1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // PLEASE READ: Do you really need a singleton?
6 //
7 // Singletons make it hard to determine the lifetime of an object, which can
8 // lead to buggy code and spurious crashes.
9 //
10 // Instead of adding another singleton into the mix, try to identify either:
11 //   a) An existing singleton that can manage your object's lifetime
12 //   b) Locations where you can deterministically create the object and pass
13 //      into other objects
14 //
15 // If you absolutely need a singleton, please keep them as trivial as possible
16 // and ideally a leaf dependency. Singletons get problematic when they attempt
17 // to do too much in their destructor or have circular dependencies.
18 
19 #ifndef BASE_MEMORY_SINGLETON_H_
20 #define BASE_MEMORY_SINGLETON_H_
21 
22 #include "base/at_exit.h"
23 #include "base/atomicops.h"
24 #include "base/base_export.h"
25 #include "base/logging.h"
26 #include "base/macros.h"
27 #include "base/memory/aligned_memory.h"
28 #include "base/threading/thread_restrictions.h"
29 
30 namespace base {
31 namespace internal {
32 
33 // Our AtomicWord doubles as a spinlock, where a value of
34 // kBeingCreatedMarker means the spinlock is being held for creation.
35 static const subtle::AtomicWord kBeingCreatedMarker = 1;
36 
37 // We pull out some of the functionality into a non-templated function, so that
38 // we can implement the more complicated pieces out of line in the .cc file.
39 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
40 
41 class DeleteTraceLogForTesting;
42 
43 }  // namespace internal
44 
45 
46 // Default traits for Singleton<Type>. Calls operator new and operator delete on
47 // the object. Registers automatic deletion at process exit.
48 // Overload if you need arguments or another memory allocation function.
49 template<typename Type>
50 struct DefaultSingletonTraits {
51   // Allocates the object.
NewDefaultSingletonTraits52   static Type* New() {
53     // The parenthesis is very important here; it forces POD type
54     // initialization.
55     return new Type();
56   }
57 
58   // Destroys the object.
DeleteDefaultSingletonTraits59   static void Delete(Type* x) {
60     delete x;
61   }
62 
63   // Set to true to automatically register deletion of the object on process
64   // exit. See below for the required call that makes this happen.
65   static const bool kRegisterAtExit = true;
66 
67 #if DCHECK_IS_ON()
68   // Set to false to disallow access on a non-joinable thread.  This is
69   // different from kRegisterAtExit because StaticMemorySingletonTraits allows
70   // access on non-joinable threads, and gracefully handles this.
71   static const bool kAllowedToAccessOnNonjoinableThread = false;
72 #endif
73 };
74 
75 
76 // Alternate traits for use with the Singleton<Type>.  Identical to
77 // DefaultSingletonTraits except that the Singleton will not be cleaned up
78 // at exit.
79 template<typename Type>
80 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
81   static const bool kRegisterAtExit = false;
82 #if DCHECK_IS_ON()
83   static const bool kAllowedToAccessOnNonjoinableThread = true;
84 #endif
85 };
86 
87 
88 // Alternate traits for use with the Singleton<Type>.  Allocates memory
89 // for the singleton instance from a static buffer.  The singleton will
90 // be cleaned up at exit, but can't be revived after destruction unless
91 // the Resurrect() method is called.
92 //
93 // This is useful for a certain category of things, notably logging and
94 // tracing, where the singleton instance is of a type carefully constructed to
95 // be safe to access post-destruction.
96 // In logging and tracing you'll typically get stray calls at odd times, like
97 // during static destruction, thread teardown and the like, and there's a
98 // termination race on the heap-based singleton - e.g. if one thread calls
99 // get(), but then another thread initiates AtExit processing, the first thread
100 // may call into an object residing in unallocated memory. If the instance is
101 // allocated from the data segment, then this is survivable.
102 //
103 // The destructor is to deallocate system resources, in this case to unregister
104 // a callback the system will invoke when logging levels change. Note that
105 // this is also used in e.g. Chrome Frame, where you have to allow for the
106 // possibility of loading briefly into someone else's process space, and
107 // so leaking is not an option, as that would sabotage the state of your host
108 // process once you've unloaded.
109 template <typename Type>
110 struct StaticMemorySingletonTraits {
111   // WARNING: User has to deal with get() in the singleton class
112   // this is traits for returning NULL.
NewStaticMemorySingletonTraits113   static Type* New() {
114     // Only constructs once and returns pointer; otherwise returns NULL.
115     if (subtle::NoBarrier_AtomicExchange(&dead_, 1))
116       return NULL;
117 
118     return new(buffer_.void_data()) Type();
119   }
120 
DeleteStaticMemorySingletonTraits121   static void Delete(Type* p) {
122     if (p != NULL)
123       p->Type::~Type();
124   }
125 
126   static const bool kRegisterAtExit = true;
127   static const bool kAllowedToAccessOnNonjoinableThread = true;
128 
129   // Exposed for unittesting.
ResurrectStaticMemorySingletonTraits130   static void Resurrect() { subtle::NoBarrier_Store(&dead_, 0); }
131 
132  private:
133   static AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
134   // Signal the object was already deleted, so it is not revived.
135   static subtle::Atomic32 dead_;
136 };
137 
138 template <typename Type>
139 AlignedMemory<sizeof(Type), ALIGNOF(Type)>
140     StaticMemorySingletonTraits<Type>::buffer_;
141 template <typename Type>
142 subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0;
143 
144 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
145 // instance of Type which will be created on first use and will be destroyed at
146 // normal process exit). The Trait::Delete function will not be called on
147 // abnormal process exit.
148 //
149 // DifferentiatingType is used as a key to differentiate two different
150 // singletons having the same memory allocation functions but serving a
151 // different purpose. This is mainly used for Locks serving different purposes.
152 //
153 // Example usage:
154 //
155 // In your header:
156 //   namespace base {
157 //   template <typename T>
158 //   struct DefaultSingletonTraits;
159 //   }
160 //   class FooClass {
161 //    public:
162 //     static FooClass* GetInstance();  <-- See comment below on this.
163 //     void Bar() { ... }
164 //    private:
165 //     FooClass() { ... }
166 //     friend struct base::DefaultSingletonTraits<FooClass>;
167 //
168 //     DISALLOW_COPY_AND_ASSIGN(FooClass);
169 //   };
170 //
171 // In your source file:
172 //  #include "base/memory/singleton.h"
173 //  FooClass* FooClass::GetInstance() {
174 //    return base::Singleton<FooClass>::get();
175 //  }
176 //
177 // Or for leaky singletons:
178 //  #include "base/memory/singleton.h"
179 //  FooClass* FooClass::GetInstance() {
180 //    return base::Singleton<
181 //        FooClass, base::LeakySingletonTraits<FooClass>>::get();
182 //  }
183 //
184 // And to call methods on FooClass:
185 //   FooClass::GetInstance()->Bar();
186 //
187 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
188 // and it is important that FooClass::GetInstance() is not inlined in the
189 // header. This makes sure that when source files from multiple targets include
190 // this header they don't end up with different copies of the inlined code
191 // creating multiple copies of the singleton.
192 //
193 // Singleton<> has no non-static members and doesn't need to actually be
194 // instantiated.
195 //
196 // This class is itself thread-safe. The underlying Type must of course be
197 // thread-safe if you want to use it concurrently. Two parameters may be tuned
198 // depending on the user's requirements.
199 //
200 // Glossary:
201 //   RAE = kRegisterAtExit
202 //
203 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
204 // process exit. More precisely it uses AtExitManager which requires an
205 // object of this type to be instantiated. AtExitManager mimics the semantics
206 // of atexit() such as LIFO order but under Windows is safer to call. For more
207 // information see at_exit.h.
208 //
209 // If Traits::RAE is false, the singleton will not be freed at process exit,
210 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
211 // shouldn't be false unless absolutely necessary. Remember that the heap where
212 // the object is allocated may be destroyed by the CRT anyway.
213 //
214 // Caveats:
215 // (a) Every call to get(), operator->() and operator*() incurs some overhead
216 //     (16ns on my P4/2.8GHz) to check whether the object has already been
217 //     initialized.  You may wish to cache the result of get(); it will not
218 //     change.
219 //
220 // (b) Your factory function must never throw an exception. This class is not
221 //     exception-safe.
222 //
223 
224 template <typename Type,
225           typename Traits = DefaultSingletonTraits<Type>,
226           typename DifferentiatingType = Type>
227 class Singleton {
228  private:
229   // Classes using the Singleton<T> pattern should declare a GetInstance()
230   // method and call Singleton::get() from within that.
231   friend Type* Type::GetInstance();
232 
233   // Allow TraceLog tests to test tracing after OnExit.
234   friend class internal::DeleteTraceLogForTesting;
235 
236   // This class is safe to be constructed and copy-constructed since it has no
237   // member.
238 
239   // Return a pointer to the one true instance of the class.
get()240   static Type* get() {
241 #if DCHECK_IS_ON()
242     // Avoid making TLS lookup on release builds.
243     if (!Traits::kAllowedToAccessOnNonjoinableThread)
244       ThreadRestrictions::AssertSingletonAllowed();
245 #endif
246 
247     // The load has acquire memory ordering as the thread which reads the
248     // instance_ pointer must acquire visibility over the singleton data.
249     subtle::AtomicWord value = subtle::Acquire_Load(&instance_);
250     if (value != 0 && value != internal::kBeingCreatedMarker) {
251       return reinterpret_cast<Type*>(value);
252     }
253 
254     // Object isn't created yet, maybe we will get to create it, let's try...
255     if (subtle::Acquire_CompareAndSwap(&instance_, 0,
256                                        internal::kBeingCreatedMarker) == 0) {
257       // instance_ was NULL and is now kBeingCreatedMarker.  Only one thread
258       // will ever get here.  Threads might be spinning on us, and they will
259       // stop right after we do this store.
260       Type* newval = Traits::New();
261 
262       // Releases the visibility over instance_ to the readers.
263       subtle::Release_Store(&instance_,
264                             reinterpret_cast<subtle::AtomicWord>(newval));
265 
266       if (newval != NULL && Traits::kRegisterAtExit)
267         AtExitManager::RegisterCallback(OnExit, NULL);
268 
269       return newval;
270     }
271 
272     // We hit a race. Wait for the other thread to complete it.
273     value = internal::WaitForInstance(&instance_);
274 
275     return reinterpret_cast<Type*>(value);
276   }
277 
278   // Adapter function for use with AtExit().  This should be called single
279   // threaded, so don't use atomic operations.
280   // Calling OnExit while singleton is in use by other threads is a mistake.
OnExit(void *)281   static void OnExit(void* /*unused*/) {
282     // AtExit should only ever be register after the singleton instance was
283     // created.  We should only ever get here with a valid instance_ pointer.
284     Traits::Delete(reinterpret_cast<Type*>(subtle::NoBarrier_Load(&instance_)));
285     instance_ = 0;
286   }
287   static subtle::AtomicWord instance_;
288 };
289 
290 template <typename Type, typename Traits, typename DifferentiatingType>
291 subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::instance_ = 0;
292 
293 }  // namespace base
294 
295 #endif  // BASE_MEMORY_SINGLETON_H_
296