1 // gold.cc -- main linker functions
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31 
32 #include "options.h"
33 #include "target-select.h"
34 #include "debug.h"
35 #include "workqueue.h"
36 #include "dirsearch.h"
37 #include "readsyms.h"
38 #include "symtab.h"
39 #include "common.h"
40 #include "object.h"
41 #include "layout.h"
42 #include "reloc.h"
43 #include "defstd.h"
44 #include "plugin.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "incremental.h"
48 #include "timer.h"
49 
50 namespace gold
51 {
52 
53 class Object;
54 
55 const char* program_name;
56 
57 static Task*
58 process_incremental_input(Incremental_binary*, unsigned int, Input_objects*,
59 			  Symbol_table*, Layout*, Dirsearch*, Mapfile*,
60 			  Task_token*, Task_token*);
61 
62 void
gold_exit(Exit_status status)63 gold_exit(Exit_status status)
64 {
65   if (parameters != NULL
66       && parameters->options_valid()
67       && parameters->options().has_plugins())
68     parameters->options().plugins()->cleanup();
69   if (status != GOLD_OK && parameters != NULL && parameters->options_valid())
70     unlink_if_ordinary(parameters->options().output_file_name());
71   exit(status);
72 }
73 
74 void
gold_nomem()75 gold_nomem()
76 {
77   // We are out of memory, so try hard to print a reasonable message.
78   // Note that we don't try to translate this message, since the
79   // translation process itself will require memory.
80 
81   // LEN only exists to avoid a pointless warning when write is
82   // declared with warn_use_result, as when compiling with
83   // -D_USE_FORTIFY on GNU/Linux.  Casting to void does not appear to
84   // work, at least not with gcc 4.3.0.
85 
86   ssize_t len = write(2, program_name, strlen(program_name));
87   if (len >= 0)
88     {
89       const char* const s = ": out of memory\n";
90       len = write(2, s, strlen(s));
91     }
92   gold_exit(GOLD_ERR);
93 }
94 
95 // Handle an unreachable case.
96 
97 void
do_gold_unreachable(const char * filename,int lineno,const char * function)98 do_gold_unreachable(const char* filename, int lineno, const char* function)
99 {
100   fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
101 	  program_name, function, filename, lineno);
102   gold_exit(GOLD_ERR);
103 }
104 
105 // This class arranges to run the functions done in the middle of the
106 // link.  It is just a closure.
107 
108 class Middle_runner : public Task_function_runner
109 {
110  public:
Middle_runner(const General_options & options,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,Mapfile * mapfile)111   Middle_runner(const General_options& options,
112 		const Input_objects* input_objects,
113 		Symbol_table* symtab,
114 		Layout* layout, Mapfile* mapfile)
115     : options_(options), input_objects_(input_objects), symtab_(symtab),
116       layout_(layout), mapfile_(mapfile)
117   { }
118 
119   void
120   run(Workqueue*, const Task*);
121 
122  private:
123   const General_options& options_;
124   const Input_objects* input_objects_;
125   Symbol_table* symtab_;
126   Layout* layout_;
127   Mapfile* mapfile_;
128 };
129 
130 void
run(Workqueue * workqueue,const Task * task)131 Middle_runner::run(Workqueue* workqueue, const Task* task)
132 {
133   queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
134 		     this->layout_, workqueue, this->mapfile_);
135 }
136 
137 // This class arranges the tasks to process the relocs for garbage collection.
138 
139 class Gc_runner : public Task_function_runner
140 {
141   public:
Gc_runner(const General_options & options,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,Mapfile * mapfile)142    Gc_runner(const General_options& options,
143 	     const Input_objects* input_objects,
144 	     Symbol_table* symtab,
145 	     Layout* layout, Mapfile* mapfile)
146     : options_(options), input_objects_(input_objects), symtab_(symtab),
147       layout_(layout), mapfile_(mapfile)
148    { }
149 
150   void
151   run(Workqueue*, const Task*);
152 
153  private:
154   const General_options& options_;
155   const Input_objects* input_objects_;
156   Symbol_table* symtab_;
157   Layout* layout_;
158   Mapfile* mapfile_;
159 };
160 
161 void
run(Workqueue * workqueue,const Task * task)162 Gc_runner::run(Workqueue* workqueue, const Task* task)
163 {
164   queue_middle_gc_tasks(this->options_, task, this->input_objects_,
165 			this->symtab_, this->layout_, workqueue,
166 			this->mapfile_);
167 }
168 
169 // Queue up the initial set of tasks for this link job.
170 
171 void
queue_initial_tasks(const General_options & options,Dirsearch & search_path,const Command_line & cmdline,Workqueue * workqueue,Input_objects * input_objects,Symbol_table * symtab,Layout * layout,Mapfile * mapfile)172 queue_initial_tasks(const General_options& options,
173 		    Dirsearch& search_path,
174 		    const Command_line& cmdline,
175 		    Workqueue* workqueue, Input_objects* input_objects,
176 		    Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
177 {
178   if (cmdline.begin() == cmdline.end())
179     {
180       bool is_ok = false;
181       if (options.printed_version())
182 	is_ok = true;
183       if (options.print_output_format())
184 	{
185 	  print_output_format();
186 	  is_ok = true;
187 	}
188       if (is_ok)
189 	gold_exit(GOLD_OK);
190       gold_fatal(_("no input files"));
191     }
192 
193   int thread_count = options.thread_count_initial();
194   if (thread_count == 0)
195     thread_count = cmdline.number_of_input_files();
196   workqueue->set_thread_count(thread_count);
197 
198   // For incremental links, the base output file.
199   Incremental_binary* ibase = NULL;
200 
201   if (parameters->incremental_update())
202     {
203       Output_file* of = new Output_file(options.output_file_name());
204       if (of->open_base_file(options.incremental_base(), true))
205 	{
206 	  ibase = open_incremental_binary(of);
207 	  if (ibase != NULL
208 	      && ibase->check_inputs(cmdline, layout->incremental_inputs()))
209 	    ibase->init_layout(layout);
210 	  else
211 	    {
212 	      delete ibase;
213 	      ibase = NULL;
214 	      of->close();
215 	    }
216 	}
217       if (ibase == NULL)
218 	{
219 	  if (set_parameters_incremental_full())
220 	    gold_info(_("linking with --incremental-full"));
221 	  else
222 	    gold_fallback(_("restart link with --incremental-full"));
223 	}
224     }
225 
226   // Read the input files.  We have to add the symbols to the symbol
227   // table in order.  We do this by creating a separate blocker for
228   // each input file.  We associate the blocker with the following
229   // input file, to give us a convenient place to delete it.
230   Task_token* this_blocker = NULL;
231   if (ibase == NULL)
232     {
233       // Normal link.  Queue a Read_symbols task for each input file
234       // on the command line.
235       for (Command_line::const_iterator p = cmdline.begin();
236 	   p != cmdline.end();
237 	   ++p)
238 	{
239 	  Task_token* next_blocker = new Task_token(true);
240 	  next_blocker->add_blocker();
241 	  workqueue->queue(new Read_symbols(input_objects, symtab, layout,
242 					    &search_path, 0, mapfile, &*p, NULL,
243 					    NULL, this_blocker, next_blocker));
244 	  this_blocker = next_blocker;
245 	}
246     }
247   else
248     {
249       // Incremental update link.  Process the list of input files
250       // stored in the base file, and queue a task for each file:
251       // a Read_symbols task for a changed file, and an Add_symbols task
252       // for an unchanged file.  We need to mark all the space used by
253       // unchanged files before we can start any tasks running.
254       unsigned int input_file_count = ibase->input_file_count();
255       std::vector<Task*> tasks;
256       tasks.reserve(input_file_count);
257       for (unsigned int i = 0; i < input_file_count; ++i)
258 	{
259 	  Task_token* next_blocker = new Task_token(true);
260 	  next_blocker->add_blocker();
261 	  Task* t = process_incremental_input(ibase, i, input_objects, symtab,
262 					      layout, &search_path, mapfile,
263 					      this_blocker, next_blocker);
264 	  tasks.push_back(t);
265 	  this_blocker = next_blocker;
266 	}
267       // Now we can queue the tasks.
268       for (unsigned int i = 0; i < tasks.size(); i++)
269 	workqueue->queue(tasks[i]);
270     }
271 
272   if (options.has_plugins())
273     {
274       Task_token* next_blocker = new Task_token(true);
275       next_blocker->add_blocker();
276       workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
277 				       &search_path, mapfile, this_blocker,
278 				       next_blocker));
279       this_blocker = next_blocker;
280     }
281 
282   if (options.relocatable()
283       && (options.gc_sections() || options.icf_enabled()))
284     gold_error(_("cannot mix -r with --gc-sections or --icf"));
285 
286   if (options.gc_sections() || options.icf_enabled())
287     {
288       workqueue->queue(new Task_function(new Gc_runner(options,
289 						       input_objects,
290 						       symtab,
291 						       layout,
292 						       mapfile),
293 					 this_blocker,
294 					 "Task_function Gc_runner"));
295     }
296   else
297     {
298       workqueue->queue(new Task_function(new Middle_runner(options,
299 							   input_objects,
300 							   symtab,
301 							   layout,
302 							   mapfile),
303 					 this_blocker,
304 					 "Task_function Middle_runner"));
305     }
306 }
307 
308 // Process an incremental input file: if it is unchanged from the previous
309 // link, return a task to add its symbols from the base file's incremental
310 // info; if it has changed, return a normal Read_symbols task.  We create a
311 // task for every input file, if only to report the file for rebuilding the
312 // incremental info.
313 
314 static Task*
process_incremental_input(Incremental_binary * ibase,unsigned int input_file_index,Input_objects * input_objects,Symbol_table * symtab,Layout * layout,Dirsearch * search_path,Mapfile * mapfile,Task_token * this_blocker,Task_token * next_blocker)315 process_incremental_input(Incremental_binary* ibase,
316 			  unsigned int input_file_index,
317 			  Input_objects* input_objects,
318 			  Symbol_table* symtab,
319 			  Layout* layout,
320 			  Dirsearch* search_path,
321 			  Mapfile* mapfile,
322 			  Task_token* this_blocker,
323 			  Task_token* next_blocker)
324 {
325   const Incremental_binary::Input_reader* input_reader =
326       ibase->get_input_reader(input_file_index);
327   Incremental_input_type input_type = input_reader->type();
328 
329   // Get the input argument corresponding to this input file, matching on
330   // the argument serial number.  If the input file cannot be matched
331   // to an existing input argument, synthesize a new one.
332   const Input_argument* input_argument =
333       ibase->get_input_argument(input_file_index);
334   if (input_argument == NULL)
335     {
336       Input_file_argument file(input_reader->filename(),
337 			       Input_file_argument::INPUT_FILE_TYPE_FILE,
338 			       "", false, parameters->options());
339       Input_argument* arg = new Input_argument(file);
340       arg->set_script_info(ibase->get_script_info(input_file_index));
341       input_argument = arg;
342     }
343 
344   gold_debug(DEBUG_INCREMENTAL, "Incremental object: %s, type %d",
345 	     input_reader->filename(), input_type);
346 
347   if (input_type == INCREMENTAL_INPUT_SCRIPT)
348     {
349       // Incremental_binary::check_inputs should have cancelled the
350       // incremental update if the script has changed.
351       gold_assert(!ibase->file_has_changed(input_file_index));
352       return new Check_script(layout, ibase, input_file_index, input_reader,
353 			      this_blocker, next_blocker);
354     }
355 
356   if (input_type == INCREMENTAL_INPUT_ARCHIVE)
357     {
358       Incremental_library* lib = ibase->get_library(input_file_index);
359       gold_assert(lib != NULL);
360       if (lib->filename() == "/group/"
361 	  || !ibase->file_has_changed(input_file_index))
362 	{
363 	  // Queue a task to check that no references have been added to any
364 	  // of the library's unused symbols.
365 	  return new Check_library(symtab, layout, ibase, input_file_index,
366 				   input_reader, this_blocker, next_blocker);
367 	}
368       else
369 	{
370 	  // Queue a Read_symbols task to process the archive normally.
371 	  return new Read_symbols(input_objects, symtab, layout, search_path,
372 				  0, mapfile, input_argument, NULL, NULL,
373 				  this_blocker, next_blocker);
374 	}
375     }
376 
377   if (input_type == INCREMENTAL_INPUT_ARCHIVE_MEMBER)
378     {
379       // For archive members, check the timestamp of the containing archive.
380       Incremental_library* lib = ibase->get_library(input_file_index);
381       gold_assert(lib != NULL);
382       // Process members of a --start-lib/--end-lib group as normal objects.
383       if (lib->filename() != "/group/")
384 	{
385 	  if (ibase->file_has_changed(lib->input_file_index()))
386 	    {
387 	      return new Read_member(input_objects, symtab, layout, mapfile,
388 				     input_reader, this_blocker, next_blocker);
389 	    }
390 	  else
391 	    {
392 	      // The previous contributions from this file will be kept.
393 	      // Mark the pieces of output sections contributed by this
394 	      // object.
395 	      ibase->reserve_layout(input_file_index);
396 	      Object* obj = make_sized_incremental_object(ibase,
397 							  input_file_index,
398 							  input_type,
399 							  input_reader);
400 	      return new Add_symbols(input_objects, symtab, layout,
401 				     search_path, 0, mapfile, input_argument,
402 				     obj, lib, NULL, this_blocker,
403 				     next_blocker);
404 	    }
405 	}
406     }
407 
408   // Normal object file or shared library.  Check if the file has changed
409   // since the last incremental link.
410   if (ibase->file_has_changed(input_file_index))
411     {
412       return new Read_symbols(input_objects, symtab, layout, search_path, 0,
413 			      mapfile, input_argument, NULL, NULL,
414 			      this_blocker, next_blocker);
415     }
416   else
417     {
418       // The previous contributions from this file will be kept.
419       // Mark the pieces of output sections contributed by this object.
420       ibase->reserve_layout(input_file_index);
421       Object* obj = make_sized_incremental_object(ibase,
422 						  input_file_index,
423 						  input_type,
424 						  input_reader);
425       return new Add_symbols(input_objects, symtab, layout, search_path, 0,
426 			     mapfile, input_argument, obj, NULL, NULL,
427 			     this_blocker, next_blocker);
428     }
429 }
430 
431 // Queue up a set of tasks to be done before queueing the middle set
432 // of tasks.  This is only necessary when garbage collection
433 // (--gc-sections) of unused sections is desired.  The relocs are read
434 // and processed here early to determine the garbage sections before the
435 // relocs can be scanned in later tasks.
436 
437 void
queue_middle_gc_tasks(const General_options & options,const Task *,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,Workqueue * workqueue,Mapfile * mapfile)438 queue_middle_gc_tasks(const General_options& options,
439 		      const Task* ,
440 		      const Input_objects* input_objects,
441 		      Symbol_table* symtab,
442 		      Layout* layout,
443 		      Workqueue* workqueue,
444 		      Mapfile* mapfile)
445 {
446   // Read_relocs for all the objects must be done and processed to find
447   // unused sections before any scanning of the relocs can take place.
448   Task_token* this_blocker = NULL;
449   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
450        p != input_objects->relobj_end();
451        ++p)
452     {
453       Task_token* next_blocker = new Task_token(true);
454       next_blocker->add_blocker();
455       workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
456 				       next_blocker));
457       this_blocker = next_blocker;
458     }
459 
460   // If we are given only archives in input, we have no regular
461   // objects and THIS_BLOCKER is NULL here.  Create a dummy
462   // blocker here so that we can run the middle tasks immediately.
463   if (this_blocker == NULL)
464     {
465       gold_assert(input_objects->number_of_relobjs() == 0);
466       this_blocker = new Task_token(true);
467     }
468 
469   workqueue->queue(new Task_function(new Middle_runner(options,
470 						       input_objects,
471 						       symtab,
472 						       layout,
473 						       mapfile),
474 				     this_blocker,
475 				     "Task_function Middle_runner"));
476 }
477 
478 // Queue up the middle set of tasks.  These are the tasks which run
479 // after all the input objects have been found and all the symbols
480 // have been read, but before we lay out the output file.
481 
482 void
queue_middle_tasks(const General_options & options,const Task * task,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,Workqueue * workqueue,Mapfile * mapfile)483 queue_middle_tasks(const General_options& options,
484 		   const Task* task,
485 		   const Input_objects* input_objects,
486 		   Symbol_table* symtab,
487 		   Layout* layout,
488 		   Workqueue* workqueue,
489 		   Mapfile* mapfile)
490 {
491   Timer* timer = parameters->timer();
492   if (timer != NULL)
493     timer->stamp(0);
494 
495   // We have to support the case of not seeing any input objects, and
496   // generate an empty file.  Existing builds depend on being able to
497   // pass an empty archive to the linker and get an empty object file
498   // out.  In order to do this we need to use a default target.
499   if (input_objects->number_of_input_objects() == 0
500       && layout->incremental_base() == NULL)
501     parameters_force_valid_target();
502 
503   // Add any symbols named with -u options to the symbol table.
504   symtab->add_undefined_symbols_from_command_line(layout);
505 
506   // If garbage collection was chosen, relocs have been read and processed
507   // at this point by pre_middle_tasks.  Layout can then be done for all
508   // objects.
509   if (parameters->options().gc_sections())
510     {
511       // Find the start symbol if any.
512       Symbol* sym = symtab->lookup(parameters->entry());
513       if (sym != NULL)
514 	symtab->gc_mark_symbol(sym);
515       sym = symtab->lookup(parameters->options().init());
516       if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
517 	symtab->gc_mark_symbol(sym);
518       sym = symtab->lookup(parameters->options().fini());
519       if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
520 	symtab->gc_mark_symbol(sym);
521       // Symbols named with -u should not be considered garbage.
522       symtab->gc_mark_undef_symbols(layout);
523       gold_assert(symtab->gc() != NULL);
524       // Do a transitive closure on all references to determine the worklist.
525       symtab->gc()->do_transitive_closure();
526     }
527 
528   // If identical code folding (--icf) is chosen it makes sense to do it
529   // only after garbage collection (--gc-sections) as we do not want to
530   // be folding sections that will be garbage.
531   if (parameters->options().icf_enabled())
532     {
533       symtab->icf()->find_identical_sections(input_objects, symtab);
534     }
535 
536   // Call Object::layout for the second time to determine the
537   // output_sections for all referenced input sections.  When
538   // --gc-sections or --icf is turned on, or when certain input
539   // sections have to be mapped to unique segments, Object::layout
540   // is called twice.  It is called the first time when symbols
541   // are added.
542   if (parameters->options().gc_sections()
543       || parameters->options().icf_enabled()
544       || layout->is_unique_segment_for_sections_specified())
545     {
546       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
547 	   p != input_objects->relobj_end();
548 	   ++p)
549 	{
550 	  Task_lock_obj<Object> tlo(task, *p);
551 	  (*p)->layout(symtab, layout, NULL);
552 	}
553     }
554 
555   // Layout deferred objects due to plugins.
556   if (parameters->options().has_plugins())
557     {
558       Plugin_manager* plugins = parameters->options().plugins();
559       gold_assert(plugins != NULL);
560       plugins->layout_deferred_objects();
561     }
562 
563   Target *target = NULL;
564 
565   // TODO(tmsriram): figure out a more principled way to get the target
566   if (parameters->target_valid())
567     target = const_cast<Target*>(&parameters->target());
568 
569   // Check if we need to disable PIE because of an unsafe data segment size.
570   // Go through each Output section and get the size.  At this point, we do not
571   // have the exact size of the data segment but this is a very close estimate.
572   // We are doing this here because disabling PIE later is too late.  Further,
573   // if we miss some cases which are on the edge, it will be caught later in
574   // layout.cc where we check with the exact size of the data segment and warn
575   // if it is breached.
576   if (parameters->options().disable_pie_when_unsafe_data_size()
577       && parameters->options().pie() && target->max_pie_data_segment_size())
578     {
579       uint64_t segment_size = 0;
580       for (Layout::Section_list::const_iterator p = layout->section_list().begin();
581 	   p != layout->section_list().end();
582 	   ++p)
583 	{
584 	  Output_section *os = *p;
585 	  if (os->is_section_flag_set(elfcpp::SHF_ALLOC)
586 	      && os->is_section_flag_set(elfcpp::SHF_WRITE))
587 	    {
588 	      segment_size += os->current_data_size();
589 	    }
590 	  // Count read-only sections if --rosegment is set.
591 	  else if (parameters->options().rosegment()
592 		   && os->is_section_flag_set(elfcpp::SHF_ALLOC)
593 		   && !os->is_section_flag_set(elfcpp::SHF_EXECINSTR))
594 	    {
595 	      segment_size += os->current_data_size();
596 	    }
597 	}
598       // We are using an estimate for data segment size here as we have not
599       // accounted for the GOT and DYNAMIC sections.  Experiments show that the
600       // estimate is within 1% of the actual size for most binaries.  So, we
601       // will add 1% to the estimated size.
602       // If we miss disabling PIE here because our estimate is wrong, the
603       // check in layout.cc will catch it and warn.
604       uint64_t est_size_of_got_and_dynamic = segment_size / 100;
605       if ((segment_size + est_size_of_got_and_dynamic)
606 	  >= target->max_pie_data_segment_size())
607 	{
608 	  gold_info(
609 	    _("Disabling PIE for this link.  The estimated data segment size"
610 	      " (%" PRIu64 " > %" PRIu64 ") would exceed the safe limits for"
611 	      " PIE."),
612 		    (segment_size + est_size_of_got_and_dynamic),
613 		    target->max_pie_data_segment_size());
614 	  const_cast<General_options*>
615 	    (&parameters->options())->set_pie_value(false);
616 	}
617 
618     }
619 
620   // Finalize the .eh_frame section.
621   layout->finalize_eh_frame_section();
622 
623   /* If plugins have specified a section order, re-arrange input sections
624      according to a specified section order.  If --section-ordering-file is
625      also specified, do not do anything here.  */
626   if (parameters->options().has_plugins()
627       && layout->is_section_ordering_specified()
628       && !parameters->options().section_ordering_file ())
629     {
630       for (Layout::Section_list::const_iterator p
631 	     = layout->section_list().begin();
632 	   p != layout->section_list().end();
633 	   ++p)
634 	(*p)->update_section_layout(layout->get_section_order_map());
635     }
636 
637   if (parameters->options().gc_sections()
638       || parameters->options().icf_enabled())
639     {
640       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
641 	   p != input_objects->relobj_end();
642 	   ++p)
643 	{
644 	  // Update the value of output_section stored in rd.
645 	  Read_relocs_data* rd = (*p)->get_relocs_data();
646 	  for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
647 	       q != rd->relocs.end();
648 	       ++q)
649 	    {
650 	      q->output_section = (*p)->output_section(q->data_shndx);
651 	      q->needs_special_offset_handling =
652 		      (*p)->is_output_section_offset_invalid(q->data_shndx);
653 	    }
654 	}
655     }
656 
657   int thread_count = options.thread_count_middle();
658   if (thread_count == 0)
659     thread_count = std::max(2, input_objects->number_of_input_objects());
660   workqueue->set_thread_count(thread_count);
661 
662   // Now we have seen all the input files.
663   const bool doing_static_link =
664     (!input_objects->any_dynamic()
665      && !parameters->options().output_is_position_independent());
666   set_parameters_doing_static_link(doing_static_link);
667   if (!doing_static_link && options.is_static())
668     {
669       // We print out just the first .so we see; there may be others.
670       gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
671       gold_error(_("cannot mix -static with dynamic object %s"),
672 		 (*input_objects->dynobj_begin())->name().c_str());
673     }
674   if (!doing_static_link && parameters->options().relocatable())
675     gold_fatal(_("cannot mix -r with dynamic object %s"),
676 	       (*input_objects->dynobj_begin())->name().c_str());
677   if (!doing_static_link
678       && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
679     gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
680 	       (*input_objects->dynobj_begin())->name().c_str());
681 
682   if (parameters->options().relocatable())
683     {
684       Input_objects::Relobj_iterator p = input_objects->relobj_begin();
685       if (p != input_objects->relobj_end())
686 	{
687 	  bool uses_split_stack = (*p)->uses_split_stack();
688 	  for (++p; p != input_objects->relobj_end(); ++p)
689 	    {
690 	      if ((*p)->uses_split_stack() != uses_split_stack)
691 		gold_fatal(_("cannot mix split-stack '%s' and "
692 			     "non-split-stack '%s' when using -r"),
693 			   (*input_objects->relobj_begin())->name().c_str(),
694 			   (*p)->name().c_str());
695 	    }
696 	}
697     }
698 
699   // For incremental updates, record the existing GOT and PLT entries,
700   // and the COPY relocations.
701   if (parameters->incremental_update())
702     {
703       Incremental_binary* ibase = layout->incremental_base();
704       ibase->process_got_plt(symtab, layout);
705       ibase->emit_copy_relocs(symtab);
706     }
707 
708   if (is_debugging_enabled(DEBUG_SCRIPT))
709     layout->script_options()->print(stderr);
710 
711   // For each dynamic object, record whether we've seen all the
712   // dynamic objects that it depends upon.
713   input_objects->check_dynamic_dependencies();
714 
715   // Do the --no-undefined-version check.
716   if (!parameters->options().undefined_version())
717     {
718       Script_options* so = layout->script_options();
719       so->version_script_info()->check_unmatched_names(symtab);
720     }
721 
722   // Create any automatic note sections.
723   layout->create_notes();
724 
725   // Create any output sections required by any linker script.
726   layout->create_script_sections();
727 
728   // Define some sections and symbols needed for a dynamic link.  This
729   // handles some cases we want to see before we read the relocs.
730   layout->create_initial_dynamic_sections(symtab);
731 
732   // Define symbols from any linker scripts.
733   layout->define_script_symbols(symtab);
734 
735   // Attach sections to segments.
736   layout->attach_sections_to_segments(target);
737 
738   if (!parameters->options().relocatable())
739     {
740       // Predefine standard symbols.
741       define_standard_symbols(symtab, layout);
742 
743       // Define __start and __stop symbols for output sections where
744       // appropriate.
745       layout->define_section_symbols(symtab);
746 
747       // Define target-specific symbols.
748       target->define_standard_symbols(symtab, layout);
749     }
750 
751   // Make sure we have symbols for any required group signatures.
752   layout->define_group_signatures(symtab);
753 
754   Task_token* this_blocker = NULL;
755 
756   // Allocate common symbols.  We use a blocker to run this before the
757   // Scan_relocs tasks, because it writes to the symbol table just as
758   // they do.
759   if (parameters->options().define_common())
760     {
761       this_blocker = new Task_token(true);
762       this_blocker->add_blocker();
763       workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
764 						 this_blocker));
765     }
766 
767   // If doing garbage collection, the relocations have already been read.
768   // Otherwise, read and scan the relocations.
769   if (parameters->options().gc_sections()
770       || parameters->options().icf_enabled())
771     {
772       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
773 	   p != input_objects->relobj_end();
774 	   ++p)
775 	{
776 	  Task_token* next_blocker = new Task_token(true);
777 	  next_blocker->add_blocker();
778 	  workqueue->queue(new Scan_relocs(symtab, layout, *p,
779 					   (*p)->get_relocs_data(),
780 					   this_blocker, next_blocker));
781 	  this_blocker = next_blocker;
782 	}
783     }
784   else
785     {
786       // Read the relocations of the input files.  We do this to find
787       // which symbols are used by relocations which require a GOT and/or
788       // a PLT entry, or a COPY reloc.  When we implement garbage
789       // collection we will do it here by reading the relocations in a
790       // breadth first search by references.
791       //
792       // We could also read the relocations during the first pass, and
793       // mark symbols at that time.  That is how the old GNU linker works.
794       // Doing that is more complex, since we may later decide to discard
795       // some of the sections, and thus change our minds about the types
796       // of references made to the symbols.
797       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
798 	   p != input_objects->relobj_end();
799 	   ++p)
800 	{
801 	  Task_token* next_blocker = new Task_token(true);
802 	  next_blocker->add_blocker();
803 	  workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
804 					   next_blocker));
805 	  this_blocker = next_blocker;
806 	}
807     }
808 
809   if (this_blocker == NULL)
810     {
811       if (input_objects->number_of_relobjs() == 0)
812 	{
813 	  // If we are given only archives in input, we have no regular
814 	  // objects and THIS_BLOCKER is NULL here.  Create a dummy
815 	  // blocker here so that we can run the layout task immediately.
816 	  this_blocker = new Task_token(true);
817 	}
818       else
819 	{
820 	  // If we failed to open any input files, it's possible for
821 	  // THIS_BLOCKER to be NULL here.  There's no real point in
822 	  // continuing if that happens.
823 	  gold_assert(parameters->errors()->error_count() > 0);
824 	  gold_exit(GOLD_ERR);
825 	}
826     }
827 
828   // When all those tasks are complete, we can start laying out the
829   // output file.
830   workqueue->queue(new Task_function(new Layout_task_runner(options,
831 							    input_objects,
832 							    symtab,
833 							    target,
834 							    layout,
835 							    mapfile),
836 				     this_blocker,
837 				     "Task_function Layout_task_runner"));
838 }
839 
840 // Queue up the final set of tasks.  This is called at the end of
841 // Layout_task.
842 
843 void
queue_final_tasks(const General_options & options,const Input_objects * input_objects,const Symbol_table * symtab,Layout * layout,Workqueue * workqueue,Output_file * of)844 queue_final_tasks(const General_options& options,
845 		  const Input_objects* input_objects,
846 		  const Symbol_table* symtab,
847 		  Layout* layout,
848 		  Workqueue* workqueue,
849 		  Output_file* of)
850 {
851   Timer* timer = parameters->timer();
852   if (timer != NULL)
853     timer->stamp(1);
854 
855   int thread_count = options.thread_count_final();
856   if (thread_count == 0)
857     thread_count = std::max(2, input_objects->number_of_input_objects());
858   workqueue->set_thread_count(thread_count);
859 
860   bool any_postprocessing_sections = layout->any_postprocessing_sections();
861 
862   // Use a blocker to wait until all the input sections have been
863   // written out.
864   Task_token* input_sections_blocker = NULL;
865   if (!any_postprocessing_sections)
866     {
867       input_sections_blocker = new Task_token(true);
868       // Write_symbols_task, Relocate_tasks.
869       input_sections_blocker->add_blocker();
870       input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
871     }
872 
873   // Use a blocker to block any objects which have to wait for the
874   // output sections to complete before they can apply relocations.
875   Task_token* output_sections_blocker = new Task_token(true);
876   output_sections_blocker->add_blocker();
877 
878   // Use a blocker to block the final cleanup task.
879   Task_token* final_blocker = new Task_token(true);
880   // Write_symbols_task, Write_sections_task, Write_data_task,
881   // Relocate_tasks.
882   final_blocker->add_blockers(3);
883   final_blocker->add_blockers(input_objects->number_of_relobjs());
884   if (!any_postprocessing_sections)
885     final_blocker->add_blocker();
886 
887   // Queue a task to write out the symbol table.
888   workqueue->queue(new Write_symbols_task(layout,
889 					  symtab,
890 					  input_objects,
891 					  layout->sympool(),
892 					  layout->dynpool(),
893 					  of,
894 					  final_blocker));
895 
896   // Queue a task to write out the output sections.
897   workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
898 					   input_sections_blocker,
899 					   final_blocker));
900 
901   // Queue a task to write out everything else.
902   workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
903 
904   // Queue a task for each input object to relocate the sections and
905   // write out the local symbols.
906   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
907        p != input_objects->relobj_end();
908        ++p)
909     workqueue->queue(new Relocate_task(symtab, layout, *p, of,
910 				       input_sections_blocker,
911 				       output_sections_blocker,
912 				       final_blocker));
913 
914   // Queue a task to write out the output sections which depend on
915   // input sections.  If there are any sections which require
916   // postprocessing, then we need to do this last, since it may resize
917   // the output file.
918   if (!any_postprocessing_sections)
919     {
920       Task* t = new Write_after_input_sections_task(layout, of,
921 						    input_sections_blocker,
922 						    final_blocker);
923       workqueue->queue(t);
924     }
925   else
926     {
927       Task_token* new_final_blocker = new Task_token(true);
928       new_final_blocker->add_blocker();
929       Task* t = new Write_after_input_sections_task(layout, of,
930 						    final_blocker,
931 						    new_final_blocker);
932       workqueue->queue(t);
933       final_blocker = new_final_blocker;
934     }
935 
936   // Create tasks for tree-style build ID computation, if necessary.
937   if (strcmp(options.build_id(), "tree") == 0)
938     {
939       // Queue a task to compute the build id.  This will be blocked by
940       // FINAL_BLOCKER, and will in turn schedule the task to close
941       // the output file.
942       workqueue->queue(new Task_function(new Build_id_task_runner(&options,
943 								  layout,
944 								  of),
945 					 final_blocker,
946 					 "Task_function Build_id_task_runner"));
947     }
948   else
949     {
950       // Queue a task to close the output file.  This will be blocked by
951       // FINAL_BLOCKER.
952       workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
953 							       of, NULL, 0),
954 					 final_blocker,
955 					 "Task_function Close_task_runner"));
956     }
957 
958 }
959 
960 } // End namespace gold.
961