1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 /**
20  * This class represents a {@link android.hardware.Sensor Sensor} event and
21  * holds information such as the sensor's type, the time-stamp, accuracy and of
22  * course the sensor's {@link SensorEvent#values data}.
23  *
24  * <p>
25  * <u>Definition of the coordinate system used by the SensorEvent API.</u>
26  * </p>
27  *
28  * <p>
29  * The coordinate-system is defined relative to the screen of the phone in its
30  * default orientation. The axes are not swapped when the device's screen
31  * orientation changes.
32  * </p>
33  *
34  * <p>
35  * The X axis is horizontal and points to the right, the Y axis is vertical and
36  * points up and the Z axis points towards the outside of the front face of the
37  * screen. In this system, coordinates behind the screen have negative Z values.
38  * </p>
39  *
40  * <p>
41  * <center><img src="../../../images/axis_device.png"
42  * alt="Sensors coordinate-system diagram." border="0" /></center>
43  * </p>
44  *
45  * <p>
46  * <b>Note:</b> This coordinate system is different from the one used in the
47  * Android 2D APIs where the origin is in the top-left corner.
48  * </p>
49  *
50  * @see SensorManager
51  * @see SensorEvent
52  * @see Sensor
53  *
54  */
55 
56 public class SensorEvent {
57     /**
58      * <p>
59      * The length and contents of the {@link #values values} array depends on
60      * which {@link android.hardware.Sensor sensor} type is being monitored (see
61      * also {@link SensorEvent} for a definition of the coordinate system used).
62      * </p>
63      *
64      * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
65      * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
66      *
67      * <ul>
68      * <li> values[0]: Acceleration minus Gx on the x-axis </li>
69      * <li> values[1]: Acceleration minus Gy on the y-axis </li>
70      * <li> values[2]: Acceleration minus Gz on the z-axis </li>
71      * </ul>
72      *
73      * <p>
74      * A sensor of this type measures the acceleration applied to the device
75      * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
76      * sensor itself (<b>Fs</b>) using the relation:
77      * </p>
78      *
79      * <b><center>Ad = - &#8721;Fs / mass</center></b>
80      *
81      * <p>
82      * In particular, the force of gravity is always influencing the measured
83      * acceleration:
84      * </p>
85      *
86      * <b><center>Ad = -g - &#8721;F / mass</center></b>
87      *
88      * <p>
89      * For this reason, when the device is sitting on a table (and obviously not
90      * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
91      * m/s^2
92      * </p>
93      *
94      * <p>
95      * Similarly, when the device is in free-fall and therefore dangerously
96      * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
97      * magnitude of 0 m/s^2.
98      * </p>
99      *
100      * <p>
101      * It should be apparent that in order to measure the real acceleration of
102      * the device, the contribution of the force of gravity must be eliminated.
103      * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
104      * <i>low-pass</i> filter can be used to isolate the force of gravity.
105      * </p>
106      *
107      * <pre class="prettyprint">
108      *
109      *     public void onSensorChanged(SensorEvent event)
110      *     {
111      *          // alpha is calculated as t / (t + dT)
112      *          // with t, the low-pass filter's time-constant
113      *          // and dT, the event delivery rate
114      *
115      *          final float alpha = 0.8;
116      *
117      *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
118      *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
119      *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
120      *
121      *          linear_acceleration[0] = event.values[0] - gravity[0];
122      *          linear_acceleration[1] = event.values[1] - gravity[1];
123      *          linear_acceleration[2] = event.values[2] - gravity[2];
124      *     }
125      * </pre>
126      *
127      * <p>
128      * <u>Examples</u>:
129      * <ul>
130      * <li>When the device lies flat on a table and is pushed on its left side
131      * toward the right, the x acceleration value is positive.</li>
132      *
133      * <li>When the device lies flat on a table, the acceleration value is
134      * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
135      * the force of gravity (-9.81 m/s^2).</li>
136      *
137      * <li>When the device lies flat on a table and is pushed toward the sky
138      * with an acceleration of A m/s^2, the acceleration value is equal to
139      * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
140      * minus the force of gravity (-9.81 m/s^2).</li>
141      * </ul>
142      *
143      *
144      * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
145      * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
146      * All values are in micro-Tesla (uT) and measure the ambient magnetic field
147      * in the X, Y and Z axis.
148      *
149      * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
150      * </h4> All values are in radians/second and measure the rate of rotation
151      * around the device's local X, Y and Z axis. The coordinate system is the
152      * same as is used for the acceleration sensor. Rotation is positive in the
153      * counter-clockwise direction. That is, an observer looking from some
154      * positive location on the x, y or z axis at a device positioned on the
155      * origin would report positive rotation if the device appeared to be
156      * rotating counter clockwise. Note that this is the standard mathematical
157      * definition of positive rotation and does not agree with the definition of
158      * roll given earlier.
159      * <ul>
160      * <li> values[0]: Angular speed around the x-axis </li>
161      * <li> values[1]: Angular speed around the y-axis </li>
162      * <li> values[2]: Angular speed around the z-axis </li>
163      * </ul>
164      * <p>
165      * Typically the output of the gyroscope is integrated over time to
166      * calculate a rotation describing the change of angles over the time step,
167      * for example:
168      * </p>
169      *
170      * <pre class="prettyprint">
171      *     private static final float NS2S = 1.0f / 1000000000.0f;
172      *     private final float[] deltaRotationVector = new float[4]();
173      *     private float timestamp;
174      *
175      *     public void onSensorChanged(SensorEvent event) {
176      *          // This time step's delta rotation to be multiplied by the current rotation
177      *          // after computing it from the gyro sample data.
178      *          if (timestamp != 0) {
179      *              final float dT = (event.timestamp - timestamp) * NS2S;
180      *              // Axis of the rotation sample, not normalized yet.
181      *              float axisX = event.values[0];
182      *              float axisY = event.values[1];
183      *              float axisZ = event.values[2];
184      *
185      *              // Calculate the angular speed of the sample
186      *              float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
187      *
188      *              // Normalize the rotation vector if it's big enough to get the axis
189      *              if (omegaMagnitude > EPSILON) {
190      *                  axisX /= omegaMagnitude;
191      *                  axisY /= omegaMagnitude;
192      *                  axisZ /= omegaMagnitude;
193      *              }
194      *
195      *              // Integrate around this axis with the angular speed by the time step
196      *              // in order to get a delta rotation from this sample over the time step
197      *              // We will convert this axis-angle representation of the delta rotation
198      *              // into a quaternion before turning it into the rotation matrix.
199      *              float thetaOverTwo = omegaMagnitude * dT / 2.0f;
200      *              float sinThetaOverTwo = sin(thetaOverTwo);
201      *              float cosThetaOverTwo = cos(thetaOverTwo);
202      *              deltaRotationVector[0] = sinThetaOverTwo * axisX;
203      *              deltaRotationVector[1] = sinThetaOverTwo * axisY;
204      *              deltaRotationVector[2] = sinThetaOverTwo * axisZ;
205      *              deltaRotationVector[3] = cosThetaOverTwo;
206      *          }
207      *          timestamp = event.timestamp;
208      *          float[] deltaRotationMatrix = new float[9];
209      *          SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
210      *          // User code should concatenate the delta rotation we computed with the current
211      *          // rotation in order to get the updated rotation.
212      *          // rotationCurrent = rotationCurrent * deltaRotationMatrix;
213      *     }
214      * </pre>
215      * <p>
216      * In practice, the gyroscope noise and offset will introduce some errors
217      * which need to be compensated for. This is usually done using the
218      * information from other sensors, but is beyond the scope of this document.
219      * </p>
220      * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
221      * <ul>
222      * <li>values[0]: Ambient light level in SI lux units </li>
223      * </ul>
224      *
225      * <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
226      * <ul>
227      * <li>values[0]: Atmospheric pressure in hPa (millibar) </li>
228      * </ul>
229      *
230      * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
231      * </h4>
232      *
233      * <ul>
234      * <li>values[0]: Proximity sensor distance measured in centimeters </li>
235      * </ul>
236      *
237      * <p>
238      * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
239      * <i>far</i> measurement. In this case, the sensor should report its
240      * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
241      * the <i>far</i> state and a lesser value in the <i>near</i> state.
242      * </p>
243      *
244      *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
245      *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
246      *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
247      *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be
248      *  identical to that of the accelerometer.</p>
249      *
250      *  <h4>
251      *  {@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:
252      *  </h4> A three dimensional vector indicating acceleration along each device axis, not
253      *  including gravity. All values have units of m/s^2.  The coordinate system is the same as is
254      *  used by the acceleration sensor.
255      *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
256      *  following relation:</p>
257      *  <p><ul>acceleration = gravity + linear-acceleration</ul></p>
258      *
259      *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
260      *  <p>The rotation vector represents the orientation of the device as a combination of an
261      *  <i>angle</i> and an <i>axis</i>, in which the device has rotated through an angle &#952
262      *  around an axis &lt;x, y, z>.</p>
263      *  <p>The three elements of the rotation vector are
264      *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
265      *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
266      *  direction of the axis of rotation.</p>
267      *  </p>The three elements of the rotation vector are equal to
268      *  the last three components of a <b>unit</b> quaternion
269      *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
270      *  <p>Elements of the rotation vector are unitless.
271      *  The x,y, and z axis are defined in the same way as the acceleration
272      *  sensor.</p>
273      *  The reference coordinate system is defined as a direct orthonormal basis,
274      *  where:
275      * </p>
276      *
277      * <ul>
278      * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
279      * the ground at the device's current location and roughly points East).</li>
280      * <li>Y is tangential to the ground at the device's current location and
281      * points towards magnetic north.</li>
282      * <li>Z points towards the sky and is perpendicular to the ground.</li>
283      * </ul>
284      *
285      * <p>
286      * <center><img src="../../../images/axis_globe.png"
287      * alt="World coordinate-system diagram." border="0" /></center>
288      * </p>
289      *
290      * <ul>
291      * <li> values[0]: x*sin(&#952/2) </li>
292      * <li> values[1]: y*sin(&#952/2) </li>
293      * <li> values[2]: z*sin(&#952/2) </li>
294      * <li> values[3]: cos(&#952/2) </li>
295      * <li> values[4]: estimated heading Accuracy (in radians) (-1 if unavailable)</li>
296      * </ul>
297      * <p> values[3], originally optional, will always be present from SDK Level 18 onwards.
298      * values[4] is a new value that has been added in SDK Level 18.
299      * </p>
300      *
301      * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
302      * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
303      *
304      * <ul>
305      * <li> values[0]: Azimuth, angle between the magnetic north direction and the
306      * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
307      * 270=West
308      * </p>
309      *
310      * <p>
311      * values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
312      * values when the z-axis moves <b>toward</b> the y-axis.
313      * </p>
314      *
315      * <p>
316      * values[2]: Roll, rotation around the y-axis (-90 to 90)
317      * increasing as the device moves clockwise.
318      * </p>
319      * </ul>
320      *
321      * <p>
322      * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
323      * used in aviation where the X axis is along the long side of the plane
324      * (tail to nose).
325      * </p>
326      *
327      * <p>
328      * <b>Note:</b> This sensor type exists for legacy reasons, please use
329      * {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR
330      * rotation vector sensor type} and
331      * {@link android.hardware.SensorManager#getRotationMatrix
332      * getRotationMatrix()} in conjunction with
333      * {@link android.hardware.SensorManager#remapCoordinateSystem
334      * remapCoordinateSystem()} and
335      * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
336      * compute these values instead.
337      * </p>
338      *
339      * <p>
340      * <b>Important note:</b> For historical reasons the roll angle is positive
341      * in the clockwise direction (mathematically speaking, it should be
342      * positive in the counter-clockwise direction).
343      * </p>
344      *
345      * <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
346      * Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
347      * <ul>
348      * <li> values[0]: Relative ambient air humidity in percent </li>
349      * </ul>
350      * <p>
351      * When relative ambient air humidity and ambient temperature are
352      * measured, the dew point and absolute humidity can be calculated.
353      * </p>
354      * <u>Dew Point</u>
355      * <p>
356      * The dew point is the temperature to which a given parcel of air must be
357      * cooled, at constant barometric pressure, for water vapor to condense
358      * into water.
359      * </p>
360      * <center><pre>
361      *                    ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
362      * t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
363      *                 m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
364      * </pre></center>
365      * <dl>
366      * <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
367      * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
368      * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
369      * <dt>m</dt>             <dd>17.62</dd>
370      * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
371      * </dl>
372      * <p>for example:</p>
373      * <pre class="prettyprint">
374      * h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
375      * td = 243.12 * h / (17.62 - h);
376      * </pre>
377      * <u>Absolute Humidity</u>
378      * <p>
379      * The absolute humidity is the mass of water vapor in a particular volume
380      * of dry air. The unit is g/m<sup>3</sup>.
381      * </p>
382      * <center><pre>
383      *                    RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
384      * d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
385      *                           273.15 + t
386      * </pre></center>
387      * <dl>
388      * <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
389      * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
390      * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
391      * <dt>m</dt>             <dd>17.62</dd>
392      * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
393      * <dt>A</dt>             <dd>6.112 hPa</dd>
394      * </dl>
395      * <p>for example:</p>
396      * <pre class="prettyprint">
397      * dv = 216.7 *
398      * (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
399      * </pre>
400      *
401      * <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
402      * </h4>
403      *
404      * <ul>
405      * <li> values[0]: ambient (room) temperature in degree Celsius.</li>
406      * </ul>
407      *
408      *
409      * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD_UNCALIBRATED
410      * Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED}:</h4>
411      * Similar to {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD},
412      * but the hard iron calibration is reported separately instead of being included
413      * in the measurement. Factory calibration and temperature compensation will still
414      * be applied to the "uncalibrated" measurement. Assumptions that the magnetic field
415      * is due to the Earth's poles is avoided.
416      * <p>
417      * The values array is shown below:
418      * <ul>
419      * <li> values[0] = x_uncalib </li>
420      * <li> values[1] = y_uncalib </li>
421      * <li> values[2] = z_uncalib </li>
422      * <li> values[3] = x_bias </li>
423      * <li> values[4] = y_bias </li>
424      * <li> values[5] = z_bias </li>
425      * </ul>
426      * </p>
427      * <p>
428      * x_uncalib, y_uncalib, z_uncalib are the measured magnetic field in X, Y, Z axes.
429      * Soft iron and temperature calibrations are applied. But the hard iron
430      * calibration is not applied. The values are in micro-Tesla (uT).
431      * </p>
432      * <p>
433      * x_bias, y_bias, z_bias give the iron bias estimated in X, Y, Z axes.
434      * Each field is a component of the estimated hard iron calibration.
435      * The values are in micro-Tesla (uT).
436      * </p>
437      * <p> Hard iron - These distortions arise due to the magnetized iron, steel or permanent
438      * magnets on the device.
439      * Soft iron - These distortions arise due to the interaction with the earth's magnetic
440      * field.
441      * </p>
442      * <h4> {@link android.hardware.Sensor#TYPE_GAME_ROTATION_VECTOR
443      * Sensor.TYPE_GAME_ROTATION_VECTOR}:</h4>
444      * Identical to {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR} except that it
445      * doesn't use the geomagnetic field. Therefore the Y axis doesn't
446      * point north, but instead to some other reference, that reference is
447      * allowed to drift by the same order of magnitude as the gyroscope
448      * drift around the Z axis.
449      * <p>
450      * In the ideal case, a phone rotated and returning to the same real-world
451      * orientation will report the same game rotation vector
452      * (without using the earth's geomagnetic field). However, the orientation
453      * may drift somewhat over time. See {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR}
454      * for a detailed description of the values. This sensor will not have
455      * the estimated heading accuracy value.
456      * </p>
457      *
458      * <h4> {@link android.hardware.Sensor#TYPE_GYROSCOPE_UNCALIBRATED
459      * Sensor.TYPE_GYROSCOPE_UNCALIBRATED}:</h4>
460      * All values are in radians/second and measure the rate of rotation
461      * around the X, Y and Z axis. An estimation of the drift on each axis is
462      * reported as well.
463      * <p>
464      * No gyro-drift compensation is performed. Factory calibration and temperature
465      * compensation is still applied to the rate of rotation (angular speeds).
466      * </p>
467      * <p>
468      * The coordinate system is the same as is used for the
469      * {@link android.hardware.Sensor#TYPE_ACCELEROMETER}
470      * Rotation is positive in the counter-clockwise direction (right-hand rule).
471      * That is, an observer looking from some positive location on the x, y or z axis
472      * at a device positioned on the origin would report positive rotation if the device
473      * appeared to be rotating counter clockwise.
474      * The range would at least be 17.45 rad/s (ie: ~1000 deg/s).
475      * <ul>
476      * <li> values[0] : angular speed (w/o drift compensation) around the X axis in rad/s </li>
477      * <li> values[1] : angular speed (w/o drift compensation) around the Y axis in rad/s </li>
478      * <li> values[2] : angular speed (w/o drift compensation) around the Z axis in rad/s </li>
479      * <li> values[3] : estimated drift around X axis in rad/s </li>
480      * <li> values[4] : estimated drift around Y axis in rad/s </li>
481      * <li> values[5] : estimated drift around Z axis in rad/s </li>
482      * </ul>
483      * </p>
484      * <p><b>Pro Tip:</b> Always use the length of the values array while performing operations
485      * on it. In earlier versions, this used to be always 3 which has changed now. </p>
486      *
487      *   <h4>{@link android.hardware.Sensor#TYPE_POSE_6DOF
488      * Sensor.TYPE_POSE_6DOF}:</h4>
489      *
490      * A TYPE_POSE_6DOF event consists of a rotation expressed as a quaternion and a translation
491      * expressed in SI units. The event also contains a delta rotation and translation that show
492      * how the device?s pose has changed since the previous sequence numbered pose.
493      * The event uses the cannonical Android Sensor axes.
494      *
495      *
496      * <ul>
497      * <li> values[0]: x*sin(&#952/2) </li>
498      * <li> values[1]: y*sin(&#952/2) </li>
499      * <li> values[2]: z*sin(&#952/2) </li>
500      * <li> values[3]: cos(&#952/2)   </li>
501      *
502      *
503      * <li> values[4]: Translation along x axis from an arbitrary origin. </li>
504      * <li> values[5]: Translation along y axis from an arbitrary origin. </li>
505      * <li> values[6]: Translation along z axis from an arbitrary origin. </li>
506      *
507      * <li> values[7]:  Delta quaternion rotation x*sin(&#952/2) </li>
508      * <li> values[8]:  Delta quaternion rotation y*sin(&#952/2) </li>
509      * <li> values[9]:  Delta quaternion rotation z*sin(&#952/2) </li>
510      * <li> values[10]: Delta quaternion rotation cos(&#952/2) </li>
511      *
512      * <li> values[11]: Delta translation along x axis. </li>
513      * <li> values[12]: Delta translation along y axis. </li>
514      * <li> values[13]: Delta translation along z axis. </li>
515      *
516      * <li> values[14]: Sequence number </li>
517      *
518      * </ul>
519      *
520      *   <h4>{@link android.hardware.Sensor#TYPE_STATIONARY_DETECT
521      * Sensor.TYPE_STATIONARY_DETECT}:</h4>
522      *
523      * A TYPE_STATIONARY_DETECT event is produced if the device has been
524      * stationary for at least 5 seconds with a maximal latency of 5
525      * additional seconds. ie: it may take up anywhere from 5 to 10 seconds
526      * afte the device has been at rest to trigger this event.
527      *
528      * The only allowed value is 1.0.
529      *
530      * <ul>
531      *  <li> values[0]: 1.0 </li>
532      * </ul>
533      *
534      *   <h4>{@link android.hardware.Sensor#TYPE_MOTION_DETECT
535      * Sensor.TYPE_MOTION_DETECT}:</h4>
536      *
537      * A TYPE_MOTION_DETECT event is produced if the device has been in
538      * motion  for at least 5 seconds with a maximal latency of 5
539      * additional seconds. ie: it may take up anywhere from 5 to 10 seconds
540      * afte the device has been at rest to trigger this event.
541      *
542      * The only allowed value is 1.0.
543      *
544      * <ul>
545      *  <li> values[0]: 1.0 </li>
546      * </ul>
547      *
548      *   <h4>{@link android.hardware.Sensor#TYPE_HEART_BEAT
549      * Sensor.TYPE_HEART_BEAT}:</h4>
550      *
551      * A sensor of this type returns an event everytime a hear beat peak is
552      * detected.
553      *
554      * Peak here ideally corresponds to the positive peak in the QRS complex of
555      * an ECG signal.
556      *
557      * <ul>
558      *  <li> values[0]: confidence</li>
559      * </ul>
560      *
561      * <p>
562      * A confidence value of 0.0 indicates complete uncertainty - that a peak
563      * is as likely to be at the indicated timestamp as anywhere else.
564      * A confidence value of 1.0 indicates complete certainly - that a peak is
565      * completely unlikely to be anywhere else on the QRS complex.
566      * </p>
567      *
568      * <h4>{@link android.hardware.Sensor#TYPE_LOW_LATENCY_OFFBODY_DETECT
569      * Sensor.TYPE_LOW_LATENCY_OFFBODY_DETECT}:</h4>
570      *
571      * <p>
572      * A sensor of this type returns an event every time the device transitions
573      * from off-body to on-body and from on-body to off-body (e.g. a wearable
574      * device being removed from the wrist would trigger an event indicating an
575      * off-body transition). The event returned will contain a single value to
576      * indicate off-body state:
577      * </p>
578      *
579      * <ul>
580      *  <li> values[0]: off-body state</li>
581      * </ul>
582      *
583      * <p>
584      *     Valid values for off-body state:
585      * <ul>
586      *  <li> 1.0 (device is on-body)</li>
587      *  <li> 0.0 (device is off-body)</li>
588      * </ul>
589      * </p>
590      *
591      * <p>
592      * When a sensor of this type is activated, it must deliver the initial
593      * on-body or off-body event representing the current device state within
594      * 5 seconds of activating the sensor.
595      * </p>
596      *
597      * <p>
598      * This sensor must be able to detect and report an on-body to off-body
599      * transition within 1 second of the device being removed from the body,
600      * and must be able to detect and report an off-body to on-body transition
601      * within 5 seconds of the device being put back onto the body.
602      * </p>
603      *
604      * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER_UNCALIBRATED
605      * Sensor.TYPE_ACCELEROMETER_UNCALIBRATED}:</h4> All values are in SI
606      * units (m/s^2)
607      *
608      * Similar to {@link android.hardware.Sensor#TYPE_ACCELEROMETER},
609      * Factory calibration and temperature compensation will still be applied
610      * to the "uncalibrated" measurement.
611      *
612      * <p>
613      * The values array is shown below:
614      * <ul>
615      * <li> values[0] = x_uncalib without bias compensation </li>
616      * <li> values[1] = y_uncalib without bias compensation </li>
617      * <li> values[2] = z_uncalib without bias compensation </li>
618      * <li> values[3] = estimated x_bias </li>
619      * <li> values[4] = estimated y_bias </li>
620      * <li> values[5] = estimated z_bias </li>
621      * </ul>
622      * </p>
623      * <p>
624      * x_uncalib, y_uncalib, z_uncalib are the measured acceleration in X, Y, Z
625      * axes similar to the  {@link android.hardware.Sensor#TYPE_ACCELEROMETER},
626      * without any bias correction (factory bias compensation and any
627      * temperature compensation is allowed).
628      * x_bias, y_bias, z_bias are the estimated biases.
629      * </p>
630      *
631      * @see GeomagneticField
632      */
633     public final float[] values;
634 
635     /**
636      * The sensor that generated this event. See
637      * {@link android.hardware.SensorManager SensorManager} for details.
638      */
639     public Sensor sensor;
640 
641     /**
642      * The accuracy of this event. See {@link android.hardware.SensorManager
643      * SensorManager} for details.
644      */
645     public int accuracy;
646 
647     /**
648      * The time in nanosecond at which the event happened
649      */
650     public long timestamp;
651 
SensorEvent(int valueSize)652     SensorEvent(int valueSize) {
653         values = new float[valueSize];
654     }
655 }
656