1 /* tc-mcore.c -- Assemble code for M*Core
2    Copyright (C) 1999-2016 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 #include "subsegs.h"
23 #define DEFINE_TABLE
24 #include "../opcodes/mcore-opc.h"
25 #include "safe-ctype.h"
26 
27 #ifdef OBJ_ELF
28 #include "elf/mcore.h"
29 #endif
30 
31 #ifndef streq
32 #define streq(a,b) (strcmp (a, b) == 0)
33 #endif
34 
35 /* Forward declarations for dumb compilers.  */
36 
37 /* Several places in this file insert raw instructions into the
38    object. They should use MCORE_INST_XXX macros to get the opcodes
39    and then use these two macros to crack the MCORE_INST value into
40    the appropriate byte values.  */
41 #define	INST_BYTE0(x)  (target_big_endian ? (((x) >> 8) & 0xFF) : ((x) & 0xFF))
42 #define	INST_BYTE1(x)  (target_big_endian ? ((x) & 0xFF) : (((x) >> 8) & 0xFF))
43 
44 const char comment_chars[] = "#/";
45 const char line_separator_chars[] = ";";
46 const char line_comment_chars[] = "#/";
47 
48 static int do_jsri2bsr = 0;	/* Change here from 1 by Cruess 19 August 97.  */
49 static int sifilter_mode = 0;
50 
51 const char EXP_CHARS[] = "eE";
52 
53 /* Chars that mean this number is a floating point constant
54     As in 0f12.456
55     or    0d1.2345e12  */
56 const char FLT_CHARS[] = "rRsSfFdDxXpP";
57 
58 #define C(what,length) (((what) << 2) + (length))
59 #define GET_WHAT(x)    ((x >> 2))
60 
61 /* These are the two types of relaxable instruction.  */
62 #define COND_JUMP  1
63 #define UNCD_JUMP  2
64 
65 #define UNDEF_DISP      0
66 #define DISP12          1
67 #define DISP32          2
68 #define UNDEF_WORD_DISP 3
69 
70 #define C12_LEN	        2
71 #define C32_LEN	       10	/* Allow for align.  */
72 #define U12_LEN	        2
73 #define U32_LEN	        8	/* Allow for align.  */
74 
75 typedef enum
76 {
77   M210,
78   M340
79 }
80 cpu_type;
81 
82 cpu_type cpu = M340;
83 
84 /* Initialize the relax table.  */
85 const relax_typeS md_relax_table[] =
86 {
87   {    0,     0, 0,	  0 },
88   {    0,     0, 0,	  0 },
89   {    0,     0, 0,	  0 },
90   {    0,     0, 0,	  0 },
91 
92   /* COND_JUMP */
93   {    0,     0, 0,	  0 },			  /* UNDEF_DISP */
94   { 2048, -2046, C12_LEN, C(COND_JUMP, DISP32) }, /* DISP12 */
95   {    0,     0, C32_LEN, 0 },			  /* DISP32 */
96   {    0,     0, C32_LEN, 0 },			  /* UNDEF_WORD_DISP */
97 
98   /* UNCD_JUMP */
99   {    0,     0, 0,	  0 },			  /* UNDEF_DISP */
100   { 2048, -2046, U12_LEN, C(UNCD_JUMP, DISP32) }, /* DISP12 */
101   {    0,     0, U32_LEN, 0 },			  /* DISP32 */
102   {    0,     0, U32_LEN, 0 }			  /* UNDEF_WORD_DISP */
103 
104 };
105 
106 /* Literal pool data structures.  */
107 struct literal
108 {
109   unsigned short  refcnt;
110   unsigned char	  ispcrel;
111   unsigned char	  unused;
112   expressionS	  e;
113 };
114 
115 #define MAX_POOL_SIZE	(1024/4)
116 static struct literal litpool [MAX_POOL_SIZE];
117 static unsigned poolsize;
118 static unsigned poolnumber;
119 static unsigned long poolspan;
120 
121 /* SPANPANIC: the point at which we get too scared and force a dump
122    of the literal pool, and perhaps put a branch in place.
123    Calculated as:
124   		 1024	span of lrw/jmpi/jsri insn (actually span+1)
125   		-2	possible alignment at the insn.
126   		-2	possible alignment to get the table aligned.
127   		-2	an inserted branch around the table.
128   	     == 1018
129    at 1018, we might be in trouble.
130    -- so we have to be smaller than 1018 and since we deal with 2-byte
131    instructions, the next good choice is 1016.
132    -- Note we have a test case that fails when we've got 1018 here.  */
133 #define SPANPANIC	(1016)		/* 1024 - 1 entry - 2 byte rounding.  */
134 #define SPANCLOSE	(900)
135 #define SPANEXIT	(600)
136 static symbolS * poolsym;		/* Label for current pool.  */
137 static char poolname[8];
138 static struct hash_control * opcode_hash_control;	/* Opcode mnemonics.  */
139 
140 #define POOL_END_LABEL   ".LE"
141 #define POOL_START_LABEL ".LS"
142 
143 static void
make_name(char * s,const char * p,int n)144 make_name (char * s, const char * p, int n)
145 {
146   static const char hex[] = "0123456789ABCDEF";
147 
148   s[0] = p[0];
149   s[1] = p[1];
150   s[2] = p[2];
151   s[3] = hex[(n >> 12) & 0xF];
152   s[4] = hex[(n >>  8) & 0xF];
153   s[5] = hex[(n >>  4) & 0xF];
154   s[6] = hex[(n)       & 0xF];
155   s[7] = 0;
156 }
157 
158 static void
dump_literals(int isforce)159 dump_literals (int isforce)
160 {
161   unsigned int i;
162   struct literal * p;
163   symbolS * brarsym = NULL;
164 
165   if (poolsize == 0)
166     return;
167 
168   /* Must we branch around the literal table?  */
169   if (isforce)
170     {
171       char * output;
172       char brarname[8];
173 
174       make_name (brarname, POOL_END_LABEL, poolnumber);
175 
176       brarsym = symbol_make (brarname);
177 
178       symbol_table_insert (brarsym);
179 
180       output = frag_var (rs_machine_dependent,
181 			 md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
182 			 md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
183 			 C (UNCD_JUMP, 0), brarsym, 0, 0);
184       output[0] = INST_BYTE0 (MCORE_INST_BR);	/* br .+xxx */
185       output[1] = INST_BYTE1 (MCORE_INST_BR);
186     }
187 
188   /* Make sure that the section is sufficiently aligned and that
189      the literal table is aligned within it.  */
190   record_alignment (now_seg, 2);
191   frag_align (2, 0, 0);
192 
193   colon (S_GET_NAME (poolsym));
194 
195   for (i = 0, p = litpool; i < poolsize; i++, p++)
196     emit_expr (& p->e, 4);
197 
198   if (brarsym != NULL)
199     colon (S_GET_NAME (brarsym));
200 
201    poolsize = 0;
202 }
203 
204 static void
mcore_s_literals(int ignore ATTRIBUTE_UNUSED)205 mcore_s_literals (int ignore ATTRIBUTE_UNUSED)
206 {
207   dump_literals (0);
208   demand_empty_rest_of_line ();
209 }
210 
211 /* Perform FUNC (ARG), and track number of bytes added to frag.  */
212 
213 static void
mcore_pool_count(void (* func)(int),int arg)214 mcore_pool_count (void (*func) (int), int arg)
215 {
216   const fragS *curr_frag = frag_now;
217   offsetT added = -frag_now_fix_octets ();
218 
219   (*func) (arg);
220 
221   while (curr_frag != frag_now)
222     {
223       added += curr_frag->fr_fix;
224       curr_frag = curr_frag->fr_next;
225     }
226 
227   added += frag_now_fix_octets ();
228   poolspan += added;
229 }
230 
231 static void
check_literals(int kind,int offset)232 check_literals (int kind, int offset)
233 {
234   poolspan += offset;
235 
236   /* SPANCLOSE and SPANEXIT are smaller numbers than SPANPANIC.
237      SPANPANIC means that we must dump now.
238      kind == 0 is any old instruction.
239      kind  > 0 means we just had a control transfer instruction.
240      kind == 1 means within a function
241      kind == 2 means we just left a function
242 
243      The dump_literals (1) call inserts a branch around the table, so
244      we first look to see if its a situation where we won't have to
245      insert a branch (e.g., the previous instruction was an unconditional
246      branch).
247 
248      SPANPANIC is the point where we must dump a single-entry pool.
249      it accounts for alignments and an inserted branch.
250      the 'poolsize*2' accounts for the scenario where we do:
251        lrw r1,lit1; lrw r2,lit2; lrw r3,lit3
252      Note that the 'lit2' reference is 2 bytes further along
253      but the literal it references will be 4 bytes further along,
254      so we must consider the poolsize into this equation.
255      This is slightly over-cautious, but guarantees that we won't
256      panic because a relocation is too distant.  */
257 
258   if (poolspan > SPANCLOSE && kind > 0)
259     dump_literals (0);
260   else if (poolspan > SPANEXIT && kind > 1)
261     dump_literals (0);
262   else if (poolspan >= (SPANPANIC - poolsize * 2))
263     dump_literals (1);
264 }
265 
266 static void
mcore_cons(int nbytes)267 mcore_cons (int nbytes)
268 {
269   if (now_seg == text_section)
270     mcore_pool_count (cons, nbytes);
271   else
272     cons (nbytes);
273 
274   /* In theory we ought to call check_literals (2,0) here in case
275      we need to dump the literal table.  We cannot do this however,
276      as the directives that we are intercepting may be being used
277      to build a switch table, and we must not interfere with its
278      contents.  Instead we cross our fingers and pray...  */
279 }
280 
281 static void
mcore_float_cons(int float_type)282 mcore_float_cons (int float_type)
283 {
284   if (now_seg == text_section)
285     mcore_pool_count (float_cons, float_type);
286   else
287     float_cons (float_type);
288 
289   /* See the comment in mcore_cons () about calling check_literals.
290      It is unlikely that a switch table will be constructed using
291      floating point values, but it is still likely that an indexed
292      table of floating point constants is being created by these
293      directives, so again we must not interfere with their placement.  */
294 }
295 
296 static void
mcore_stringer(int append_zero)297 mcore_stringer (int append_zero)
298 {
299   if (now_seg == text_section)
300     mcore_pool_count (stringer, append_zero);
301   else
302     stringer (append_zero);
303 
304   /* We call check_literals here in case a large number of strings are
305      being placed into the text section with a sequence of stringer
306      directives.  In theory we could be upsetting something if these
307      strings are actually in an indexed table instead of referenced by
308      individual labels.  Let us hope that that never happens.  */
309   check_literals (2, 0);
310 }
311 
312 static void
mcore_fill(int unused)313 mcore_fill (int unused)
314 {
315   if (now_seg == text_section)
316     mcore_pool_count (s_fill, unused);
317   else
318     s_fill (unused);
319 
320   check_literals (2, 0);
321 }
322 
323 /* Handle the section changing pseudo-ops.  These call through to the
324    normal implementations, but they dump the literal pool first.  */
325 
326 static void
mcore_s_text(int ignore)327 mcore_s_text (int ignore)
328 {
329   dump_literals (0);
330 
331 #ifdef OBJ_ELF
332   obj_elf_text (ignore);
333 #else
334   s_text (ignore);
335 #endif
336 }
337 
338 static void
mcore_s_data(int ignore)339 mcore_s_data (int ignore)
340 {
341   dump_literals (0);
342 
343 #ifdef OBJ_ELF
344   obj_elf_data (ignore);
345 #else
346   s_data (ignore);
347 #endif
348 }
349 
350 static void
mcore_s_section(int ignore)351 mcore_s_section (int ignore)
352 {
353   /* Scan forwards to find the name of the section.  If the section
354      being switched to is ".line" then this is a DWARF1 debug section
355      which is arbitrarily placed inside generated code.  In this case
356      do not dump the literal pool because it is a) inefficient and
357      b) would require the generation of extra code to jump around the
358      pool.  */
359   char * ilp = input_line_pointer;
360 
361   while (*ilp != 0 && ISSPACE (*ilp))
362     ++ ilp;
363 
364   if (strncmp (ilp, ".line", 5) == 0
365       && (ISSPACE (ilp[5]) || *ilp == '\n' || *ilp == '\r'))
366     ;
367   else
368     dump_literals (0);
369 
370 #ifdef OBJ_ELF
371   obj_elf_section (ignore);
372 #endif
373 #ifdef OBJ_COFF
374   obj_coff_section (ignore);
375 #endif
376 }
377 
378 static void
mcore_s_bss(int needs_align)379 mcore_s_bss (int needs_align)
380 {
381   dump_literals (0);
382 
383   s_lcomm_bytes (needs_align);
384 }
385 
386 #ifdef OBJ_ELF
387 static void
mcore_s_comm(int needs_align)388 mcore_s_comm (int needs_align)
389 {
390   dump_literals (0);
391 
392   obj_elf_common (needs_align);
393 }
394 #endif
395 
396 /* This table describes all the machine specific pseudo-ops the assembler
397    has to support.  The fields are:
398      Pseudo-op name without dot
399      Function to call to execute this pseudo-op
400      Integer arg to pass to the function.   */
401 const pseudo_typeS md_pseudo_table[] =
402 {
403   { "export",   s_globl,          0 },
404   { "import",   s_ignore,         0 },
405   { "literals", mcore_s_literals, 0 },
406   { "page",     listing_eject,    0 },
407 
408   /* The following are to intercept the placement of data into the text
409      section (eg addresses for a switch table), so that the space they
410      occupy can be taken into account when deciding whether or not to
411      dump the current literal pool.
412      XXX - currently we do not cope with the .space and .dcb.d directives.  */
413   { "ascii",    mcore_stringer,       8 + 0 },
414   { "asciz",    mcore_stringer,       8 + 1 },
415   { "byte",     mcore_cons,           1 },
416   { "dc",       mcore_cons,           2 },
417   { "dc.b",     mcore_cons,           1 },
418   { "dc.d",     mcore_float_cons,    'd'},
419   { "dc.l",     mcore_cons,           4 },
420   { "dc.s",     mcore_float_cons,    'f'},
421   { "dc.w",     mcore_cons,           2 },
422   { "dc.x",     mcore_float_cons,    'x'},
423   { "double",   mcore_float_cons,    'd'},
424   { "float",    mcore_float_cons,    'f'},
425   { "hword",    mcore_cons,           2 },
426   { "int",      mcore_cons,           4 },
427   { "long",     mcore_cons,           4 },
428   { "octa",     mcore_cons,          16 },
429   { "quad",     mcore_cons,           8 },
430   { "short",    mcore_cons,           2 },
431   { "single",   mcore_float_cons,    'f'},
432   { "string",   mcore_stringer,       8 + 1 },
433   { "word",     mcore_cons,           2 },
434   { "fill",     mcore_fill,           0 },
435 
436   /* Allow for the effect of section changes.  */
437   { "text",      mcore_s_text,    0 },
438   { "data",      mcore_s_data,    0 },
439   { "bss",       mcore_s_bss,     1 },
440 #ifdef OBJ_ELF
441   { "comm",      mcore_s_comm,    0 },
442 #endif
443   { "section",   mcore_s_section, 0 },
444   { "section.s", mcore_s_section, 0 },
445   { "sect",      mcore_s_section, 0 },
446   { "sect.s",    mcore_s_section, 0 },
447 
448   { 0,          0,                0 }
449 };
450 
451 /* This function is called once, at assembler startup time.  This should
452    set up all the tables, etc that the MD part of the assembler needs.  */
453 
454 void
md_begin(void)455 md_begin (void)
456 {
457   const char * prev_name = "";
458   unsigned int i;
459 
460   opcode_hash_control = hash_new ();
461 
462   /* Insert unique names into hash table.  */
463   for (i = 0; i < ARRAY_SIZE (mcore_table); i++)
464     {
465       if (! streq (prev_name, mcore_table[i].name))
466 	{
467 	  prev_name = mcore_table[i].name;
468 	  hash_insert (opcode_hash_control, mcore_table[i].name, (char *) &mcore_table[i]);
469 	}
470     }
471 }
472 
473 /* Get a log2(val).  */
474 
475 static int
mylog2(unsigned int val)476 mylog2 (unsigned int val)
477 {
478   int log = -1;
479 
480   while (val != 0)
481       {
482 	log ++;
483 	val >>= 1;
484       }
485 
486   return log;
487 }
488 
489 /* Try to parse a reg name.  */
490 
491 static char *
parse_reg(char * s,unsigned * reg)492 parse_reg (char * s, unsigned * reg)
493 {
494   /* Strip leading whitespace.  */
495   while (ISSPACE (* s))
496     ++ s;
497 
498   if (TOLOWER (s[0]) == 'r')
499     {
500       if (s[1] == '1' && s[2] >= '0' && s[2] <= '5')
501 	{
502 	  *reg = 10 + s[2] - '0';
503 	  return s + 3;
504 	}
505 
506       if (s[1] >= '0' && s[1] <= '9')
507 	{
508 	  *reg = s[1] - '0';
509 	  return s + 2;
510 	}
511     }
512   else if (   TOLOWER (s[0]) == 's'
513 	   && TOLOWER (s[1]) == 'p'
514 	   && ! ISALNUM (s[2]))
515     {
516       * reg = 0;
517       return s + 2;
518     }
519 
520   as_bad (_("register expected, but saw '%.6s'"), s);
521   return s;
522 }
523 
524 static struct Cregs
525 {
526   const char * name;
527   unsigned int crnum;
528 }
529 cregs[] =
530 {
531   { "psr",	 0},
532   { "vbr",	 1},
533   { "epsr",	 2},
534   { "fpsr",	 3},
535   { "epc",	 4},
536   { "fpc",	 5},
537   { "ss0",	 6},
538   { "ss1",	 7},
539   { "ss2",	 8},
540   { "ss3",	 9},
541   { "ss4",	10},
542   { "gcr",	11},
543   { "gsr",	12},
544   { "",		 0}
545 };
546 
547 static char *
parse_creg(char * s,unsigned * reg)548 parse_creg (char * s, unsigned * reg)
549 {
550   int i;
551 
552   /* Strip leading whitespace.  */
553   while (ISSPACE (* s))
554     ++s;
555 
556   if ((TOLOWER (s[0]) == 'c' && TOLOWER (s[1]) == 'r'))
557     {
558       if (s[2] == '3' && s[3] >= '0' && s[3] <= '1')
559 	{
560 	  *reg = 30 + s[3] - '0';
561 	  return s + 4;
562 	}
563 
564       if (s[2] == '2' && s[3] >= '0' && s[3] <= '9')
565 	{
566 	  *reg = 20 + s[3] - '0';
567 	  return s + 4;
568 	}
569 
570       if (s[2] == '1' && s[3] >= '0' && s[3] <= '9')
571 	{
572 	  *reg = 10 + s[3] - '0';
573 	  return s + 4;
574 	}
575 
576       if (s[2] >= '0' && s[2] <= '9')
577 	{
578 	  *reg = s[2] - '0';
579 	  return s + 3;
580 	}
581     }
582 
583   /* Look at alternate creg names before giving error.  */
584   for (i = 0; cregs[i].name[0] != '\0'; i++)
585     {
586       char buf [10];
587       int  length;
588       int  j;
589 
590       length = strlen (cregs[i].name);
591 
592       for (j = 0; j < length; j++)
593 	buf[j] = TOLOWER (s[j]);
594 
595       if (strncmp (cregs[i].name, buf, length) == 0)
596 	{
597 	  *reg = cregs[i].crnum;
598 	  return s + length;
599 	}
600     }
601 
602   as_bad (_("control register expected, but saw '%.6s'"), s);
603 
604   return s;
605 }
606 
607 static char *
parse_psrmod(char * s,unsigned * reg)608 parse_psrmod (char * s, unsigned * reg)
609 {
610   int  i;
611   char buf[10];
612   static struct psrmods
613   {
614     const char *       name;
615     unsigned int value;
616   }
617   psrmods[] =
618   {
619     { "ie", 1 },
620     { "fe", 2 },
621     { "ee", 4 },
622     { "af", 8 }	/* Really 0 and non-combinable.  */
623   };
624 
625   for (i = 0; i < 2; i++)
626     buf[i] = TOLOWER (s[i]);
627 
628   for (i = sizeof (psrmods) / sizeof (psrmods[0]); i--;)
629     {
630       if (! strncmp (psrmods[i].name, buf, 2))
631 	{
632 	  * reg = psrmods[i].value;
633 
634 	  return s + 2;
635 	}
636     }
637 
638   as_bad (_("bad/missing psr specifier"));
639 
640   * reg = 0;
641 
642   return s;
643 }
644 
645 static char *
parse_exp(char * s,expressionS * e)646 parse_exp (char * s, expressionS * e)
647 {
648   char * save;
649   char * new_pointer;
650 
651   /* Skip whitespace.  */
652   while (ISSPACE (* s))
653     ++ s;
654 
655   save = input_line_pointer;
656   input_line_pointer = s;
657 
658   expression (e);
659 
660   if (e->X_op == O_absent)
661     as_bad (_("missing operand"));
662 
663   new_pointer = input_line_pointer;
664   input_line_pointer = save;
665 
666   return new_pointer;
667 }
668 
669 static int
enter_literal(expressionS * e,int ispcrel)670 enter_literal (expressionS * e, int ispcrel)
671 {
672   unsigned int i;
673   struct literal * p;
674 
675   if (poolsize >= MAX_POOL_SIZE - 2)
676     /* The literal pool is as full as we can handle. We have
677        to be 2 entries shy of the 1024/4=256 entries because we
678        have to allow for the branch (2 bytes) and the alignment
679        (2 bytes before the first insn referencing the pool and
680        2 bytes before the pool itself) == 6 bytes, rounds up
681        to 2 entries.  */
682     dump_literals (1);
683 
684   if (poolsize == 0)
685     {
686       /* Create new literal pool.  */
687       if (++ poolnumber > 0xFFFF)
688 	as_fatal (_("more than 65K literal pools"));
689 
690       make_name (poolname, POOL_START_LABEL, poolnumber);
691       poolsym = symbol_make (poolname);
692       symbol_table_insert (poolsym);
693       poolspan = 0;
694     }
695 
696   /* Search pool for value so we don't have duplicates.  */
697   for (p = litpool, i = 0; i < poolsize; i++, p++)
698     {
699       if (e->X_op == p->e.X_op
700 	  && e->X_add_symbol == p->e.X_add_symbol
701 	  && e->X_add_number == p->e.X_add_number
702 	  && ispcrel == p->ispcrel)
703 	{
704 	  p->refcnt ++;
705 	  return i;
706 	}
707     }
708 
709   p->refcnt  = 1;
710   p->ispcrel = ispcrel;
711   p->e       = * e;
712 
713   poolsize ++;
714 
715   return i;
716 }
717 
718 /* Parse a literal specification. -- either new or old syntax.
719    old syntax: the user supplies the label and places the literal.
720    new syntax: we put it into the literal pool.  */
721 
722 static char *
parse_rt(char * s,char ** outputp,int ispcrel,expressionS * ep)723 parse_rt (char * s,
724 	  char ** outputp,
725 	  int ispcrel,
726 	  expressionS * ep)
727 {
728   expressionS e;
729   int n;
730 
731   if (ep)
732     /* Indicate nothing there.  */
733     ep->X_op = O_absent;
734 
735   if (*s == '[')
736     {
737       s = parse_exp (s + 1, & e);
738 
739       if (*s == ']')
740 	s++;
741       else
742 	as_bad (_("missing ']'"));
743     }
744   else
745     {
746       s = parse_exp (s, & e);
747 
748       n = enter_literal (& e, ispcrel);
749 
750       if (ep)
751 	*ep = e;
752 
753       /* Create a reference to pool entry.  */
754       e.X_op         = O_symbol;
755       e.X_add_symbol = poolsym;
756       e.X_add_number = n << 2;
757     }
758 
759   * outputp = frag_more (2);
760 
761   fix_new_exp (frag_now, (*outputp) - frag_now->fr_literal, 2, & e, 1,
762 	       BFD_RELOC_MCORE_PCREL_IMM8BY4);
763 
764   return s;
765 }
766 
767 static char *
parse_imm(char * s,unsigned * val,unsigned min,unsigned max)768 parse_imm (char * s,
769 	   unsigned * val,
770 	   unsigned min,
771 	   unsigned max)
772 {
773   char * new_pointer;
774   expressionS e;
775 
776   new_pointer = parse_exp (s, & e);
777 
778   if (e.X_op == O_absent)
779     ; /* An error message has already been emitted.  */
780   else if (e.X_op != O_constant)
781     as_bad (_("operand must be a constant"));
782   else if ((addressT) e.X_add_number < min || (addressT) e.X_add_number > max)
783     as_bad (_("operand must be absolute in range %u..%u, not %ld"),
784 	    min, max, (long) e.X_add_number);
785 
786   * val = e.X_add_number;
787 
788   return new_pointer;
789 }
790 
791 static char *
parse_mem(char * s,unsigned * reg,unsigned * off,unsigned siz)792 parse_mem (char * s,
793 	   unsigned * reg,
794 	   unsigned * off,
795 	   unsigned siz)
796 {
797   * off = 0;
798 
799   while (ISSPACE (* s))
800     ++ s;
801 
802   if (* s == '(')
803     {
804       s = parse_reg (s + 1, reg);
805 
806       while (ISSPACE (* s))
807 	++ s;
808 
809       if (* s == ',')
810 	{
811 	  s = parse_imm (s + 1, off, 0, 63);
812 
813 	  if (siz > 1)
814 	    {
815 	      if (siz > 2)
816 		{
817 		  if (* off & 0x3)
818 		    as_bad (_("operand must be a multiple of 4"));
819 
820 		  * off >>= 2;
821 		}
822 	      else
823 		{
824 		  if (* off & 0x1)
825 		    as_bad (_("operand must be a multiple of 2"));
826 
827 		  * off >>= 1;
828 		}
829 	    }
830 	}
831 
832       while (ISSPACE (* s))
833 	++ s;
834 
835       if (* s == ')')
836 	s ++;
837     }
838   else
839     as_bad (_("base register expected"));
840 
841   return s;
842 }
843 
844 /* This is the guts of the machine-dependent assembler.  STR points to a
845    machine dependent instruction.  This function is supposed to emit
846    the frags/bytes it assembles to.  */
847 
848 void
md_assemble(char * str)849 md_assemble (char * str)
850 {
851   char * op_start;
852   char * op_end;
853   mcore_opcode_info * opcode;
854   char * output;
855   int nlen = 0;
856   unsigned short inst;
857   unsigned reg;
858   unsigned off;
859   unsigned isize;
860   expressionS e;
861   char name[21];
862 
863   /* Drop leading whitespace.  */
864   while (ISSPACE (* str))
865     str ++;
866 
867   /* Find the op code end.  */
868   for (op_start = op_end = str;
869        nlen < 20 && !is_end_of_line [(unsigned char) *op_end] && *op_end != ' ';
870        op_end++)
871     {
872       name[nlen] = op_start[nlen];
873       nlen++;
874     }
875 
876   name [nlen] = 0;
877 
878   if (nlen == 0)
879     {
880       as_bad (_("can't find opcode "));
881       return;
882     }
883 
884   opcode = (mcore_opcode_info *) hash_find (opcode_hash_control, name);
885   if (opcode == NULL)
886     {
887       as_bad (_("unknown opcode \"%s\""), name);
888       return;
889     }
890 
891   inst = opcode->inst;
892   isize = 2;
893 
894   switch (opcode->opclass)
895     {
896     case O0:
897       output = frag_more (2);
898       break;
899 
900     case OT:
901       op_end = parse_imm (op_end + 1, & reg, 0, 3);
902       inst |= reg;
903       output = frag_more (2);
904       break;
905 
906     case O1:
907       op_end = parse_reg (op_end + 1, & reg);
908       inst |= reg;
909       output = frag_more (2);
910       break;
911 
912     case JMP:
913       op_end = parse_reg (op_end + 1, & reg);
914       inst |= reg;
915       output = frag_more (2);
916       /* In a sifilter mode, we emit this insn 2 times,
917 	 fixes problem of an interrupt during a jmp..  */
918       if (sifilter_mode)
919 	{
920 	  output[0] = INST_BYTE0 (inst);
921 	  output[1] = INST_BYTE1 (inst);
922 	  output = frag_more (2);
923 	}
924       break;
925 
926     case JSR:
927       op_end = parse_reg (op_end + 1, & reg);
928 
929       if (reg == 15)
930 	as_bad (_("invalid register: r15 illegal"));
931 
932       inst |= reg;
933       output = frag_more (2);
934 
935       if (sifilter_mode)
936 	{
937 	  /* Replace with:  bsr .+2 ; addi r15,6; jmp rx ; jmp rx.  */
938 	  inst = MCORE_INST_BSR;	/* With 0 displacement.  */
939 	  output[0] = INST_BYTE0 (inst);
940 	  output[1] = INST_BYTE1 (inst);
941 
942 	  output = frag_more (2);
943 	  inst = MCORE_INST_ADDI;
944 	  inst |= 15;			/* addi r15,6  */
945 	  inst |= (6 - 1) << 4;		/* Over the jmp's.  */
946 	  output[0] = INST_BYTE0 (inst);
947 	  output[1] = INST_BYTE1 (inst);
948 
949 	  output = frag_more (2);
950 	  inst = MCORE_INST_JMP | reg;
951 	  output[0] = INST_BYTE0 (inst);
952 	  output[1] = INST_BYTE1 (inst);
953 
954 	  /* 2nd emitted in fallthrough.  */
955 	  output = frag_more (2);
956 	}
957       break;
958 
959     case OC:
960       op_end = parse_reg (op_end + 1, & reg);
961       inst |= reg;
962 
963       /* Skip whitespace.  */
964       while (ISSPACE (* op_end))
965 	++ op_end;
966 
967       if (*op_end == ',')
968 	{
969 	  op_end = parse_creg (op_end + 1, & reg);
970 	  inst |= reg << 4;
971 	}
972 
973       output = frag_more (2);
974       break;
975 
976     case MULSH:
977       if (cpu == M210)
978 	{
979 	  as_bad (_("M340 specific opcode used when assembling for M210"));
980 	  break;
981 	}
982       /* drop through...  */
983     case O2:
984       op_end = parse_reg (op_end + 1, & reg);
985       inst |= reg;
986 
987       /* Skip whitespace.  */
988       while (ISSPACE (* op_end))
989 	++ op_end;
990 
991       if (* op_end == ',')
992 	{
993 	  op_end = parse_reg (op_end + 1, & reg);
994 	  inst |= reg << 4;
995 	}
996       else
997 	as_bad (_("second operand missing"));
998 
999       output = frag_more (2);
1000       break;
1001 
1002     case X1:
1003       /* Handle both syntax-> xtrb- r1,rx OR xtrb- rx.  */
1004       op_end = parse_reg (op_end + 1, & reg);
1005 
1006       /* Skip whitespace.  */
1007       while (ISSPACE (* op_end))
1008 	++ op_end;
1009 
1010       if (* op_end == ',')	/* xtrb- r1,rx.  */
1011 	{
1012 	  if (reg != 1)
1013 	    as_bad (_("destination register must be r1"));
1014 
1015 	  op_end = parse_reg (op_end + 1, & reg);
1016 	}
1017 
1018       inst |= reg;
1019       output = frag_more (2);
1020       break;
1021 
1022     case O1R1:  /* div- rx,r1.  */
1023       op_end = parse_reg (op_end + 1, & reg);
1024       inst |= reg;
1025 
1026       /* Skip whitespace.  */
1027       while (ISSPACE (* op_end))
1028 	++ op_end;
1029 
1030       if (* op_end == ',')
1031 	{
1032 	  op_end = parse_reg (op_end + 1, & reg);
1033 	  if (reg != 1)
1034 	    as_bad (_("source register must be r1"));
1035 	}
1036       else
1037 	as_bad (_("second operand missing"));
1038 
1039       output = frag_more (2);
1040       break;
1041 
1042     case OI:
1043       op_end = parse_reg (op_end + 1, & reg);
1044       inst |= reg;
1045 
1046       /* Skip whitespace.  */
1047       while (ISSPACE (* op_end))
1048 	++ op_end;
1049 
1050       if (* op_end == ',')
1051 	{
1052 	  op_end = parse_imm (op_end + 1, & reg, 1, 32);
1053 	  inst |= (reg - 1) << 4;
1054 	}
1055       else
1056 	as_bad (_("second operand missing"));
1057 
1058       output = frag_more (2);
1059       break;
1060 
1061     case OB:
1062       op_end = parse_reg (op_end + 1, & reg);
1063       inst |= reg;
1064 
1065       /* Skip whitespace.  */
1066       while (ISSPACE (* op_end))
1067 	++ op_end;
1068 
1069       if (* op_end == ',')
1070 	{
1071 	  op_end = parse_imm (op_end + 1, & reg, 0, 31);
1072 	  inst |= reg << 4;
1073 	}
1074       else
1075 	as_bad (_("second operand missing"));
1076 
1077       output = frag_more (2);
1078       break;
1079 
1080     case OB2:
1081       /* Like OB, but arg is 2^n instead of n.  */
1082       op_end = parse_reg (op_end + 1, & reg);
1083       inst |= reg;
1084 
1085       /* Skip whitespace.  */
1086       while (ISSPACE (* op_end))
1087 	++ op_end;
1088 
1089       if (* op_end == ',')
1090 	{
1091 	  op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
1092 	  /* Further restrict the immediate to a power of two.  */
1093 	  if ((reg & (reg - 1)) == 0)
1094 	    reg = mylog2 (reg);
1095 	  else
1096 	    {
1097 	      reg = 0;
1098 	      as_bad (_("immediate is not a power of two"));
1099 	    }
1100 	  inst |= (reg) << 4;
1101 	}
1102       else
1103 	as_bad (_("second operand missing"));
1104 
1105       output = frag_more (2);
1106       break;
1107 
1108     case OBRa:	/* Specific for bgeni: imm of 0->6 translate to movi.  */
1109     case OBRb:
1110     case OBRc:
1111       op_end = parse_reg (op_end + 1, & reg);
1112       inst |= reg;
1113 
1114       /* Skip whitespace.  */
1115       while (ISSPACE (* op_end))
1116 	++ op_end;
1117 
1118       if (* op_end == ',')
1119 	{
1120 	  op_end = parse_imm (op_end + 1, & reg, 0, 31);
1121 	  /* Immediate values of 0 -> 6 translate to movi.  */
1122 	  if (reg <= 6)
1123 	    {
1124 	      inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
1125 	      reg = 0x1 << reg;
1126 	      as_warn (_("translating bgeni to movi"));
1127 	    }
1128 	  inst &= ~ 0x01f0;
1129 	  inst |= reg << 4;
1130 	}
1131       else
1132 	as_bad (_("second operand missing"));
1133 
1134       output = frag_more (2);
1135       break;
1136 
1137     case OBR2:	/* Like OBR, but arg is 2^n instead of n.  */
1138       op_end = parse_reg (op_end + 1, & reg);
1139       inst |= reg;
1140 
1141       /* Skip whitespace.  */
1142       while (ISSPACE (* op_end))
1143 	++ op_end;
1144 
1145       if (* op_end == ',')
1146 	{
1147 	  op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
1148 
1149 	  /* Further restrict the immediate to a power of two.  */
1150 	  if ((reg & (reg - 1)) == 0)
1151 	    reg = mylog2 (reg);
1152 	  else
1153 	    {
1154 	      reg = 0;
1155 	      as_bad (_("immediate is not a power of two"));
1156 	    }
1157 
1158 	  /* Immediate values of 0 -> 6 translate to movi.  */
1159 	  if (reg <= 6)
1160 	    {
1161 	      inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
1162 	      reg = 0x1 << reg;
1163 	      as_warn (_("translating mgeni to movi"));
1164 	    }
1165 
1166 	  inst |= reg << 4;
1167 	}
1168       else
1169 	as_bad (_("second operand missing"));
1170 
1171       output = frag_more (2);
1172       break;
1173 
1174     case OMa:	/* Specific for bmaski: imm 1->7 translate to movi.  */
1175     case OMb:
1176     case OMc:
1177       op_end = parse_reg (op_end + 1, & reg);
1178       inst |= reg;
1179 
1180       /* Skip whitespace.  */
1181       while (ISSPACE (* op_end))
1182 	++ op_end;
1183 
1184       if (* op_end == ',')
1185 	{
1186 	  op_end = parse_imm (op_end + 1, & reg, 1, 32);
1187 
1188 	  /* Immediate values of 1 -> 7 translate to movi.  */
1189 	  if (reg <= 7)
1190 	    {
1191 	      inst = (inst & 0xF) | MCORE_INST_BMASKI_ALT;
1192 	      reg = (0x1 << reg) - 1;
1193 	      inst |= reg << 4;
1194 
1195 	      as_warn (_("translating bmaski to movi"));
1196 	    }
1197 	  else
1198 	    {
1199 	      inst &= ~ 0x01F0;
1200 	      inst |= (reg & 0x1F) << 4;
1201 	    }
1202 	}
1203       else
1204 	as_bad (_("second operand missing"));
1205 
1206       output = frag_more (2);
1207       break;
1208 
1209     case SI:
1210       op_end = parse_reg (op_end + 1, & reg);
1211       inst |= reg;
1212 
1213       /* Skip whitespace.  */
1214       while (ISSPACE (* op_end))
1215 	++ op_end;
1216 
1217       if (* op_end == ',')
1218 	{
1219 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1220 	  inst |= reg << 4;
1221 	}
1222       else
1223 	as_bad (_("second operand missing"));
1224 
1225       output = frag_more (2);
1226       break;
1227 
1228     case I7:
1229       op_end = parse_reg (op_end + 1, & reg);
1230       inst |= reg;
1231 
1232       /* Skip whitespace.  */
1233       while (ISSPACE (* op_end))
1234 	++ op_end;
1235 
1236       if (* op_end == ',')
1237 	{
1238 	  op_end = parse_imm (op_end + 1, & reg, 0, 0x7F);
1239 	  inst |= reg << 4;
1240 	}
1241       else
1242 	as_bad (_("second operand missing"));
1243 
1244       output = frag_more (2);
1245       break;
1246 
1247     case LS:
1248       op_end = parse_reg (op_end + 1, & reg);
1249       inst |= reg << 8;
1250 
1251       /* Skip whitespace.  */
1252       while (ISSPACE (* op_end))
1253 	++ op_end;
1254 
1255       if (* op_end == ',')
1256 	{
1257 	  int size;
1258 
1259 	  if ((inst & 0x6000) == 0)
1260 	    size = 4;
1261 	  else if ((inst & 0x6000) == 0x4000)
1262 	    size = 2;
1263 	  else if ((inst & 0x6000) == 0x2000)
1264 	    size = 1;
1265 	  else
1266 	    abort ();
1267 
1268 	  op_end = parse_mem (op_end + 1, & reg, & off, size);
1269 
1270 	  if (off > 16)
1271 	    as_bad (_("displacement too large (%d)"), off);
1272 	  else
1273 	    inst |= (reg) | (off << 4);
1274 	}
1275       else
1276 	as_bad (_("second operand missing"));
1277 
1278       output = frag_more (2);
1279       break;
1280 
1281     case LR:
1282       op_end = parse_reg (op_end + 1, & reg);
1283 
1284       if (reg == 0 || reg == 15)
1285 	as_bad (_("Invalid register: r0 and r15 illegal"));
1286 
1287       inst |= (reg << 8);
1288 
1289       /* Skip whitespace.  */
1290       while (ISSPACE (* op_end))
1291 	++ op_end;
1292 
1293       if (* op_end == ',')
1294 	{
1295 	  /* parse_rt calls frag_more() for us.  */
1296 	  input_line_pointer = parse_rt (op_end + 1, & output, 0, 0);
1297 	  op_end = input_line_pointer;
1298 	}
1299       else
1300 	{
1301 	  as_bad (_("second operand missing"));
1302 	  output = frag_more (2);		/* save its space */
1303 	}
1304       break;
1305 
1306     case LJ:
1307       input_line_pointer = parse_rt (op_end + 1, & output, 1, 0);
1308       /* parse_rt() calls frag_more() for us.  */
1309       op_end = input_line_pointer;
1310       break;
1311 
1312     case RM:
1313       op_end = parse_reg (op_end + 1, & reg);
1314 
1315       if (reg == 0 || reg == 15)
1316 	as_bad (_("bad starting register: r0 and r15 invalid"));
1317 
1318       inst |= reg;
1319 
1320       /* Skip whitespace.  */
1321       while (ISSPACE (* op_end))
1322 	++ op_end;
1323 
1324       if (* op_end == '-')
1325 	{
1326 	  op_end = parse_reg (op_end + 1, & reg);
1327 
1328 	  if (reg != 15)
1329 	    as_bad (_("ending register must be r15"));
1330 
1331 	  /* Skip whitespace.  */
1332 	  while (ISSPACE (* op_end))
1333 	    ++ op_end;
1334 	}
1335 
1336       if (* op_end == ',')
1337 	{
1338 	  op_end ++;
1339 
1340 	  /* Skip whitespace.  */
1341 	  while (ISSPACE (* op_end))
1342 	    ++ op_end;
1343 
1344 	  if (* op_end == '(')
1345 	    {
1346 	      op_end = parse_reg (op_end + 1, & reg);
1347 
1348 	      if (reg != 0)
1349 		as_bad (_("bad base register: must be r0"));
1350 
1351 	      if (* op_end == ')')
1352 		op_end ++;
1353 	    }
1354 	  else
1355 	    as_bad (_("base register expected"));
1356 	}
1357       else
1358 	as_bad (_("second operand missing"));
1359 
1360       output = frag_more (2);
1361       break;
1362 
1363     case RQ:
1364       op_end = parse_reg (op_end + 1, & reg);
1365 
1366       if (reg != 4)
1367 	as_fatal (_("first register must be r4"));
1368 
1369       /* Skip whitespace.  */
1370       while (ISSPACE (* op_end))
1371 	++ op_end;
1372 
1373       if (* op_end == '-')
1374 	{
1375 	  op_end = parse_reg (op_end + 1, & reg);
1376 
1377 	  if (reg != 7)
1378 	    as_fatal (_("last register must be r7"));
1379 
1380 	  /* Skip whitespace.  */
1381 	  while (ISSPACE (* op_end))
1382 	    ++ op_end;
1383 
1384 	  if (* op_end == ',')
1385 	    {
1386 	      op_end ++;
1387 
1388 	      /* Skip whitespace.  */
1389 	      while (ISSPACE (* op_end))
1390 		++ op_end;
1391 
1392 	      if (* op_end == '(')
1393 		{
1394 		  op_end = parse_reg (op_end + 1, & reg);
1395 
1396 		  if (reg >= 4 && reg <= 7)
1397 		    as_fatal ("base register cannot be r4, r5, r6, or r7");
1398 
1399 		  inst |= reg;
1400 
1401 		  /* Skip whitespace.  */
1402 		  while (ISSPACE (* op_end))
1403 		    ++ op_end;
1404 
1405 		  if (* op_end == ')')
1406 		    op_end ++;
1407 		}
1408 	      else
1409 		as_bad (_("base register expected"));
1410 	    }
1411 	  else
1412 	    as_bad (_("second operand missing"));
1413 	}
1414       else
1415 	as_bad (_("reg-reg expected"));
1416 
1417       output = frag_more (2);
1418       break;
1419 
1420     case BR:
1421       input_line_pointer = parse_exp (op_end + 1, & e);
1422       op_end = input_line_pointer;
1423 
1424       output = frag_more (2);
1425 
1426       fix_new_exp (frag_now, output-frag_now->fr_literal,
1427 		   2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM11BY2);
1428       break;
1429 
1430     case BL:
1431       op_end = parse_reg (op_end + 1, & reg);
1432       inst |= reg << 4;
1433 
1434       /* Skip whitespace.  */
1435       while (ISSPACE (* op_end))
1436 	++ op_end;
1437 
1438       if (* op_end == ',')
1439 	{
1440 	  op_end = parse_exp (op_end + 1, & e);
1441 	  output = frag_more (2);
1442 
1443 	  fix_new_exp (frag_now, output-frag_now->fr_literal,
1444 		       2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM4BY2);
1445 	}
1446       else
1447 	{
1448 	  as_bad (_("second operand missing"));
1449 	  output = frag_more (2);
1450 	}
1451       break;
1452 
1453     case JC:
1454       input_line_pointer = parse_exp (op_end + 1, & e);
1455       op_end = input_line_pointer;
1456 
1457       output = frag_var (rs_machine_dependent,
1458 			 md_relax_table[C (COND_JUMP, DISP32)].rlx_length,
1459 			 md_relax_table[C (COND_JUMP, DISP12)].rlx_length,
1460 			 C (COND_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
1461       isize = C32_LEN;
1462       break;
1463 
1464     case JU:
1465       input_line_pointer = parse_exp (op_end + 1, & e);
1466       op_end = input_line_pointer;
1467 
1468       output = frag_var (rs_machine_dependent,
1469 			 md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
1470 			 md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
1471 			 C (UNCD_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
1472       isize = U32_LEN;
1473       break;
1474 
1475     case JL:
1476       inst = MCORE_INST_JSRI;		/* jsri */
1477       input_line_pointer = parse_rt (op_end + 1, & output, 1, & e);
1478       /* parse_rt() calls frag_more for us.  */
1479       op_end = input_line_pointer;
1480 
1481       /* Only do this if we know how to do it ...  */
1482       if (e.X_op != O_absent && do_jsri2bsr)
1483 	{
1484 	  /* Look at adding the R_PCREL_JSRIMM11BY2.  */
1485 	  fix_new_exp (frag_now, output-frag_now->fr_literal,
1486 		       2, & e, 1, BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2);
1487 	}
1488       break;
1489 
1490     case RSI:
1491       /* SI, but imm becomes 32-imm.  */
1492       op_end = parse_reg (op_end + 1, & reg);
1493       inst |= reg;
1494 
1495       /* Skip whitespace.  */
1496       while (ISSPACE (* op_end))
1497 	++ op_end;
1498 
1499       if (* op_end == ',')
1500 	{
1501 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1502 
1503 	  reg = 32 - reg;
1504 	  inst |= reg << 4;
1505 	}
1506       else
1507 	as_bad (_("second operand missing"));
1508 
1509       output = frag_more (2);
1510       break;
1511 
1512     case DO21:			/* O2, dup rd, lit must be 1 */
1513       op_end = parse_reg (op_end + 1, & reg);
1514       inst |= reg;
1515       inst |= reg << 4;
1516 
1517       /* Skip whitespace.  */
1518       while (ISSPACE (* op_end))
1519 	++ op_end;
1520 
1521       if (* op_end == ',')
1522 	{
1523 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1524 
1525 	  if (reg != 1)
1526 	    as_bad (_("second operand must be 1"));
1527 	}
1528       else
1529 	as_bad (_("second operand missing"));
1530 
1531       output = frag_more (2);
1532       break;
1533 
1534     case SIa:
1535       op_end = parse_reg (op_end + 1, & reg);
1536       inst |= reg;
1537 
1538       /* Skip whitespace.  */
1539       while (ISSPACE (* op_end))
1540 	++ op_end;
1541 
1542       if (* op_end == ',')
1543 	{
1544 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1545 
1546 	  if (reg == 0)
1547 	    as_bad (_("zero used as immediate value"));
1548 
1549 	  inst |= reg << 4;
1550 	}
1551       else
1552 	as_bad (_("second operand missing"));
1553 
1554       output = frag_more (2);
1555       break;
1556 
1557     case OPSR:
1558       if (cpu == M210)
1559 	{
1560 	  as_bad (_("M340 specific opcode used when assembling for M210"));
1561 	  break;
1562 	}
1563 
1564       op_end = parse_psrmod (op_end + 1, & reg);
1565 
1566       /* Look for further selectors.  */
1567       while (* op_end == ',')
1568 	{
1569 	  unsigned value;
1570 
1571 	  op_end = parse_psrmod (op_end + 1, & value);
1572 
1573 	  if (value & reg)
1574 	    as_bad (_("duplicated psr bit specifier"));
1575 
1576 	  reg |= value;
1577 	}
1578 
1579       if (reg > 8)
1580 	as_bad (_("`af' must appear alone"));
1581 
1582       inst |= (reg & 0x7);
1583       output = frag_more (2);
1584       break;
1585 
1586     default:
1587       as_bad (_("unimplemented opcode \"%s\""), name);
1588     }
1589 
1590   /* Drop whitespace after all the operands have been parsed.  */
1591   while (ISSPACE (* op_end))
1592     op_end ++;
1593 
1594   /* Give warning message if the insn has more operands than required.  */
1595   if (strcmp (op_end, opcode->name) && strcmp (op_end, ""))
1596     as_warn (_("ignoring operands: %s "), op_end);
1597 
1598   output[0] = INST_BYTE0 (inst);
1599   output[1] = INST_BYTE1 (inst);
1600 
1601 #ifdef OBJ_ELF
1602   dwarf2_emit_insn (2);
1603 #endif
1604   check_literals (opcode->transfer, isize);
1605 }
1606 
1607 symbolS *
md_undefined_symbol(char * name ATTRIBUTE_UNUSED)1608 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
1609 {
1610   return 0;
1611 }
1612 
1613 void
md_mcore_end(void)1614 md_mcore_end (void)
1615 {
1616   dump_literals (0);
1617   subseg_set (text_section, 0);
1618 }
1619 
1620 /* Various routines to kill one day.  */
1621 
1622 const char *
md_atof(int type,char * litP,int * sizeP)1623 md_atof (int type, char * litP, int * sizeP)
1624 {
1625   return ieee_md_atof (type, litP, sizeP, target_big_endian);
1626 }
1627 
1628 const char * md_shortopts = "";
1629 
1630 enum options
1631 {
1632   OPTION_JSRI2BSR_ON = OPTION_MD_BASE,
1633   OPTION_JSRI2BSR_OFF,
1634   OPTION_SIFILTER_ON,
1635   OPTION_SIFILTER_OFF,
1636   OPTION_CPU,
1637   OPTION_EB,
1638   OPTION_EL,
1639 };
1640 
1641 struct option md_longopts[] =
1642 {
1643   { "no-jsri2bsr", no_argument, NULL, OPTION_JSRI2BSR_OFF},
1644   { "jsri2bsr",    no_argument, NULL, OPTION_JSRI2BSR_ON},
1645   { "sifilter",    no_argument, NULL, OPTION_SIFILTER_ON},
1646   { "no-sifilter", no_argument, NULL, OPTION_SIFILTER_OFF},
1647   { "cpu",         required_argument, NULL, OPTION_CPU},
1648   { "EB",          no_argument, NULL, OPTION_EB},
1649   { "EL",          no_argument, NULL, OPTION_EL},
1650   { NULL,          no_argument, NULL, 0}
1651 };
1652 
1653 size_t md_longopts_size = sizeof (md_longopts);
1654 
1655 int
md_parse_option(int c,const char * arg)1656 md_parse_option (int c, const char * arg)
1657 {
1658   switch (c)
1659     {
1660     case OPTION_CPU:
1661       if (streq (arg, "210"))
1662 	{
1663 	  cpu = M210;
1664 	  target_big_endian = 1;
1665 	}
1666       else if (streq (arg, "340"))
1667 	cpu = M340;
1668       else
1669 	as_warn (_("unrecognised cpu type '%s'"), arg);
1670       break;
1671 
1672     case OPTION_EB: target_big_endian = 1; break;
1673     case OPTION_EL: target_big_endian = 0; cpu = M340; break;
1674     case OPTION_JSRI2BSR_ON:  do_jsri2bsr = 1;   break;
1675     case OPTION_JSRI2BSR_OFF: do_jsri2bsr = 0;   break;
1676     case OPTION_SIFILTER_ON:  sifilter_mode = 1; break;
1677     case OPTION_SIFILTER_OFF: sifilter_mode = 0; break;
1678     default:                  return 0;
1679     }
1680 
1681   return 1;
1682 }
1683 
1684 void
md_show_usage(FILE * stream)1685 md_show_usage (FILE * stream)
1686 {
1687   fprintf (stream, _("\
1688 MCORE specific options:\n\
1689   -{no-}jsri2bsr	  {dis}able jsri to bsr transformation (def: dis)\n\
1690   -{no-}sifilter	  {dis}able silicon filter behavior (def: dis)\n\
1691   -cpu=[210|340]          select CPU type\n\
1692   -EB                     assemble for a big endian system (default)\n\
1693   -EL                     assemble for a little endian system\n"));
1694 }
1695 
1696 int md_short_jump_size;
1697 
1698 void
md_create_short_jump(char * ptr ATTRIBUTE_UNUSED,addressT from_Nddr ATTRIBUTE_UNUSED,addressT to_Nddr ATTRIBUTE_UNUSED,fragS * frag ATTRIBUTE_UNUSED,symbolS * to_symbol ATTRIBUTE_UNUSED)1699 md_create_short_jump (char * ptr ATTRIBUTE_UNUSED,
1700 		      addressT from_Nddr ATTRIBUTE_UNUSED,
1701 		      addressT to_Nddr ATTRIBUTE_UNUSED,
1702 		      fragS * frag ATTRIBUTE_UNUSED,
1703 		      symbolS * to_symbol ATTRIBUTE_UNUSED)
1704 {
1705   as_fatal (_("failed sanity check: short_jump"));
1706 }
1707 
1708 void
md_create_long_jump(char * ptr ATTRIBUTE_UNUSED,addressT from_Nddr ATTRIBUTE_UNUSED,addressT to_Nddr ATTRIBUTE_UNUSED,fragS * frag ATTRIBUTE_UNUSED,symbolS * to_symbol ATTRIBUTE_UNUSED)1709 md_create_long_jump (char * ptr ATTRIBUTE_UNUSED,
1710 		     addressT from_Nddr ATTRIBUTE_UNUSED,
1711 		     addressT to_Nddr ATTRIBUTE_UNUSED,
1712 		     fragS * frag ATTRIBUTE_UNUSED,
1713 		     symbolS * to_symbol ATTRIBUTE_UNUSED)
1714 {
1715   as_fatal (_("failed sanity check: long_jump"));
1716 }
1717 
1718 /* Called after relaxing, change the frags so they know how big they are.  */
1719 
1720 void
md_convert_frag(bfd * abfd ATTRIBUTE_UNUSED,segT sec ATTRIBUTE_UNUSED,fragS * fragP)1721 md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED,
1722 		 segT sec ATTRIBUTE_UNUSED,
1723 		 fragS * fragP)
1724 {
1725   char *buffer;
1726   int targ_addr = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
1727 
1728   buffer = fragP->fr_fix + fragP->fr_literal;
1729 
1730   switch (fragP->fr_subtype)
1731     {
1732     case C (COND_JUMP, DISP12):
1733     case C (UNCD_JUMP, DISP12):
1734       {
1735 	/* Get the address of the end of the instruction.  */
1736 	int next_inst = fragP->fr_fix + fragP->fr_address + 2;
1737 	unsigned char t0;
1738 	int disp = targ_addr - next_inst;
1739 
1740 	if (disp & 1)
1741 	  as_bad (_("odd displacement at %x"), next_inst - 2);
1742 
1743 	disp >>= 1;
1744 
1745 	if (! target_big_endian)
1746 	  {
1747 	    t0 = buffer[1] & 0xF8;
1748 
1749 	    md_number_to_chars (buffer, disp, 2);
1750 
1751 	    buffer[1] = (buffer[1] & 0x07) | t0;
1752 	  }
1753 	else
1754 	  {
1755 	    t0 = buffer[0] & 0xF8;
1756 
1757 	    md_number_to_chars (buffer, disp, 2);
1758 
1759 	    buffer[0] = (buffer[0] & 0x07) | t0;
1760 	  }
1761 
1762 	fragP->fr_fix += 2;
1763       }
1764       break;
1765 
1766     case C (COND_JUMP, DISP32):
1767     case C (COND_JUMP, UNDEF_WORD_DISP):
1768       {
1769 	/* A conditional branch wont fit into 12 bits so:
1770 	  	b!cond	1f
1771 	  	jmpi	0f
1772 	  	.align 2
1773 	   0:	.long disp
1774 	   1:
1775 
1776 	   If the b!cond is 4 byte aligned, the literal which would
1777 	   go at x+4 will also be aligned.  */
1778 	int first_inst = fragP->fr_fix + fragP->fr_address;
1779 	int needpad = (first_inst & 3);
1780 
1781 	if (! target_big_endian)
1782 	  buffer[1] ^= 0x08;
1783 	else
1784 	  buffer[0] ^= 0x08;	/* Toggle T/F bit.  */
1785 
1786 	buffer[2] = INST_BYTE0 (MCORE_INST_JMPI);	/* Build jmpi.  */
1787 	buffer[3] = INST_BYTE1 (MCORE_INST_JMPI);
1788 
1789 	if (needpad)
1790 	  {
1791 	    if (! target_big_endian)
1792 	      {
1793 		buffer[0] = 4;	/* Branch over jmpi, pad, and ptr.  */
1794 		buffer[2] = 1;	/* Jmpi offset of 1 gets the pointer.  */
1795 	      }
1796 	    else
1797 	      {
1798 		buffer[1] = 4;	/* Branch over jmpi, pad, and ptr.  */
1799 		buffer[3] = 1;	/* Jmpi offset of 1 gets the pointer.  */
1800 	      }
1801 
1802 	    buffer[4] = 0;	/* Alignment/pad.  */
1803 	    buffer[5] = 0;
1804 	    buffer[6] = 0;	/* Space for 32 bit address.  */
1805 	    buffer[7] = 0;
1806 	    buffer[8] = 0;
1807 	    buffer[9] = 0;
1808 
1809 	    /* Make reloc for the long disp.  */
1810 	    fix_new (fragP, fragP->fr_fix + 6, 4,
1811 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1812 
1813 	    fragP->fr_fix += C32_LEN;
1814 	  }
1815 	else
1816 	  {
1817 	    /* See comment below about this given gas' limitations for
1818 	       shrinking the fragment. '3' is the amount of code that
1819 	       we inserted here, but '4' is right for the space we reserved
1820 	       for this fragment.  */
1821 	    if (! target_big_endian)
1822 	      {
1823 		buffer[0] = 3;	/* Branch over jmpi, and ptr.  */
1824 		buffer[2] = 0;	/* Jmpi offset of 0 gets the pointer.  */
1825 	      }
1826 	    else
1827 	      {
1828 		buffer[1] = 3;	/* Branch over jmpi, and ptr.  */
1829 		buffer[3] = 0;	/* Jmpi offset of 0 gets the pointer.  */
1830 	      }
1831 
1832 	    buffer[4] = 0;	/* Space for 32 bit address.  */
1833 	    buffer[5] = 0;
1834 	    buffer[6] = 0;
1835 	    buffer[7] = 0;
1836 
1837 	    /* Make reloc for the long disp.  */
1838 	    fix_new (fragP, fragP->fr_fix + 4, 4,
1839 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1840 	    fragP->fr_fix += C32_LEN;
1841 
1842 	    /* Frag is actually shorter (see the other side of this ifdef)
1843 	       but gas isn't prepared for that.  We have to re-adjust
1844 	       the branch displacement so that it goes beyond the
1845 	       full length of the fragment, not just what we actually
1846 	       filled in.  */
1847 	    if (! target_big_endian)
1848 	      buffer[0] = 4;	/* Jmpi, ptr, and the 'tail pad'.  */
1849 	    else
1850 	      buffer[1] = 4;	/* Jmpi, ptr, and the 'tail pad'.  */
1851 	  }
1852       }
1853       break;
1854 
1855     case C (UNCD_JUMP, DISP32):
1856     case C (UNCD_JUMP, UNDEF_WORD_DISP):
1857       {
1858 	/* An unconditional branch will not fit in 12 bits, make code which
1859 	   looks like:
1860 	  	jmpi	0f
1861 	  	.align 2
1862 	     0:	.long disp
1863 	   we need a pad if "first_inst" is 4 byte aligned.
1864 	   [because the natural literal place is x + 2].  */
1865 	int first_inst = fragP->fr_fix + fragP->fr_address;
1866 	int needpad = !(first_inst & 3);
1867 
1868 	buffer[0] = INST_BYTE0 (MCORE_INST_JMPI);	/* Build jmpi.  */
1869 	buffer[1] = INST_BYTE1 (MCORE_INST_JMPI);
1870 
1871 	if (needpad)
1872 	  {
1873 	    if (! target_big_endian)
1874 	      buffer[0] = 1;	/* Jmpi offset of 1 since padded.  */
1875 	    else
1876 	      buffer[1] = 1;	/* Jmpi offset of 1 since padded.  */
1877 	    buffer[2] = 0;	/* Alignment.  */
1878 	    buffer[3] = 0;
1879 	    buffer[4] = 0;	/* Space for 32 bit address.  */
1880 	    buffer[5] = 0;
1881 	    buffer[6] = 0;
1882 	    buffer[7] = 0;
1883 
1884 	    /* Make reloc for the long disp.  */
1885 	    fix_new (fragP, fragP->fr_fix + 4, 4,
1886 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1887 
1888 	    fragP->fr_fix += U32_LEN;
1889 	  }
1890 	else
1891 	  {
1892 	    if (! target_big_endian)
1893 	      buffer[0] = 0;	/* Jmpi offset of 0 if no pad.  */
1894 	    else
1895 	      buffer[1] = 0;	/* Jmpi offset of 0 if no pad.  */
1896 	    buffer[2] = 0;	/* Space for 32 bit address.  */
1897 	    buffer[3] = 0;
1898 	    buffer[4] = 0;
1899 	    buffer[5] = 0;
1900 
1901 	    /* Make reloc for the long disp.  */
1902 	    fix_new (fragP, fragP->fr_fix + 2, 4,
1903 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1904 	    fragP->fr_fix += U32_LEN;
1905 	  }
1906       }
1907       break;
1908 
1909     default:
1910       abort ();
1911     }
1912 }
1913 
1914 /* Applies the desired value to the specified location.
1915    Also sets up addends for 'rela' type relocations.  */
1916 
1917 void
md_apply_fix(fixS * fixP,valueT * valP,segT segment ATTRIBUTE_UNUSED)1918 md_apply_fix (fixS *   fixP,
1919 	       valueT * valP,
1920 	       segT     segment ATTRIBUTE_UNUSED)
1921 {
1922   char *       buf  = fixP->fx_where + fixP->fx_frag->fr_literal;
1923   const char *       file = fixP->fx_file ? fixP->fx_file : _("unknown");
1924   const char * symname;
1925   /* Note: use offsetT because it is signed, valueT is unsigned.  */
1926   offsetT      val  = *valP;
1927 
1928   symname = fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : _("<unknown>");
1929   /* Save this for the addend in the relocation record.  */
1930   fixP->fx_addnumber = val;
1931 
1932   if (fixP->fx_addsy != NULL)
1933     {
1934 #ifdef OBJ_ELF
1935       /* For ELF we can just return and let the reloc that will be generated
1936 	 take care of everything.  For COFF we still have to insert 'val'
1937 	 into the insn since the addend field will be ignored.  */
1938       return;
1939 #endif
1940     }
1941   else
1942     fixP->fx_done = 1;
1943 
1944   switch (fixP->fx_r_type)
1945     {
1946       /* Second byte of 2 byte opcode.  */
1947     case BFD_RELOC_MCORE_PCREL_IMM11BY2:
1948       if ((val & 1) != 0)
1949 	as_bad_where (file, fixP->fx_line,
1950 		      _("odd distance branch (0x%lx bytes)"), (long) val);
1951       val /= 2;
1952       if (((val & ~0x3ff) != 0) && ((val | 0x3ff) != -1))
1953 	as_bad_where (file, fixP->fx_line,
1954 		      _("pcrel for branch to %s too far (0x%lx)"),
1955 		      symname, (long) val);
1956       if (target_big_endian)
1957 	{
1958 	  buf[0] |= ((val >> 8) & 0x7);
1959 	  buf[1] |= (val & 0xff);
1960 	}
1961       else
1962 	{
1963 	  buf[1] |= ((val >> 8) & 0x7);
1964 	  buf[0] |= (val & 0xff);
1965 	}
1966       break;
1967 
1968       /* Lower 8 bits of 2 byte opcode.  */
1969     case BFD_RELOC_MCORE_PCREL_IMM8BY4:
1970       val += 3;
1971       val /= 4;
1972       if (val & ~0xff)
1973 	as_bad_where (file, fixP->fx_line,
1974 		      _("pcrel for lrw/jmpi/jsri to %s too far (0x%lx)"),
1975 		      symname, (long) val);
1976       else if (! target_big_endian)
1977 	buf[0] |= (val & 0xff);
1978       else
1979 	buf[1] |= (val & 0xff);
1980       break;
1981 
1982       /* Loopt instruction.  */
1983     case BFD_RELOC_MCORE_PCREL_IMM4BY2:
1984       if ((val < -32) || (val > -2))
1985 	as_bad_where (file, fixP->fx_line,
1986 		      _("pcrel for loopt too far (0x%lx)"), (long) val);
1987       val /= 2;
1988       if (! target_big_endian)
1989 	buf[0] |= (val & 0xf);
1990       else
1991 	buf[1] |= (val & 0xf);
1992       break;
1993 
1994     case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
1995       /* Conditional linker map jsri to bsr.  */
1996       /* If its a local target and close enough, fix it.
1997 	 NB: >= -2k for backwards bsr; < 2k for forwards...  */
1998       if (fixP->fx_addsy == 0 && val >= -2048  && val < 2048)
1999 	{
2000 	  long nval = (val / 2) & 0x7ff;
2001 	  nval |= MCORE_INST_BSR;
2002 
2003 	  /* REPLACE the instruction, don't just modify it.  */
2004 	  buf[0] = INST_BYTE0 (nval);
2005 	  buf[1] = INST_BYTE1 (nval);
2006 	}
2007       else
2008 	fixP->fx_done = 0;
2009       break;
2010 
2011     case BFD_RELOC_MCORE_PCREL_32:
2012     case BFD_RELOC_VTABLE_INHERIT:
2013     case BFD_RELOC_VTABLE_ENTRY:
2014       fixP->fx_done = 0;
2015       break;
2016 
2017     default:
2018       if (fixP->fx_addsy != NULL)
2019 	{
2020 	  /* If the fix is an absolute reloc based on a symbol's
2021 	     address, then it cannot be resolved until the final link.  */
2022 	  fixP->fx_done = 0;
2023 	}
2024 #ifdef OBJ_ELF
2025       else
2026 #endif
2027 	{
2028 	  if (fixP->fx_size == 4)
2029 	    ;
2030 	  else if (fixP->fx_size == 2 && val >= -32768 && val <= 32767)
2031 	    ;
2032 	  else if (fixP->fx_size == 1 && val >= -256 && val <= 255)
2033 	    ;
2034 	  else
2035 	    abort ();
2036 	  md_number_to_chars (buf, val, fixP->fx_size);
2037 	}
2038       break;
2039     }
2040 }
2041 
2042 void
md_operand(expressionS * expressionP)2043 md_operand (expressionS * expressionP)
2044 {
2045   /* Ignore leading hash symbol, if poresent.  */
2046   if (* input_line_pointer == '#')
2047     {
2048       input_line_pointer ++;
2049       expression (expressionP);
2050     }
2051 }
2052 
2053 int md_long_jump_size;
2054 
2055 /* Called just before address relaxation, return the length
2056    by which a fragment must grow to reach it's destination.  */
2057 int
md_estimate_size_before_relax(fragS * fragP,segT segment_type)2058 md_estimate_size_before_relax (fragS * fragP, segT segment_type)
2059 {
2060   switch (fragP->fr_subtype)
2061     {
2062     default:
2063       abort ();
2064 
2065     case C (UNCD_JUMP, UNDEF_DISP):
2066       /* Used to be a branch to somewhere which was unknown.  */
2067       if (!fragP->fr_symbol)
2068 	fragP->fr_subtype = C (UNCD_JUMP, DISP12);
2069       else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
2070 	fragP->fr_subtype = C (UNCD_JUMP, DISP12);
2071       else
2072 	fragP->fr_subtype = C (UNCD_JUMP, UNDEF_WORD_DISP);
2073       break;
2074 
2075     case C (COND_JUMP, UNDEF_DISP):
2076       /* Used to be a branch to somewhere which was unknown.  */
2077       if (fragP->fr_symbol
2078 	  && S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
2079 	/* Got a symbol and it's defined in this segment, become byte
2080 	   sized - maybe it will fix up */
2081 	fragP->fr_subtype = C (COND_JUMP, DISP12);
2082       else if (fragP->fr_symbol)
2083 	/* Its got a segment, but its not ours, so it will always be long.  */
2084 	fragP->fr_subtype = C (COND_JUMP, UNDEF_WORD_DISP);
2085       else
2086 	/* We know the abs value.  */
2087 	fragP->fr_subtype = C (COND_JUMP, DISP12);
2088       break;
2089 
2090     case C (UNCD_JUMP, DISP12):
2091     case C (UNCD_JUMP, DISP32):
2092     case C (UNCD_JUMP, UNDEF_WORD_DISP):
2093     case C (COND_JUMP, DISP12):
2094     case C (COND_JUMP, DISP32):
2095     case C (COND_JUMP, UNDEF_WORD_DISP):
2096       /* When relaxing a section for the second time, we don't need to
2097 	 do anything besides return the current size.  */
2098       break;
2099     }
2100 
2101   return md_relax_table[fragP->fr_subtype].rlx_length;
2102 }
2103 
2104 /* Put number into target byte order.  */
2105 
2106 void
md_number_to_chars(char * ptr,valueT use,int nbytes)2107 md_number_to_chars (char * ptr, valueT use, int nbytes)
2108 {
2109   if (target_big_endian)
2110     number_to_chars_bigendian (ptr, use, nbytes);
2111   else
2112     number_to_chars_littleendian (ptr, use, nbytes);
2113 }
2114 
2115 /* Round up a section size to the appropriate boundary.  */
2116 
2117 valueT
md_section_align(segT segment ATTRIBUTE_UNUSED,valueT size)2118 md_section_align (segT segment ATTRIBUTE_UNUSED,
2119 		  valueT size)
2120 {
2121   /* Byte alignment is fine.  */
2122   return size;
2123 }
2124 
2125 /* The location from which a PC relative jump should be calculated,
2126    given a PC relative reloc.  */
2127 
2128 long
md_pcrel_from_section(fixS * fixp,segT sec ATTRIBUTE_UNUSED)2129 md_pcrel_from_section (fixS * fixp, segT sec ATTRIBUTE_UNUSED)
2130 {
2131 #ifdef OBJ_ELF
2132   /* If the symbol is undefined or defined in another section
2133      we leave the add number alone for the linker to fix it later.
2134      Only account for the PC pre-bump (which is 2 bytes on the MCore).  */
2135   if (fixp->fx_addsy != (symbolS *) NULL
2136       && (! S_IS_DEFINED (fixp->fx_addsy)
2137 	  || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
2138 
2139   {
2140     gas_assert (fixp->fx_size == 2);	/* must be an insn */
2141     return fixp->fx_size;
2142   }
2143 #endif
2144 
2145   /* The case where we are going to resolve things...  */
2146   return  fixp->fx_size + fixp->fx_where + fixp->fx_frag->fr_address;
2147 }
2148 
2149 #define F(SZ,PCREL)		(((SZ) << 1) + (PCREL))
2150 #define MAP(SZ,PCREL,TYPE)	case F (SZ, PCREL): code = (TYPE); break
2151 
2152 arelent *
tc_gen_reloc(asection * section ATTRIBUTE_UNUSED,fixS * fixp)2153 tc_gen_reloc (asection * section ATTRIBUTE_UNUSED, fixS * fixp)
2154 {
2155   arelent * rel;
2156   bfd_reloc_code_real_type code;
2157 
2158   switch (fixp->fx_r_type)
2159     {
2160       /* These confuse the size/pcrel macro approach.  */
2161     case BFD_RELOC_VTABLE_INHERIT:
2162     case BFD_RELOC_VTABLE_ENTRY:
2163     case BFD_RELOC_MCORE_PCREL_IMM4BY2:
2164     case BFD_RELOC_MCORE_PCREL_IMM8BY4:
2165     case BFD_RELOC_MCORE_PCREL_IMM11BY2:
2166     case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
2167     case BFD_RELOC_RVA:
2168       code = fixp->fx_r_type;
2169       break;
2170 
2171     default:
2172       switch (F (fixp->fx_size, fixp->fx_pcrel))
2173 	{
2174 	  MAP (1, 0, BFD_RELOC_8);
2175 	  MAP (2, 0, BFD_RELOC_16);
2176 	  MAP (4, 0, BFD_RELOC_32);
2177 	  MAP (1, 1, BFD_RELOC_8_PCREL);
2178 	  MAP (2, 1, BFD_RELOC_16_PCREL);
2179 	  MAP (4, 1, BFD_RELOC_32_PCREL);
2180 	default:
2181 	  code = fixp->fx_r_type;
2182 	  as_bad (_("Can not do %d byte %srelocation"),
2183 		  fixp->fx_size,
2184 		  fixp->fx_pcrel ? _("pc-relative") : "");
2185 	}
2186       break;
2187   }
2188 
2189   rel = XNEW (arelent);
2190   rel->sym_ptr_ptr = XNEW (asymbol *);
2191   *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2192   rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2193   /* Always pass the addend along!  */
2194   rel->addend = fixp->fx_addnumber;
2195 
2196   rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2197 
2198   if (rel->howto == NULL)
2199     {
2200       as_bad_where (fixp->fx_file, fixp->fx_line,
2201 		    _("Cannot represent relocation type %s"),
2202 		    bfd_get_reloc_code_name (code));
2203 
2204       /* Set howto to a garbage value so that we can keep going.  */
2205       rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2206       gas_assert (rel->howto != NULL);
2207     }
2208 
2209   return rel;
2210 }
2211 
2212 #ifdef OBJ_ELF
2213 /* See whether we need to force a relocation into the output file.
2214    This is used to force out switch and PC relative relocations when
2215    relaxing.  */
2216 int
mcore_force_relocation(fixS * fix)2217 mcore_force_relocation (fixS * fix)
2218 {
2219   if (fix->fx_r_type == BFD_RELOC_RVA)
2220     return 1;
2221 
2222   return generic_force_reloc (fix);
2223 }
2224 
2225 /* Return true if the fix can be handled by GAS, false if it must
2226    be passed through to the linker.  */
2227 
2228 bfd_boolean
mcore_fix_adjustable(fixS * fixP)2229 mcore_fix_adjustable (fixS * fixP)
2230 {
2231   /* We need the symbol name for the VTABLE entries.  */
2232   if (   fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2233       || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2234     return 0;
2235 
2236   return 1;
2237 }
2238 #endif /* OBJ_ELF */
2239