1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 import android.annotation.SystemApi;
20 import android.annotation.SystemService;
21 import android.content.Context;
22 import android.os.Build;
23 import android.os.Handler;
24 import android.os.MemoryFile;
25 import android.util.Log;
26 import android.util.SparseArray;
27 
28 import java.util.ArrayList;
29 import java.util.Collections;
30 import java.util.List;
31 
32 /**
33  * <p>
34  * SensorManager lets you access the device's {@link android.hardware.Sensor
35  * sensors}.
36  * </p>
37  * <p>
38  * Always make sure to disable sensors you don't need, especially when your
39  * activity is paused. Failing to do so can drain the battery in just a few
40  * hours. Note that the system will <i>not</i> disable sensors automatically when
41  * the screen turns off.
42  * </p>
43  * <p class="note">
44  * Note: Don't use this mechanism with a Trigger Sensor, have a look
45  * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
46  * is an example of a trigger sensor.
47  * </p>
48  * <pre class="prettyprint">
49  * public class SensorActivity extends Activity implements SensorEventListener {
50  *     private final SensorManager mSensorManager;
51  *     private final Sensor mAccelerometer;
52  *
53  *     public SensorActivity() {
54  *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
55  *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
56  *     }
57  *
58  *     protected void onResume() {
59  *         super.onResume();
60  *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
61  *     }
62  *
63  *     protected void onPause() {
64  *         super.onPause();
65  *         mSensorManager.unregisterListener(this);
66  *     }
67  *
68  *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
69  *     }
70  *
71  *     public void onSensorChanged(SensorEvent event) {
72  *     }
73  * }
74  * </pre>
75  *
76  * @see SensorEventListener
77  * @see SensorEvent
78  * @see Sensor
79  *
80  */
81 @SystemService(Context.SENSOR_SERVICE)
82 public abstract class SensorManager {
83     /** @hide */
84     protected static final String TAG = "SensorManager";
85 
86     private static final float[] sTempMatrix = new float[16];
87 
88     // Cached lists of sensors by type.  Guarded by mSensorListByType.
89     private final SparseArray<List<Sensor>> mSensorListByType =
90             new SparseArray<List<Sensor>>();
91 
92     // Legacy sensor manager implementation.  Guarded by mSensorListByType during initialization.
93     private LegacySensorManager mLegacySensorManager;
94 
95     /* NOTE: sensor IDs must be a power of 2 */
96 
97     /**
98      * A constant describing an orientation sensor. See
99      * {@link android.hardware.SensorListener SensorListener} for more details.
100      *
101      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
102      */
103     @Deprecated
104     public static final int SENSOR_ORIENTATION = 1 << 0;
105 
106     /**
107      * A constant describing an accelerometer. See
108      * {@link android.hardware.SensorListener SensorListener} for more details.
109      *
110      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
111      */
112     @Deprecated
113     public static final int SENSOR_ACCELEROMETER = 1 << 1;
114 
115     /**
116      * A constant describing a temperature sensor See
117      * {@link android.hardware.SensorListener SensorListener} for more details.
118      *
119      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
120      */
121     @Deprecated
122     public static final int SENSOR_TEMPERATURE = 1 << 2;
123 
124     /**
125      * A constant describing a magnetic sensor See
126      * {@link android.hardware.SensorListener SensorListener} for more details.
127      *
128      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
129      */
130     @Deprecated
131     public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
132 
133     /**
134      * A constant describing an ambient light sensor See
135      * {@link android.hardware.SensorListener SensorListener} for more details.
136      *
137      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
138      */
139     @Deprecated
140     public static final int SENSOR_LIGHT = 1 << 4;
141 
142     /**
143      * A constant describing a proximity sensor See
144      * {@link android.hardware.SensorListener SensorListener} for more details.
145      *
146      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
147      */
148     @Deprecated
149     public static final int SENSOR_PROXIMITY = 1 << 5;
150 
151     /**
152      * A constant describing a Tricorder See
153      * {@link android.hardware.SensorListener SensorListener} for more details.
154      *
155      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
156      */
157     @Deprecated
158     public static final int SENSOR_TRICORDER = 1 << 6;
159 
160     /**
161      * A constant describing an orientation sensor. See
162      * {@link android.hardware.SensorListener SensorListener} for more details.
163      *
164      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
165      */
166     @Deprecated
167     public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
168 
169     /**
170      * A constant that includes all sensors
171      *
172      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
173      */
174     @Deprecated
175     public static final int SENSOR_ALL = 0x7F;
176 
177     /**
178      * Smallest sensor ID
179      *
180      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
181      */
182     @Deprecated
183     public static final int SENSOR_MIN = SENSOR_ORIENTATION;
184 
185     /**
186      * Largest sensor ID
187      *
188      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
189      */
190     @Deprecated
191     public static final int SENSOR_MAX = ((SENSOR_ALL + 1) >> 1);
192 
193 
194     /**
195      * Index of the X value in the array returned by
196      * {@link android.hardware.SensorListener#onSensorChanged}
197      *
198      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
199      */
200     @Deprecated
201     public static final int DATA_X = 0;
202 
203     /**
204      * Index of the Y value in the array returned by
205      * {@link android.hardware.SensorListener#onSensorChanged}
206      *
207      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
208      */
209     @Deprecated
210     public static final int DATA_Y = 1;
211 
212     /**
213      * Index of the Z value in the array returned by
214      * {@link android.hardware.SensorListener#onSensorChanged}
215      *
216      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
217      */
218     @Deprecated
219     public static final int DATA_Z = 2;
220 
221     /**
222      * Offset to the untransformed values in the array returned by
223      * {@link android.hardware.SensorListener#onSensorChanged}
224      *
225      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
226      */
227     @Deprecated
228     public static final int RAW_DATA_INDEX = 3;
229 
230     /**
231      * Index of the untransformed X value in the array returned by
232      * {@link android.hardware.SensorListener#onSensorChanged}
233      *
234      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
235      */
236     @Deprecated
237     public static final int RAW_DATA_X = 3;
238 
239     /**
240      * Index of the untransformed Y value in the array returned by
241      * {@link android.hardware.SensorListener#onSensorChanged}
242      *
243      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
244      */
245     @Deprecated
246     public static final int RAW_DATA_Y = 4;
247 
248     /**
249      * Index of the untransformed Z value in the array returned by
250      * {@link android.hardware.SensorListener#onSensorChanged}
251      *
252      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
253      */
254     @Deprecated
255     public static final int RAW_DATA_Z = 5;
256 
257     /** Standard gravity (g) on Earth. This value is equivalent to 1G */
258     public static final float STANDARD_GRAVITY = 9.80665f;
259 
260     /** Sun's gravity in SI units (m/s^2) */
261     public static final float GRAVITY_SUN             = 275.0f;
262     /** Mercury's gravity in SI units (m/s^2) */
263     public static final float GRAVITY_MERCURY         = 3.70f;
264     /** Venus' gravity in SI units (m/s^2) */
265     public static final float GRAVITY_VENUS           = 8.87f;
266     /** Earth's gravity in SI units (m/s^2) */
267     public static final float GRAVITY_EARTH           = 9.80665f;
268     /** The Moon's gravity in SI units (m/s^2) */
269     public static final float GRAVITY_MOON            = 1.6f;
270     /** Mars' gravity in SI units (m/s^2) */
271     public static final float GRAVITY_MARS            = 3.71f;
272     /** Jupiter's gravity in SI units (m/s^2) */
273     public static final float GRAVITY_JUPITER         = 23.12f;
274     /** Saturn's gravity in SI units (m/s^2) */
275     public static final float GRAVITY_SATURN          = 8.96f;
276     /** Uranus' gravity in SI units (m/s^2) */
277     public static final float GRAVITY_URANUS          = 8.69f;
278     /** Neptune's gravity in SI units (m/s^2) */
279     public static final float GRAVITY_NEPTUNE         = 11.0f;
280     /** Pluto's gravity in SI units (m/s^2) */
281     public static final float GRAVITY_PLUTO           = 0.6f;
282     /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
283     public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
284     /** Gravity on the island */
285     public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
286 
287 
288     /** Maximum magnetic field on Earth's surface */
289     public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
290     /** Minimum magnetic field on Earth's surface */
291     public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
292 
293 
294     /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
295     public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
296 
297 
298     /** Maximum luminance of sunlight in lux */
299     public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
300     /** luminance of sunlight in lux */
301     public static final float LIGHT_SUNLIGHT     = 110000.0f;
302     /** luminance in shade in lux */
303     public static final float LIGHT_SHADE        = 20000.0f;
304     /** luminance under an overcast sky in lux */
305     public static final float LIGHT_OVERCAST     = 10000.0f;
306     /** luminance at sunrise in lux */
307     public static final float LIGHT_SUNRISE      = 400.0f;
308     /** luminance under a cloudy sky in lux */
309     public static final float LIGHT_CLOUDY       = 100.0f;
310     /** luminance at night with full moon in lux */
311     public static final float LIGHT_FULLMOON     = 0.25f;
312     /** luminance at night with no moon in lux*/
313     public static final float LIGHT_NO_MOON      = 0.001f;
314 
315 
316     /** get sensor data as fast as possible */
317     public static final int SENSOR_DELAY_FASTEST = 0;
318     /** rate suitable for games */
319     public static final int SENSOR_DELAY_GAME = 1;
320     /** rate suitable for the user interface  */
321     public static final int SENSOR_DELAY_UI = 2;
322     /** rate (default) suitable for screen orientation changes */
323     public static final int SENSOR_DELAY_NORMAL = 3;
324 
325 
326     /**
327       * The values returned by this sensor cannot be trusted because the sensor
328       * had no contact with what it was measuring (for example, the heart rate
329       * monitor is not in contact with the user).
330       */
331     public static final int SENSOR_STATUS_NO_CONTACT = -1;
332 
333     /**
334      * The values returned by this sensor cannot be trusted, calibration is
335      * needed or the environment doesn't allow readings
336      */
337     public static final int SENSOR_STATUS_UNRELIABLE = 0;
338 
339     /**
340      * This sensor is reporting data with low accuracy, calibration with the
341      * environment is needed
342      */
343     public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
344 
345     /**
346      * This sensor is reporting data with an average level of accuracy,
347      * calibration with the environment may improve the readings
348      */
349     public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
350 
351     /** This sensor is reporting data with maximum accuracy */
352     public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
353 
354     /** see {@link #remapCoordinateSystem} */
355     public static final int AXIS_X = 1;
356     /** see {@link #remapCoordinateSystem} */
357     public static final int AXIS_Y = 2;
358     /** see {@link #remapCoordinateSystem} */
359     public static final int AXIS_Z = 3;
360     /** see {@link #remapCoordinateSystem} */
361     public static final int AXIS_MINUS_X = AXIS_X | 0x80;
362     /** see {@link #remapCoordinateSystem} */
363     public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
364     /** see {@link #remapCoordinateSystem} */
365     public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
366 
367 
368     /**
369      * {@hide}
370      */
SensorManager()371     public SensorManager() {
372     }
373 
374     /**
375      * Gets the full list of sensors that are available.
376      * @hide
377      */
getFullSensorList()378     protected abstract List<Sensor> getFullSensorList();
379 
380     /**
381      * Gets the full list of dynamic sensors that are available.
382      * @hide
383      */
getFullDynamicSensorList()384     protected abstract List<Sensor> getFullDynamicSensorList();
385 
386     /**
387      * @return available sensors.
388      * @deprecated This method is deprecated, use
389      *             {@link SensorManager#getSensorList(int)} instead
390      */
391     @Deprecated
getSensors()392     public int getSensors() {
393         return getLegacySensorManager().getSensors();
394     }
395 
396     /**
397      * Use this method to get the list of available sensors of a certain type.
398      * Make multiple calls to get sensors of different types or use
399      * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
400      * sensors.
401      *
402      * <p class="note">
403      * NOTE: Both wake-up and non wake-up sensors matching the given type are
404      * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
405      * of the returned {@link Sensor}.
406      * </p>
407      *
408      * @param type
409      *        of sensors requested
410      *
411      * @return a list of sensors matching the asked type.
412      *
413      * @see #getDefaultSensor(int)
414      * @see Sensor
415      */
getSensorList(int type)416     public List<Sensor> getSensorList(int type) {
417         // cache the returned lists the first time
418         List<Sensor> list;
419         final List<Sensor> fullList = getFullSensorList();
420         synchronized (mSensorListByType) {
421             list = mSensorListByType.get(type);
422             if (list == null) {
423                 if (type == Sensor.TYPE_ALL) {
424                     list = fullList;
425                 } else {
426                     list = new ArrayList<Sensor>();
427                     for (Sensor i : fullList) {
428                         if (i.getType() == type) {
429                             list.add(i);
430                         }
431                     }
432                 }
433                 list = Collections.unmodifiableList(list);
434                 mSensorListByType.append(type, list);
435             }
436         }
437         return list;
438     }
439 
440     /**
441      * Use this method to get a list of available dynamic sensors of a certain type.
442      * Make multiple calls to get sensors of different types or use
443      * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors.
444      *
445      * <p class="note">
446      * NOTE: Both wake-up and non wake-up sensors matching the given type are
447      * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
448      * of the returned {@link Sensor}.
449      * </p>
450      *
451      * @param type of sensors requested
452      *
453      * @return a list of dynamic sensors matching the requested type.
454      *
455      * @see Sensor
456      */
getDynamicSensorList(int type)457     public List<Sensor> getDynamicSensorList(int type) {
458         // cache the returned lists the first time
459         final List<Sensor> fullList = getFullDynamicSensorList();
460         if (type == Sensor.TYPE_ALL) {
461             return Collections.unmodifiableList(fullList);
462         } else {
463             List<Sensor> list = new ArrayList();
464             for (Sensor i : fullList) {
465                 if (i.getType() == type) {
466                     list.add(i);
467                 }
468             }
469             return Collections.unmodifiableList(list);
470         }
471     }
472 
473     /**
474      * Use this method to get the default sensor for a given type. Note that the
475      * returned sensor could be a composite sensor, and its data could be
476      * averaged or filtered. If you need to access the raw sensors use
477      * {@link SensorManager#getSensorList(int) getSensorList}.
478      *
479      * @param type
480      *         of sensors requested
481      *
482      * @return the default sensor matching the requested type if one exists and the application
483      *         has the necessary permissions, or null otherwise.
484      *
485      * @see #getSensorList(int)
486      * @see Sensor
487      */
getDefaultSensor(int type)488     public Sensor getDefaultSensor(int type) {
489         // TODO: need to be smarter, for now, just return the 1st sensor
490         List<Sensor> l = getSensorList(type);
491         boolean wakeUpSensor = false;
492         // For the following sensor types, return a wake-up sensor. These types are by default
493         // defined as wake-up sensors. For the rest of the SDK defined sensor types return a
494         // non_wake-up version.
495         if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION
496                 || type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE
497                 || type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE
498                 || type == Sensor.TYPE_WRIST_TILT_GESTURE
499                 || type == Sensor.TYPE_DYNAMIC_SENSOR_META) {
500             wakeUpSensor = true;
501         }
502 
503         for (Sensor sensor : l) {
504             if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor;
505         }
506         return null;
507     }
508 
509     /**
510      * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this
511      * type exist, any one of them may be returned.
512      * <p>
513      * For example,
514      * <ul>
515      *     <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up
516      *     accelerometer sensor if it exists. </li>
517      *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up
518      *     proximity sensor if it exists. </li>
519      *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity
520      *     sensor which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li>
521      * </ul>
522      * </p>
523      * <p class="note">
524      * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION}
525      * are declared as wake-up sensors by default.
526      * </p>
527      * @param type
528      *        type of sensor requested
529      * @param wakeUp
530      *        flag to indicate whether the Sensor is a wake-up or non wake-up sensor.
531      * @return the default sensor matching the requested type and wakeUp properties if one exists
532      *         and the application has the necessary permissions, or null otherwise.
533      * @see Sensor#isWakeUpSensor()
534      */
getDefaultSensor(int type, boolean wakeUp)535     public Sensor getDefaultSensor(int type, boolean wakeUp) {
536         List<Sensor> l = getSensorList(type);
537         for (Sensor sensor : l) {
538             if (sensor.isWakeUpSensor() == wakeUp) {
539                 return sensor;
540             }
541         }
542         return null;
543     }
544 
545     /**
546      * Registers a listener for given sensors.
547      *
548      * @deprecated This method is deprecated, use
549      *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
550      *             instead.
551      *
552      * @param listener
553      *        sensor listener object
554      *
555      * @param sensors
556      *        a bit masks of the sensors to register to
557      *
558      * @return <code>true</code> if the sensor is supported and successfully
559      *         enabled
560      */
561     @Deprecated
registerListener(SensorListener listener, int sensors)562     public boolean registerListener(SensorListener listener, int sensors) {
563         return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
564     }
565 
566     /**
567      * Registers a SensorListener for given sensors.
568      *
569      * @deprecated This method is deprecated, use
570      *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
571      *             instead.
572      *
573      * @param listener
574      *        sensor listener object
575      *
576      * @param sensors
577      *        a bit masks of the sensors to register to
578      *
579      * @param rate
580      *        rate of events. This is only a hint to the system. events may be
581      *        received faster or slower than the specified rate. Usually events
582      *        are received faster. The value must be one of
583      *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
584      *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
585      *
586      * @return <code>true</code> if the sensor is supported and successfully
587      *         enabled
588      */
589     @Deprecated
registerListener(SensorListener listener, int sensors, int rate)590     public boolean registerListener(SensorListener listener, int sensors, int rate) {
591         return getLegacySensorManager().registerListener(listener, sensors, rate);
592     }
593 
594     /**
595      * Unregisters a listener for all sensors.
596      *
597      * @deprecated This method is deprecated, use
598      *             {@link SensorManager#unregisterListener(SensorEventListener)}
599      *             instead.
600      *
601      * @param listener
602      *        a SensorListener object
603      */
604     @Deprecated
unregisterListener(SensorListener listener)605     public void unregisterListener(SensorListener listener) {
606         unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
607     }
608 
609     /**
610      * Unregisters a listener for the sensors with which it is registered.
611      *
612      * @deprecated This method is deprecated, use
613      *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
614      *             instead.
615      *
616      * @param listener
617      *        a SensorListener object
618      *
619      * @param sensors
620      *        a bit masks of the sensors to unregister from
621      */
622     @Deprecated
unregisterListener(SensorListener listener, int sensors)623     public void unregisterListener(SensorListener listener, int sensors) {
624         getLegacySensorManager().unregisterListener(listener, sensors);
625     }
626 
627     /**
628      * Unregisters a listener for the sensors with which it is registered.
629      *
630      * <p class="note"></p>
631      * Note: Don't use this method with a one shot trigger sensor such as
632      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
633      * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
634      * </p>
635      *
636      * @param listener
637      *        a SensorEventListener object
638      *
639      * @param sensor
640      *        the sensor to unregister from
641      *
642      * @see #unregisterListener(SensorEventListener)
643      * @see #registerListener(SensorEventListener, Sensor, int)
644      */
unregisterListener(SensorEventListener listener, Sensor sensor)645     public void unregisterListener(SensorEventListener listener, Sensor sensor) {
646         if (listener == null || sensor == null) {
647             return;
648         }
649 
650         unregisterListenerImpl(listener, sensor);
651     }
652 
653     /**
654      * Unregisters a listener for all sensors.
655      *
656      * @param listener
657      *        a SensorListener object
658      *
659      * @see #unregisterListener(SensorEventListener, Sensor)
660      * @see #registerListener(SensorEventListener, Sensor, int)
661      *
662      */
unregisterListener(SensorEventListener listener)663     public void unregisterListener(SensorEventListener listener) {
664         if (listener == null) {
665             return;
666         }
667 
668         unregisterListenerImpl(listener, null);
669     }
670 
671     /** @hide */
unregisterListenerImpl(SensorEventListener listener, Sensor sensor)672     protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
673 
674     /**
675      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
676      * sensor at the given sampling frequency.
677      * <p>
678      * The events will be delivered to the provided {@code SensorEventListener} as soon as they are
679      * available. To reduce the power consumption, applications can use
680      * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
681      * positive non-zero maximum reporting latency.
682      * </p>
683      * <p>
684      * In the case of non-wake-up sensors, the events are only delivered while the Application
685      * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details.
686      * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the
687      * application registering to the sensor must hold a partial wake-lock to keep the AP awake,
688      * otherwise some events might be lost while the AP is asleep. Note that although events might
689      * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly
690      * deactivated by the application. Applications must unregister their {@code
691      * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power
692      * while the device is inactive.  See {@link #registerListener(SensorEventListener, Sensor, int,
693      * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events
694      * might be lost.
695      * </p>
696      * <p>
697      * In the case of wake-up sensors, each event generated by the sensor will cause the AP to
698      * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up
699      * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check
700      * whether a sensor is a wake-up sensor. See
701      * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to
702      * reduce the power impact of registering to wake-up sensors.
703      * </p>
704      * <p class="note">
705      * Note: Don't use this method with one-shot trigger sensors such as
706      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
707      * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use
708      * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor.
709      * </p>
710      *
711      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
712      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
713      * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
714      *            delivered at. This is only a hint to the system. Events may be received faster or
715      *            slower than the specified rate. Usually events are received faster. The value must
716      *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
717      *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay
718      *            between events in microseconds. Specifying the delay in microseconds only works
719      *            from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of
720      *            the {@code SENSOR_DELAY_*} constants.
721      * @return <code>true</code> if the sensor is supported and successfully enabled.
722      * @see #registerListener(SensorEventListener, Sensor, int, Handler)
723      * @see #unregisterListener(SensorEventListener)
724      * @see #unregisterListener(SensorEventListener, Sensor)
725      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs)726     public boolean registerListener(SensorEventListener listener, Sensor sensor,
727             int samplingPeriodUs) {
728         return registerListener(listener, sensor, samplingPeriodUs, null);
729     }
730 
731     /**
732      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
733      * sensor at the given sampling frequency and the given maximum reporting latency.
734      * <p>
735      * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but
736      * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The
737      * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once
738      * one of the events in the FIFO needs to be reported, all of the events in the FIFO are
739      * reported sequentially. This means that some events will be reported before the maximum
740      * reporting latency has elapsed.
741      * </p><p>
742      * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to
743      * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be
744      * delivered as soon as possible.
745      * </p><p>
746      * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call
747      * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}.
748      * </p><p>
749      * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of
750      * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the
751      * AP can switch to a lower power state while the sensor is capturing the data. This is
752      * especially important when registering to wake-up sensors, for which each interrupt causes the
753      * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more
754      * information on wake-up sensors.
755      * </p>
756      * <p class="note">
757      * </p>
758      * Note: Don't use this method with one-shot trigger sensors such as
759      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
760      * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
761      *
762      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
763      *            that will receive the sensor events. If the application is interested in receiving
764      *            flush complete notifications, it should register with
765      *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
766      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
767      * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
768      *            This is only a hint to the system. Events may be received faster or slower than
769      *            the specified rate. Usually events are received faster. Can be one of
770      *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
771      *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
772      *            microseconds.
773      * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
774      *            being reported to the application. A large value allows reducing the power
775      *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
776      *            events are delivered as soon as they are available, which is equivalent to calling
777      *            {@link #registerListener(SensorEventListener, Sensor, int)}.
778      * @return <code>true</code> if the sensor is supported and successfully enabled.
779      * @see #registerListener(SensorEventListener, Sensor, int)
780      * @see #unregisterListener(SensorEventListener)
781      * @see #flush(SensorEventListener)
782      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs)783     public boolean registerListener(SensorEventListener listener, Sensor sensor,
784             int samplingPeriodUs, int maxReportLatencyUs) {
785         int delay = getDelay(samplingPeriodUs);
786         return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
787     }
788 
789     /**
790      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
791      * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
792      * power consumption, applications can use
793      * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
794      * positive non-zero maximum reporting latency.
795      * <p class="note">
796      * </p>
797      * Note: Don't use this method with a one shot trigger sensor such as
798      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
799      * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
800      *
801      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
802      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
803      * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
804      *            delivered at. This is only a hint to the system. Events may be received faster or
805      *            slower than the specified rate. Usually events are received faster. The value must
806      *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
807      *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired
808      *            delay between events in microseconds. Specifying the delay in microseconds only
809      *            works from Android 2.3 (API level 9) onwards. For earlier releases, you must use
810      *            one of the {@code SENSOR_DELAY_*} constants.
811      * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
812      *            sensor events} will be delivered to.
813      * @return <code>true</code> if the sensor is supported and successfully enabled.
814      * @see #registerListener(SensorEventListener, Sensor, int)
815      * @see #unregisterListener(SensorEventListener)
816      * @see #unregisterListener(SensorEventListener, Sensor)
817      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, Handler handler)818     public boolean registerListener(SensorEventListener listener, Sensor sensor,
819             int samplingPeriodUs, Handler handler) {
820         int delay = getDelay(samplingPeriodUs);
821         return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
822     }
823 
824     /**
825      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
826      * sensor at the given sampling frequency and the given maximum reporting latency.
827      *
828      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
829      *            that will receive the sensor events. If the application is interested in receiving
830      *            flush complete notifications, it should register with
831      *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
832      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
833      * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
834      *            This is only a hint to the system. Events may be received faster or slower than
835      *            the specified rate. Usually events are received faster. Can be one of
836      *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
837      *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
838      *            microseconds.
839      * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
840      *            being reported to the application. A large value allows reducing the power
841      *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
842      *            events are delivered as soon as they are available, which is equivalent to calling
843      *            {@link #registerListener(SensorEventListener, Sensor, int)}.
844      * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
845      *            sensor events} will be delivered to.
846      * @return <code>true</code> if the sensor is supported and successfully enabled.
847      * @see #registerListener(SensorEventListener, Sensor, int, int)
848      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs, Handler handler)849     public boolean registerListener(SensorEventListener listener, Sensor sensor,
850             int samplingPeriodUs, int maxReportLatencyUs, Handler handler) {
851         int delayUs = getDelay(samplingPeriodUs);
852         return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
853     }
854 
855     /** @hide */
registerListenerImpl(SensorEventListener listener, Sensor sensor, int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags)856     protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
857             int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
858 
859 
860     /**
861      * Flushes the FIFO of all the sensors registered for this listener. If there are events
862      * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
863      * expired. Events are returned in the usual way through the SensorEventListener.
864      * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
865      * returns immediately.
866      * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
867      * after all the events in the batch at the time of calling this method have been delivered
868      * successfully. If the hardware doesn't support flush, it still returns true and a trivial
869      * flush complete event is sent after the current event for all the clients registered for this
870      * sensor.
871      *
872      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
873      *        which was previously used in a registerListener call.
874      * @return <code>true</code> if the flush is initiated successfully on all the sensors
875      *         registered for this listener, false if no sensor is previously registered for this
876      *         listener or flush on one of the sensors fails.
877      * @see #registerListener(SensorEventListener, Sensor, int, int)
878      * @throws IllegalArgumentException when listener is null.
879      */
flush(SensorEventListener listener)880     public boolean flush(SensorEventListener listener) {
881         return flushImpl(listener);
882     }
883 
884     /** @hide */
flushImpl(SensorEventListener listener)885     protected abstract boolean flushImpl(SensorEventListener listener);
886 
887 
888     /**
889      * Create a sensor direct channel backed by shared memory wrapped in MemoryFile object.
890      *
891      * The resulting channel can be used for delivering sensor events to native code, other
892      * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
893      * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
894      * and cares about sensor event latency.
895      *
896      * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
897      * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
898      * to free up resource in sensor system associated with the direct channel.
899      *
900      * @param mem A {@link android.os.MemoryFile} shared memory object.
901      * @return A {@link android.hardware.SensorDirectChannel} object.
902      * @throws NullPointerException when mem is null.
903      * @throws UncheckedIOException if not able to create channel.
904      * @see SensorDirectChannel#close()
905      * @see #configureDirectChannel(SensorDirectChannel, Sensor, int)
906      */
createDirectChannel(MemoryFile mem)907     public SensorDirectChannel createDirectChannel(MemoryFile mem) {
908         return createDirectChannelImpl(mem, null);
909     }
910 
911     /**
912      * Create a sensor direct channel backed by shared memory wrapped in HardwareBuffer object.
913      *
914      * The resulting channel can be used for delivering sensor events to native code, other
915      * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
916      * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
917      * and cares about sensor event latency.
918      *
919      * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
920      * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
921      * to free up resource in sensor system associated with the direct channel.
922      *
923      * @param mem A {@link android.hardware.HardwareBuffer} shared memory object.
924      * @return A {@link android.hardware.SensorDirectChannel} object.
925      * @throws NullPointerException when mem is null.
926      * @throws UncheckedIOException if not able to create channel.
927      * @see SensorDirectChannel#close()
928      * @see #configureDirectChannel(SensorDirectChannel, Sensor, int)
929      */
createDirectChannel(HardwareBuffer mem)930     public SensorDirectChannel createDirectChannel(HardwareBuffer mem) {
931         return createDirectChannelImpl(null, mem);
932     }
933 
934     /** @hide */
createDirectChannelImpl( MemoryFile memoryFile, HardwareBuffer hardwareBuffer)935     protected abstract SensorDirectChannel createDirectChannelImpl(
936             MemoryFile memoryFile, HardwareBuffer hardwareBuffer);
937 
938     /** @hide */
destroyDirectChannel(SensorDirectChannel channel)939     void destroyDirectChannel(SensorDirectChannel channel) {
940         destroyDirectChannelImpl(channel);
941     }
942 
943     /** @hide */
destroyDirectChannelImpl(SensorDirectChannel channel)944     protected abstract void destroyDirectChannelImpl(SensorDirectChannel channel);
945 
946     /** @removed */
947     @Deprecated
configureDirectChannel(SensorDirectChannel channel, Sensor sensor, int rateLevel)948     public int configureDirectChannel(SensorDirectChannel channel, Sensor sensor, int rateLevel) {
949         return configureDirectChannelImpl(channel, sensor, rateLevel);
950     }
951 
952     /** @hide */
configureDirectChannelImpl( SensorDirectChannel channel, Sensor s, int rate)953     protected abstract int configureDirectChannelImpl(
954             SensorDirectChannel channel, Sensor s, int rate);
955 
956     /**
957      * Used for receiving notifications from the SensorManager when dynamic sensors are connected or
958      * disconnected.
959      */
960     public abstract static class DynamicSensorCallback {
961         /**
962          * Called when there is a dynamic sensor being connected to the system.
963          *
964          * @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}.
965          */
onDynamicSensorConnected(Sensor sensor)966         public void onDynamicSensorConnected(Sensor sensor) {}
967 
968         /**
969          * Called when there is a dynamic sensor being disconnected from the system.
970          *
971          * @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}.
972          */
onDynamicSensorDisconnected(Sensor sensor)973         public void onDynamicSensorDisconnected(Sensor sensor) {}
974     }
975 
976 
977     /**
978      * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
979      * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
980      * registration with the already registered callback object will have no additional effect.
981      *
982      * @param callback An object that implements the
983      *        {@link android.hardware.SensorManager.DynamicSensorCallback
984      *        DynamicSensorCallback}
985      *        interface for receiving callbacks.
986      * @see #addDynamicSensorCallback(DynamicSensorCallback, Handler)
987      *
988      * @throws IllegalArgumentException when callback is null.
989      */
registerDynamicSensorCallback(DynamicSensorCallback callback)990     public void registerDynamicSensorCallback(DynamicSensorCallback callback) {
991         registerDynamicSensorCallback(callback, null);
992     }
993 
994     /**
995      * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
996      * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
997      * registration with the already registered callback object will have no additional effect.
998      *
999      * @param callback An object that implements the
1000      *        {@link android.hardware.SensorManager.DynamicSensorCallback
1001      *        DynamicSensorCallback} interface for receiving callbacks.
1002      * @param handler The {@link android.os.Handler Handler} the {@link
1003      *        android.hardware.SensorManager.DynamicSensorCallback
1004      *        sensor connection events} will be delivered to.
1005      *
1006      * @throws IllegalArgumentException when callback is null.
1007      */
registerDynamicSensorCallback( DynamicSensorCallback callback, Handler handler)1008     public void registerDynamicSensorCallback(
1009             DynamicSensorCallback callback, Handler handler) {
1010         registerDynamicSensorCallbackImpl(callback, handler);
1011     }
1012 
1013     /**
1014      * Remove a {@link android.hardware.SensorManager.DynamicSensorCallback
1015      * DynamicSensorCallback} to stop sending dynamic sensor connection events to that
1016      * callback.
1017      *
1018      * @param callback An object that implements the
1019      *        {@link android.hardware.SensorManager.DynamicSensorCallback
1020      *        DynamicSensorCallback}
1021      *        interface for receiving callbacks.
1022      */
unregisterDynamicSensorCallback(DynamicSensorCallback callback)1023     public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) {
1024         unregisterDynamicSensorCallbackImpl(callback);
1025     }
1026 
1027     /**
1028      * Tell if dynamic sensor discovery feature is supported by system.
1029      *
1030      * @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code>
1031      * otherwise.
1032      */
isDynamicSensorDiscoverySupported()1033     public boolean isDynamicSensorDiscoverySupported() {
1034         List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META);
1035         return sensors.size() > 0;
1036     }
1037 
1038     /** @hide */
registerDynamicSensorCallbackImpl( DynamicSensorCallback callback, Handler handler)1039     protected abstract void registerDynamicSensorCallbackImpl(
1040             DynamicSensorCallback callback, Handler handler);
1041 
1042     /** @hide */
unregisterDynamicSensorCallbackImpl( DynamicSensorCallback callback)1043     protected abstract void unregisterDynamicSensorCallbackImpl(
1044             DynamicSensorCallback callback);
1045 
1046     /**
1047      * <p>
1048      * Computes the inclination matrix <b>I</b> as well as the rotation matrix
1049      * <b>R</b> transforming a vector from the device coordinate system to the
1050      * world's coordinate system which is defined as a direct orthonormal basis,
1051      * where:
1052      * </p>
1053      *
1054      * <ul>
1055      * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
1056      * the ground at the device's current location and roughly points East).</li>
1057      * <li>Y is tangential to the ground at the device's current location and
1058      * points towards the magnetic North Pole.</li>
1059      * <li>Z points towards the sky and is perpendicular to the ground.</li>
1060      * </ul>
1061      *
1062      * <p>
1063      * <center><img src="../../../images/axis_globe.png"
1064      * alt="World coordinate-system diagram." border="0" /></center>
1065      * </p>
1066      *
1067      * <p>
1068      * <hr>
1069      * <p>
1070      * By definition:
1071      * <p>
1072      * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1073      * <p>
1074      * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
1075      * geomagnetic field)
1076      * <p>
1077      * <b>R</b> is the identity matrix when the device is aligned with the
1078      * world's coordinate system, that is, when the device's X axis points
1079      * toward East, the Y axis points to the North Pole and the device is facing
1080      * the sky.
1081      *
1082      * <p>
1083      * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
1084      * the same coordinate space as gravity (the world's coordinate space).
1085      * <b>I</b> is a simple rotation around the X axis. The inclination angle in
1086      * radians can be computed with {@link #getInclination}.
1087      * <hr>
1088      *
1089      * <p>
1090      * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
1091      * on the length of the passed array:
1092      * <p>
1093      * <u>If the array length is 16:</u>
1094      *
1095      * <pre>
1096      *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1097      *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1098      *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1099      *   \  M[12]   M[13]   M[14]   M[15]  /
1100      *</pre>
1101      *
1102      * This matrix is ready to be used by OpenGL ES's
1103      * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1104      * glLoadMatrixf(float[], int)}.
1105      * <p>
1106      * Note that because OpenGL matrices are column-major matrices you must
1107      * transpose the matrix before using it. However, since the matrix is a
1108      * rotation matrix, its transpose is also its inverse, conveniently, it is
1109      * often the inverse of the rotation that is needed for rendering; it can
1110      * therefore be used with OpenGL ES directly.
1111      * <p>
1112      * Also note that the returned matrices always have this form:
1113      *
1114      * <pre>
1115      *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1116      *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1117      *   |  M[ 8]   M[ 9]   M[10]   0  |
1118      *   \      0       0       0   1  /
1119      *</pre>
1120      *
1121      * <p>
1122      * <u>If the array length is 9:</u>
1123      *
1124      * <pre>
1125      *   /  M[ 0]   M[ 1]   M[ 2]  \
1126      *   |  M[ 3]   M[ 4]   M[ 5]  |
1127      *   \  M[ 6]   M[ 7]   M[ 8]  /
1128      *</pre>
1129      *
1130      * <hr>
1131      * <p>
1132      * The inverse of each matrix can be computed easily by taking its
1133      * transpose.
1134      *
1135      * <p>
1136      * The matrices returned by this function are meaningful only when the
1137      * device is not free-falling and it is not close to the magnetic north. If
1138      * the device is accelerating, or placed into a strong magnetic field, the
1139      * returned matrices may be inaccurate.
1140      *
1141      * @param R
1142      *        is an array of 9 floats holding the rotation matrix <b>R</b> when
1143      *        this function returns. R can be null.
1144      *        <p>
1145      *
1146      * @param I
1147      *        is an array of 9 floats holding the rotation matrix <b>I</b> when
1148      *        this function returns. I can be null.
1149      *        <p>
1150      *
1151      * @param gravity
1152      *        is an array of 3 floats containing the gravity vector expressed in
1153      *        the device's coordinate. You can simply use the
1154      *        {@link android.hardware.SensorEvent#values values} returned by a
1155      *        {@link android.hardware.SensorEvent SensorEvent} of a
1156      *        {@link android.hardware.Sensor Sensor} of type
1157      *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
1158      *        TYPE_ACCELEROMETER}.
1159      *        <p>
1160      *
1161      * @param geomagnetic
1162      *        is an array of 3 floats containing the geomagnetic vector
1163      *        expressed in the device's coordinate. You can simply use the
1164      *        {@link android.hardware.SensorEvent#values values} returned by a
1165      *        {@link android.hardware.SensorEvent SensorEvent} of a
1166      *        {@link android.hardware.Sensor Sensor} of type
1167      *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
1168      *        TYPE_MAGNETIC_FIELD}.
1169      *
1170      * @return <code>true</code> on success, <code>false</code> on failure (for
1171      *         instance, if the device is in free fall). Free fall is defined as
1172      *         condition when the magnitude of the gravity is less than 1/10 of
1173      *         the nominal value. On failure the output matrices are not modified.
1174      *
1175      * @see #getInclination(float[])
1176      * @see #getOrientation(float[], float[])
1177      * @see #remapCoordinateSystem(float[], int, int, float[])
1178      */
1179 
getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic)1180     public static boolean getRotationMatrix(float[] R, float[] I,
1181             float[] gravity, float[] geomagnetic) {
1182         // TODO: move this to native code for efficiency
1183         float Ax = gravity[0];
1184         float Ay = gravity[1];
1185         float Az = gravity[2];
1186 
1187         final float normsqA = (Ax * Ax + Ay * Ay + Az * Az);
1188         final float g = 9.81f;
1189         final float freeFallGravitySquared = 0.01f * g * g;
1190         if (normsqA < freeFallGravitySquared) {
1191             // gravity less than 10% of normal value
1192             return false;
1193         }
1194 
1195         final float Ex = geomagnetic[0];
1196         final float Ey = geomagnetic[1];
1197         final float Ez = geomagnetic[2];
1198         float Hx = Ey * Az - Ez * Ay;
1199         float Hy = Ez * Ax - Ex * Az;
1200         float Hz = Ex * Ay - Ey * Ax;
1201         final float normH = (float) Math.sqrt(Hx * Hx + Hy * Hy + Hz * Hz);
1202 
1203         if (normH < 0.1f) {
1204             // device is close to free fall (or in space?), or close to
1205             // magnetic north pole. Typical values are  > 100.
1206             return false;
1207         }
1208         final float invH = 1.0f / normH;
1209         Hx *= invH;
1210         Hy *= invH;
1211         Hz *= invH;
1212         final float invA = 1.0f / (float) Math.sqrt(Ax * Ax + Ay * Ay + Az * Az);
1213         Ax *= invA;
1214         Ay *= invA;
1215         Az *= invA;
1216         final float Mx = Ay * Hz - Az * Hy;
1217         final float My = Az * Hx - Ax * Hz;
1218         final float Mz = Ax * Hy - Ay * Hx;
1219         if (R != null) {
1220             if (R.length == 9) {
1221                 R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1222                 R[3] = Mx;     R[4] = My;     R[5] = Mz;
1223                 R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1224             } else if (R.length == 16) {
1225                 R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1226                 R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1227                 R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1228                 R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1229             }
1230         }
1231         if (I != null) {
1232             // compute the inclination matrix by projecting the geomagnetic
1233             // vector onto the Z (gravity) and X (horizontal component
1234             // of geomagnetic vector) axes.
1235             final float invE = 1.0f / (float) Math.sqrt(Ex * Ex + Ey * Ey + Ez * Ez);
1236             final float c = (Ex * Mx + Ey * My + Ez * Mz) * invE;
1237             final float s = (Ex * Ax + Ey * Ay + Ez * Az) * invE;
1238             if (I.length == 9) {
1239                 I[0] = 1;     I[1] = 0;     I[2] = 0;
1240                 I[3] = 0;     I[4] = c;     I[5] = s;
1241                 I[6] = 0;     I[7] = -s;     I[8] = c;
1242             } else if (I.length == 16) {
1243                 I[0] = 1;     I[1] = 0;     I[2] = 0;
1244                 I[4] = 0;     I[5] = c;     I[6] = s;
1245                 I[8] = 0;     I[9] = -s;     I[10] = c;
1246                 I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1247                 I[15] = 1;
1248             }
1249         }
1250         return true;
1251     }
1252 
1253     /**
1254      * Computes the geomagnetic inclination angle in radians from the
1255      * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1256      *
1257      * @param I
1258      *        inclination matrix see {@link #getRotationMatrix}.
1259      *
1260      * @return The geomagnetic inclination angle in radians.
1261      *
1262      * @see #getRotationMatrix(float[], float[], float[], float[])
1263      * @see #getOrientation(float[], float[])
1264      * @see GeomagneticField
1265      *
1266      */
getInclination(float[] I)1267     public static float getInclination(float[] I) {
1268         if (I.length == 9) {
1269             return (float) Math.atan2(I[5], I[4]);
1270         } else {
1271             return (float) Math.atan2(I[6], I[5]);
1272         }
1273     }
1274 
1275     /**
1276      * <p>
1277      * Rotates the supplied rotation matrix so it is expressed in a different
1278      * coordinate system. This is typically used when an application needs to
1279      * compute the three orientation angles of the device (see
1280      * {@link #getOrientation}) in a different coordinate system.
1281      * </p>
1282      *
1283      * <p>
1284      * When the rotation matrix is used for drawing (for instance with OpenGL
1285      * ES), it usually <b>doesn't need</b> to be transformed by this function,
1286      * unless the screen is physically rotated, in which case you can use
1287      * {@link android.view.Display#getRotation() Display.getRotation()} to
1288      * retrieve the current rotation of the screen. Note that because the user
1289      * is generally free to rotate their screen, you often should consider the
1290      * rotation in deciding the parameters to use here.
1291      * </p>
1292      *
1293      * <p>
1294      * <u>Examples:</u>
1295      * <p>
1296      *
1297      * <ul>
1298      * <li>Using the camera (Y axis along the camera's axis) for an augmented
1299      * reality application where the rotation angles are needed:</li>
1300      *
1301      * <p>
1302      * <ul>
1303      * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1304      * </ul>
1305      * </p>
1306      *
1307      * <li>Using the device as a mechanical compass when rotation is
1308      * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1309      *
1310      * <p>
1311      * <ul>
1312      * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1313      * </ul>
1314      * </p>
1315      *
1316      * Beware of the above example. This call is needed only to account for a
1317      * rotation from its natural orientation when calculating the rotation
1318      * angles (see {@link #getOrientation}). If the rotation matrix is also used
1319      * for rendering, it may not need to be transformed, for instance if your
1320      * {@link android.app.Activity Activity} is running in landscape mode.
1321      * </ul>
1322      *
1323      * <p>
1324      * Since the resulting coordinate system is orthonormal, only two axes need
1325      * to be specified.
1326      *
1327      * @param inR
1328      *        the rotation matrix to be transformed. Usually it is the matrix
1329      *        returned by {@link #getRotationMatrix}.
1330      *
1331      * @param X
1332      *        defines the axis of the new cooridinate system that coincide with the X axis of the
1333      *        original coordinate system.
1334      *
1335      * @param Y
1336      *        defines the axis of the new cooridinate system that coincide with the Y axis of the
1337      *        original coordinate system.
1338      *
1339      * @param outR
1340      *        the transformed rotation matrix. inR and outR should not be the same
1341      *        array.
1342      *
1343      * @return <code>true</code> on success. <code>false</code> if the input
1344      *         parameters are incorrect, for instance if X and Y define the same
1345      *         axis. Or if inR and outR don't have the same length.
1346      *
1347      * @see #getRotationMatrix(float[], float[], float[], float[])
1348      */
1349 
remapCoordinateSystem(float[] inR, int X, int Y, float[] outR)1350     public static boolean remapCoordinateSystem(float[] inR, int X, int Y, float[] outR) {
1351         if (inR == outR) {
1352             final float[] temp = sTempMatrix;
1353             synchronized (temp) {
1354                 // we don't expect to have a lot of contention
1355                 if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1356                     final int size = outR.length;
1357                     for (int i = 0; i < size; i++) {
1358                         outR[i] = temp[i];
1359                     }
1360                     return true;
1361                 }
1362             }
1363         }
1364         return remapCoordinateSystemImpl(inR, X, Y, outR);
1365     }
1366 
remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR)1367     private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR) {
1368         /*
1369          * X and Y define a rotation matrix 'r':
1370          *
1371          *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1372          *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1373          *                              r[0] ^ r[1]
1374          *
1375          * where the 3rd line is the vector product of the first 2 lines
1376          *
1377          */
1378 
1379         final int length = outR.length;
1380         if (inR.length != length) {
1381             return false;   // invalid parameter
1382         }
1383         if ((X & 0x7C) != 0 || (Y & 0x7C) != 0) {
1384             return false;   // invalid parameter
1385         }
1386         if (((X & 0x3) == 0) || ((Y & 0x3) == 0)) {
1387             return false;   // no axis specified
1388         }
1389         if ((X & 0x3) == (Y & 0x3)) {
1390             return false;   // same axis specified
1391         }
1392 
1393         // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1394         // this can be calculated by exclusive-or'ing X and Y; except for
1395         // the sign inversion (+/-) which is calculated below.
1396         int Z = X ^ Y;
1397 
1398         // extract the axis (remove the sign), offset in the range 0 to 2.
1399         final int x = (X & 0x3) - 1;
1400         final int y = (Y & 0x3) - 1;
1401         final int z = (Z & 0x3) - 1;
1402 
1403         // compute the sign of Z (whether it needs to be inverted)
1404         final int axis_y = (z + 1) % 3;
1405         final int axis_z = (z + 2) % 3;
1406         if (((x ^ axis_y) | (y ^ axis_z)) != 0) {
1407             Z ^= 0x80;
1408         }
1409 
1410         final boolean sx = (X >= 0x80);
1411         final boolean sy = (Y >= 0x80);
1412         final boolean sz = (Z >= 0x80);
1413 
1414         // Perform R * r, in avoiding actual muls and adds.
1415         final int rowLength = ((length == 16) ? 4 : 3);
1416         for (int j = 0; j < 3; j++) {
1417             final int offset = j * rowLength;
1418             for (int i = 0; i < 3; i++) {
1419                 if (x == i)   outR[offset + i] = sx ? -inR[offset + 0] : inR[offset + 0];
1420                 if (y == i)   outR[offset + i] = sy ? -inR[offset + 1] : inR[offset + 1];
1421                 if (z == i)   outR[offset + i] = sz ? -inR[offset + 2] : inR[offset + 2];
1422             }
1423         }
1424         if (length == 16) {
1425             outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1426             outR[15] = 1;
1427         }
1428         return true;
1429     }
1430 
1431     /**
1432      * Computes the device's orientation based on the rotation matrix.
1433      * <p>
1434      * When it returns, the array values are as follows:
1435      * <ul>
1436      * <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis.
1437      *                This value represents the angle between the device's y
1438      *                axis and the magnetic north pole. When facing north, this
1439      *                angle is 0, when facing south, this angle is &pi;.
1440      *                Likewise, when facing east, this angle is &pi;/2, and
1441      *                when facing west, this angle is -&pi;/2. The range of
1442      *                values is -&pi; to &pi;.</li>
1443      * <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis.
1444      *                This value represents the angle between a plane parallel
1445      *                to the device's screen and a plane parallel to the ground.
1446      *                Assuming that the bottom edge of the device faces the
1447      *                user and that the screen is face-up, tilting the top edge
1448      *                of the device toward the ground creates a positive pitch
1449      *                angle. The range of values is -&pi; to &pi;.</li>
1450      * <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This
1451      *                value represents the angle between a plane perpendicular
1452      *                to the device's screen and a plane perpendicular to the
1453      *                ground. Assuming that the bottom edge of the device faces
1454      *                the user and that the screen is face-up, tilting the left
1455      *                edge of the device toward the ground creates a positive
1456      *                roll angle. The range of values is -&pi;/2 to &pi;/2.</li>
1457      * </ul>
1458      * <p>
1459      * Applying these three rotations in the azimuth, pitch, roll order
1460      * transforms an identity matrix to the rotation matrix passed into this
1461      * method. Also, note that all three orientation angles are expressed in
1462      * <b>radians</b>.
1463      *
1464      * @param R
1465      *        rotation matrix see {@link #getRotationMatrix}.
1466      *
1467      * @param values
1468      *        an array of 3 floats to hold the result.
1469      *
1470      * @return The array values passed as argument.
1471      *
1472      * @see #getRotationMatrix(float[], float[], float[], float[])
1473      * @see GeomagneticField
1474      */
getOrientation(float[] R, float[] values)1475     public static float[] getOrientation(float[] R, float[] values) {
1476         /*
1477          * 4x4 (length=16) case:
1478          *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1479          *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1480          *   |  R[ 8]   R[ 9]   R[10]   0  |
1481          *   \      0       0       0   1  /
1482          *
1483          * 3x3 (length=9) case:
1484          *   /  R[ 0]   R[ 1]   R[ 2]  \
1485          *   |  R[ 3]   R[ 4]   R[ 5]  |
1486          *   \  R[ 6]   R[ 7]   R[ 8]  /
1487          *
1488          */
1489         if (R.length == 9) {
1490             values[0] = (float) Math.atan2(R[1], R[4]);
1491             values[1] = (float) Math.asin(-R[7]);
1492             values[2] = (float) Math.atan2(-R[6], R[8]);
1493         } else {
1494             values[0] = (float) Math.atan2(R[1], R[5]);
1495             values[1] = (float) Math.asin(-R[9]);
1496             values[2] = (float) Math.atan2(-R[8], R[10]);
1497         }
1498 
1499         return values;
1500     }
1501 
1502     /**
1503      * Computes the Altitude in meters from the atmospheric pressure and the
1504      * pressure at sea level.
1505      * <p>
1506      * Typically the atmospheric pressure is read from a
1507      * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1508      * known, usually it can be retrieved from airport databases in the
1509      * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
1510      * as an approximation, but absolute altitudes won't be accurate.
1511      * </p>
1512      * <p>
1513      * To calculate altitude differences, you must calculate the difference
1514      * between the altitudes at both points. If you don't know the altitude
1515      * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
1516      * which will give good results considering the range of pressure typically
1517      * involved.
1518      * </p>
1519      * <p>
1520      * <code><ul>
1521      *  float altitude_difference =
1522      *      getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
1523      *      - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
1524      * </ul></code>
1525      * </p>
1526      *
1527      * @param p0 pressure at sea level
1528      * @param p atmospheric pressure
1529      * @return Altitude in meters
1530      */
getAltitude(float p0, float p)1531     public static float getAltitude(float p0, float p) {
1532         final float coef = 1.0f / 5.255f;
1533         return 44330.0f * (1.0f - (float) Math.pow(p / p0, coef));
1534     }
1535 
1536     /** Helper function to compute the angle change between two rotation matrices.
1537      *  Given a current rotation matrix (R) and a previous rotation matrix
1538      *  (prevR) computes the intrinsic rotation around the z, x, and y axes which
1539      *  transforms prevR to R.
1540      *  outputs a 3 element vector containing the z, x, and y angle
1541      *  change at indexes 0, 1, and 2 respectively.
1542      * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
1543      * depending on the length of the passed array:
1544      * <p>If the array length is 9, then the array elements represent this matrix
1545      * <pre>
1546      *   /  R[ 0]   R[ 1]   R[ 2]   \
1547      *   |  R[ 3]   R[ 4]   R[ 5]   |
1548      *   \  R[ 6]   R[ 7]   R[ 8]   /
1549      *</pre>
1550      * <p>If the array length is 16, then the array elements represent this matrix
1551      * <pre>
1552      *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
1553      *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
1554      *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
1555      *   \  R[12]   R[13]   R[14]   R[15]  /
1556      *</pre>
1557      *
1558      * See {@link #getOrientation} for more detailed definition of the output.
1559      *
1560      * @param R current rotation matrix
1561      * @param prevR previous rotation matrix
1562      * @param angleChange an an array of floats (z, x, and y) in which the angle change
1563      *        (in radians) is stored
1564      */
1565 
getAngleChange(float[] angleChange, float[] R, float[] prevR)1566     public static void getAngleChange(float[] angleChange, float[] R, float[] prevR) {
1567         float rd1 = 0, rd4 = 0, rd6 = 0, rd7 = 0, rd8 = 0;
1568         float ri0 = 0, ri1 = 0, ri2 = 0, ri3 = 0, ri4 = 0, ri5 = 0, ri6 = 0, ri7 = 0, ri8 = 0;
1569         float pri0 = 0, pri1 = 0, pri2 = 0, pri3 = 0, pri4 = 0;
1570         float pri5 = 0, pri6 = 0, pri7 = 0, pri8 = 0;
1571 
1572         if (R.length == 9) {
1573             ri0 = R[0];
1574             ri1 = R[1];
1575             ri2 = R[2];
1576             ri3 = R[3];
1577             ri4 = R[4];
1578             ri5 = R[5];
1579             ri6 = R[6];
1580             ri7 = R[7];
1581             ri8 = R[8];
1582         } else if (R.length == 16) {
1583             ri0 = R[0];
1584             ri1 = R[1];
1585             ri2 = R[2];
1586             ri3 = R[4];
1587             ri4 = R[5];
1588             ri5 = R[6];
1589             ri6 = R[8];
1590             ri7 = R[9];
1591             ri8 = R[10];
1592         }
1593 
1594         if (prevR.length == 9) {
1595             pri0 = prevR[0];
1596             pri1 = prevR[1];
1597             pri2 = prevR[2];
1598             pri3 = prevR[3];
1599             pri4 = prevR[4];
1600             pri5 = prevR[5];
1601             pri6 = prevR[6];
1602             pri7 = prevR[7];
1603             pri8 = prevR[8];
1604         } else if (prevR.length == 16) {
1605             pri0 = prevR[0];
1606             pri1 = prevR[1];
1607             pri2 = prevR[2];
1608             pri3 = prevR[4];
1609             pri4 = prevR[5];
1610             pri5 = prevR[6];
1611             pri6 = prevR[8];
1612             pri7 = prevR[9];
1613             pri8 = prevR[10];
1614         }
1615 
1616         // calculate the parts of the rotation difference matrix we need
1617         // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
1618 
1619         rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
1620         rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
1621         rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
1622         rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
1623         rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
1624 
1625         angleChange[0] = (float) Math.atan2(rd1, rd4);
1626         angleChange[1] = (float) Math.asin(-rd7);
1627         angleChange[2] = (float) Math.atan2(-rd6, rd8);
1628 
1629     }
1630 
1631     /** Helper function to convert a rotation vector to a rotation matrix.
1632      *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
1633      *  9  or 16 element rotation matrix in the array R.  R must have length 9 or 16.
1634      *  If R.length == 9, the following matrix is returned:
1635      * <pre>
1636      *   /  R[ 0]   R[ 1]   R[ 2]   \
1637      *   |  R[ 3]   R[ 4]   R[ 5]   |
1638      *   \  R[ 6]   R[ 7]   R[ 8]   /
1639      *</pre>
1640      * If R.length == 16, the following matrix is returned:
1641      * <pre>
1642      *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1643      *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1644      *   |  R[ 8]   R[ 9]   R[10]   0  |
1645      *   \  0       0       0       1  /
1646      *</pre>
1647      *  @param rotationVector the rotation vector to convert
1648      *  @param R an array of floats in which to store the rotation matrix
1649      */
getRotationMatrixFromVector(float[] R, float[] rotationVector)1650     public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
1651 
1652         float q0;
1653         float q1 = rotationVector[0];
1654         float q2 = rotationVector[1];
1655         float q3 = rotationVector[2];
1656 
1657         if (rotationVector.length >= 4) {
1658             q0 = rotationVector[3];
1659         } else {
1660             q0 = 1 - q1 * q1 - q2 * q2 - q3 * q3;
1661             q0 = (q0 > 0) ? (float) Math.sqrt(q0) : 0;
1662         }
1663 
1664         float sq_q1 = 2 * q1 * q1;
1665         float sq_q2 = 2 * q2 * q2;
1666         float sq_q3 = 2 * q3 * q3;
1667         float q1_q2 = 2 * q1 * q2;
1668         float q3_q0 = 2 * q3 * q0;
1669         float q1_q3 = 2 * q1 * q3;
1670         float q2_q0 = 2 * q2 * q0;
1671         float q2_q3 = 2 * q2 * q3;
1672         float q1_q0 = 2 * q1 * q0;
1673 
1674         if (R.length == 9) {
1675             R[0] = 1 - sq_q2 - sq_q3;
1676             R[1] = q1_q2 - q3_q0;
1677             R[2] = q1_q3 + q2_q0;
1678 
1679             R[3] = q1_q2 + q3_q0;
1680             R[4] = 1 - sq_q1 - sq_q3;
1681             R[5] = q2_q3 - q1_q0;
1682 
1683             R[6] = q1_q3 - q2_q0;
1684             R[7] = q2_q3 + q1_q0;
1685             R[8] = 1 - sq_q1 - sq_q2;
1686         } else if (R.length == 16) {
1687             R[0] = 1 - sq_q2 - sq_q3;
1688             R[1] = q1_q2 - q3_q0;
1689             R[2] = q1_q3 + q2_q0;
1690             R[3] = 0.0f;
1691 
1692             R[4] = q1_q2 + q3_q0;
1693             R[5] = 1 - sq_q1 - sq_q3;
1694             R[6] = q2_q3 - q1_q0;
1695             R[7] = 0.0f;
1696 
1697             R[8] = q1_q3 - q2_q0;
1698             R[9] = q2_q3 + q1_q0;
1699             R[10] = 1 - sq_q1 - sq_q2;
1700             R[11] = 0.0f;
1701 
1702             R[12] = R[13] = R[14] = 0.0f;
1703             R[15] = 1.0f;
1704         }
1705     }
1706 
1707     /** Helper function to convert a rotation vector to a normalized quaternion.
1708      *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
1709      *  quaternion in the array Q.  The quaternion is stored as [w, x, y, z]
1710      *  @param rv the rotation vector to convert
1711      *  @param Q an array of floats in which to store the computed quaternion
1712      */
getQuaternionFromVector(float[] Q, float[] rv)1713     public static void getQuaternionFromVector(float[] Q, float[] rv) {
1714         if (rv.length >= 4) {
1715             Q[0] = rv[3];
1716         } else {
1717             Q[0] = 1 - rv[0] * rv[0] - rv[1] * rv[1] - rv[2] * rv[2];
1718             Q[0] = (Q[0] > 0) ? (float) Math.sqrt(Q[0]) : 0;
1719         }
1720         Q[1] = rv[0];
1721         Q[2] = rv[1];
1722         Q[3] = rv[2];
1723     }
1724 
1725     /**
1726      * Requests receiving trigger events for a trigger sensor.
1727      *
1728      * <p>
1729      * When the sensor detects a trigger event condition, such as significant motion in
1730      * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
1731      * will be invoked once and then its request to receive trigger events will be canceled.
1732      * To continue receiving trigger events, the application must request to receive trigger
1733      * events again.
1734      * </p>
1735      *
1736      * @param listener The listener on which the
1737      *        {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
1738      * @param sensor The sensor to be enabled.
1739      *
1740      * @return true if the sensor was successfully enabled.
1741      *
1742      * @throws IllegalArgumentException when sensor is null or not a trigger sensor.
1743      */
requestTriggerSensor(TriggerEventListener listener, Sensor sensor)1744     public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1745         return requestTriggerSensorImpl(listener, sensor);
1746     }
1747 
1748     /**
1749      * @hide
1750      */
requestTriggerSensorImpl(TriggerEventListener listener, Sensor sensor)1751     protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
1752             Sensor sensor);
1753 
1754     /**
1755      * Cancels receiving trigger events for a trigger sensor.
1756      *
1757      * <p>
1758      * Note that a Trigger sensor will be auto disabled if
1759      * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
1760      * This method is provided in case the user wants to explicitly cancel the request
1761      * to receive trigger events.
1762      * </p>
1763      *
1764      * @param listener The listener on which the
1765      *        {@link TriggerEventListener#onTrigger(TriggerEvent)}
1766      *        is delivered.It should be the same as the one used
1767      *        in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
1768      * @param sensor The sensor for which the trigger request should be canceled.
1769      *        If null, it cancels receiving trigger for all sensors associated
1770      *        with the listener.
1771      *
1772      * @return true if successfully canceled.
1773      *
1774      * @throws IllegalArgumentException when sensor is a trigger sensor.
1775      */
cancelTriggerSensor(TriggerEventListener listener, Sensor sensor)1776     public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1777         return cancelTriggerSensorImpl(listener, sensor, true);
1778     }
1779 
1780     /**
1781      * @hide
1782      */
cancelTriggerSensorImpl(TriggerEventListener listener, Sensor sensor, boolean disable)1783     protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
1784             Sensor sensor, boolean disable);
1785 
1786 
1787     /**
1788      * For testing purposes only. Not for third party applications.
1789      *
1790      * Initialize data injection mode and create a client for data injection. SensorService should
1791      * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into
1792      * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called
1793      * through adb. Typically this is done using a host side test.  This mode is expected to be used
1794      * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input
1795      * from physical sensors and read sensor data that is injected from the test application. This
1796      * mode is used for testing vendor implementations for various algorithms like Rotation Vector,
1797      * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will
1798      * fail in those cases. Once this method succeeds, the test can call
1799      * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL.
1800      *
1801      * @param enable True to initialize a client in DATA_INJECTION mode.
1802      *               False to clean up the native resources.
1803      *
1804      * @return true if the HAL supports data injection and false
1805      *         otherwise.
1806      * @hide
1807      */
1808     @SystemApi
initDataInjection(boolean enable)1809     public boolean initDataInjection(boolean enable) {
1810         return initDataInjectionImpl(enable);
1811     }
1812 
1813     /**
1814      * @hide
1815      */
initDataInjectionImpl(boolean enable)1816     protected abstract boolean initDataInjectionImpl(boolean enable);
1817 
1818     /**
1819      * For testing purposes only. Not for third party applications.
1820      *
1821      * This method is used to inject raw sensor data into the HAL.  Call {@link
1822      * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This
1823      * method should be called only if a previous call to initDataInjection has been successful and
1824      * the HAL and SensorService are already opreating in data injection mode.
1825      *
1826      * @param sensor The sensor to inject.
1827      * @param values Sensor values to inject. The length of this
1828      *               array must be exactly equal to the number of
1829      *               values reported by the sensor type.
1830      * @param accuracy Accuracy of the sensor.
1831      * @param timestamp Sensor timestamp associated with the event.
1832      *
1833      * @return boolean True if the data injection succeeds, false
1834      *         otherwise.
1835      * @throws IllegalArgumentException when the sensor is null,
1836      *         data injection is not supported by the sensor, values
1837      *         are null, incorrect number of values for the sensor,
1838      *         sensor accuracy is incorrect or timestamps are
1839      *         invalid.
1840      * @hide
1841      */
1842     @SystemApi
injectSensorData(Sensor sensor, float[] values, int accuracy, long timestamp)1843     public boolean injectSensorData(Sensor sensor, float[] values, int accuracy,
1844                 long timestamp) {
1845         if (sensor == null) {
1846             throw new IllegalArgumentException("sensor cannot be null");
1847         }
1848         if (!sensor.isDataInjectionSupported()) {
1849             throw new IllegalArgumentException("sensor does not support data injection");
1850         }
1851         if (values == null) {
1852             throw new IllegalArgumentException("sensor data cannot be null");
1853         }
1854         int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M);
1855         if (values.length != expectedNumValues) {
1856             throw new  IllegalArgumentException("Wrong number of values for sensor "
1857                     + sensor.getName() + " actual=" + values.length + " expected="
1858                     + expectedNumValues);
1859         }
1860         if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) {
1861             throw new IllegalArgumentException("Invalid sensor accuracy");
1862         }
1863         if (timestamp <= 0) {
1864             throw new IllegalArgumentException("Negative or zero sensor timestamp");
1865         }
1866         return injectSensorDataImpl(sensor, values, accuracy, timestamp);
1867     }
1868 
1869     /**
1870      * @hide
1871      */
injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, long timestamp)1872     protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy,
1873                 long timestamp);
1874 
getLegacySensorManager()1875     private LegacySensorManager getLegacySensorManager() {
1876         synchronized (mSensorListByType) {
1877             if (mLegacySensorManager == null) {
1878                 Log.i(TAG, "This application is using deprecated SensorManager API which will "
1879                         + "be removed someday.  Please consider switching to the new API.");
1880                 mLegacySensorManager = new LegacySensorManager(this);
1881             }
1882             return mLegacySensorManager;
1883         }
1884     }
1885 
getDelay(int rate)1886     private static int getDelay(int rate) {
1887         int delay = -1;
1888         switch (rate) {
1889             case SENSOR_DELAY_FASTEST:
1890                 delay = 0;
1891                 break;
1892             case SENSOR_DELAY_GAME:
1893                 delay = 20000;
1894                 break;
1895             case SENSOR_DELAY_UI:
1896                 delay = 66667;
1897                 break;
1898             case SENSOR_DELAY_NORMAL:
1899                 delay = 200000;
1900                 break;
1901             default:
1902                 delay = rate;
1903                 break;
1904         }
1905         return delay;
1906     }
1907 
1908     /** @hide */
setOperationParameter(SensorAdditionalInfo parameter)1909     public boolean setOperationParameter(SensorAdditionalInfo parameter) {
1910         return setOperationParameterImpl(parameter);
1911     }
1912 
1913     /** @hide */
setOperationParameterImpl(SensorAdditionalInfo parameter)1914     protected abstract boolean setOperationParameterImpl(SensorAdditionalInfo parameter);
1915 }
1916