1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18 //#define LOG_NDEBUG 0
19
20 // This is needed for stdint.h to define INT64_MAX in C++
21 #define __STDC_LIMIT_MACROS
22
23 #include <math.h>
24
25 #include <algorithm>
26
27 #include <log/log.h>
28 #include <utils/String8.h>
29 #include <utils/Thread.h>
30 #include <utils/Trace.h>
31 #include <utils/Vector.h>
32
33 #include <ui/FenceTime.h>
34
35 #include "DispSync.h"
36 #include "EventLog/EventLog.h"
37 #include "SurfaceFlinger.h"
38
39 using std::max;
40 using std::min;
41
42 namespace android {
43
44 // Setting this to true enables verbose tracing that can be used to debug
45 // vsync event model or phase issues.
46 static const bool kTraceDetailedInfo = false;
47
48 // Setting this to true adds a zero-phase tracer for correlating with hardware
49 // vsync events
50 static const bool kEnableZeroPhaseTracer = false;
51
52 // This is the threshold used to determine when hardware vsync events are
53 // needed to re-synchronize the software vsync model with the hardware. The
54 // error metric used is the mean of the squared difference between each
55 // present time and the nearest software-predicted vsync.
56 static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared
57
58 #undef LOG_TAG
59 #define LOG_TAG "DispSyncThread"
60 class DispSyncThread : public Thread {
61 public:
DispSyncThread(const char * name)62 explicit DispSyncThread(const char* name)
63 : mName(name),
64 mStop(false),
65 mPeriod(0),
66 mPhase(0),
67 mReferenceTime(0),
68 mWakeupLatency(0),
69 mFrameNumber(0) {}
70
~DispSyncThread()71 virtual ~DispSyncThread() {}
72
updateModel(nsecs_t period,nsecs_t phase,nsecs_t referenceTime)73 void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
74 if (kTraceDetailedInfo) ATRACE_CALL();
75 Mutex::Autolock lock(mMutex);
76 mPeriod = period;
77 mPhase = phase;
78 mReferenceTime = referenceTime;
79 ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
80 " mReferenceTime = %" PRId64,
81 mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime));
82 mCond.signal();
83 }
84
stop()85 void stop() {
86 if (kTraceDetailedInfo) ATRACE_CALL();
87 Mutex::Autolock lock(mMutex);
88 mStop = true;
89 mCond.signal();
90 }
91
threadLoop()92 virtual bool threadLoop() {
93 status_t err;
94 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
95
96 while (true) {
97 Vector<CallbackInvocation> callbackInvocations;
98
99 nsecs_t targetTime = 0;
100
101 { // Scope for lock
102 Mutex::Autolock lock(mMutex);
103
104 if (kTraceDetailedInfo) {
105 ATRACE_INT64("DispSync:Frame", mFrameNumber);
106 }
107 ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
108 ++mFrameNumber;
109
110 if (mStop) {
111 return false;
112 }
113
114 if (mPeriod == 0) {
115 err = mCond.wait(mMutex);
116 if (err != NO_ERROR) {
117 ALOGE("error waiting for new events: %s (%d)", strerror(-err), err);
118 return false;
119 }
120 continue;
121 }
122
123 targetTime = computeNextEventTimeLocked(now);
124
125 bool isWakeup = false;
126
127 if (now < targetTime) {
128 if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
129
130 if (targetTime == INT64_MAX) {
131 ALOGV("[%s] Waiting forever", mName);
132 err = mCond.wait(mMutex);
133 } else {
134 ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
135 err = mCond.waitRelative(mMutex, targetTime - now);
136 }
137
138 if (err == TIMED_OUT) {
139 isWakeup = true;
140 } else if (err != NO_ERROR) {
141 ALOGE("error waiting for next event: %s (%d)", strerror(-err), err);
142 return false;
143 }
144 }
145
146 now = systemTime(SYSTEM_TIME_MONOTONIC);
147
148 // Don't correct by more than 1.5 ms
149 static const nsecs_t kMaxWakeupLatency = us2ns(1500);
150
151 if (isWakeup) {
152 mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64;
153 mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
154 if (kTraceDetailedInfo) {
155 ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
156 ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
157 }
158 }
159
160 callbackInvocations = gatherCallbackInvocationsLocked(now);
161 }
162
163 if (callbackInvocations.size() > 0) {
164 fireCallbackInvocations(callbackInvocations);
165 }
166 }
167
168 return false;
169 }
170
addEventListener(const char * name,nsecs_t phase,DispSync::Callback * callback)171 status_t addEventListener(const char* name, nsecs_t phase, DispSync::Callback* callback) {
172 if (kTraceDetailedInfo) ATRACE_CALL();
173 Mutex::Autolock lock(mMutex);
174
175 for (size_t i = 0; i < mEventListeners.size(); i++) {
176 if (mEventListeners[i].mCallback == callback) {
177 return BAD_VALUE;
178 }
179 }
180
181 EventListener listener;
182 listener.mName = name;
183 listener.mPhase = phase;
184 listener.mCallback = callback;
185
186 // We want to allow the firstmost future event to fire without
187 // allowing any past events to fire
188 listener.mLastEventTime = systemTime() - mPeriod / 2 + mPhase - mWakeupLatency;
189
190 mEventListeners.push(listener);
191
192 mCond.signal();
193
194 return NO_ERROR;
195 }
196
removeEventListener(DispSync::Callback * callback)197 status_t removeEventListener(DispSync::Callback* callback) {
198 if (kTraceDetailedInfo) ATRACE_CALL();
199 Mutex::Autolock lock(mMutex);
200
201 for (size_t i = 0; i < mEventListeners.size(); i++) {
202 if (mEventListeners[i].mCallback == callback) {
203 mEventListeners.removeAt(i);
204 mCond.signal();
205 return NO_ERROR;
206 }
207 }
208
209 return BAD_VALUE;
210 }
211
changePhaseOffset(DispSync::Callback * callback,nsecs_t phase)212 status_t changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) {
213 if (kTraceDetailedInfo) ATRACE_CALL();
214 Mutex::Autolock lock(mMutex);
215
216 for (size_t i = 0; i < mEventListeners.size(); i++) {
217 if (mEventListeners[i].mCallback == callback) {
218 EventListener& listener = mEventListeners.editItemAt(i);
219 const nsecs_t oldPhase = listener.mPhase;
220 listener.mPhase = phase;
221
222 // Pretend that the last time this event was handled at the same frame but with the
223 // new offset to allow for a seamless offset change without double-firing or
224 // skipping.
225 listener.mLastEventTime -= (oldPhase - phase);
226 mCond.signal();
227 return NO_ERROR;
228 }
229 }
230
231 return BAD_VALUE;
232 }
233
234 // This method is only here to handle the !SurfaceFlinger::hasSyncFramework
235 // case.
hasAnyEventListeners()236 bool hasAnyEventListeners() {
237 if (kTraceDetailedInfo) ATRACE_CALL();
238 Mutex::Autolock lock(mMutex);
239 return !mEventListeners.empty();
240 }
241
242 private:
243 struct EventListener {
244 const char* mName;
245 nsecs_t mPhase;
246 nsecs_t mLastEventTime;
247 DispSync::Callback* mCallback;
248 };
249
250 struct CallbackInvocation {
251 DispSync::Callback* mCallback;
252 nsecs_t mEventTime;
253 };
254
computeNextEventTimeLocked(nsecs_t now)255 nsecs_t computeNextEventTimeLocked(nsecs_t now) {
256 if (kTraceDetailedInfo) ATRACE_CALL();
257 ALOGV("[%s] computeNextEventTimeLocked", mName);
258 nsecs_t nextEventTime = INT64_MAX;
259 for (size_t i = 0; i < mEventListeners.size(); i++) {
260 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now);
261
262 if (t < nextEventTime) {
263 nextEventTime = t;
264 }
265 }
266
267 ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
268 return nextEventTime;
269 }
270
gatherCallbackInvocationsLocked(nsecs_t now)271 Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
272 if (kTraceDetailedInfo) ATRACE_CALL();
273 ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now));
274
275 Vector<CallbackInvocation> callbackInvocations;
276 nsecs_t onePeriodAgo = now - mPeriod;
277
278 for (size_t i = 0; i < mEventListeners.size(); i++) {
279 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], onePeriodAgo);
280
281 if (t < now) {
282 CallbackInvocation ci;
283 ci.mCallback = mEventListeners[i].mCallback;
284 ci.mEventTime = t;
285 ALOGV("[%s] [%s] Preparing to fire", mName, mEventListeners[i].mName);
286 callbackInvocations.push(ci);
287 mEventListeners.editItemAt(i).mLastEventTime = t;
288 }
289 }
290
291 return callbackInvocations;
292 }
293
computeListenerNextEventTimeLocked(const EventListener & listener,nsecs_t baseTime)294 nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) {
295 if (kTraceDetailedInfo) ATRACE_CALL();
296 ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName,
297 ns2us(baseTime));
298
299 nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
300 ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
301 if (baseTime < lastEventTime) {
302 baseTime = lastEventTime;
303 ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime));
304 }
305
306 baseTime -= mReferenceTime;
307 ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
308 nsecs_t phase = mPhase + listener.mPhase;
309 ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
310 baseTime -= phase;
311 ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));
312
313 // If our previous time is before the reference (because the reference
314 // has since been updated), the division by mPeriod will truncate
315 // towards zero instead of computing the floor. Since in all cases
316 // before the reference we want the next time to be effectively now, we
317 // set baseTime to -mPeriod so that numPeriods will be -1.
318 // When we add 1 and the phase, we will be at the correct event time for
319 // this period.
320 if (baseTime < 0) {
321 ALOGV("[%s] Correcting negative baseTime", mName);
322 baseTime = -mPeriod;
323 }
324
325 nsecs_t numPeriods = baseTime / mPeriod;
326 ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
327 nsecs_t t = (numPeriods + 1) * mPeriod + phase;
328 ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
329 t += mReferenceTime;
330 ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));
331
332 // Check that it's been slightly more than half a period since the last
333 // event so that we don't accidentally fall into double-rate vsyncs
334 if (t - listener.mLastEventTime < (3 * mPeriod / 5)) {
335 t += mPeriod;
336 ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
337 }
338
339 t -= mWakeupLatency;
340 ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));
341
342 return t;
343 }
344
fireCallbackInvocations(const Vector<CallbackInvocation> & callbacks)345 void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
346 if (kTraceDetailedInfo) ATRACE_CALL();
347 for (size_t i = 0; i < callbacks.size(); i++) {
348 callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
349 }
350 }
351
352 const char* const mName;
353
354 bool mStop;
355
356 nsecs_t mPeriod;
357 nsecs_t mPhase;
358 nsecs_t mReferenceTime;
359 nsecs_t mWakeupLatency;
360
361 int64_t mFrameNumber;
362
363 Vector<EventListener> mEventListeners;
364
365 Mutex mMutex;
366 Condition mCond;
367 };
368
369 #undef LOG_TAG
370 #define LOG_TAG "DispSync"
371
372 class ZeroPhaseTracer : public DispSync::Callback {
373 public:
ZeroPhaseTracer()374 ZeroPhaseTracer() : mParity(false) {}
375
onDispSyncEvent(nsecs_t)376 virtual void onDispSyncEvent(nsecs_t /*when*/) {
377 mParity = !mParity;
378 ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
379 }
380
381 private:
382 bool mParity;
383 };
384
DispSync(const char * name)385 DispSync::DispSync(const char* name)
386 : mName(name), mRefreshSkipCount(0), mThread(new DispSyncThread(name)) {}
387
~DispSync()388 DispSync::~DispSync() {}
389
init(bool hasSyncFramework,int64_t dispSyncPresentTimeOffset)390 void DispSync::init(bool hasSyncFramework, int64_t dispSyncPresentTimeOffset) {
391 mIgnorePresentFences = !hasSyncFramework;
392 mPresentTimeOffset = dispSyncPresentTimeOffset;
393 mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
394
395 // set DispSync to SCHED_FIFO to minimize jitter
396 struct sched_param param = {0};
397 param.sched_priority = 2;
398 if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, ¶m) != 0) {
399 ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
400 }
401
402 reset();
403 beginResync();
404
405 if (kTraceDetailedInfo) {
406 // If we're not getting present fences then the ZeroPhaseTracer
407 // would prevent HW vsync event from ever being turned off.
408 // Even if we're just ignoring the fences, the zero-phase tracing is
409 // not needed because any time there is an event registered we will
410 // turn on the HW vsync events.
411 if (!mIgnorePresentFences && kEnableZeroPhaseTracer) {
412 mZeroPhaseTracer = std::make_unique<ZeroPhaseTracer>();
413 addEventListener("ZeroPhaseTracer", 0, mZeroPhaseTracer.get());
414 }
415 }
416 }
417
reset()418 void DispSync::reset() {
419 Mutex::Autolock lock(mMutex);
420
421 mPhase = 0;
422 mReferenceTime = 0;
423 mModelUpdated = false;
424 mNumResyncSamples = 0;
425 mFirstResyncSample = 0;
426 mNumResyncSamplesSincePresent = 0;
427 resetErrorLocked();
428 }
429
addPresentFence(const std::shared_ptr<FenceTime> & fenceTime)430 bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
431 Mutex::Autolock lock(mMutex);
432
433 mPresentFences[mPresentSampleOffset] = fenceTime;
434 mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
435 mNumResyncSamplesSincePresent = 0;
436
437 updateErrorLocked();
438
439 return !mModelUpdated || mError > kErrorThreshold;
440 }
441
beginResync()442 void DispSync::beginResync() {
443 Mutex::Autolock lock(mMutex);
444 ALOGV("[%s] beginResync", mName);
445 mModelUpdated = false;
446 mNumResyncSamples = 0;
447 }
448
addResyncSample(nsecs_t timestamp)449 bool DispSync::addResyncSample(nsecs_t timestamp) {
450 Mutex::Autolock lock(mMutex);
451
452 ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));
453
454 size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
455 mResyncSamples[idx] = timestamp;
456 if (mNumResyncSamples == 0) {
457 mPhase = 0;
458 mReferenceTime = timestamp;
459 ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
460 "mReferenceTime = %" PRId64,
461 mName, ns2us(mPeriod), ns2us(mReferenceTime));
462 mThread->updateModel(mPeriod, mPhase, mReferenceTime);
463 }
464
465 if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
466 mNumResyncSamples++;
467 } else {
468 mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
469 }
470
471 updateModelLocked();
472
473 if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
474 resetErrorLocked();
475 }
476
477 if (mIgnorePresentFences) {
478 // If we don't have the sync framework we will never have
479 // addPresentFence called. This means we have no way to know whether
480 // or not we're synchronized with the HW vsyncs, so we just request
481 // that the HW vsync events be turned on whenever we need to generate
482 // SW vsync events.
483 return mThread->hasAnyEventListeners();
484 }
485
486 // Check against kErrorThreshold / 2 to add some hysteresis before having to
487 // resync again
488 bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2);
489 ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked");
490 return !modelLocked;
491 }
492
endResync()493 void DispSync::endResync() {}
494
addEventListener(const char * name,nsecs_t phase,Callback * callback)495 status_t DispSync::addEventListener(const char* name, nsecs_t phase, Callback* callback) {
496 Mutex::Autolock lock(mMutex);
497 return mThread->addEventListener(name, phase, callback);
498 }
499
setRefreshSkipCount(int count)500 void DispSync::setRefreshSkipCount(int count) {
501 Mutex::Autolock lock(mMutex);
502 ALOGD("setRefreshSkipCount(%d)", count);
503 mRefreshSkipCount = count;
504 updateModelLocked();
505 }
506
removeEventListener(Callback * callback)507 status_t DispSync::removeEventListener(Callback* callback) {
508 Mutex::Autolock lock(mMutex);
509 return mThread->removeEventListener(callback);
510 }
511
changePhaseOffset(Callback * callback,nsecs_t phase)512 status_t DispSync::changePhaseOffset(Callback* callback, nsecs_t phase) {
513 Mutex::Autolock lock(mMutex);
514 return mThread->changePhaseOffset(callback, phase);
515 }
516
setPeriod(nsecs_t period)517 void DispSync::setPeriod(nsecs_t period) {
518 Mutex::Autolock lock(mMutex);
519 mPeriod = period;
520 mPhase = 0;
521 mReferenceTime = 0;
522 mThread->updateModel(mPeriod, mPhase, mReferenceTime);
523 }
524
getPeriod()525 nsecs_t DispSync::getPeriod() {
526 // lock mutex as mPeriod changes multiple times in updateModelLocked
527 Mutex::Autolock lock(mMutex);
528 return mPeriod;
529 }
530
updateModelLocked()531 void DispSync::updateModelLocked() {
532 ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
533 if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
534 ALOGV("[%s] Computing...", mName);
535 nsecs_t durationSum = 0;
536 nsecs_t minDuration = INT64_MAX;
537 nsecs_t maxDuration = 0;
538 for (size_t i = 1; i < mNumResyncSamples; i++) {
539 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
540 size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
541 nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
542 durationSum += duration;
543 minDuration = min(minDuration, duration);
544 maxDuration = max(maxDuration, duration);
545 }
546
547 // Exclude the min and max from the average
548 durationSum -= minDuration + maxDuration;
549 mPeriod = durationSum / (mNumResyncSamples - 3);
550
551 ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));
552
553 double sampleAvgX = 0;
554 double sampleAvgY = 0;
555 double scale = 2.0 * M_PI / double(mPeriod);
556 // Intentionally skip the first sample
557 for (size_t i = 1; i < mNumResyncSamples; i++) {
558 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
559 nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
560 double samplePhase = double(sample % mPeriod) * scale;
561 sampleAvgX += cos(samplePhase);
562 sampleAvgY += sin(samplePhase);
563 }
564
565 sampleAvgX /= double(mNumResyncSamples - 1);
566 sampleAvgY /= double(mNumResyncSamples - 1);
567
568 mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
569
570 ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));
571
572 if (mPhase < -(mPeriod / 2)) {
573 mPhase += mPeriod;
574 ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
575 }
576
577 if (kTraceDetailedInfo) {
578 ATRACE_INT64("DispSync:Period", mPeriod);
579 ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
580 }
581
582 // Artificially inflate the period if requested.
583 mPeriod += mPeriod * mRefreshSkipCount;
584
585 mThread->updateModel(mPeriod, mPhase, mReferenceTime);
586 mModelUpdated = true;
587 }
588 }
589
updateErrorLocked()590 void DispSync::updateErrorLocked() {
591 if (!mModelUpdated) {
592 return;
593 }
594
595 // Need to compare present fences against the un-adjusted refresh period,
596 // since they might arrive between two events.
597 nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
598
599 int numErrSamples = 0;
600 nsecs_t sqErrSum = 0;
601
602 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
603 // Only check for the cached value of signal time to avoid unecessary
604 // syscalls. It is the responsibility of the DispSync owner to
605 // call getSignalTime() periodically so the cache is updated when the
606 // fence signals.
607 nsecs_t time = mPresentFences[i]->getCachedSignalTime();
608 if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) {
609 continue;
610 }
611
612 nsecs_t sample = time - mReferenceTime;
613 if (sample <= mPhase) {
614 continue;
615 }
616
617 nsecs_t sampleErr = (sample - mPhase) % period;
618 if (sampleErr > period / 2) {
619 sampleErr -= period;
620 }
621 sqErrSum += sampleErr * sampleErr;
622 numErrSamples++;
623 }
624
625 if (numErrSamples > 0) {
626 mError = sqErrSum / numErrSamples;
627 mZeroErrSamplesCount = 0;
628 } else {
629 mError = 0;
630 // Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam.
631 mZeroErrSamplesCount++;
632 ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0,
633 "No present times for model error.");
634 }
635
636 if (kTraceDetailedInfo) {
637 ATRACE_INT64("DispSync:Error", mError);
638 }
639 }
640
resetErrorLocked()641 void DispSync::resetErrorLocked() {
642 mPresentSampleOffset = 0;
643 mError = 0;
644 mZeroErrSamplesCount = 0;
645 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
646 mPresentFences[i] = FenceTime::NO_FENCE;
647 }
648 }
649
computeNextRefresh(int periodOffset) const650 nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
651 Mutex::Autolock lock(mMutex);
652 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
653 nsecs_t phase = mReferenceTime + mPhase;
654 return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
655 }
656
dump(String8 & result) const657 void DispSync::dump(String8& result) const {
658 Mutex::Autolock lock(mMutex);
659 result.appendFormat("present fences are %s\n", mIgnorePresentFences ? "ignored" : "used");
660 result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n", mPeriod,
661 1000000000.0 / mPeriod, mRefreshSkipCount);
662 result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
663 result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError));
664 result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
665 mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
666 result.appendFormat("mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples, MAX_RESYNC_SAMPLES);
667
668 result.appendFormat("mResyncSamples:\n");
669 nsecs_t previous = -1;
670 for (size_t i = 0; i < mNumResyncSamples; i++) {
671 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
672 nsecs_t sampleTime = mResyncSamples[idx];
673 if (i == 0) {
674 result.appendFormat(" %" PRId64 "\n", sampleTime);
675 } else {
676 result.appendFormat(" %" PRId64 " (+%" PRId64 ")\n", sampleTime,
677 sampleTime - previous);
678 }
679 previous = sampleTime;
680 }
681
682 result.appendFormat("mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES);
683 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
684 previous = Fence::SIGNAL_TIME_INVALID;
685 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
686 size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
687 nsecs_t presentTime = mPresentFences[idx]->getSignalTime();
688 if (presentTime == Fence::SIGNAL_TIME_PENDING) {
689 result.appendFormat(" [unsignaled fence]\n");
690 } else if (presentTime == Fence::SIGNAL_TIME_INVALID) {
691 result.appendFormat(" [invalid fence]\n");
692 } else if (previous == Fence::SIGNAL_TIME_PENDING ||
693 previous == Fence::SIGNAL_TIME_INVALID) {
694 result.appendFormat(" %" PRId64 " (%.3f ms ago)\n", presentTime,
695 (now - presentTime) / 1000000.0);
696 } else {
697 result.appendFormat(" %" PRId64 " (+%" PRId64 " / %.3f) (%.3f ms ago)\n", presentTime,
698 presentTime - previous, (presentTime - previous) / (double)mPeriod,
699 (now - presentTime) / 1000000.0);
700 }
701 previous = presentTime;
702 }
703
704 result.appendFormat("current monotonic time: %" PRId64 "\n", now);
705 }
706
707 } // namespace android
708