1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "Callbacks.h"
18 #include "TestHarness.h"
19 #include "Utils.h"
20
21 #include <android-base/logging.h>
22 #include <android/hardware/neuralnetworks/1.0/IDevice.h>
23 #include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
24 #include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
25 #include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
26 #include <android/hardware/neuralnetworks/1.0/types.h>
27 #include <android/hidl/allocator/1.0/IAllocator.h>
28 #include <android/hidl/memory/1.0/IMemory.h>
29 #include <hidlmemory/mapping.h>
30 #include <iostream>
31
32 namespace android {
33 namespace hardware {
34 namespace neuralnetworks {
35
36 namespace generated_tests {
37 using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
38 using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
39 using ::test_helper::filter;
40 using ::test_helper::for_all;
41 using ::test_helper::for_each;
42 using ::test_helper::resize_accordingly;
43 using ::test_helper::MixedTyped;
44 using ::test_helper::MixedTypedExampleType;
45 using ::test_helper::Float32Operands;
46 using ::test_helper::Int32Operands;
47 using ::test_helper::Quant8Operands;
48 using ::test_helper::compare;
49
50 template <typename T>
copy_back_(MixedTyped * dst,const std::vector<RequestArgument> & ra,char * src)51 void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
52 MixedTyped& test = *dst;
53 for_each<T>(test, [&ra, src](int index, std::vector<T>& m) {
54 ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
55 char* begin = src + ra[index].location.offset;
56 memcpy(m.data(), begin, ra[index].location.length);
57 });
58 }
59
copy_back(MixedTyped * dst,const std::vector<RequestArgument> & ra,char * src)60 void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
61 copy_back_<float>(dst, ra, src);
62 copy_back_<int32_t>(dst, ra, src);
63 copy_back_<uint8_t>(dst, ra, src);
64 }
65
66 // Top level driver for models and examples generated by test_generator.py
67 // Test driver for those generated from ml/nn/runtime/test/spec
EvaluatePreparedModel(sp<IPreparedModel> & preparedModel,std::function<bool (int)> is_ignored,const std::vector<MixedTypedExampleType> & examples,float fpRange=1e-5f)68 void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
69 const std::vector<MixedTypedExampleType>& examples,
70 float fpRange = 1e-5f) {
71 const uint32_t INPUT = 0;
72 const uint32_t OUTPUT = 1;
73
74 int example_no = 1;
75 for (auto& example : examples) {
76 SCOPED_TRACE(example_no++);
77
78 const MixedTyped& inputs = example.first;
79 const MixedTyped& golden = example.second;
80
81 std::vector<RequestArgument> inputs_info, outputs_info;
82 uint32_t inputSize = 0, outputSize = 0;
83
84 // This function only partially specifies the metadata (vector of RequestArguments).
85 // The contents are copied over below.
86 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
87 if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
88 RequestArgument arg = {
89 .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
90 .dimensions = {},
91 };
92 RequestArgument arg_empty = {
93 .hasNoValue = true,
94 };
95 inputs_info[index] = s ? arg : arg_empty;
96 inputSize += s;
97 });
98 // Compute offset for inputs 1 and so on
99 {
100 size_t offset = 0;
101 for (auto& i : inputs_info) {
102 if (!i.hasNoValue) i.location.offset = offset;
103 offset += i.location.length;
104 }
105 }
106
107 MixedTyped test; // holding test results
108
109 // Go through all outputs, initialize RequestArgument descriptors
110 resize_accordingly(golden, test);
111 for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
112 if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
113 RequestArgument arg = {
114 .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
115 .dimensions = {},
116 };
117 outputs_info[index] = arg;
118 outputSize += s;
119 });
120 // Compute offset for outputs 1 and so on
121 {
122 size_t offset = 0;
123 for (auto& i : outputs_info) {
124 i.location.offset = offset;
125 offset += i.location.length;
126 }
127 }
128 std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
129 nn::allocateSharedMemory(outputSize)};
130 ASSERT_NE(0ull, pools[INPUT].size());
131 ASSERT_NE(0ull, pools[OUTPUT].size());
132
133 // load data
134 sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
135 sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
136 ASSERT_NE(nullptr, inputMemory.get());
137 ASSERT_NE(nullptr, outputMemory.get());
138 char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
139 char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
140 ASSERT_NE(nullptr, inputPtr);
141 ASSERT_NE(nullptr, outputPtr);
142 inputMemory->update();
143 outputMemory->update();
144
145 // Go through all inputs, copy the values
146 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
147 char* begin = (char*)p;
148 char* end = begin + s;
149 // TODO: handle more than one input
150 std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
151 });
152
153 inputMemory->commit();
154 outputMemory->commit();
155
156 // launch execution
157 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
158 ASSERT_NE(nullptr, executionCallback.get());
159 Return<ErrorStatus> executionLaunchStatus = preparedModel->execute(
160 {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}, executionCallback);
161 ASSERT_TRUE(executionLaunchStatus.isOk());
162 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
163
164 // retrieve execution status
165 executionCallback->wait();
166 ErrorStatus executionReturnStatus = executionCallback->getStatus();
167 EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
168
169 // validate results
170 outputMemory->read();
171 copy_back(&test, outputs_info, outputPtr);
172 outputMemory->commit();
173 // Filter out don't cares
174 MixedTyped filtered_golden = filter(golden, is_ignored);
175 MixedTyped filtered_test = filter(test, is_ignored);
176
177 // We want "close-enough" results for float
178 compare(filtered_golden, filtered_test, fpRange);
179 }
180 }
181
Execute(const sp<V1_0::IDevice> & device,std::function<V1_0::Model (void)> create_model,std::function<bool (int)> is_ignored,const std::vector<MixedTypedExampleType> & examples)182 void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
183 std::function<bool(int)> is_ignored,
184 const std::vector<MixedTypedExampleType>& examples) {
185 V1_0::Model model = create_model();
186
187 // see if service can handle model
188 bool fullySupportsModel = false;
189 Return<void> supportedCall = device->getSupportedOperations(
190 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
191 ASSERT_EQ(ErrorStatus::NONE, status);
192 ASSERT_NE(0ul, supported.size());
193 fullySupportsModel =
194 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
195 });
196 ASSERT_TRUE(supportedCall.isOk());
197
198 // launch prepare model
199 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
200 ASSERT_NE(nullptr, preparedModelCallback.get());
201 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
202 ASSERT_TRUE(prepareLaunchStatus.isOk());
203 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
204
205 // retrieve prepared model
206 preparedModelCallback->wait();
207 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
208 sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
209
210 // early termination if vendor service cannot fully prepare model
211 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
212 ASSERT_EQ(nullptr, preparedModel.get());
213 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
214 "prepare model that it does not support.";
215 std::cout << "[ ] Early termination of test because vendor service cannot "
216 "prepare model that it does not support."
217 << std::endl;
218 return;
219 }
220 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
221 ASSERT_NE(nullptr, preparedModel.get());
222
223 EvaluatePreparedModel(preparedModel, is_ignored, examples);
224 }
225
Execute(const sp<V1_1::IDevice> & device,std::function<V1_1::Model (void)> create_model,std::function<bool (int)> is_ignored,const std::vector<MixedTypedExampleType> & examples)226 void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
227 std::function<bool(int)> is_ignored,
228 const std::vector<MixedTypedExampleType>& examples) {
229 V1_1::Model model = create_model();
230
231 // see if service can handle model
232 bool fullySupportsModel = false;
233 Return<void> supportedCall = device->getSupportedOperations_1_1(
234 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
235 ASSERT_EQ(ErrorStatus::NONE, status);
236 ASSERT_NE(0ul, supported.size());
237 fullySupportsModel =
238 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
239 });
240 ASSERT_TRUE(supportedCall.isOk());
241
242 // launch prepare model
243 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
244 ASSERT_NE(nullptr, preparedModelCallback.get());
245 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
246 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
247 ASSERT_TRUE(prepareLaunchStatus.isOk());
248 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
249
250 // retrieve prepared model
251 preparedModelCallback->wait();
252 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
253 sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
254
255 // early termination if vendor service cannot fully prepare model
256 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
257 ASSERT_EQ(nullptr, preparedModel.get());
258 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
259 "prepare model that it does not support.";
260 std::cout << "[ ] Early termination of test because vendor service cannot "
261 "prepare model that it does not support."
262 << std::endl;
263 return;
264 }
265 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
266 ASSERT_NE(nullptr, preparedModel.get());
267
268 // If in relaxed mode, set the error range to be 5ULP of FP16.
269 float fpRange = !model.relaxComputationFloat32toFloat16 ? 1e-5f : 5.0f * 0.0009765625f;
270 EvaluatePreparedModel(preparedModel, is_ignored, examples, fpRange);
271 }
272
273 } // namespace generated_tests
274
275 } // namespace neuralnetworks
276 } // namespace hardware
277 } // namespace android
278