1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20 #include <stdint.h>
21 #include <memory>
22
23 #include "common_runtime_test.h"
24 #include "globals.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/class_loader.h"
28 #include "mirror/object-inl.h"
29 #include "scoped_thread_state_change-inl.h"
30 #include "thread_list.h"
31 #include "zygote_space.h"
32
33 namespace art {
34 namespace gc {
35 namespace space {
36
37 template <class Super>
38 class SpaceTest : public Super {
39 public:
40 jobject byte_array_class_ = nullptr;
41
42 void AddSpace(ContinuousSpace* space, bool revoke = true) {
43 Heap* heap = Runtime::Current()->GetHeap();
44 if (revoke) {
45 heap->RevokeAllThreadLocalBuffers();
46 }
47 {
48 ScopedThreadStateChange sts(Thread::Current(), kSuspended);
49 ScopedSuspendAll ssa("Add image space");
50 heap->AddSpace(space);
51 }
52 heap->SetSpaceAsDefault(space);
53 }
54
GetByteArrayClass(Thread * self)55 mirror::Class* GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
56 StackHandleScope<1> hs(self);
57 auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
58 if (byte_array_class_ == nullptr) {
59 mirror::Class* byte_array_class =
60 Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
61 EXPECT_TRUE(byte_array_class != nullptr);
62 byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
63 EXPECT_TRUE(byte_array_class_ != nullptr);
64 }
65 return self->DecodeJObject(byte_array_class_)->AsClass();
66 }
67
Alloc(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)68 mirror::Object* Alloc(space::MallocSpace* alloc_space,
69 Thread* self,
70 size_t bytes,
71 size_t* bytes_allocated,
72 size_t* usable_size,
73 size_t* bytes_tl_bulk_allocated)
74 REQUIRES_SHARED(Locks::mutator_lock_) {
75 StackHandleScope<1> hs(self);
76 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
77 mirror::Object* obj = alloc_space->Alloc(self,
78 bytes,
79 bytes_allocated,
80 usable_size,
81 bytes_tl_bulk_allocated);
82 if (obj != nullptr) {
83 InstallClass(obj, byte_array_class.Get(), bytes);
84 }
85 return obj;
86 }
87
AllocWithGrowth(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)88 mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
89 Thread* self,
90 size_t bytes,
91 size_t* bytes_allocated,
92 size_t* usable_size,
93 size_t* bytes_tl_bulk_allocated)
94 REQUIRES_SHARED(Locks::mutator_lock_) {
95 StackHandleScope<1> hs(self);
96 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
97 mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
98 bytes_tl_bulk_allocated);
99 if (obj != nullptr) {
100 InstallClass(obj, byte_array_class.Get(), bytes);
101 }
102 return obj;
103 }
104
InstallClass(mirror::Object * o,mirror::Class * byte_array_class,size_t size)105 void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
106 REQUIRES_SHARED(Locks::mutator_lock_) {
107 // Note the minimum size, which is the size of a zero-length byte array.
108 EXPECT_GE(size, SizeOfZeroLengthByteArray());
109 EXPECT_TRUE(byte_array_class != nullptr);
110 o->SetClass(byte_array_class);
111 if (kUseBakerReadBarrier) {
112 // Like the proper heap object allocation, install and verify
113 // the correct read barrier state.
114 o->AssertReadBarrierState();
115 }
116 mirror::Array* arr = o->AsArray<kVerifyNone>();
117 size_t header_size = SizeOfZeroLengthByteArray();
118 int32_t length = size - header_size;
119 arr->SetLength(length);
120 EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
121 }
122
SizeOfZeroLengthByteArray()123 static size_t SizeOfZeroLengthByteArray() {
124 return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
125 }
126
127 typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
128 size_t capacity, uint8_t* requested_begin);
129
130 void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
131 int round, size_t growth_limit);
132 void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
133 };
134
test_rand(size_t * seed)135 static inline size_t test_rand(size_t* seed) {
136 *seed = *seed * 1103515245 + 12345;
137 return *seed;
138 }
139
140 template <class Super>
SizeFootPrintGrowthLimitAndTrimBody(MallocSpace * space,intptr_t object_size,int round,size_t growth_limit)141 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
142 intptr_t object_size,
143 int round,
144 size_t growth_limit) {
145 if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
146 ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
147 // No allocation can succeed
148 return;
149 }
150
151 // The space's footprint equals amount of resources requested from system
152 size_t footprint = space->GetFootprint();
153
154 // The space must at least have its book keeping allocated
155 EXPECT_GT(footprint, 0u);
156
157 // But it shouldn't exceed the initial size
158 EXPECT_LE(footprint, growth_limit);
159
160 // space's size shouldn't exceed the initial size
161 EXPECT_LE(space->Size(), growth_limit);
162
163 // this invariant should always hold or else the space has grown to be larger than what the
164 // space believes its size is (which will break invariants)
165 EXPECT_GE(space->Size(), footprint);
166
167 // Fill the space with lots of small objects up to the growth limit
168 size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
169 std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
170 size_t last_object = 0; // last object for which allocation succeeded
171 size_t amount_allocated = 0; // amount of space allocated
172 Thread* self = Thread::Current();
173 ScopedObjectAccess soa(self);
174 size_t rand_seed = 123456789;
175 for (size_t i = 0; i < max_objects; i++) {
176 size_t alloc_fails = 0; // number of failed allocations
177 size_t max_fails = 30; // number of times we fail allocation before giving up
178 for (; alloc_fails < max_fails; alloc_fails++) {
179 size_t alloc_size;
180 if (object_size > 0) {
181 alloc_size = object_size;
182 } else {
183 alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
184 // Note the minimum size, which is the size of a zero-length byte array.
185 size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
186 if (alloc_size < size_of_zero_length_byte_array) {
187 alloc_size = size_of_zero_length_byte_array;
188 }
189 }
190 StackHandleScope<1> hs(soa.Self());
191 auto object(hs.NewHandle<mirror::Object>(nullptr));
192 size_t bytes_allocated = 0;
193 size_t bytes_tl_bulk_allocated;
194 if (round <= 1) {
195 object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
196 &bytes_tl_bulk_allocated));
197 } else {
198 object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
199 &bytes_tl_bulk_allocated));
200 }
201 footprint = space->GetFootprint();
202 EXPECT_GE(space->Size(), footprint); // invariant
203 if (object != nullptr) { // allocation succeeded
204 lots_of_objects[i] = object.Get();
205 size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
206 EXPECT_EQ(bytes_allocated, allocation_size);
207 if (object_size > 0) {
208 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
209 } else {
210 EXPECT_GE(allocation_size, 8u);
211 }
212 EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
213 bytes_tl_bulk_allocated >= allocation_size);
214 amount_allocated += allocation_size;
215 break;
216 }
217 }
218 if (alloc_fails == max_fails) {
219 last_object = i;
220 break;
221 }
222 }
223 CHECK_NE(last_object, 0u); // we should have filled the space
224 EXPECT_GT(amount_allocated, 0u);
225
226 // We shouldn't have gone past the growth_limit
227 EXPECT_LE(amount_allocated, growth_limit);
228 EXPECT_LE(footprint, growth_limit);
229 EXPECT_LE(space->Size(), growth_limit);
230
231 // footprint and size should agree with amount allocated
232 EXPECT_GE(footprint, amount_allocated);
233 EXPECT_GE(space->Size(), amount_allocated);
234
235 // Release storage in a semi-adhoc manner
236 size_t free_increment = 96;
237 while (true) {
238 {
239 ScopedThreadStateChange tsc(self, kNative);
240 // Give the space a haircut.
241 space->Trim();
242 }
243
244 // Bounds sanity
245 footprint = space->GetFootprint();
246 EXPECT_LE(amount_allocated, growth_limit);
247 EXPECT_GE(footprint, amount_allocated);
248 EXPECT_LE(footprint, growth_limit);
249 EXPECT_GE(space->Size(), amount_allocated);
250 EXPECT_LE(space->Size(), growth_limit);
251
252 if (free_increment == 0) {
253 break;
254 }
255
256 // Free some objects
257 for (size_t i = 0; i < last_object; i += free_increment) {
258 mirror::Object* object = lots_of_objects.get()[i];
259 if (object == nullptr) {
260 continue;
261 }
262 size_t allocation_size = space->AllocationSize(object, nullptr);
263 if (object_size > 0) {
264 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
265 } else {
266 EXPECT_GE(allocation_size, 8u);
267 }
268 space->Free(self, object);
269 lots_of_objects.get()[i] = nullptr;
270 amount_allocated -= allocation_size;
271 footprint = space->GetFootprint();
272 EXPECT_GE(space->Size(), footprint); // invariant
273 }
274
275 free_increment >>= 1;
276 }
277
278 // The space has become empty here before allocating a large object
279 // below. For RosAlloc, revoke thread-local runs, which are kept
280 // even when empty for a performance reason, so that they won't
281 // cause the following large object allocation to fail due to
282 // potential fragmentation. Note they are normally revoked at each
283 // GC (but no GC here.)
284 space->RevokeAllThreadLocalBuffers();
285
286 // All memory was released, try a large allocation to check freed memory is being coalesced
287 StackHandleScope<1> hs(soa.Self());
288 auto large_object(hs.NewHandle<mirror::Object>(nullptr));
289 size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
290 size_t bytes_allocated = 0;
291 size_t bytes_tl_bulk_allocated;
292 if (round <= 1) {
293 large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
294 &bytes_tl_bulk_allocated));
295 } else {
296 large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
297 nullptr, &bytes_tl_bulk_allocated));
298 }
299 EXPECT_TRUE(large_object != nullptr);
300
301 // Sanity check footprint
302 footprint = space->GetFootprint();
303 EXPECT_LE(footprint, growth_limit);
304 EXPECT_GE(space->Size(), footprint);
305 EXPECT_LE(space->Size(), growth_limit);
306
307 // Clean up
308 space->Free(self, large_object.Assign(nullptr));
309
310 // Sanity check footprint
311 footprint = space->GetFootprint();
312 EXPECT_LE(footprint, growth_limit);
313 EXPECT_GE(space->Size(), footprint);
314 EXPECT_LE(space->Size(), growth_limit);
315 }
316
317 template <class Super>
SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,CreateSpaceFn create_space)318 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
319 CreateSpaceFn create_space) {
320 if (object_size < SizeOfZeroLengthByteArray()) {
321 // Too small for the object layout/model.
322 return;
323 }
324 size_t initial_size = 4 * MB;
325 size_t growth_limit = 8 * MB;
326 size_t capacity = 16 * MB;
327 MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
328 ASSERT_TRUE(space != nullptr);
329
330 // Basic sanity
331 EXPECT_EQ(space->Capacity(), growth_limit);
332 EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
333
334 // Make space findable to the heap, will also delete space when runtime is cleaned up
335 AddSpace(space);
336
337 // In this round we don't allocate with growth and therefore can't grow past the initial size.
338 // This effectively makes the growth_limit the initial_size, so assert this.
339 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
340 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
341 // Remove growth limit
342 space->ClearGrowthLimit();
343 EXPECT_EQ(space->Capacity(), capacity);
344 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
345 }
346
347 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
348 TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
349 SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
350 }
351
352 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
353 TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
354 SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
355 }
356
357 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
358 class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
359 }; \
360 \
361 TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
362 TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
363 TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
364 TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
365 TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
366 TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
367 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
368 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
369 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
370 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
371 TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
372
373 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
374 class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
375 }; \
376 \
377 TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
378 TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
379 TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
380 TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
381 TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
382 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
383 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
384 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
385 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
386 TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
387
388 } // namespace space
389 } // namespace gc
390 } // namespace art
391
392 #endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
393