1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "FastThread"
18 //#define LOG_NDEBUG 0
19
20 #define ATRACE_TAG ATRACE_TAG_AUDIO
21
22 #include "Configuration.h"
23 #include <linux/futex.h>
24 #include <sys/syscall.h>
25 #include <cutils/atomic.h>
26 #include <utils/Log.h>
27 #include <utils/Trace.h>
28 #include "FastThread.h"
29 #include "FastThreadDumpState.h"
30 #include "TypedLogger.h"
31
32 #define FAST_DEFAULT_NS 999999999L // ~1 sec: default time to sleep
33 #define FAST_HOT_IDLE_NS 1000000L // 1 ms: time to sleep while hot idling
34 #define MIN_WARMUP_CYCLES 2 // minimum number of consecutive in-range loop cycles
35 // to wait for warmup
36 #define MAX_WARMUP_CYCLES 10 // maximum number of loop cycles to wait for warmup
37
38 namespace android {
39
FastThread(const char * cycleMs,const char * loadUs)40 FastThread::FastThread(const char *cycleMs, const char *loadUs) : Thread(false /*canCallJava*/),
41 // re-initialized to &sInitial by subclass constructor
42 mPrevious(NULL), mCurrent(NULL),
43 /* mOldTs({0, 0}), */
44 mOldTsValid(false),
45 mSleepNs(-1),
46 mPeriodNs(0),
47 mUnderrunNs(0),
48 mOverrunNs(0),
49 mForceNs(0),
50 mWarmupNsMin(0),
51 mWarmupNsMax(LONG_MAX),
52 // re-initialized to &mDummySubclassDumpState by subclass constructor
53 mDummyDumpState(NULL),
54 mDumpState(NULL),
55 mIgnoreNextOverrun(true),
56 #ifdef FAST_THREAD_STATISTICS
57 // mOldLoad
58 mOldLoadValid(false),
59 mBounds(0),
60 mFull(false),
61 // mTcu
62 #endif
63 mColdGen(0),
64 mIsWarm(false),
65 /* mMeasuredWarmupTs({0, 0}), */
66 mWarmupCycles(0),
67 mWarmupConsecutiveInRangeCycles(0),
68 // mDummyNBLogWriter
69 mNBLogWriter(&mDummyNBLogWriter),
70 mTimestampStatus(INVALID_OPERATION),
71
72 mCommand(FastThreadState::INITIAL),
73 #if 0
74 frameCount(0),
75 #endif
76 mAttemptedWrite(false)
77 // mCycleMs(cycleMs)
78 // mLoadUs(loadUs)
79 {
80 mOldTs.tv_sec = 0;
81 mOldTs.tv_nsec = 0;
82 mMeasuredWarmupTs.tv_sec = 0;
83 mMeasuredWarmupTs.tv_nsec = 0;
84 strlcpy(mCycleMs, cycleMs, sizeof(mCycleMs));
85 strlcpy(mLoadUs, loadUs, sizeof(mLoadUs));
86 }
87
~FastThread()88 FastThread::~FastThread()
89 {
90 }
91
threadLoop()92 bool FastThread::threadLoop()
93 {
94 // LOGT now works even if tlNBLogWriter is nullptr, but we're considering changing that,
95 // so this initialization permits a future change to remove the check for nullptr.
96 tlNBLogWriter = &mDummyNBLogWriter;
97 for (;;) {
98
99 // either nanosleep, sched_yield, or busy wait
100 if (mSleepNs >= 0) {
101 if (mSleepNs > 0) {
102 ALOG_ASSERT(mSleepNs < 1000000000);
103 const struct timespec req = {0, mSleepNs};
104 nanosleep(&req, NULL);
105 } else {
106 sched_yield();
107 }
108 }
109 // default to long sleep for next cycle
110 mSleepNs = FAST_DEFAULT_NS;
111
112 // poll for state change
113 const FastThreadState *next = poll();
114 if (next == NULL) {
115 // continue to use the default initial state until a real state is available
116 // FIXME &sInitial not available, should save address earlier
117 //ALOG_ASSERT(mCurrent == &sInitial && previous == &sInitial);
118 next = mCurrent;
119 }
120
121 mCommand = next->mCommand;
122 if (next != mCurrent) {
123
124 // As soon as possible of learning of a new dump area, start using it
125 mDumpState = next->mDumpState != NULL ? next->mDumpState : mDummyDumpState;
126 mNBLogWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &mDummyNBLogWriter;
127 setNBLogWriter(mNBLogWriter); // FastMixer informs its AudioMixer, FastCapture ignores
128 tlNBLogWriter = mNBLogWriter;
129
130 // We want to always have a valid reference to the previous (non-idle) state.
131 // However, the state queue only guarantees access to current and previous states.
132 // So when there is a transition from a non-idle state into an idle state, we make a
133 // copy of the last known non-idle state so it is still available on return from idle.
134 // The possible transitions are:
135 // non-idle -> non-idle update previous from current in-place
136 // non-idle -> idle update previous from copy of current
137 // idle -> idle don't update previous
138 // idle -> non-idle don't update previous
139 if (!(mCurrent->mCommand & FastThreadState::IDLE)) {
140 if (mCommand & FastThreadState::IDLE) {
141 onIdle();
142 mOldTsValid = false;
143 #ifdef FAST_THREAD_STATISTICS
144 mOldLoadValid = false;
145 #endif
146 mIgnoreNextOverrun = true;
147 }
148 mPrevious = mCurrent;
149 }
150 mCurrent = next;
151 }
152 #if !LOG_NDEBUG
153 next = NULL; // not referenced again
154 #endif
155
156 mDumpState->mCommand = mCommand;
157
158 // FIXME what does this comment mean?
159 // << current, previous, command, dumpState >>
160
161 switch (mCommand) {
162 case FastThreadState::INITIAL:
163 case FastThreadState::HOT_IDLE:
164 mSleepNs = FAST_HOT_IDLE_NS;
165 continue;
166 case FastThreadState::COLD_IDLE:
167 // only perform a cold idle command once
168 // FIXME consider checking previous state and only perform if previous != COLD_IDLE
169 if (mCurrent->mColdGen != mColdGen) {
170 int32_t *coldFutexAddr = mCurrent->mColdFutexAddr;
171 ALOG_ASSERT(coldFutexAddr != NULL);
172 int32_t old = android_atomic_dec(coldFutexAddr);
173 if (old <= 0) {
174 syscall(__NR_futex, coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
175 }
176 int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
177 if (!(policy == SCHED_FIFO || policy == SCHED_RR)) {
178 ALOGE("did not receive expected priority boost on time");
179 }
180 // This may be overly conservative; there could be times that the normal mixer
181 // requests such a brief cold idle that it doesn't require resetting this flag.
182 mIsWarm = false;
183 mMeasuredWarmupTs.tv_sec = 0;
184 mMeasuredWarmupTs.tv_nsec = 0;
185 mWarmupCycles = 0;
186 mWarmupConsecutiveInRangeCycles = 0;
187 mSleepNs = -1;
188 mColdGen = mCurrent->mColdGen;
189 #ifdef FAST_THREAD_STATISTICS
190 mBounds = 0;
191 mFull = false;
192 #endif
193 mOldTsValid = !clock_gettime(CLOCK_MONOTONIC, &mOldTs);
194 mTimestampStatus = INVALID_OPERATION;
195 } else {
196 mSleepNs = FAST_HOT_IDLE_NS;
197 }
198 continue;
199 case FastThreadState::EXIT:
200 onExit();
201 return false;
202 default:
203 LOG_ALWAYS_FATAL_IF(!isSubClassCommand(mCommand));
204 break;
205 }
206
207 // there is a non-idle state available to us; did the state change?
208 if (mCurrent != mPrevious) {
209 onStateChange();
210 #if 1 // FIXME shouldn't need this
211 // only process state change once
212 mPrevious = mCurrent;
213 #endif
214 }
215
216 // do work using current state here
217 mAttemptedWrite = false;
218 onWork();
219
220 // To be exactly periodic, compute the next sleep time based on current time.
221 // This code doesn't have long-term stability when the sink is non-blocking.
222 // FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
223 struct timespec newTs;
224 int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
225 if (rc == 0) {
226 if (mOldTsValid) {
227 time_t sec = newTs.tv_sec - mOldTs.tv_sec;
228 long nsec = newTs.tv_nsec - mOldTs.tv_nsec;
229 ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
230 "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
231 mOldTs.tv_sec, mOldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
232 if (nsec < 0) {
233 --sec;
234 nsec += 1000000000;
235 }
236 // To avoid an initial underrun on fast tracks after exiting standby,
237 // do not start pulling data from tracks and mixing until warmup is complete.
238 // Warmup is considered complete after the earlier of:
239 // MIN_WARMUP_CYCLES consecutive in-range write() attempts,
240 // where "in-range" means mWarmupNsMin <= cycle time <= mWarmupNsMax
241 // MAX_WARMUP_CYCLES write() attempts.
242 // This is overly conservative, but to get better accuracy requires a new HAL API.
243 if (!mIsWarm && mAttemptedWrite) {
244 mMeasuredWarmupTs.tv_sec += sec;
245 mMeasuredWarmupTs.tv_nsec += nsec;
246 if (mMeasuredWarmupTs.tv_nsec >= 1000000000) {
247 mMeasuredWarmupTs.tv_sec++;
248 mMeasuredWarmupTs.tv_nsec -= 1000000000;
249 }
250 ++mWarmupCycles;
251 if (mWarmupNsMin <= nsec && nsec <= mWarmupNsMax) {
252 ALOGV("warmup cycle %d in range: %.03f ms", mWarmupCycles, nsec * 1e-9);
253 ++mWarmupConsecutiveInRangeCycles;
254 } else {
255 ALOGV("warmup cycle %d out of range: %.03f ms", mWarmupCycles, nsec * 1e-9);
256 mWarmupConsecutiveInRangeCycles = 0;
257 }
258 if ((mWarmupConsecutiveInRangeCycles >= MIN_WARMUP_CYCLES) ||
259 (mWarmupCycles >= MAX_WARMUP_CYCLES)) {
260 mIsWarm = true;
261 mDumpState->mMeasuredWarmupTs = mMeasuredWarmupTs;
262 mDumpState->mWarmupCycles = mWarmupCycles;
263 }
264 }
265 mSleepNs = -1;
266 if (mIsWarm) {
267 if (sec > 0 || nsec > mUnderrunNs) {
268 ATRACE_NAME("underrun");
269 // FIXME only log occasionally
270 ALOGV("underrun: time since last cycle %d.%03ld sec",
271 (int) sec, nsec / 1000000L);
272 mDumpState->mUnderruns++;
273 mIgnoreNextOverrun = true;
274 } else if (nsec < mOverrunNs) {
275 if (mIgnoreNextOverrun) {
276 mIgnoreNextOverrun = false;
277 } else {
278 // FIXME only log occasionally
279 ALOGV("overrun: time since last cycle %d.%03ld sec",
280 (int) sec, nsec / 1000000L);
281 mDumpState->mOverruns++;
282 }
283 // This forces a minimum cycle time. It:
284 // - compensates for an audio HAL with jitter due to sample rate conversion
285 // - works with a variable buffer depth audio HAL that never pulls at a
286 // rate < than mOverrunNs per buffer.
287 // - recovers from overrun immediately after underrun
288 // It doesn't work with a non-blocking audio HAL.
289 mSleepNs = mForceNs - nsec;
290 } else {
291 mIgnoreNextOverrun = false;
292 }
293 }
294 #ifdef FAST_THREAD_STATISTICS
295 if (mIsWarm) {
296 // advance the FIFO queue bounds
297 size_t i = mBounds & (mDumpState->mSamplingN - 1);
298 mBounds = (mBounds & 0xFFFF0000) | ((mBounds + 1) & 0xFFFF);
299 if (mFull) {
300 //mBounds += 0x10000;
301 __builtin_add_overflow(mBounds, 0x10000, &mBounds);
302 } else if (!(mBounds & (mDumpState->mSamplingN - 1))) {
303 mFull = true;
304 }
305 // compute the delta value of clock_gettime(CLOCK_MONOTONIC)
306 uint32_t monotonicNs = nsec;
307 if (sec > 0 && sec < 4) {
308 monotonicNs += sec * 1000000000;
309 }
310 // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
311 uint32_t loadNs = 0;
312 struct timespec newLoad;
313 rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
314 if (rc == 0) {
315 if (mOldLoadValid) {
316 sec = newLoad.tv_sec - mOldLoad.tv_sec;
317 nsec = newLoad.tv_nsec - mOldLoad.tv_nsec;
318 if (nsec < 0) {
319 --sec;
320 nsec += 1000000000;
321 }
322 loadNs = nsec;
323 if (sec > 0 && sec < 4) {
324 loadNs += sec * 1000000000;
325 }
326 } else {
327 // first time through the loop
328 mOldLoadValid = true;
329 }
330 mOldLoad = newLoad;
331 }
332 #ifdef CPU_FREQUENCY_STATISTICS
333 // get the absolute value of CPU clock frequency in kHz
334 int cpuNum = sched_getcpu();
335 uint32_t kHz = mTcu.getCpukHz(cpuNum);
336 kHz = (kHz << 4) | (cpuNum & 0xF);
337 #endif
338 // save values in FIFO queues for dumpsys
339 // these stores #1, #2, #3 are not atomic with respect to each other,
340 // or with respect to store #4 below
341 mDumpState->mMonotonicNs[i] = monotonicNs;
342 mDumpState->mLoadNs[i] = loadNs;
343 #ifdef CPU_FREQUENCY_STATISTICS
344 mDumpState->mCpukHz[i] = kHz;
345 #endif
346 // this store #4 is not atomic with respect to stores #1, #2, #3 above, but
347 // the newest open & oldest closed halves are atomic with respect to each other
348 mDumpState->mBounds = mBounds;
349 ATRACE_INT(mCycleMs, monotonicNs / 1000000);
350 ATRACE_INT(mLoadUs, loadNs / 1000);
351 }
352 #endif
353 } else {
354 // first time through the loop
355 mOldTsValid = true;
356 mSleepNs = mPeriodNs;
357 mIgnoreNextOverrun = true;
358 }
359 mOldTs = newTs;
360 } else {
361 // monotonic clock is broken
362 mOldTsValid = false;
363 mSleepNs = mPeriodNs;
364 }
365
366 } // for (;;)
367
368 // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
369 }
370
371 } // namespace android
372