1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/ralloc.h"
25 
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 
29 #include "blorp_priv.h"
30 #include "brw_defines.h"
31 
32 #include "compiler/nir/nir_builder.h"
33 
34 #define FILE_DEBUG_FLAG DEBUG_BLORP
35 
36 struct brw_blorp_const_color_prog_key
37 {
38    enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
39    bool use_simd16_replicated_data;
40    bool pad[3];
41 };
42 
43 static void
blorp_params_get_clear_kernel(struct blorp_context * blorp,struct blorp_params * params,bool use_replicated_data)44 blorp_params_get_clear_kernel(struct blorp_context *blorp,
45                               struct blorp_params *params,
46                               bool use_replicated_data)
47 {
48    const struct brw_blorp_const_color_prog_key blorp_key = {
49       .shader_type = BLORP_SHADER_TYPE_CLEAR,
50       .use_simd16_replicated_data = use_replicated_data,
51    };
52 
53    if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
54                             &params->wm_prog_kernel, &params->wm_prog_data))
55       return;
56 
57    void *mem_ctx = ralloc_context(NULL);
58 
59    nir_builder b;
60    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
61    b.shader->info->name = ralloc_strdup(b.shader, "BLORP-clear");
62 
63    nir_variable *v_color =
64       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
65 
66    nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
67                                                   glsl_vec4_type(),
68                                                   "gl_FragColor");
69    frag_color->data.location = FRAG_RESULT_COLOR;
70 
71    nir_copy_var(&b, frag_color, v_color);
72 
73    struct brw_wm_prog_key wm_key;
74    brw_blorp_init_wm_prog_key(&wm_key);
75 
76    struct brw_wm_prog_data prog_data;
77    unsigned program_size;
78    const unsigned *program =
79       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
80                        &prog_data, &program_size);
81 
82    blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
83                         program, program_size,
84                         &prog_data.base, sizeof(prog_data),
85                         &params->wm_prog_kernel, &params->wm_prog_data);
86 
87    ralloc_free(mem_ctx);
88 }
89 
90 struct layer_offset_vs_key {
91    enum blorp_shader_type shader_type;
92    unsigned num_inputs;
93 };
94 
95 /* In the case of doing attachment clears, we are using a surface state that
96  * is handed to us so we can't set (and don't even know) the base array layer.
97  * In order to do a layered clear in this scenario, we need some way of adding
98  * the base array layer to the instance id.  Unfortunately, our hardware has
99  * no real concept of "base instance", so we have to do it manually in a
100  * vertex shader.
101  */
102 static void
blorp_params_get_layer_offset_vs(struct blorp_context * blorp,struct blorp_params * params)103 blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
104                                  struct blorp_params *params)
105 {
106    struct layer_offset_vs_key blorp_key = {
107       .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
108    };
109 
110    if (params->wm_prog_data)
111       blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
112 
113    if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
114                             &params->vs_prog_kernel, &params->vs_prog_data))
115       return;
116 
117    void *mem_ctx = ralloc_context(NULL);
118 
119    nir_builder b;
120    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
121    b.shader->info->name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");
122 
123    const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
124 
125    /* First we deal with the header which has instance and base instance */
126    nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
127                                                 uvec4_type, "header");
128    a_header->data.location = VERT_ATTRIB_GENERIC0;
129 
130    nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
131                                                glsl_int_type(), "layer_id");
132    v_layer->data.location = VARYING_SLOT_LAYER;
133 
134    /* Compute the layer id */
135    nir_ssa_def *header = nir_load_var(&b, a_header);
136    nir_ssa_def *base_layer = nir_channel(&b, header, 0);
137    nir_ssa_def *instance = nir_channel(&b, header, 1);
138    nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
139 
140    /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
141    nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
142                                                 glsl_vec4_type(), "a_vertex");
143    a_vertex->data.location = VERT_ATTRIB_GENERIC1;
144 
145    nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
146                                              glsl_vec4_type(), "v_pos");
147    v_pos->data.location = VARYING_SLOT_POS;
148 
149    nir_copy_var(&b, v_pos, a_vertex);
150 
151    /* Then we copy everything else */
152    for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
153       nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
154                                                uvec4_type, "input");
155       a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
156 
157       nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
158                                                 uvec4_type, "output");
159       v_out->data.location = VARYING_SLOT_VAR0 + i;
160 
161       nir_copy_var(&b, v_out, a_in);
162    }
163 
164    struct brw_vs_prog_data vs_prog_data;
165    memset(&vs_prog_data, 0, sizeof(vs_prog_data));
166 
167    unsigned program_size;
168    const unsigned *program =
169       blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data, &program_size);
170 
171    blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
172                         program, program_size,
173                         &vs_prog_data.base.base, sizeof(vs_prog_data),
174                         &params->vs_prog_kernel, &params->vs_prog_data);
175 
176    ralloc_free(mem_ctx);
177 }
178 
179 /* The x0, y0, x1, and y1 parameters must already be populated with the render
180  * area of the framebuffer to be cleared.
181  */
182 static void
get_fast_clear_rect(const struct isl_device * dev,const struct isl_surf * aux_surf,unsigned * x0,unsigned * y0,unsigned * x1,unsigned * y1)183 get_fast_clear_rect(const struct isl_device *dev,
184                     const struct isl_surf *aux_surf,
185                     unsigned *x0, unsigned *y0,
186                     unsigned *x1, unsigned *y1)
187 {
188    unsigned int x_align, y_align;
189    unsigned int x_scaledown, y_scaledown;
190 
191    /* Only single sampled surfaces need to (and actually can) be resolved. */
192    if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
193       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
194        * Target(s)", beneath the "Fast Color Clear" bullet (p327):
195        *
196        *     Clear pass must have a clear rectangle that must follow
197        *     alignment rules in terms of pixels and lines as shown in the
198        *     table below. Further, the clear-rectangle height and width
199        *     must be multiple of the following dimensions. If the height
200        *     and width of the render target being cleared do not meet these
201        *     requirements, an MCS buffer can be created such that it
202        *     follows the requirement and covers the RT.
203        *
204        * The alignment size in the table that follows is related to the
205        * alignment size that is baked into the CCS surface format but with X
206        * alignment multiplied by 16 and Y alignment multiplied by 32.
207        */
208       x_align = isl_format_get_layout(aux_surf->format)->bw;
209       y_align = isl_format_get_layout(aux_surf->format)->bh;
210 
211       x_align *= 16;
212 
213       /* SKL+ line alignment requirement for Y-tiled are half those of the prior
214        * generations.
215        */
216       if (dev->info->gen >= 9)
217          y_align *= 16;
218       else
219          y_align *= 32;
220 
221       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
222        * Target(s)", beneath the "Fast Color Clear" bullet (p327):
223        *
224        *     In order to optimize the performance MCS buffer (when bound to
225        *     1X RT) clear similarly to MCS buffer clear for MSRT case,
226        *     clear rect is required to be scaled by the following factors
227        *     in the horizontal and vertical directions:
228        *
229        * The X and Y scale down factors in the table that follows are each
230        * equal to half the alignment value computed above.
231        */
232       x_scaledown = x_align / 2;
233       y_scaledown = y_align / 2;
234 
235       /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
236        * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
237        * Clear of Non-MultiSampled Render Target Restrictions":
238        *
239        *   Clear rectangle must be aligned to two times the number of
240        *   pixels in the table shown below due to 16x16 hashing across the
241        *   slice.
242        */
243       x_align *= 2;
244       y_align *= 2;
245    } else {
246       assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
247 
248       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
249        * Target(s)", beneath the "MSAA Compression" bullet (p326):
250        *
251        *     Clear pass for this case requires that scaled down primitive
252        *     is sent down with upper left co-ordinate to coincide with
253        *     actual rectangle being cleared. For MSAA, clear rectangle’s
254        *     height and width need to as show in the following table in
255        *     terms of (width,height) of the RT.
256        *
257        *     MSAA  Width of Clear Rect  Height of Clear Rect
258        *      2X     Ceil(1/8*width)      Ceil(1/2*height)
259        *      4X     Ceil(1/8*width)      Ceil(1/2*height)
260        *      8X     Ceil(1/2*width)      Ceil(1/2*height)
261        *     16X         width            Ceil(1/2*height)
262        *
263        * The text "with upper left co-ordinate to coincide with actual
264        * rectangle being cleared" is a little confusing--it seems to imply
265        * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
266        * feed the pipeline using the rectangle (x,y) to
267        * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
268        * the number of samples.  Experiments indicate that this is not
269        * quite correct; actually, what the hardware appears to do is to
270        * align whatever rectangle is sent down the pipeline to the nearest
271        * multiple of 2x2 blocks, and then scale it up by a factor of N
272        * horizontally and 2 vertically.  So the resulting alignment is 4
273        * vertically and either 4 or 16 horizontally, and the scaledown
274        * factor is 2 vertically and either 2 or 8 horizontally.
275        */
276       switch (aux_surf->format) {
277       case ISL_FORMAT_MCS_2X:
278       case ISL_FORMAT_MCS_4X:
279          x_scaledown = 8;
280          break;
281       case ISL_FORMAT_MCS_8X:
282          x_scaledown = 2;
283          break;
284       case ISL_FORMAT_MCS_16X:
285          x_scaledown = 1;
286          break;
287       default:
288          unreachable("Unexpected MCS format for fast clear");
289       }
290       y_scaledown = 2;
291       x_align = x_scaledown * 2;
292       y_align = y_scaledown * 2;
293    }
294 
295    *x0 = ROUND_DOWN_TO(*x0,  x_align) / x_scaledown;
296    *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
297    *x1 = ALIGN(*x1, x_align) / x_scaledown;
298    *y1 = ALIGN(*y1, y_align) / y_scaledown;
299 }
300 
301 void
blorp_fast_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)302 blorp_fast_clear(struct blorp_batch *batch,
303                  const struct blorp_surf *surf, enum isl_format format,
304                  uint32_t level, uint32_t start_layer, uint32_t num_layers,
305                  uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
306 {
307    struct blorp_params params;
308    blorp_params_init(&params);
309    params.num_layers = num_layers;
310 
311    params.x0 = x0;
312    params.y0 = y0;
313    params.x1 = x1;
314    params.y1 = y1;
315 
316    memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
317    params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
318 
319    get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
320                        &params.x0, &params.y0, &params.x1, &params.y1);
321 
322    blorp_params_get_clear_kernel(batch->blorp, &params, true);
323 
324    brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
325                                start_layer, format, true);
326    params.num_samples = params.dst.surf.samples;
327 
328    batch->blorp->exec(batch, &params);
329 }
330 
331 static union isl_color_value
swizzle_color_value(union isl_color_value src,struct isl_swizzle swizzle)332 swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
333 {
334    union isl_color_value dst = { .u32 = { 0, } };
335 
336    /* We assign colors in ABGR order so that the first one will be taken in
337     * RGBA precedence order.  According to the PRM docs for shader channel
338     * select, this matches Haswell hardware behavior.
339     */
340    if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
341       dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
342    if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
343       dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
344    if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
345       dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
346    if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
347       dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
348 
349    return dst;
350 }
351 
352 void
blorp_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,struct isl_swizzle swizzle,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,union isl_color_value clear_color,const bool color_write_disable[4])353 blorp_clear(struct blorp_batch *batch,
354             const struct blorp_surf *surf,
355             enum isl_format format, struct isl_swizzle swizzle,
356             uint32_t level, uint32_t start_layer, uint32_t num_layers,
357             uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
358             union isl_color_value clear_color,
359             const bool color_write_disable[4])
360 {
361    struct blorp_params params;
362    blorp_params_init(&params);
363 
364    params.x0 = x0;
365    params.y0 = y0;
366    params.x1 = x1;
367    params.y1 = y1;
368 
369    /* Manually apply the clear destination swizzle.  This way swizzled clears
370     * will work for swizzles which we can't normally use for rendering and it
371     * also ensures that they work on pre-Haswell hardware which can't swizlle
372     * at all.
373     */
374    clear_color = swizzle_color_value(clear_color, swizzle);
375    swizzle = ISL_SWIZZLE_IDENTITY;
376 
377    if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
378       clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
379       format = ISL_FORMAT_R32_UINT;
380    } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
381       /* Broadwell and earlier cannot render to this format so we need to work
382        * around it by swapping the colors around and using B4G4R4A4 instead.
383        */
384       const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
385       clear_color = swizzle_color_value(clear_color, ARGB);
386       format = ISL_FORMAT_B4G4R4A4_UNORM;
387    }
388 
389    memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
390 
391    bool use_simd16_replicated_data = true;
392 
393    /* From the SNB PRM (Vol4_Part1):
394     *
395     *     "Replicated data (Message Type = 111) is only supported when
396     *      accessing tiled memory.  Using this Message Type to access linear
397     *      (untiled) memory is UNDEFINED."
398     */
399    if (surf->surf->tiling == ISL_TILING_LINEAR)
400       use_simd16_replicated_data = false;
401 
402    /* Constant color writes ignore everyting in blend and color calculator
403     * state.  This is not documented.
404     */
405    if (color_write_disable) {
406       for (unsigned i = 0; i < 4; i++) {
407          params.color_write_disable[i] = color_write_disable[i];
408          if (color_write_disable[i])
409             use_simd16_replicated_data = false;
410       }
411    }
412 
413    blorp_params_get_clear_kernel(batch->blorp, &params,
414                                  use_simd16_replicated_data);
415 
416    while (num_layers > 0) {
417       brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
418                                   start_layer, format, true);
419       params.dst.view.swizzle = swizzle;
420 
421       params.num_samples = params.dst.surf.samples;
422 
423       /* We may be restricted on the number of layers we can bind at any one
424        * time.  In particular, Sandy Bridge has a maximum number of layers of
425        * 512 but a maximum 3D texture size is much larger.
426        */
427       params.num_layers = MIN2(params.dst.view.array_len, num_layers);
428       batch->blorp->exec(batch, &params);
429 
430       start_layer += params.num_layers;
431       num_layers -= params.num_layers;
432    }
433 }
434 
435 void
blorp_clear_depth_stencil(struct blorp_batch * batch,const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)436 blorp_clear_depth_stencil(struct blorp_batch *batch,
437                           const struct blorp_surf *depth,
438                           const struct blorp_surf *stencil,
439                           uint32_t level, uint32_t start_layer,
440                           uint32_t num_layers,
441                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
442                           bool clear_depth, float depth_value,
443                           uint8_t stencil_mask, uint8_t stencil_value)
444 {
445    struct blorp_params params;
446    blorp_params_init(&params);
447 
448    params.x0 = x0;
449    params.y0 = y0;
450    params.x1 = x1;
451    params.y1 = y1;
452 
453    while (num_layers > 0) {
454       params.num_layers = num_layers;
455 
456       if (stencil_mask) {
457          brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
458                                      level, start_layer,
459                                      ISL_FORMAT_UNSUPPORTED, true);
460          params.stencil_mask = stencil_mask;
461          params.stencil_ref = stencil_value;
462 
463          params.dst.surf.samples = params.stencil.surf.samples;
464          params.dst.surf.logical_level0_px =
465             params.stencil.surf.logical_level0_px;
466          params.dst.view = params.depth.view;
467 
468          params.num_samples = params.stencil.surf.samples;
469 
470          /* We may be restricted on the number of layers we can bind at any
471           * one time.  In particular, Sandy Bridge has a maximum number of
472           * layers of 512 but a maximum 3D texture size is much larger.
473           */
474          if (params.stencil.view.array_len < params.num_layers)
475             params.num_layers = params.stencil.view.array_len;
476       }
477 
478       if (clear_depth) {
479          brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
480                                      level, start_layer,
481                                      ISL_FORMAT_UNSUPPORTED, true);
482          params.z = depth_value;
483          params.depth_format =
484             isl_format_get_depth_format(depth->surf->format, false);
485 
486          params.dst.surf.samples = params.depth.surf.samples;
487          params.dst.surf.logical_level0_px =
488             params.depth.surf.logical_level0_px;
489          params.dst.view = params.depth.view;
490 
491          params.num_samples = params.depth.surf.samples;
492 
493          /* We may be restricted on the number of layers we can bind at any
494           * one time.  In particular, Sandy Bridge has a maximum number of
495           * layers of 512 but a maximum 3D texture size is much larger.
496           */
497          if (params.depth.view.array_len < params.num_layers)
498             params.num_layers = params.depth.view.array_len;
499       }
500 
501       batch->blorp->exec(batch, &params);
502 
503       start_layer += params.num_layers;
504       num_layers -= params.num_layers;
505    }
506 }
507 
508 bool
blorp_can_hiz_clear_depth(uint8_t gen,enum isl_format format,uint32_t num_samples,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)509 blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
510                           uint32_t num_samples,
511                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
512 {
513    /* This function currently doesn't support any gen prior to gen8 */
514    assert(gen >= 8);
515 
516    if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
517       /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
518        * block with the following property: as the number of samples increases,
519        * the number of pixels representable by this block decreases by a factor
520        * of the sample dimensions. Sample dimensions scale following the MSAA
521        * interleaved pattern.
522        *
523        * Sample|Sample|Pixel
524        * Count |Dim   |Dim
525        * ===================
526        *    1  | 1x1  | 8x4
527        *    2  | 2x1  | 4x4
528        *    4  | 2x2  | 4x2
529        *    8  | 4x2  | 2x2
530        *   16  | 4x4  | 2x1
531        *
532        * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
533        */
534       const struct isl_extent2d sa_block_dim =
535          isl_get_interleaved_msaa_px_size_sa(num_samples);
536       const uint8_t align_px_w = 8 / sa_block_dim.w;
537       const uint8_t align_px_h = 4 / sa_block_dim.h;
538 
539       /* Fast depth clears clear an entire sample block at a time. As a result,
540        * the rectangle must be aligned to the dimensions of the encompassing
541        * pixel block for a successful operation.
542        *
543        * Fast clears can still work if the upper-left corner is aligned and the
544        * bottom-rigtht corner touches the edge of a depth buffer whose extent
545        * is unaligned. This is because each miplevel in the depth buffer is
546        * padded by the Pixel Dim (similar to a standard compressed texture).
547        * In this case, the clear rectangle could be padded by to match the full
548        * depth buffer extent but to support multiple clearing techniques, we
549        * chose to be unaware of the depth buffer's extent and thus don't handle
550        * this case.
551        */
552       if (x0 % align_px_w || y0 % align_px_h ||
553           x1 % align_px_w || y1 % align_px_h)
554          return false;
555    }
556    return true;
557 }
558 
559 /* Given a depth stencil attachment, this function performs a fast depth clear
560  * on a depth portion and a regular clear on the stencil portion. When
561  * performing a fast depth clear on the depth portion, the HiZ buffer is simply
562  * tagged as cleared so the depth clear value is not actually needed.
563  */
564 void
blorp_gen8_hiz_clear_attachments(struct blorp_batch * batch,uint32_t num_samples,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,bool clear_stencil,uint8_t stencil_value)565 blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
566                                  uint32_t num_samples,
567                                  uint32_t x0, uint32_t y0,
568                                  uint32_t x1, uint32_t y1,
569                                  bool clear_depth, bool clear_stencil,
570                                  uint8_t stencil_value)
571 {
572    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
573 
574    struct blorp_params params;
575    blorp_params_init(&params);
576    params.num_layers = 1;
577    params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR;
578    params.x0 = x0;
579    params.y0 = y0;
580    params.x1 = x1;
581    params.y1 = y1;
582    params.num_samples = num_samples;
583    params.depth.enabled = clear_depth;
584    params.stencil.enabled = clear_stencil;
585    params.stencil_ref = stencil_value;
586    batch->blorp->exec(batch, &params);
587 }
588 
589 /** Clear active color/depth/stencili attachments
590  *
591  * This function performs a clear operation on the currently bound
592  * color/depth/stencil attachments.  It is assumed that any information passed
593  * in here is valid, consistent, and in-bounds relative to the currently
594  * attached depth/stencil.  The binding_table_offset parameter is the 32-bit
595  * offset relative to surface state base address where pre-baked binding table
596  * that we are to use lives.  If clear_color is false, binding_table_offset
597  * must point to a binding table with one entry which is a valid null surface
598  * that matches the currently bound depth and stencil.
599  */
600 void
blorp_clear_attachments(struct blorp_batch * batch,uint32_t binding_table_offset,enum isl_format depth_format,uint32_t num_samples,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_color,union isl_color_value color_value,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)601 blorp_clear_attachments(struct blorp_batch *batch,
602                         uint32_t binding_table_offset,
603                         enum isl_format depth_format,
604                         uint32_t num_samples,
605                         uint32_t start_layer, uint32_t num_layers,
606                         uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
607                         bool clear_color, union isl_color_value color_value,
608                         bool clear_depth, float depth_value,
609                         uint8_t stencil_mask, uint8_t stencil_value)
610 {
611    struct blorp_params params;
612    blorp_params_init(&params);
613 
614    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
615 
616    params.x0 = x0;
617    params.y0 = y0;
618    params.x1 = x1;
619    params.y1 = y1;
620 
621    params.use_pre_baked_binding_table = true;
622    params.pre_baked_binding_table_offset = binding_table_offset;
623 
624    params.num_layers = num_layers;
625    params.num_samples = num_samples;
626 
627    if (clear_color) {
628       params.dst.enabled = true;
629 
630       memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
631 
632       /* Unfortunately, without knowing whether or not our destination surface
633        * is tiled or not, we have to assume it may be linear.  This means no
634        * SIMD16_REPDATA for us. :-(
635        */
636       blorp_params_get_clear_kernel(batch->blorp, &params, false);
637    }
638 
639    if (clear_depth) {
640       params.depth.enabled = true;
641 
642       params.z = depth_value;
643       params.depth_format = isl_format_get_depth_format(depth_format, false);
644    }
645 
646    if (stencil_mask) {
647       params.stencil.enabled = true;
648 
649       params.stencil_mask = stencil_mask;
650       params.stencil_ref = stencil_value;
651    }
652 
653    blorp_params_get_layer_offset_vs(batch->blorp, &params);
654    params.vs_inputs.base_layer = start_layer;
655 
656    batch->blorp->exec(batch, &params);
657 }
658 
659 void
blorp_ccs_resolve(struct blorp_batch * batch,struct blorp_surf * surf,uint32_t level,uint32_t layer,enum isl_format format,enum blorp_fast_clear_op resolve_op)660 blorp_ccs_resolve(struct blorp_batch *batch,
661                   struct blorp_surf *surf, uint32_t level, uint32_t layer,
662                   enum isl_format format,
663                   enum blorp_fast_clear_op resolve_op)
664 {
665    struct blorp_params params;
666    blorp_params_init(&params);
667 
668    /* Layered and mipmapped fast clear is only available from Gen8 onwards. */
669    assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 8 ||
670           (level == 0 && layer == 0));
671 
672    brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
673                                level, layer, format, true);
674 
675    /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
676     *
677     *     A rectangle primitive must be scaled down by the following factors
678     *     with respect to render target being resolved.
679     *
680     * The scaledown factors in the table that follows are related to the block
681     * size of the CCS format.  For IVB and HSW, we divide by two, for BDW we
682     * multiply by 8 and 16. On Sky Lake, we multiply by 8.
683     */
684    const struct isl_format_layout *aux_fmtl =
685       isl_format_get_layout(params.dst.aux_surf.format);
686    assert(aux_fmtl->txc == ISL_TXC_CCS);
687 
688    unsigned x_scaledown, y_scaledown;
689    if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
690       x_scaledown = aux_fmtl->bw * 8;
691       y_scaledown = aux_fmtl->bh * 8;
692    } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
693       x_scaledown = aux_fmtl->bw * 8;
694       y_scaledown = aux_fmtl->bh * 16;
695    } else {
696       x_scaledown = aux_fmtl->bw / 2;
697       y_scaledown = aux_fmtl->bh / 2;
698    }
699    params.x0 = params.y0 = 0;
700    params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level);
701    params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level);
702    params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
703    params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
704 
705    if (batch->blorp->isl_dev->info->gen >= 9) {
706       assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL ||
707              resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL);
708    } else {
709       /* Broadwell and earlier do not have a partial resolve */
710       assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
711    }
712    params.fast_clear_op = resolve_op;
713 
714    /* Note: there is no need to initialize push constants because it doesn't
715     * matter what data gets dispatched to the render target.  However, we must
716     * ensure that the fragment shader delivers the data using the "replicated
717     * color" message.
718     */
719 
720    blorp_params_get_clear_kernel(batch->blorp, &params, true);
721 
722    batch->blorp->exec(batch, &params);
723 }
724