1214
1215 // Write the data to the output file.
1216
1217 void
do_write(Output_file * of)1218 Eh_frame::do_write(Output_file* of)
1219 {
1220 const off_t offset = this->offset();
1221 const off_t oview_size = this->data_size();
1222 unsigned char* const oview = of->get_output_view(offset, oview_size);
1223
1224 switch (parameters->size_and_endianness())
1225 {
1226 #ifdef HAVE_TARGET_32_LITTLE
1227 case Parameters::TARGET_32_LITTLE:
1228 this->do_sized_write<32, false>(oview);
1229 break;
1230 #endif
1231 #ifdef HAVE_TARGET_32_BIG
1232 case Parameters::TARGET_32_BIG:
1233 this->do_sized_write<32, true>(oview);
1234 break;
1235 #endif
1236 #ifdef HAVE_TARGET_64_LITTLE
1237 case Parameters::TARGET_64_LITTLE:
1238 this->do_sized_write<64, false>(oview);
1239 break;
1240 #endif
1241 #ifdef HAVE_TARGET_64_BIG
1242 case Parameters::TARGET_64_BIG:
1243 this->do_sized_write<64, true>(oview);
1244 break;
1245 #endif
1246 default:
1247 gold_unreachable();
1248 }
1249
1250 of->write_output_view(offset, oview_size, oview);
1251 }
1252
1253 // Write the data to the output file--template version.
1254
1255 template<int size, bool big_endian>
1256 void
do_sized_write(unsigned char * oview)1257 Eh_frame::do_sized_write(unsigned char* oview)
1258 {
1259 uint64_t address = this->address();
1260 unsigned int addralign = this->addralign();
1261 section_offset_type o = 0;
1262 const off_t output_offset = this->offset() - this->output_section()->offset();
1263 Post_fdes post_fdes;
1264 for (Unmergeable_cie_offsets::iterator p =
1265 this->unmergeable_cie_offsets_.begin();
1266 p != this->unmergeable_cie_offsets_.end();
1267 ++p)
1268 o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1269 addralign, this->eh_frame_hdr_,
1270 &post_fdes);
1271 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1272 p != this->cie_offsets_.end();
1273 ++p)
1274 o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1275 addralign, this->eh_frame_hdr_,
1276 &post_fdes);
1277 for (Post_fdes::iterator p = post_fdes.begin();
1278 p != post_fdes.end();
1279 ++p)
1280 o = (*p).fde->write<size, big_endian>(oview, output_offset, o, address,
1281 addralign, (*p).cie_offset,
1282 (*p).fde_encoding,
1283 this->eh_frame_hdr_);
1284 }
1285
1286 #ifdef HAVE_TARGET_32_LITTLE
1287 template
1288 Eh_frame::Eh_frame_section_disposition
1289 Eh_frame::add_ehframe_input_section<32, false>(
1290 Sized_relobj_file<32, false>* object,
1291 const unsigned char* symbols,
1292 section_size_type symbols_size,
1293 const unsigned char* symbol_names,
1294 section_size_type symbol_names_size,
1295 unsigned int shndx,
1296 unsigned int reloc_shndx,
1297 unsigned int reloc_type);
1298 #endif
1299
1300 #ifdef HAVE_TARGET_32_BIG
1301 template
1302 Eh_frame::Eh_frame_section_disposition
1303 Eh_frame::add_ehframe_input_section<32, true>(
1304 Sized_relobj_file<32, true>* object,
1305 const unsigned char* symbols,
1306 section_size_type symbols_size,
1307 const unsigned char* symbol_names,
1308 section_size_type symbol_names_size,
1309 unsigned int shndx,
1310 unsigned int reloc_shndx,
1311 unsigned int reloc_type);
1312 #endif
1313
1314 #ifdef HAVE_TARGET_64_LITTLE
1315 template
1316 Eh_frame::Eh_frame_section_disposition
1317 Eh_frame::add_ehframe_input_section<64, false>(
1318 Sized_relobj_file<64, false>* object,
1319 const unsigned char* symbols,
1320 section_size_type symbols_size,
1321 const unsigned char* symbol_names,
1322 section_size_type symbol_names_size,
1323 unsigned int shndx,
1324 unsigned int reloc_shndx,
1325 unsigned int reloc_type);
1326 #endif
1327
1328 #ifdef HAVE_TARGET_64_BIG
1329 template
1330 Eh_frame::Eh_frame_section_disposition
1331 Eh_frame::add_ehframe_input_section<64, true>(
1332 Sized_relobj_file<64, true>* object,
1333 const unsigned char* symbols,
1334 section_size_type symbols_size,
1335 const unsigned char* symbol_names,
1336 section_size_type symbol_names_size,
1337 unsigned int shndx,
1338 unsigned int reloc_shndx,
1339 unsigned int reloc_type);
1340 #endif
1341
1342 } // End namespace gold.
1343