1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors: Marek Olšák <maraeo@gmail.com>
24  *
25  */
26 
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41 
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45 
46 #ifndef MESA_LLVM_VERSION_PATCH
47 #define MESA_LLVM_VERSION_PATCH 0
48 #endif
49 
50 struct r600_multi_fence {
51 	struct pipe_reference reference;
52 	struct pipe_fence_handle *gfx;
53 	struct pipe_fence_handle *sdma;
54 
55 	/* If the context wasn't flushed at fence creation, this is non-NULL. */
56 	struct {
57 		struct r600_common_context *ctx;
58 		unsigned ib_index;
59 	} gfx_unflushed;
60 };
61 
62 /*
63  * shader binary helpers.
64  */
radeon_shader_binary_init(struct radeon_shader_binary * b)65 void radeon_shader_binary_init(struct radeon_shader_binary *b)
66 {
67 	memset(b, 0, sizeof(*b));
68 }
69 
radeon_shader_binary_clean(struct radeon_shader_binary * b)70 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
71 {
72 	if (!b)
73 		return;
74 	FREE(b->code);
75 	FREE(b->config);
76 	FREE(b->rodata);
77 	FREE(b->global_symbol_offsets);
78 	FREE(b->relocs);
79 	FREE(b->disasm_string);
80 	FREE(b->llvm_ir_string);
81 }
82 
83 /*
84  * pipe_context
85  */
86 
87 /**
88  * Write an EOP event.
89  *
90  * \param event		EVENT_TYPE_*
91  * \param event_flags	Optional cache flush flags (TC)
92  * \param data_sel	1 = fence, 3 = timestamp
93  * \param buf		Buffer
94  * \param va		GPU address
95  * \param old_value	Previous fence value (for a bug workaround)
96  * \param new_value	Fence value to write for this event.
97  */
r600_gfx_write_event_eop(struct r600_common_context * ctx,unsigned event,unsigned event_flags,unsigned data_sel,struct r600_resource * buf,uint64_t va,uint32_t old_fence,uint32_t new_fence)98 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
99 			      unsigned event, unsigned event_flags,
100 			      unsigned data_sel,
101 			      struct r600_resource *buf, uint64_t va,
102 			      uint32_t old_fence, uint32_t new_fence)
103 {
104 	struct radeon_winsys_cs *cs = ctx->gfx.cs;
105 	unsigned op = EVENT_TYPE(event) |
106 		      EVENT_INDEX(5) |
107 		      event_flags;
108 
109 	if (ctx->chip_class == CIK ||
110 	    ctx->chip_class == VI) {
111 		/* Two EOP events are required to make all engines go idle
112 		 * (and optional cache flushes executed) before the timestamp
113 		 * is written.
114 		 */
115 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
116 		radeon_emit(cs, op);
117 		radeon_emit(cs, va);
118 		radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
119 		radeon_emit(cs, old_fence); /* immediate data */
120 		radeon_emit(cs, 0); /* unused */
121 	}
122 
123 	radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
124 	radeon_emit(cs, op);
125 	radeon_emit(cs, va);
126 	radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
127 	radeon_emit(cs, new_fence); /* immediate data */
128 	radeon_emit(cs, 0); /* unused */
129 
130 	if (buf)
131 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
132 				RADEON_PRIO_QUERY);
133 }
134 
r600_gfx_write_fence_dwords(struct r600_common_screen * screen)135 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
136 {
137 	unsigned dwords = 6;
138 
139 	if (screen->chip_class == CIK ||
140 	    screen->chip_class == VI)
141 		dwords *= 2;
142 
143 	if (!screen->info.has_virtual_memory)
144 		dwords += 2;
145 
146 	return dwords;
147 }
148 
r600_gfx_wait_fence(struct r600_common_context * ctx,uint64_t va,uint32_t ref,uint32_t mask)149 void r600_gfx_wait_fence(struct r600_common_context *ctx,
150 			 uint64_t va, uint32_t ref, uint32_t mask)
151 {
152 	struct radeon_winsys_cs *cs = ctx->gfx.cs;
153 
154 	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
155 	radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
156 	radeon_emit(cs, va);
157 	radeon_emit(cs, va >> 32);
158 	radeon_emit(cs, ref); /* reference value */
159 	radeon_emit(cs, mask); /* mask */
160 	radeon_emit(cs, 4); /* poll interval */
161 }
162 
r600_draw_rectangle(struct blitter_context * blitter,int x1,int y1,int x2,int y2,float depth,enum blitter_attrib_type type,const union pipe_color_union * attrib)163 void r600_draw_rectangle(struct blitter_context *blitter,
164 			 int x1, int y1, int x2, int y2, float depth,
165 			 enum blitter_attrib_type type,
166 			 const union pipe_color_union *attrib)
167 {
168 	struct r600_common_context *rctx =
169 		(struct r600_common_context*)util_blitter_get_pipe(blitter);
170 	struct pipe_viewport_state viewport;
171 	struct pipe_resource *buf = NULL;
172 	unsigned offset = 0;
173 	float *vb;
174 
175 	if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
176 		util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
177 		return;
178 	}
179 
180 	/* Some operations (like color resolve on r6xx) don't work
181 	 * with the conventional primitive types.
182 	 * One that works is PT_RECTLIST, which we use here. */
183 
184 	/* setup viewport */
185 	viewport.scale[0] = 1.0f;
186 	viewport.scale[1] = 1.0f;
187 	viewport.scale[2] = 1.0f;
188 	viewport.translate[0] = 0.0f;
189 	viewport.translate[1] = 0.0f;
190 	viewport.translate[2] = 0.0f;
191 	rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
192 
193 	/* Upload vertices. The hw rectangle has only 3 vertices,
194 	 * I guess the 4th one is derived from the first 3.
195 	 * The vertex specification should match u_blitter's vertex element state. */
196 	u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
197 	if (!buf)
198 		return;
199 
200 	vb[0] = x1;
201 	vb[1] = y1;
202 	vb[2] = depth;
203 	vb[3] = 1;
204 
205 	vb[8] = x1;
206 	vb[9] = y2;
207 	vb[10] = depth;
208 	vb[11] = 1;
209 
210 	vb[16] = x2;
211 	vb[17] = y1;
212 	vb[18] = depth;
213 	vb[19] = 1;
214 
215 	if (attrib) {
216 		memcpy(vb+4, attrib->f, sizeof(float)*4);
217 		memcpy(vb+12, attrib->f, sizeof(float)*4);
218 		memcpy(vb+20, attrib->f, sizeof(float)*4);
219 	}
220 
221 	/* draw */
222 	util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
223 				R600_PRIM_RECTANGLE_LIST, 3, 2);
224 	pipe_resource_reference(&buf, NULL);
225 }
226 
r600_dma_emit_wait_idle(struct r600_common_context * rctx)227 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
228 {
229 	struct radeon_winsys_cs *cs = rctx->dma.cs;
230 
231 	/* NOP waits for idle on Evergreen and later. */
232 	if (rctx->chip_class >= CIK)
233 		radeon_emit(cs, 0x00000000); /* NOP */
234 	else if (rctx->chip_class >= EVERGREEN)
235 		radeon_emit(cs, 0xf0000000); /* NOP */
236 	else {
237 		/* TODO: R600-R700 should use the FENCE packet.
238 		 * CS checker support is required. */
239 	}
240 }
241 
r600_need_dma_space(struct r600_common_context * ctx,unsigned num_dw,struct r600_resource * dst,struct r600_resource * src)242 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
243                          struct r600_resource *dst, struct r600_resource *src)
244 {
245 	uint64_t vram = ctx->dma.cs->used_vram;
246 	uint64_t gtt = ctx->dma.cs->used_gart;
247 
248 	if (dst) {
249 		vram += dst->vram_usage;
250 		gtt += dst->gart_usage;
251 	}
252 	if (src) {
253 		vram += src->vram_usage;
254 		gtt += src->gart_usage;
255 	}
256 
257 	/* Flush the GFX IB if DMA depends on it. */
258 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
259 	    ((dst &&
260 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
261 					       RADEON_USAGE_READWRITE)) ||
262 	     (src &&
263 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
264 					       RADEON_USAGE_WRITE))))
265 		ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
266 
267 	/* Flush if there's not enough space, or if the memory usage per IB
268 	 * is too large.
269 	 *
270 	 * IBs using too little memory are limited by the IB submission overhead.
271 	 * IBs using too much memory are limited by the kernel/TTM overhead.
272 	 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
273 	 *
274 	 * This heuristic makes sure that DMA requests are executed
275 	 * very soon after the call is made and lowers memory usage.
276 	 * It improves texture upload performance by keeping the DMA
277 	 * engine busy while uploads are being submitted.
278 	 */
279 	num_dw++; /* for emit_wait_idle below */
280 	if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
281 	    ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
282 	    !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
283 		ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
284 		assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
285 	}
286 
287 	/* Wait for idle if either buffer has been used in the IB before to
288 	 * prevent read-after-write hazards.
289 	 */
290 	if ((dst &&
291 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
292 					      RADEON_USAGE_READWRITE)) ||
293 	    (src &&
294 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
295 					      RADEON_USAGE_WRITE)))
296 		r600_dma_emit_wait_idle(ctx);
297 
298 	/* If GPUVM is not supported, the CS checker needs 2 entries
299 	 * in the buffer list per packet, which has to be done manually.
300 	 */
301 	if (ctx->screen->info.has_virtual_memory) {
302 		if (dst)
303 			radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
304 						  RADEON_USAGE_WRITE,
305 						  RADEON_PRIO_SDMA_BUFFER);
306 		if (src)
307 			radeon_add_to_buffer_list(ctx, &ctx->dma, src,
308 						  RADEON_USAGE_READ,
309 						  RADEON_PRIO_SDMA_BUFFER);
310 	}
311 
312 	/* this function is called before all DMA calls, so increment this. */
313 	ctx->num_dma_calls++;
314 }
315 
r600_memory_barrier(struct pipe_context * ctx,unsigned flags)316 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
317 {
318 }
319 
r600_preflush_suspend_features(struct r600_common_context * ctx)320 void r600_preflush_suspend_features(struct r600_common_context *ctx)
321 {
322 	/* suspend queries */
323 	if (!LIST_IS_EMPTY(&ctx->active_queries))
324 		r600_suspend_queries(ctx);
325 
326 	ctx->streamout.suspended = false;
327 	if (ctx->streamout.begin_emitted) {
328 		r600_emit_streamout_end(ctx);
329 		ctx->streamout.suspended = true;
330 	}
331 }
332 
r600_postflush_resume_features(struct r600_common_context * ctx)333 void r600_postflush_resume_features(struct r600_common_context *ctx)
334 {
335 	if (ctx->streamout.suspended) {
336 		ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
337 		r600_streamout_buffers_dirty(ctx);
338 	}
339 
340 	/* resume queries */
341 	if (!LIST_IS_EMPTY(&ctx->active_queries))
342 		r600_resume_queries(ctx);
343 }
344 
r600_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)345 static void r600_flush_from_st(struct pipe_context *ctx,
346 			       struct pipe_fence_handle **fence,
347 			       unsigned flags)
348 {
349 	struct pipe_screen *screen = ctx->screen;
350 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
351 	struct radeon_winsys *ws = rctx->ws;
352 	unsigned rflags = 0;
353 	struct pipe_fence_handle *gfx_fence = NULL;
354 	struct pipe_fence_handle *sdma_fence = NULL;
355 	bool deferred_fence = false;
356 
357 	if (flags & PIPE_FLUSH_END_OF_FRAME)
358 		rflags |= RADEON_FLUSH_END_OF_FRAME;
359 	if (flags & PIPE_FLUSH_DEFERRED)
360 		rflags |= RADEON_FLUSH_ASYNC;
361 
362 	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
363 	if (rctx->dma.cs)
364 		rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
365 
366 	if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
367 		if (fence)
368 			ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
369 		if (!(rflags & RADEON_FLUSH_ASYNC))
370 			ws->cs_sync_flush(rctx->gfx.cs);
371 	} else {
372 		/* Instead of flushing, create a deferred fence. Constraints:
373 		 * - The state tracker must allow a deferred flush.
374 		 * - The state tracker must request a fence.
375 		 * Thread safety in fence_finish must be ensured by the state tracker.
376 		 */
377 		if (flags & PIPE_FLUSH_DEFERRED && fence) {
378 			gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
379 			deferred_fence = true;
380 		} else {
381 			rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
382 		}
383 	}
384 
385 	/* Both engines can signal out of order, so we need to keep both fences. */
386 	if (fence) {
387 		struct r600_multi_fence *multi_fence =
388 			CALLOC_STRUCT(r600_multi_fence);
389 		if (!multi_fence)
390 			return;
391 
392 		multi_fence->reference.count = 1;
393 		/* If both fences are NULL, fence_finish will always return true. */
394 		multi_fence->gfx = gfx_fence;
395 		multi_fence->sdma = sdma_fence;
396 
397 		if (deferred_fence) {
398 			multi_fence->gfx_unflushed.ctx = rctx;
399 			multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
400 		}
401 
402 		screen->fence_reference(screen, fence, NULL);
403 		*fence = (struct pipe_fence_handle*)multi_fence;
404 	}
405 }
406 
r600_flush_dma_ring(void * ctx,unsigned flags,struct pipe_fence_handle ** fence)407 static void r600_flush_dma_ring(void *ctx, unsigned flags,
408 				struct pipe_fence_handle **fence)
409 {
410 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
411 	struct radeon_winsys_cs *cs = rctx->dma.cs;
412 	struct radeon_saved_cs saved;
413 	bool check_vm =
414 		(rctx->screen->debug_flags & DBG_CHECK_VM) &&
415 		rctx->check_vm_faults;
416 
417 	if (!radeon_emitted(cs, 0)) {
418 		if (fence)
419 			rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
420 		return;
421 	}
422 
423 	if (check_vm)
424 		radeon_save_cs(rctx->ws, cs, &saved);
425 
426 	rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
427 	if (fence)
428 		rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
429 
430 	if (check_vm) {
431 		/* Use conservative timeout 800ms, after which we won't wait any
432 		 * longer and assume the GPU is hung.
433 		 */
434 		rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
435 
436 		rctx->check_vm_faults(rctx, &saved, RING_DMA);
437 		radeon_clear_saved_cs(&saved);
438 	}
439 }
440 
441 /**
442  * Store a linearized copy of all chunks of \p cs together with the buffer
443  * list in \p saved.
444  */
radeon_save_cs(struct radeon_winsys * ws,struct radeon_winsys_cs * cs,struct radeon_saved_cs * saved)445 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
446 		    struct radeon_saved_cs *saved)
447 {
448 	void *buf;
449 	unsigned i;
450 
451 	/* Save the IB chunks. */
452 	saved->num_dw = cs->prev_dw + cs->current.cdw;
453 	saved->ib = MALLOC(4 * saved->num_dw);
454 	if (!saved->ib)
455 		goto oom;
456 
457 	buf = saved->ib;
458 	for (i = 0; i < cs->num_prev; ++i) {
459 		memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
460 		buf += cs->prev[i].cdw;
461 	}
462 	memcpy(buf, cs->current.buf, cs->current.cdw * 4);
463 
464 	/* Save the buffer list. */
465 	saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
466 	saved->bo_list = CALLOC(saved->bo_count,
467 				sizeof(saved->bo_list[0]));
468 	if (!saved->bo_list) {
469 		FREE(saved->ib);
470 		goto oom;
471 	}
472 	ws->cs_get_buffer_list(cs, saved->bo_list);
473 
474 	return;
475 
476 oom:
477 	fprintf(stderr, "%s: out of memory\n", __func__);
478 	memset(saved, 0, sizeof(*saved));
479 }
480 
radeon_clear_saved_cs(struct radeon_saved_cs * saved)481 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
482 {
483 	FREE(saved->ib);
484 	FREE(saved->bo_list);
485 
486 	memset(saved, 0, sizeof(*saved));
487 }
488 
r600_get_reset_status(struct pipe_context * ctx)489 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
490 {
491 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
492 	unsigned latest = rctx->ws->query_value(rctx->ws,
493 						RADEON_GPU_RESET_COUNTER);
494 
495 	if (rctx->gpu_reset_counter == latest)
496 		return PIPE_NO_RESET;
497 
498 	rctx->gpu_reset_counter = latest;
499 	return PIPE_UNKNOWN_CONTEXT_RESET;
500 }
501 
r600_set_debug_callback(struct pipe_context * ctx,const struct pipe_debug_callback * cb)502 static void r600_set_debug_callback(struct pipe_context *ctx,
503 				    const struct pipe_debug_callback *cb)
504 {
505 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
506 
507 	if (cb)
508 		rctx->debug = *cb;
509 	else
510 		memset(&rctx->debug, 0, sizeof(rctx->debug));
511 }
512 
r600_set_device_reset_callback(struct pipe_context * ctx,const struct pipe_device_reset_callback * cb)513 static void r600_set_device_reset_callback(struct pipe_context *ctx,
514 					   const struct pipe_device_reset_callback *cb)
515 {
516 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
517 
518 	if (cb)
519 		rctx->device_reset_callback = *cb;
520 	else
521 		memset(&rctx->device_reset_callback, 0,
522 		       sizeof(rctx->device_reset_callback));
523 }
524 
r600_check_device_reset(struct r600_common_context * rctx)525 bool r600_check_device_reset(struct r600_common_context *rctx)
526 {
527 	enum pipe_reset_status status;
528 
529 	if (!rctx->device_reset_callback.reset)
530 		return false;
531 
532 	if (!rctx->b.get_device_reset_status)
533 		return false;
534 
535 	status = rctx->b.get_device_reset_status(&rctx->b);
536 	if (status == PIPE_NO_RESET)
537 		return false;
538 
539 	rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
540 	return true;
541 }
542 
r600_dma_clear_buffer_fallback(struct pipe_context * ctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)543 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
544 					   struct pipe_resource *dst,
545 					   uint64_t offset, uint64_t size,
546 					   unsigned value)
547 {
548 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
549 
550 	rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
551 }
552 
r600_common_context_init(struct r600_common_context * rctx,struct r600_common_screen * rscreen,unsigned context_flags)553 bool r600_common_context_init(struct r600_common_context *rctx,
554 			      struct r600_common_screen *rscreen,
555 			      unsigned context_flags)
556 {
557 	slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
558 
559 	rctx->screen = rscreen;
560 	rctx->ws = rscreen->ws;
561 	rctx->family = rscreen->family;
562 	rctx->chip_class = rscreen->chip_class;
563 
564 	if (rscreen->chip_class >= CIK)
565 		rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
566 	else if (rscreen->chip_class >= EVERGREEN)
567 		rctx->max_db = 8;
568 	else
569 		rctx->max_db = 4;
570 
571 	rctx->b.invalidate_resource = r600_invalidate_resource;
572 	rctx->b.transfer_map = u_transfer_map_vtbl;
573 	rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
574 	rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
575 	rctx->b.texture_subdata = u_default_texture_subdata;
576 	rctx->b.memory_barrier = r600_memory_barrier;
577 	rctx->b.flush = r600_flush_from_st;
578 	rctx->b.set_debug_callback = r600_set_debug_callback;
579 	rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
580 
581 	/* evergreen_compute.c has a special codepath for global buffers.
582 	 * Everything else can use the direct path.
583 	 */
584 	if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
585 	    (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
586 		rctx->b.buffer_subdata = u_default_buffer_subdata;
587 	else
588 		rctx->b.buffer_subdata = r600_buffer_subdata;
589 
590 	if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
591 		rctx->b.get_device_reset_status = r600_get_reset_status;
592 		rctx->gpu_reset_counter =
593 			rctx->ws->query_value(rctx->ws,
594 					      RADEON_GPU_RESET_COUNTER);
595 	}
596 
597 	rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
598 
599 	r600_init_context_texture_functions(rctx);
600 	r600_init_viewport_functions(rctx);
601 	r600_streamout_init(rctx);
602 	r600_query_init(rctx);
603 	cayman_init_msaa(&rctx->b);
604 
605 	rctx->allocator_zeroed_memory =
606 		u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
607 				      0, PIPE_USAGE_DEFAULT, true);
608 	if (!rctx->allocator_zeroed_memory)
609 		return false;
610 
611 	rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
612 					PIPE_BIND_INDEX_BUFFER |
613 					PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
614 	if (!rctx->uploader)
615 		return false;
616 
617 	rctx->ctx = rctx->ws->ctx_create(rctx->ws);
618 	if (!rctx->ctx)
619 		return false;
620 
621 	if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
622 		rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
623 						   r600_flush_dma_ring,
624 						   rctx);
625 		rctx->dma.flush = r600_flush_dma_ring;
626 	}
627 
628 	return true;
629 }
630 
r600_common_context_cleanup(struct r600_common_context * rctx)631 void r600_common_context_cleanup(struct r600_common_context *rctx)
632 {
633 	unsigned i,j;
634 
635 	/* Release DCC stats. */
636 	for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
637 		assert(!rctx->dcc_stats[i].query_active);
638 
639 		for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
640 			if (rctx->dcc_stats[i].ps_stats[j])
641 				rctx->b.destroy_query(&rctx->b,
642 						      rctx->dcc_stats[i].ps_stats[j]);
643 
644 		r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
645 	}
646 
647 	if (rctx->query_result_shader)
648 		rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
649 
650 	if (rctx->gfx.cs)
651 		rctx->ws->cs_destroy(rctx->gfx.cs);
652 	if (rctx->dma.cs)
653 		rctx->ws->cs_destroy(rctx->dma.cs);
654 	if (rctx->ctx)
655 		rctx->ws->ctx_destroy(rctx->ctx);
656 
657 	if (rctx->uploader) {
658 		u_upload_destroy(rctx->uploader);
659 	}
660 
661 	slab_destroy_child(&rctx->pool_transfers);
662 
663 	if (rctx->allocator_zeroed_memory) {
664 		u_suballocator_destroy(rctx->allocator_zeroed_memory);
665 	}
666 	rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
667 	rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
668 }
669 
670 /*
671  * pipe_screen
672  */
673 
674 static const struct debug_named_value common_debug_options[] = {
675 	/* logging */
676 	{ "tex", DBG_TEX, "Print texture info" },
677 	{ "compute", DBG_COMPUTE, "Print compute info" },
678 	{ "vm", DBG_VM, "Print virtual addresses when creating resources" },
679 	{ "info", DBG_INFO, "Print driver information" },
680 
681 	/* shaders */
682 	{ "fs", DBG_FS, "Print fetch shaders" },
683 	{ "vs", DBG_VS, "Print vertex shaders" },
684 	{ "gs", DBG_GS, "Print geometry shaders" },
685 	{ "ps", DBG_PS, "Print pixel shaders" },
686 	{ "cs", DBG_CS, "Print compute shaders" },
687 	{ "tcs", DBG_TCS, "Print tessellation control shaders" },
688 	{ "tes", DBG_TES, "Print tessellation evaluation shaders" },
689 	{ "noir", DBG_NO_IR, "Don't print the LLVM IR"},
690 	{ "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
691 	{ "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
692 	{ "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
693 	{ "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
694 	{ "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
695 
696 	{ "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
697 
698 	/* features */
699 	{ "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
700 	{ "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
701 	/* GL uses the word INVALIDATE, gallium uses the word DISCARD */
702 	{ "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
703 	{ "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
704 	{ "notiling", DBG_NO_TILING, "Disable tiling" },
705 	{ "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
706 	{ "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
707 	{ "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
708 	{ "nowc", DBG_NO_WC, "Disable GTT write combining" },
709 	{ "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
710 	{ "nodcc", DBG_NO_DCC, "Disable DCC." },
711 	{ "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
712 	{ "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
713 	{ "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
714 	{ "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
715 	{ "noce", DBG_NO_CE, "Disable the constant engine"},
716 	{ "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
717 	{ "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
718 
719 	DEBUG_NAMED_VALUE_END /* must be last */
720 };
721 
r600_get_vendor(struct pipe_screen * pscreen)722 static const char* r600_get_vendor(struct pipe_screen* pscreen)
723 {
724 	return "X.Org";
725 }
726 
r600_get_device_vendor(struct pipe_screen * pscreen)727 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
728 {
729 	return "AMD";
730 }
731 
r600_get_chip_name(struct r600_common_screen * rscreen)732 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
733 {
734 	switch (rscreen->info.family) {
735 	case CHIP_R600: return "AMD R600";
736 	case CHIP_RV610: return "AMD RV610";
737 	case CHIP_RV630: return "AMD RV630";
738 	case CHIP_RV670: return "AMD RV670";
739 	case CHIP_RV620: return "AMD RV620";
740 	case CHIP_RV635: return "AMD RV635";
741 	case CHIP_RS780: return "AMD RS780";
742 	case CHIP_RS880: return "AMD RS880";
743 	case CHIP_RV770: return "AMD RV770";
744 	case CHIP_RV730: return "AMD RV730";
745 	case CHIP_RV710: return "AMD RV710";
746 	case CHIP_RV740: return "AMD RV740";
747 	case CHIP_CEDAR: return "AMD CEDAR";
748 	case CHIP_REDWOOD: return "AMD REDWOOD";
749 	case CHIP_JUNIPER: return "AMD JUNIPER";
750 	case CHIP_CYPRESS: return "AMD CYPRESS";
751 	case CHIP_HEMLOCK: return "AMD HEMLOCK";
752 	case CHIP_PALM: return "AMD PALM";
753 	case CHIP_SUMO: return "AMD SUMO";
754 	case CHIP_SUMO2: return "AMD SUMO2";
755 	case CHIP_BARTS: return "AMD BARTS";
756 	case CHIP_TURKS: return "AMD TURKS";
757 	case CHIP_CAICOS: return "AMD CAICOS";
758 	case CHIP_CAYMAN: return "AMD CAYMAN";
759 	case CHIP_ARUBA: return "AMD ARUBA";
760 	case CHIP_TAHITI: return "AMD TAHITI";
761 	case CHIP_PITCAIRN: return "AMD PITCAIRN";
762 	case CHIP_VERDE: return "AMD CAPE VERDE";
763 	case CHIP_OLAND: return "AMD OLAND";
764 	case CHIP_HAINAN: return "AMD HAINAN";
765 	case CHIP_BONAIRE: return "AMD BONAIRE";
766 	case CHIP_KAVERI: return "AMD KAVERI";
767 	case CHIP_KABINI: return "AMD KABINI";
768 	case CHIP_HAWAII: return "AMD HAWAII";
769 	case CHIP_MULLINS: return "AMD MULLINS";
770 	case CHIP_TONGA: return "AMD TONGA";
771 	case CHIP_ICELAND: return "AMD ICELAND";
772 	case CHIP_CARRIZO: return "AMD CARRIZO";
773 	case CHIP_FIJI: return "AMD FIJI";
774 	case CHIP_POLARIS10: return "AMD POLARIS10";
775 	case CHIP_POLARIS11: return "AMD POLARIS11";
776 	case CHIP_POLARIS12: return "AMD POLARIS12";
777 	case CHIP_STONEY: return "AMD STONEY";
778 	default: return "AMD unknown";
779 	}
780 }
781 
r600_get_name(struct pipe_screen * pscreen)782 static const char* r600_get_name(struct pipe_screen* pscreen)
783 {
784 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
785 
786 	return rscreen->renderer_string;
787 }
788 
r600_get_paramf(struct pipe_screen * pscreen,enum pipe_capf param)789 static float r600_get_paramf(struct pipe_screen* pscreen,
790 			     enum pipe_capf param)
791 {
792 	struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
793 
794 	switch (param) {
795 	case PIPE_CAPF_MAX_LINE_WIDTH:
796 	case PIPE_CAPF_MAX_LINE_WIDTH_AA:
797 	case PIPE_CAPF_MAX_POINT_WIDTH:
798 	case PIPE_CAPF_MAX_POINT_WIDTH_AA:
799 		if (rscreen->family >= CHIP_CEDAR)
800 			return 16384.0f;
801 		else
802 			return 8192.0f;
803 	case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
804 		return 16.0f;
805 	case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
806 		return 16.0f;
807 	case PIPE_CAPF_GUARD_BAND_LEFT:
808 	case PIPE_CAPF_GUARD_BAND_TOP:
809 	case PIPE_CAPF_GUARD_BAND_RIGHT:
810 	case PIPE_CAPF_GUARD_BAND_BOTTOM:
811 		return 0.0f;
812 	}
813 	return 0.0f;
814 }
815 
r600_get_video_param(struct pipe_screen * screen,enum pipe_video_profile profile,enum pipe_video_entrypoint entrypoint,enum pipe_video_cap param)816 static int r600_get_video_param(struct pipe_screen *screen,
817 				enum pipe_video_profile profile,
818 				enum pipe_video_entrypoint entrypoint,
819 				enum pipe_video_cap param)
820 {
821 	switch (param) {
822 	case PIPE_VIDEO_CAP_SUPPORTED:
823 		return vl_profile_supported(screen, profile, entrypoint);
824 	case PIPE_VIDEO_CAP_NPOT_TEXTURES:
825 		return 1;
826 	case PIPE_VIDEO_CAP_MAX_WIDTH:
827 	case PIPE_VIDEO_CAP_MAX_HEIGHT:
828 		return vl_video_buffer_max_size(screen);
829 	case PIPE_VIDEO_CAP_PREFERED_FORMAT:
830 		return PIPE_FORMAT_NV12;
831 	case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
832 		return false;
833 	case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
834 		return false;
835 	case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
836 		return true;
837 	case PIPE_VIDEO_CAP_MAX_LEVEL:
838 		return vl_level_supported(screen, profile);
839 	default:
840 		return 0;
841 	}
842 }
843 
r600_get_llvm_processor_name(enum radeon_family family)844 const char *r600_get_llvm_processor_name(enum radeon_family family)
845 {
846 	switch (family) {
847 	case CHIP_R600:
848 	case CHIP_RV630:
849 	case CHIP_RV635:
850 	case CHIP_RV670:
851 		return "r600";
852 	case CHIP_RV610:
853 	case CHIP_RV620:
854 	case CHIP_RS780:
855 	case CHIP_RS880:
856 		return "rs880";
857 	case CHIP_RV710:
858 		return "rv710";
859 	case CHIP_RV730:
860 		return "rv730";
861 	case CHIP_RV740:
862 	case CHIP_RV770:
863 		return "rv770";
864 	case CHIP_PALM:
865 	case CHIP_CEDAR:
866 		return "cedar";
867 	case CHIP_SUMO:
868 	case CHIP_SUMO2:
869 		return "sumo";
870 	case CHIP_REDWOOD:
871 		return "redwood";
872 	case CHIP_JUNIPER:
873 		return "juniper";
874 	case CHIP_HEMLOCK:
875 	case CHIP_CYPRESS:
876 		return "cypress";
877 	case CHIP_BARTS:
878 		return "barts";
879 	case CHIP_TURKS:
880 		return "turks";
881 	case CHIP_CAICOS:
882 		return "caicos";
883 	case CHIP_CAYMAN:
884         case CHIP_ARUBA:
885 		return "cayman";
886 
887 	case CHIP_TAHITI: return "tahiti";
888 	case CHIP_PITCAIRN: return "pitcairn";
889 	case CHIP_VERDE: return "verde";
890 	case CHIP_OLAND: return "oland";
891 	case CHIP_HAINAN: return "hainan";
892 	case CHIP_BONAIRE: return "bonaire";
893 	case CHIP_KABINI: return "kabini";
894 	case CHIP_KAVERI: return "kaveri";
895 	case CHIP_HAWAII: return "hawaii";
896 	case CHIP_MULLINS:
897 		return "mullins";
898 	case CHIP_TONGA: return "tonga";
899 	case CHIP_ICELAND: return "iceland";
900 	case CHIP_CARRIZO: return "carrizo";
901 	case CHIP_FIJI:
902 		return HAVE_LLVM >= 0x0308 ? "fiji" : "carrizo";
903 	case CHIP_STONEY:
904 		return HAVE_LLVM >= 0x0308 ? "stoney" : "carrizo";
905 	case CHIP_POLARIS10:
906 		return HAVE_LLVM >= 0x0309 ? "polaris10" : "carrizo";
907 	case CHIP_POLARIS11:
908 	case CHIP_POLARIS12: /* same as polaris11 */
909 		return HAVE_LLVM >= 0x0309 ? "polaris11" : "carrizo";
910 	default:
911 		return "";
912 	}
913 }
914 
r600_get_compute_param(struct pipe_screen * screen,enum pipe_shader_ir ir_type,enum pipe_compute_cap param,void * ret)915 static int r600_get_compute_param(struct pipe_screen *screen,
916         enum pipe_shader_ir ir_type,
917         enum pipe_compute_cap param,
918         void *ret)
919 {
920 	struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
921 
922 	//TODO: select these params by asic
923 	switch (param) {
924 	case PIPE_COMPUTE_CAP_IR_TARGET: {
925 		const char *gpu;
926 		const char *triple;
927 		if (rscreen->family <= CHIP_ARUBA) {
928 			triple = "r600--";
929 		} else {
930 			if (HAVE_LLVM < 0x0400) {
931 				triple = "amdgcn--";
932 			} else {
933 				triple = "amdgcn-mesa-mesa3d";
934 			}
935 		}
936 		switch(rscreen->family) {
937 		/* Clang < 3.6 is missing Hainan in its list of
938 		 * GPUs, so we need to use the name of a similar GPU.
939 		 */
940 		default:
941 			gpu = r600_get_llvm_processor_name(rscreen->family);
942 			break;
943 		}
944 		if (ret) {
945 			sprintf(ret, "%s-%s", gpu, triple);
946 		}
947 		/* +2 for dash and terminating NIL byte */
948 		return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
949 	}
950 	case PIPE_COMPUTE_CAP_GRID_DIMENSION:
951 		if (ret) {
952 			uint64_t *grid_dimension = ret;
953 			grid_dimension[0] = 3;
954 		}
955 		return 1 * sizeof(uint64_t);
956 
957 	case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
958 		if (ret) {
959 			uint64_t *grid_size = ret;
960 			grid_size[0] = 65535;
961 			grid_size[1] = 65535;
962 			grid_size[2] = 65535;
963 		}
964 		return 3 * sizeof(uint64_t) ;
965 
966 	case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
967 		if (ret) {
968 			uint64_t *block_size = ret;
969 			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
970 			    ir_type == PIPE_SHADER_IR_TGSI) {
971 				block_size[0] = 2048;
972 				block_size[1] = 2048;
973 				block_size[2] = 2048;
974 			} else {
975 				block_size[0] = 256;
976 				block_size[1] = 256;
977 				block_size[2] = 256;
978 			}
979 		}
980 		return 3 * sizeof(uint64_t);
981 
982 	case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
983 		if (ret) {
984 			uint64_t *max_threads_per_block = ret;
985 			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
986 			    ir_type == PIPE_SHADER_IR_TGSI)
987 				*max_threads_per_block = 2048;
988 			else
989 				*max_threads_per_block = 256;
990 		}
991 		return sizeof(uint64_t);
992 	case PIPE_COMPUTE_CAP_ADDRESS_BITS:
993 		if (ret) {
994 			uint32_t *address_bits = ret;
995 			address_bits[0] = 32;
996 			if (rscreen->chip_class >= SI)
997 				address_bits[0] = 64;
998 		}
999 		return 1 * sizeof(uint32_t);
1000 
1001 	case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
1002 		if (ret) {
1003 			uint64_t *max_global_size = ret;
1004 			uint64_t max_mem_alloc_size;
1005 
1006 			r600_get_compute_param(screen, ir_type,
1007 				PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
1008 				&max_mem_alloc_size);
1009 
1010 			/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
1011 			 * 1/4 of the MAX_GLOBAL_SIZE.  Since the
1012 			 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
1013 			 * make sure we never report more than
1014 			 * 4 * MAX_MEM_ALLOC_SIZE.
1015 			 */
1016 			*max_global_size = MIN2(4 * max_mem_alloc_size,
1017 						MAX2(rscreen->info.gart_size,
1018 						     rscreen->info.vram_size));
1019 		}
1020 		return sizeof(uint64_t);
1021 
1022 	case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1023 		if (ret) {
1024 			uint64_t *max_local_size = ret;
1025 			/* Value reported by the closed source driver. */
1026 			*max_local_size = 32768;
1027 		}
1028 		return sizeof(uint64_t);
1029 
1030 	case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1031 		if (ret) {
1032 			uint64_t *max_input_size = ret;
1033 			/* Value reported by the closed source driver. */
1034 			*max_input_size = 1024;
1035 		}
1036 		return sizeof(uint64_t);
1037 
1038 	case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1039 		if (ret) {
1040 			uint64_t *max_mem_alloc_size = ret;
1041 
1042 			*max_mem_alloc_size = rscreen->info.max_alloc_size;
1043 		}
1044 		return sizeof(uint64_t);
1045 
1046 	case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1047 		if (ret) {
1048 			uint32_t *max_clock_frequency = ret;
1049 			*max_clock_frequency = rscreen->info.max_shader_clock;
1050 		}
1051 		return sizeof(uint32_t);
1052 
1053 	case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1054 		if (ret) {
1055 			uint32_t *max_compute_units = ret;
1056 			*max_compute_units = rscreen->info.num_good_compute_units;
1057 		}
1058 		return sizeof(uint32_t);
1059 
1060 	case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1061 		if (ret) {
1062 			uint32_t *images_supported = ret;
1063 			*images_supported = 0;
1064 		}
1065 		return sizeof(uint32_t);
1066 	case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1067 		break; /* unused */
1068 	case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1069 		if (ret) {
1070 			uint32_t *subgroup_size = ret;
1071 			*subgroup_size = r600_wavefront_size(rscreen->family);
1072 		}
1073 		return sizeof(uint32_t);
1074 	case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1075 		if (ret) {
1076 			uint64_t *max_variable_threads_per_block = ret;
1077 			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
1078 			    ir_type == PIPE_SHADER_IR_TGSI)
1079 				*max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
1080 			else
1081 				*max_variable_threads_per_block = 0;
1082 		}
1083 		return sizeof(uint64_t);
1084 	}
1085 
1086         fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1087         return 0;
1088 }
1089 
r600_get_timestamp(struct pipe_screen * screen)1090 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1091 {
1092 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1093 
1094 	return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1095 			rscreen->info.clock_crystal_freq;
1096 }
1097 
r600_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)1098 static void r600_fence_reference(struct pipe_screen *screen,
1099 				 struct pipe_fence_handle **dst,
1100 				 struct pipe_fence_handle *src)
1101 {
1102 	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1103 	struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1104 	struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1105 
1106 	if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1107 		ws->fence_reference(&(*rdst)->gfx, NULL);
1108 		ws->fence_reference(&(*rdst)->sdma, NULL);
1109 		FREE(*rdst);
1110 	}
1111         *rdst = rsrc;
1112 }
1113 
r600_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)1114 static boolean r600_fence_finish(struct pipe_screen *screen,
1115 				 struct pipe_context *ctx,
1116 				 struct pipe_fence_handle *fence,
1117 				 uint64_t timeout)
1118 {
1119 	struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1120 	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1121 	struct r600_common_context *rctx =
1122 		ctx ? (struct r600_common_context*)ctx : NULL;
1123 	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1124 
1125 	if (rfence->sdma) {
1126 		if (!rws->fence_wait(rws, rfence->sdma, timeout))
1127 			return false;
1128 
1129 		/* Recompute the timeout after waiting. */
1130 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1131 			int64_t time = os_time_get_nano();
1132 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1133 		}
1134 	}
1135 
1136 	if (!rfence->gfx)
1137 		return true;
1138 
1139 	/* Flush the gfx IB if it hasn't been flushed yet. */
1140 	if (rctx &&
1141 	    rfence->gfx_unflushed.ctx == rctx &&
1142 	    rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1143 		rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
1144 		rfence->gfx_unflushed.ctx = NULL;
1145 
1146 		if (!timeout)
1147 			return false;
1148 
1149 		/* Recompute the timeout after all that. */
1150 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1151 			int64_t time = os_time_get_nano();
1152 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1153 		}
1154 	}
1155 
1156 	return rws->fence_wait(rws, rfence->gfx, timeout);
1157 }
1158 
r600_query_memory_info(struct pipe_screen * screen,struct pipe_memory_info * info)1159 static void r600_query_memory_info(struct pipe_screen *screen,
1160 				   struct pipe_memory_info *info)
1161 {
1162 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1163 	struct radeon_winsys *ws = rscreen->ws;
1164 	unsigned vram_usage, gtt_usage;
1165 
1166 	info->total_device_memory = rscreen->info.vram_size / 1024;
1167 	info->total_staging_memory = rscreen->info.gart_size / 1024;
1168 
1169 	/* The real TTM memory usage is somewhat random, because:
1170 	 *
1171 	 * 1) TTM delays freeing memory, because it can only free it after
1172 	 *    fences expire.
1173 	 *
1174 	 * 2) The memory usage can be really low if big VRAM evictions are
1175 	 *    taking place, but the real usage is well above the size of VRAM.
1176 	 *
1177 	 * Instead, return statistics of this process.
1178 	 */
1179 	vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1180 	gtt_usage =  ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1181 
1182 	info->avail_device_memory =
1183 		vram_usage <= info->total_device_memory ?
1184 				info->total_device_memory - vram_usage : 0;
1185 	info->avail_staging_memory =
1186 		gtt_usage <= info->total_staging_memory ?
1187 				info->total_staging_memory - gtt_usage : 0;
1188 
1189 	info->device_memory_evicted =
1190 		ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1191 
1192 	if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
1193 		info->nr_device_memory_evictions =
1194 			ws->query_value(ws, RADEON_NUM_EVICTIONS);
1195 	else
1196 		/* Just return the number of evicted 64KB pages. */
1197 		info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1198 }
1199 
r600_resource_create_common(struct pipe_screen * screen,const struct pipe_resource * templ)1200 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1201 						  const struct pipe_resource *templ)
1202 {
1203 	if (templ->target == PIPE_BUFFER) {
1204 		return r600_buffer_create(screen, templ, 256);
1205 	} else {
1206 		return r600_texture_create(screen, templ);
1207 	}
1208 }
1209 
r600_common_screen_init(struct r600_common_screen * rscreen,struct radeon_winsys * ws)1210 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1211 			     struct radeon_winsys *ws)
1212 {
1213 	char llvm_string[32] = {}, kernel_version[128] = {};
1214 	struct utsname uname_data;
1215 
1216 	ws->query_info(ws, &rscreen->info);
1217 
1218 	if (uname(&uname_data) == 0)
1219 		snprintf(kernel_version, sizeof(kernel_version),
1220 			 " / %s", uname_data.release);
1221 
1222 	if (HAVE_LLVM > 0) {
1223 		snprintf(llvm_string, sizeof(llvm_string),
1224 			 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1225 			 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1226 	}
1227 
1228 	snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1229 		 "%s (DRM %i.%i.%i%s%s)",
1230 		 r600_get_chip_name(rscreen), rscreen->info.drm_major,
1231 		 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1232 		 kernel_version, llvm_string);
1233 
1234 	rscreen->b.get_name = r600_get_name;
1235 	rscreen->b.get_vendor = r600_get_vendor;
1236 	rscreen->b.get_device_vendor = r600_get_device_vendor;
1237 	rscreen->b.get_compute_param = r600_get_compute_param;
1238 	rscreen->b.get_paramf = r600_get_paramf;
1239 	rscreen->b.get_timestamp = r600_get_timestamp;
1240 	rscreen->b.fence_finish = r600_fence_finish;
1241 	rscreen->b.fence_reference = r600_fence_reference;
1242 	rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1243 	rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1244 	rscreen->b.query_memory_info = r600_query_memory_info;
1245 
1246 	if (rscreen->info.has_uvd) {
1247 		rscreen->b.get_video_param = rvid_get_video_param;
1248 		rscreen->b.is_video_format_supported = rvid_is_format_supported;
1249 	} else {
1250 		rscreen->b.get_video_param = r600_get_video_param;
1251 		rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1252 	}
1253 
1254 	r600_init_screen_texture_functions(rscreen);
1255 	r600_init_screen_query_functions(rscreen);
1256 
1257 	rscreen->ws = ws;
1258 	rscreen->family = rscreen->info.family;
1259 	rscreen->chip_class = rscreen->info.chip_class;
1260 	rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1261 
1262 	slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1263 
1264 	rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1265 	if (rscreen->force_aniso >= 0) {
1266 		printf("radeon: Forcing anisotropy filter to %ix\n",
1267 		       /* round down to a power of two */
1268 		       1 << util_logbase2(rscreen->force_aniso));
1269 	}
1270 
1271 	util_format_s3tc_init();
1272 	pipe_mutex_init(rscreen->aux_context_lock);
1273 	pipe_mutex_init(rscreen->gpu_load_mutex);
1274 
1275 	if (rscreen->debug_flags & DBG_INFO) {
1276 		printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1277 		printf("family = %i (%s)\n", rscreen->info.family,
1278 		       r600_get_chip_name(rscreen));
1279 		printf("chip_class = %i\n", rscreen->info.chip_class);
1280 		printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1281 		printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1282 		printf("max_alloc_size = %i MB\n",
1283 		       (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1284 		printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1285 		printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1286 		printf("has_sdma = %i\n", rscreen->info.has_sdma);
1287 		printf("has_uvd = %i\n", rscreen->info.has_uvd);
1288 		printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1289 		printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1290 		printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1291 		printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1292 		printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1293 		printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1294 		printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1295 		       rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1296 		printf("has_userptr = %i\n", rscreen->info.has_userptr);
1297 
1298 		printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1299 		printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1300 		printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1301 		printf("max_se = %i\n", rscreen->info.max_se);
1302 		printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1303 
1304 		printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1305 		printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1306 		printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1307 		printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1308 		printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1309 		printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1310 	}
1311 	return true;
1312 }
1313 
r600_destroy_common_screen(struct r600_common_screen * rscreen)1314 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1315 {
1316 	r600_perfcounters_destroy(rscreen);
1317 	r600_gpu_load_kill_thread(rscreen);
1318 
1319 	pipe_mutex_destroy(rscreen->gpu_load_mutex);
1320 	pipe_mutex_destroy(rscreen->aux_context_lock);
1321 	rscreen->aux_context->destroy(rscreen->aux_context);
1322 
1323 	slab_destroy_parent(&rscreen->pool_transfers);
1324 
1325 	rscreen->ws->destroy(rscreen->ws);
1326 	FREE(rscreen);
1327 }
1328 
r600_can_dump_shader(struct r600_common_screen * rscreen,unsigned processor)1329 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1330 			  unsigned processor)
1331 {
1332 	switch (processor) {
1333 	case PIPE_SHADER_VERTEX:
1334 		return (rscreen->debug_flags & DBG_VS) != 0;
1335 	case PIPE_SHADER_TESS_CTRL:
1336 		return (rscreen->debug_flags & DBG_TCS) != 0;
1337 	case PIPE_SHADER_TESS_EVAL:
1338 		return (rscreen->debug_flags & DBG_TES) != 0;
1339 	case PIPE_SHADER_GEOMETRY:
1340 		return (rscreen->debug_flags & DBG_GS) != 0;
1341 	case PIPE_SHADER_FRAGMENT:
1342 		return (rscreen->debug_flags & DBG_PS) != 0;
1343 	case PIPE_SHADER_COMPUTE:
1344 		return (rscreen->debug_flags & DBG_CS) != 0;
1345 	default:
1346 		return false;
1347 	}
1348 }
1349 
r600_extra_shader_checks(struct r600_common_screen * rscreen,unsigned processor)1350 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1351 {
1352 	return (rscreen->debug_flags & DBG_CHECK_IR) ||
1353 	       r600_can_dump_shader(rscreen, processor);
1354 }
1355 
r600_screen_clear_buffer(struct r600_common_screen * rscreen,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)1356 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1357 			      uint64_t offset, uint64_t size, unsigned value)
1358 {
1359 	struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1360 
1361 	pipe_mutex_lock(rscreen->aux_context_lock);
1362 	rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1363 	rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1364 	pipe_mutex_unlock(rscreen->aux_context_lock);
1365 }
1366