1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19 
20 #include <stdint.h>
21 #include <memory>
22 
23 #include "common_runtime_test.h"
24 #include "globals.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/class_loader.h"
28 #include "mirror/object-inl.h"
29 #include "scoped_thread_state_change-inl.h"
30 #include "thread_list.h"
31 #include "zygote_space.h"
32 
33 namespace art {
34 namespace gc {
35 namespace space {
36 
37 template <class Super>
38 class SpaceTest : public Super {
39  public:
40   jobject byte_array_class_ = nullptr;
41 
42   void AddSpace(ContinuousSpace* space, bool revoke = true) {
43     Heap* heap = Runtime::Current()->GetHeap();
44     if (revoke) {
45       heap->RevokeAllThreadLocalBuffers();
46     }
47     {
48       ScopedThreadStateChange sts(Thread::Current(), kSuspended);
49       ScopedSuspendAll ssa("Add image space");
50       heap->AddSpace(space);
51     }
52     heap->SetSpaceAsDefault(space);
53   }
54 
GetByteArrayClass(Thread * self)55   mirror::Class* GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
56     StackHandleScope<1> hs(self);
57     auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
58     if (byte_array_class_ == nullptr) {
59       mirror::Class* byte_array_class =
60           Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
61       EXPECT_TRUE(byte_array_class != nullptr);
62       byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
63       EXPECT_TRUE(byte_array_class_ != nullptr);
64     }
65     return self->DecodeJObject(byte_array_class_)->AsClass();
66   }
67 
Alloc(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)68   mirror::Object* Alloc(space::MallocSpace* alloc_space,
69                         Thread* self,
70                         size_t bytes,
71                         size_t* bytes_allocated,
72                         size_t* usable_size,
73                         size_t* bytes_tl_bulk_allocated)
74       REQUIRES_SHARED(Locks::mutator_lock_) {
75     StackHandleScope<1> hs(self);
76     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
77     mirror::Object* obj = alloc_space->Alloc(self,
78                                              bytes,
79                                              bytes_allocated,
80                                              usable_size,
81                                              bytes_tl_bulk_allocated);
82     if (obj != nullptr) {
83       InstallClass(obj, byte_array_class.Get(), bytes);
84     }
85     return obj;
86   }
87 
AllocWithGrowth(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)88   mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
89                                   Thread* self,
90                                   size_t bytes,
91                                   size_t* bytes_allocated,
92                                   size_t* usable_size,
93                                   size_t* bytes_tl_bulk_allocated)
94       REQUIRES_SHARED(Locks::mutator_lock_) {
95     StackHandleScope<1> hs(self);
96     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
97     mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
98                                                        bytes_tl_bulk_allocated);
99     if (obj != nullptr) {
100       InstallClass(obj, byte_array_class.Get(), bytes);
101     }
102     return obj;
103   }
104 
InstallClass(mirror::Object * o,mirror::Class * byte_array_class,size_t size)105   void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
106       REQUIRES_SHARED(Locks::mutator_lock_) {
107     // Note the minimum size, which is the size of a zero-length byte array.
108     EXPECT_GE(size, SizeOfZeroLengthByteArray());
109     EXPECT_TRUE(byte_array_class != nullptr);
110     o->SetClass(byte_array_class);
111     if (kUseBakerReadBarrier) {
112       // Like the proper heap object allocation, install and verify
113       // the correct read barrier state.
114       o->AssertReadBarrierState();
115     }
116     mirror::Array* arr = o->AsArray<kVerifyNone>();
117     size_t header_size = SizeOfZeroLengthByteArray();
118     int32_t length = size - header_size;
119     arr->SetLength(length);
120     EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
121   }
122 
SizeOfZeroLengthByteArray()123   static size_t SizeOfZeroLengthByteArray() {
124     return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
125   }
126 
127   typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
128                                         size_t capacity, uint8_t* requested_begin);
129 
130   void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
131                                            int round, size_t growth_limit);
132   void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
133 };
134 
test_rand(size_t * seed)135 static inline size_t test_rand(size_t* seed) {
136   *seed = *seed * 1103515245 + 12345;
137   return *seed;
138 }
139 
140 template <class Super>
SizeFootPrintGrowthLimitAndTrimBody(MallocSpace * space,intptr_t object_size,int round,size_t growth_limit)141 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
142                                                            intptr_t object_size,
143                                                            int round,
144                                                            size_t growth_limit) {
145   if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
146       ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
147     // No allocation can succeed
148     return;
149   }
150 
151   // The space's footprint equals amount of resources requested from system
152   size_t footprint = space->GetFootprint();
153 
154   // The space must at least have its book keeping allocated
155   EXPECT_GT(footprint, 0u);
156 
157   // But it shouldn't exceed the initial size
158   EXPECT_LE(footprint, growth_limit);
159 
160   // space's size shouldn't exceed the initial size
161   EXPECT_LE(space->Size(), growth_limit);
162 
163   // this invariant should always hold or else the space has grown to be larger than what the
164   // space believes its size is (which will break invariants)
165   EXPECT_GE(space->Size(), footprint);
166 
167   // Fill the space with lots of small objects up to the growth limit
168   size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
169   std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
170   size_t last_object = 0;  // last object for which allocation succeeded
171   size_t amount_allocated = 0;  // amount of space allocated
172   Thread* self = Thread::Current();
173   ScopedObjectAccess soa(self);
174   size_t rand_seed = 123456789;
175   for (size_t i = 0; i < max_objects; i++) {
176     size_t alloc_fails = 0;  // number of failed allocations
177     size_t max_fails = 30;  // number of times we fail allocation before giving up
178     for (; alloc_fails < max_fails; alloc_fails++) {
179       size_t alloc_size;
180       if (object_size > 0) {
181         alloc_size = object_size;
182       } else {
183         alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
184         // Note the minimum size, which is the size of a zero-length byte array.
185         size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
186         if (alloc_size < size_of_zero_length_byte_array) {
187           alloc_size = size_of_zero_length_byte_array;
188         }
189       }
190       StackHandleScope<1> hs(soa.Self());
191       auto object(hs.NewHandle<mirror::Object>(nullptr));
192       size_t bytes_allocated = 0;
193       size_t bytes_tl_bulk_allocated;
194       if (round <= 1) {
195         object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
196                             &bytes_tl_bulk_allocated));
197       } else {
198         object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
199                                       &bytes_tl_bulk_allocated));
200       }
201       footprint = space->GetFootprint();
202       EXPECT_GE(space->Size(), footprint);  // invariant
203       if (object != nullptr) {  // allocation succeeded
204         lots_of_objects[i] = object.Get();
205         size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
206         EXPECT_EQ(bytes_allocated, allocation_size);
207         if (object_size > 0) {
208           EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
209         } else {
210           EXPECT_GE(allocation_size, 8u);
211         }
212         EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
213                     bytes_tl_bulk_allocated >= allocation_size);
214         amount_allocated += allocation_size;
215         break;
216       }
217     }
218     if (alloc_fails == max_fails) {
219       last_object = i;
220       break;
221     }
222   }
223   CHECK_NE(last_object, 0u);  // we should have filled the space
224   EXPECT_GT(amount_allocated, 0u);
225 
226   // We shouldn't have gone past the growth_limit
227   EXPECT_LE(amount_allocated, growth_limit);
228   EXPECT_LE(footprint, growth_limit);
229   EXPECT_LE(space->Size(), growth_limit);
230 
231   // footprint and size should agree with amount allocated
232   EXPECT_GE(footprint, amount_allocated);
233   EXPECT_GE(space->Size(), amount_allocated);
234 
235   // Release storage in a semi-adhoc manner
236   size_t free_increment = 96;
237   while (true) {
238     {
239       ScopedThreadStateChange tsc(self, kNative);
240       // Give the space a haircut.
241       space->Trim();
242     }
243 
244     // Bounds sanity
245     footprint = space->GetFootprint();
246     EXPECT_LE(amount_allocated, growth_limit);
247     EXPECT_GE(footprint, amount_allocated);
248     EXPECT_LE(footprint, growth_limit);
249     EXPECT_GE(space->Size(), amount_allocated);
250     EXPECT_LE(space->Size(), growth_limit);
251 
252     if (free_increment == 0) {
253       break;
254     }
255 
256     // Free some objects
257     for (size_t i = 0; i < last_object; i += free_increment) {
258       mirror::Object* object = lots_of_objects.get()[i];
259       if (object == nullptr) {
260         continue;
261       }
262       size_t allocation_size = space->AllocationSize(object, nullptr);
263       if (object_size > 0) {
264         EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
265       } else {
266         EXPECT_GE(allocation_size, 8u);
267       }
268       space->Free(self, object);
269       lots_of_objects.get()[i] = nullptr;
270       amount_allocated -= allocation_size;
271       footprint = space->GetFootprint();
272       EXPECT_GE(space->Size(), footprint);  // invariant
273     }
274 
275     free_increment >>= 1;
276   }
277 
278   // The space has become empty here before allocating a large object
279   // below. For RosAlloc, revoke thread-local runs, which are kept
280   // even when empty for a performance reason, so that they won't
281   // cause the following large object allocation to fail due to
282   // potential fragmentation. Note they are normally revoked at each
283   // GC (but no GC here.)
284   space->RevokeAllThreadLocalBuffers();
285 
286   // All memory was released, try a large allocation to check freed memory is being coalesced
287   StackHandleScope<1> hs(soa.Self());
288   auto large_object(hs.NewHandle<mirror::Object>(nullptr));
289   size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
290   size_t bytes_allocated = 0;
291   size_t bytes_tl_bulk_allocated;
292   if (round <= 1) {
293     large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
294                               &bytes_tl_bulk_allocated));
295   } else {
296     large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
297                                         nullptr, &bytes_tl_bulk_allocated));
298   }
299   EXPECT_TRUE(large_object != nullptr);
300 
301   // Sanity check footprint
302   footprint = space->GetFootprint();
303   EXPECT_LE(footprint, growth_limit);
304   EXPECT_GE(space->Size(), footprint);
305   EXPECT_LE(space->Size(), growth_limit);
306 
307   // Clean up
308   space->Free(self, large_object.Assign(nullptr));
309 
310   // Sanity check footprint
311   footprint = space->GetFootprint();
312   EXPECT_LE(footprint, growth_limit);
313   EXPECT_GE(space->Size(), footprint);
314   EXPECT_LE(space->Size(), growth_limit);
315 }
316 
317 template <class Super>
SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,CreateSpaceFn create_space)318 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
319                                                              CreateSpaceFn create_space) {
320   if (object_size < SizeOfZeroLengthByteArray()) {
321     // Too small for the object layout/model.
322     return;
323   }
324   size_t initial_size = 4 * MB;
325   size_t growth_limit = 8 * MB;
326   size_t capacity = 16 * MB;
327   MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
328   ASSERT_TRUE(space != nullptr);
329 
330   // Basic sanity
331   EXPECT_EQ(space->Capacity(), growth_limit);
332   EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
333 
334   // Make space findable to the heap, will also delete space when runtime is cleaned up
335   AddSpace(space);
336 
337   // In this round we don't allocate with growth and therefore can't grow past the initial size.
338   // This effectively makes the growth_limit the initial_size, so assert this.
339   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
340   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
341   // Remove growth limit
342   space->ClearGrowthLimit();
343   EXPECT_EQ(space->Capacity(), capacity);
344   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
345 }
346 
347 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
348   TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
349     SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
350   }
351 
352 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
353   TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
354     SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
355   }
356 
357 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
358   class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
359   }; \
360   \
361   TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
362   TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
363   TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
364   TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
365   TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
366   TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
367   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
368   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
369   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
370   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
371   TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
372 
373 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
374   class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
375   }; \
376   \
377   TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
378   TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
379   TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
380   TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
381   TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
382   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
383   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
384   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
385   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
386   TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
387 
388 }  // namespace space
389 }  // namespace gc
390 }  // namespace art
391 
392 #endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
393