1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.android.server.policy; 18 19 import static com.android.server.wm.WindowOrientationListenerProto.ENABLED; 20 import static com.android.server.wm.WindowOrientationListenerProto.ROTATION; 21 22 import android.content.Context; 23 import android.hardware.Sensor; 24 import android.hardware.SensorEvent; 25 import android.hardware.SensorEventListener; 26 import android.hardware.SensorManager; 27 import android.os.Handler; 28 import android.os.SystemClock; 29 import android.os.SystemProperties; 30 import android.util.Slog; 31 import android.util.proto.ProtoOutputStream; 32 import android.view.Surface; 33 34 import java.io.PrintWriter; 35 import java.util.List; 36 37 /** 38 * A special helper class used by the WindowManager 39 * for receiving notifications from the SensorManager when 40 * the orientation of the device has changed. 41 * 42 * NOTE: If changing anything here, please run the API demo 43 * "App/Activity/Screen Orientation" to ensure that all orientation 44 * modes still work correctly. 45 * 46 * You can also visualize the behavior of the WindowOrientationListener. 47 * Refer to frameworks/base/tools/orientationplot/README.txt for details. 48 */ 49 public abstract class WindowOrientationListener { 50 private static final String TAG = "WindowOrientationListener"; 51 private static final boolean LOG = SystemProperties.getBoolean( 52 "debug.orientation.log", false); 53 54 private static final boolean USE_GRAVITY_SENSOR = false; 55 private static final int DEFAULT_BATCH_LATENCY = 100000; 56 57 private Handler mHandler; 58 private SensorManager mSensorManager; 59 private boolean mEnabled; 60 private int mRate; 61 private String mSensorType; 62 private Sensor mSensor; 63 private OrientationJudge mOrientationJudge; 64 private int mCurrentRotation = -1; 65 66 private final Object mLock = new Object(); 67 68 /** 69 * Creates a new WindowOrientationListener. 70 * 71 * @param context for the WindowOrientationListener. 72 * @param handler Provides the Looper for receiving sensor updates. 73 */ WindowOrientationListener(Context context, Handler handler)74 public WindowOrientationListener(Context context, Handler handler) { 75 this(context, handler, SensorManager.SENSOR_DELAY_UI); 76 } 77 78 /** 79 * Creates a new WindowOrientationListener. 80 * 81 * @param context for the WindowOrientationListener. 82 * @param handler Provides the Looper for receiving sensor updates. 83 * @param rate at which sensor events are processed (see also 84 * {@link android.hardware.SensorManager SensorManager}). Use the default 85 * value of {@link android.hardware.SensorManager#SENSOR_DELAY_NORMAL 86 * SENSOR_DELAY_NORMAL} for simple screen orientation change detection. 87 * 88 * This constructor is private since no one uses it. 89 */ WindowOrientationListener(Context context, Handler handler, int rate)90 private WindowOrientationListener(Context context, Handler handler, int rate) { 91 mHandler = handler; 92 mSensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE); 93 mRate = rate; 94 List<Sensor> l = mSensorManager.getSensorList(Sensor.TYPE_DEVICE_ORIENTATION); 95 Sensor wakeUpDeviceOrientationSensor = null; 96 Sensor nonWakeUpDeviceOrientationSensor = null; 97 /** 98 * Prefer the wakeup form of the sensor if implemented. 99 * It's OK to look for just two types of this sensor and use 100 * the last found. Typical devices will only have one sensor of 101 * this type. 102 */ 103 for (Sensor s : l) { 104 if (s.isWakeUpSensor()) { 105 wakeUpDeviceOrientationSensor = s; 106 } else { 107 nonWakeUpDeviceOrientationSensor = s; 108 } 109 } 110 111 if (wakeUpDeviceOrientationSensor != null) { 112 mSensor = wakeUpDeviceOrientationSensor; 113 } else { 114 mSensor = nonWakeUpDeviceOrientationSensor; 115 } 116 117 if (mSensor != null) { 118 mOrientationJudge = new OrientationSensorJudge(); 119 } 120 121 if (mOrientationJudge == null) { 122 mSensor = mSensorManager.getDefaultSensor(USE_GRAVITY_SENSOR 123 ? Sensor.TYPE_GRAVITY : Sensor.TYPE_ACCELEROMETER); 124 if (mSensor != null) { 125 // Create listener only if sensors do exist 126 mOrientationJudge = new AccelSensorJudge(context); 127 } 128 } 129 } 130 131 /** 132 * Enables the WindowOrientationListener so it will monitor the sensor and call 133 * {@link #onProposedRotationChanged(int)} when the device orientation changes. 134 */ enable()135 public void enable() { 136 enable(true /* clearCurrentRotation */); 137 } 138 139 /** 140 * Enables the WindowOrientationListener so it will monitor the sensor and call 141 * {@link #onProposedRotationChanged(int)} when the device orientation changes. 142 * 143 * @param clearCurrentRotation True if the current proposed sensor rotation should be cleared as 144 * part of the reset. 145 */ enable(boolean clearCurrentRotation)146 public void enable(boolean clearCurrentRotation) { 147 synchronized (mLock) { 148 if (mSensor == null) { 149 Slog.w(TAG, "Cannot detect sensors. Not enabled"); 150 return; 151 } 152 if (mEnabled) { 153 return; 154 } 155 if (LOG) { 156 Slog.d(TAG, "WindowOrientationListener enabled clearCurrentRotation=" 157 + clearCurrentRotation); 158 } 159 mOrientationJudge.resetLocked(clearCurrentRotation); 160 if (mSensor.getType() == Sensor.TYPE_ACCELEROMETER) { 161 mSensorManager.registerListener( 162 mOrientationJudge, mSensor, mRate, DEFAULT_BATCH_LATENCY, mHandler); 163 } else { 164 mSensorManager.registerListener(mOrientationJudge, mSensor, mRate, mHandler); 165 } 166 mEnabled = true; 167 } 168 } 169 170 /** 171 * Disables the WindowOrientationListener. 172 */ disable()173 public void disable() { 174 synchronized (mLock) { 175 if (mSensor == null) { 176 Slog.w(TAG, "Cannot detect sensors. Invalid disable"); 177 return; 178 } 179 if (mEnabled == true) { 180 if (LOG) { 181 Slog.d(TAG, "WindowOrientationListener disabled"); 182 } 183 mSensorManager.unregisterListener(mOrientationJudge); 184 mEnabled = false; 185 } 186 } 187 } 188 onTouchStart()189 public void onTouchStart() { 190 synchronized (mLock) { 191 if (mOrientationJudge != null) { 192 mOrientationJudge.onTouchStartLocked(); 193 } 194 } 195 } 196 onTouchEnd()197 public void onTouchEnd() { 198 long whenElapsedNanos = SystemClock.elapsedRealtimeNanos(); 199 200 synchronized (mLock) { 201 if (mOrientationJudge != null) { 202 mOrientationJudge.onTouchEndLocked(whenElapsedNanos); 203 } 204 } 205 } 206 207 /** 208 * Sets the current rotation. 209 * 210 * @param rotation The current rotation. 211 */ setCurrentRotation(int rotation)212 public void setCurrentRotation(int rotation) { 213 synchronized (mLock) { 214 mCurrentRotation = rotation; 215 } 216 } 217 218 /** 219 * Gets the proposed rotation. 220 * 221 * This method only returns a rotation if the orientation listener is certain 222 * of its proposal. If the rotation is indeterminate, returns -1. 223 * 224 * @return The proposed rotation, or -1 if unknown. 225 */ getProposedRotation()226 public int getProposedRotation() { 227 synchronized (mLock) { 228 if (mEnabled) { 229 return mOrientationJudge.getProposedRotationLocked(); 230 } 231 return -1; 232 } 233 } 234 235 /** 236 * Returns true if sensor is enabled and false otherwise 237 */ canDetectOrientation()238 public boolean canDetectOrientation() { 239 synchronized (mLock) { 240 return mSensor != null; 241 } 242 } 243 244 /** 245 * Called when the rotation view of the device has changed. 246 * 247 * This method is called whenever the orientation becomes certain of an orientation. 248 * It is called each time the orientation determination transitions from being 249 * uncertain to being certain again, even if it is the same orientation as before. 250 * 251 * This should only be called on the Handler thread. 252 * 253 * @param rotation The new orientation of the device, one of the Surface.ROTATION_* constants. 254 * @see android.view.Surface 255 */ onProposedRotationChanged(int rotation)256 public abstract void onProposedRotationChanged(int rotation); 257 writeToProto(ProtoOutputStream proto, long fieldId)258 public void writeToProto(ProtoOutputStream proto, long fieldId) { 259 final long token = proto.start(fieldId); 260 synchronized (mLock) { 261 proto.write(ENABLED, mEnabled); 262 proto.write(ROTATION, mCurrentRotation); 263 } 264 proto.end(token); 265 } 266 dump(PrintWriter pw, String prefix)267 public void dump(PrintWriter pw, String prefix) { 268 synchronized (mLock) { 269 pw.println(prefix + TAG); 270 prefix += " "; 271 pw.println(prefix + "mEnabled=" + mEnabled); 272 pw.println(prefix + "mCurrentRotation=" + Surface.rotationToString(mCurrentRotation)); 273 pw.println(prefix + "mSensorType=" + mSensorType); 274 pw.println(prefix + "mSensor=" + mSensor); 275 pw.println(prefix + "mRate=" + mRate); 276 277 if (mOrientationJudge != null) { 278 mOrientationJudge.dumpLocked(pw, prefix); 279 } 280 } 281 } 282 283 abstract class OrientationJudge implements SensorEventListener { 284 // Number of nanoseconds per millisecond. 285 protected static final long NANOS_PER_MS = 1000000; 286 287 // Number of milliseconds per nano second. 288 protected static final float MILLIS_PER_NANO = 0.000001f; 289 290 // The minimum amount of time that must have elapsed since the screen was last touched 291 // before the proposed rotation can change. 292 protected static final long PROPOSAL_MIN_TIME_SINCE_TOUCH_END_NANOS = 293 500 * NANOS_PER_MS; 294 295 /** 296 * Gets the proposed rotation. 297 * 298 * This method only returns a rotation if the orientation listener is certain 299 * of its proposal. If the rotation is indeterminate, returns -1. 300 * 301 * Should only be called when holding WindowOrientationListener lock. 302 * 303 * @return The proposed rotation, or -1 if unknown. 304 */ getProposedRotationLocked()305 public abstract int getProposedRotationLocked(); 306 307 /** 308 * Notifies the orientation judge that the screen is being touched. 309 * 310 * Should only be called when holding WindowOrientationListener lock. 311 */ onTouchStartLocked()312 public abstract void onTouchStartLocked(); 313 314 /** 315 * Notifies the orientation judge that the screen is no longer being touched. 316 * 317 * Should only be called when holding WindowOrientationListener lock. 318 * 319 * @param whenElapsedNanos Given in the elapsed realtime nanos time base. 320 */ onTouchEndLocked(long whenElapsedNanos)321 public abstract void onTouchEndLocked(long whenElapsedNanos); 322 323 /** 324 * Resets the state of the judge. 325 * 326 * Should only be called when holding WindowOrientationListener lock. 327 * 328 * @param clearCurrentRotation True if the current proposed sensor rotation should be 329 * cleared as part of the reset. 330 */ resetLocked(boolean clearCurrentRotation)331 public abstract void resetLocked(boolean clearCurrentRotation); 332 333 /** 334 * Dumps internal state of the orientation judge. 335 * 336 * Should only be called when holding WindowOrientationListener lock. 337 */ dumpLocked(PrintWriter pw, String prefix)338 public abstract void dumpLocked(PrintWriter pw, String prefix); 339 340 @Override onAccuracyChanged(Sensor sensor, int accuracy)341 public abstract void onAccuracyChanged(Sensor sensor, int accuracy); 342 343 @Override onSensorChanged(SensorEvent event)344 public abstract void onSensorChanged(SensorEvent event); 345 } 346 347 /** 348 * This class filters the raw accelerometer data and tries to detect actual changes in 349 * orientation. This is a very ill-defined problem so there are a lot of tweakable parameters, 350 * but here's the outline: 351 * 352 * - Low-pass filter the accelerometer vector in cartesian coordinates. We do it in 353 * cartesian space because the orientation calculations are sensitive to the 354 * absolute magnitude of the acceleration. In particular, there are singularities 355 * in the calculation as the magnitude approaches 0. By performing the low-pass 356 * filtering early, we can eliminate most spurious high-frequency impulses due to noise. 357 * 358 * - Convert the acceleromter vector from cartesian to spherical coordinates. 359 * Since we're dealing with rotation of the device, this is the sensible coordinate 360 * system to work in. The zenith direction is the Z-axis, the direction the screen 361 * is facing. The radial distance is referred to as the magnitude below. 362 * The elevation angle is referred to as the "tilt" below. 363 * The azimuth angle is referred to as the "orientation" below (and the azimuth axis is 364 * the Y-axis). 365 * See http://en.wikipedia.org/wiki/Spherical_coordinate_system for reference. 366 * 367 * - If the tilt angle is too close to horizontal (near 90 or -90 degrees), do nothing. 368 * The orientation angle is not meaningful when the device is nearly horizontal. 369 * The tilt angle thresholds are set differently for each orientation and different 370 * limits are applied when the device is facing down as opposed to when it is facing 371 * forward or facing up. 372 * 373 * - When the orientation angle reaches a certain threshold, consider transitioning 374 * to the corresponding orientation. These thresholds have some hysteresis built-in 375 * to avoid oscillations between adjacent orientations. 376 * 377 * - Wait for the device to settle for a little bit. Once that happens, issue the 378 * new orientation proposal. 379 * 380 * Details are explained inline. 381 * 382 * See http://en.wikipedia.org/wiki/Low-pass_filter#Discrete-time_realization for 383 * signal processing background. 384 */ 385 final class AccelSensorJudge extends OrientationJudge { 386 // We work with all angles in degrees in this class. 387 private static final float RADIANS_TO_DEGREES = (float) (180 / Math.PI); 388 389 // Indices into SensorEvent.values for the accelerometer sensor. 390 private static final int ACCELEROMETER_DATA_X = 0; 391 private static final int ACCELEROMETER_DATA_Y = 1; 392 private static final int ACCELEROMETER_DATA_Z = 2; 393 394 // The minimum amount of time that a predicted rotation must be stable before it 395 // is accepted as a valid rotation proposal. This value can be quite small because 396 // the low-pass filter already suppresses most of the noise so we're really just 397 // looking for quick confirmation that the last few samples are in agreement as to 398 // the desired orientation. 399 private static final long PROPOSAL_SETTLE_TIME_NANOS = 40 * NANOS_PER_MS; 400 401 // The minimum amount of time that must have elapsed since the device last exited 402 // the flat state (time since it was picked up) before the proposed rotation 403 // can change. 404 private static final long PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS = 500 * NANOS_PER_MS; 405 406 // The minimum amount of time that must have elapsed since the device stopped 407 // swinging (time since device appeared to be in the process of being put down 408 // or put away into a pocket) before the proposed rotation can change. 409 private static final long PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS = 300 * NANOS_PER_MS; 410 411 // The minimum amount of time that must have elapsed since the device stopped 412 // undergoing external acceleration before the proposed rotation can change. 413 private static final long PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS = 414 500 * NANOS_PER_MS; 415 416 // If the tilt angle remains greater than the specified angle for a minimum of 417 // the specified time, then the device is deemed to be lying flat 418 // (just chillin' on a table). 419 private static final float FLAT_ANGLE = 80; 420 private static final long FLAT_TIME_NANOS = 1000 * NANOS_PER_MS; 421 422 // If the tilt angle has increased by at least delta degrees within the specified amount 423 // of time, then the device is deemed to be swinging away from the user 424 // down towards flat (tilt = 90). 425 private static final float SWING_AWAY_ANGLE_DELTA = 20; 426 private static final long SWING_TIME_NANOS = 300 * NANOS_PER_MS; 427 428 // The maximum sample inter-arrival time in milliseconds. 429 // If the acceleration samples are further apart than this amount in time, we reset the 430 // state of the low-pass filter and orientation properties. This helps to handle 431 // boundary conditions when the device is turned on, wakes from suspend or there is 432 // a significant gap in samples. 433 private static final long MAX_FILTER_DELTA_TIME_NANOS = 1000 * NANOS_PER_MS; 434 435 // The acceleration filter time constant. 436 // 437 // This time constant is used to tune the acceleration filter such that 438 // impulses and vibrational noise (think car dock) is suppressed before we 439 // try to calculate the tilt and orientation angles. 440 // 441 // The filter time constant is related to the filter cutoff frequency, which is the 442 // frequency at which signals are attenuated by 3dB (half the passband power). 443 // Each successive octave beyond this frequency is attenuated by an additional 6dB. 444 // 445 // Given a time constant t in seconds, the filter cutoff frequency Fc in Hertz 446 // is given by Fc = 1 / (2pi * t). 447 // 448 // The higher the time constant, the lower the cutoff frequency, so more noise 449 // will be suppressed. 450 // 451 // Filtering adds latency proportional the time constant (inversely proportional 452 // to the cutoff frequency) so we don't want to make the time constant too 453 // large or we can lose responsiveness. Likewise we don't want to make it too 454 // small or we do a poor job suppressing acceleration spikes. 455 // Empirically, 100ms seems to be too small and 500ms is too large. 456 private static final float FILTER_TIME_CONSTANT_MS = 200.0f; 457 458 /* State for orientation detection. */ 459 460 // Thresholds for minimum and maximum allowable deviation from gravity. 461 // 462 // If the device is undergoing external acceleration (being bumped, in a car 463 // that is turning around a corner or a plane taking off) then the magnitude 464 // may be substantially more or less than gravity. This can skew our orientation 465 // detection by making us think that up is pointed in a different direction. 466 // 467 // Conversely, if the device is in freefall, then there will be no gravity to 468 // measure at all. This is problematic because we cannot detect the orientation 469 // without gravity to tell us which way is up. A magnitude near 0 produces 470 // singularities in the tilt and orientation calculations. 471 // 472 // In both cases, we postpone choosing an orientation. 473 // 474 // However, we need to tolerate some acceleration because the angular momentum 475 // of turning the device can skew the observed acceleration for a short period of time. 476 private static final float NEAR_ZERO_MAGNITUDE = 1; // m/s^2 477 private static final float ACCELERATION_TOLERANCE = 4; // m/s^2 478 private static final float MIN_ACCELERATION_MAGNITUDE = 479 SensorManager.STANDARD_GRAVITY - ACCELERATION_TOLERANCE; 480 private static final float MAX_ACCELERATION_MAGNITUDE = 481 SensorManager.STANDARD_GRAVITY + ACCELERATION_TOLERANCE; 482 483 // Maximum absolute tilt angle at which to consider orientation data. Beyond this (i.e. 484 // when screen is facing the sky or ground), we completely ignore orientation data 485 // because it's too unstable. 486 private static final int MAX_TILT = 80; 487 488 // The tilt angle below which we conclude that the user is holding the device 489 // overhead reading in bed and lock into that state. 490 private static final int TILT_OVERHEAD_ENTER = -40; 491 492 // The tilt angle above which we conclude that the user would like a rotation 493 // change to occur and unlock from the overhead state. 494 private static final int TILT_OVERHEAD_EXIT = -15; 495 496 // The gap angle in degrees between adjacent orientation angles for hysteresis. 497 // This creates a "dead zone" between the current orientation and a proposed 498 // adjacent orientation. No orientation proposal is made when the orientation 499 // angle is within the gap between the current orientation and the adjacent 500 // orientation. 501 private static final int ADJACENT_ORIENTATION_ANGLE_GAP = 45; 502 503 // The tilt angle range in degrees for each orientation. 504 // Beyond these tilt angles, we don't even consider transitioning into the 505 // specified orientation. We place more stringent requirements on unnatural 506 // orientations than natural ones to make it less likely to accidentally transition 507 // into those states. 508 // The first value of each pair is negative so it applies a limit when the device is 509 // facing down (overhead reading in bed). 510 // The second value of each pair is positive so it applies a limit when the device is 511 // facing up (resting on a table). 512 // The ideal tilt angle is 0 (when the device is vertical) so the limits establish 513 // how close to vertical the device must be in order to change orientation. 514 private final int[][] mTiltToleranceConfig = new int[][] { 515 /* ROTATION_0 */ { -25, 70 }, // note: these are overridden by config.xml 516 /* ROTATION_90 */ { -25, 65 }, 517 /* ROTATION_180 */ { -25, 60 }, 518 /* ROTATION_270 */ { -25, 65 } 519 }; 520 521 // Timestamp and value of the last accelerometer sample. 522 private long mLastFilteredTimestampNanos; 523 private float mLastFilteredX, mLastFilteredY, mLastFilteredZ; 524 525 // The last proposed rotation, -1 if unknown. 526 private int mProposedRotation; 527 528 // Value of the current predicted rotation, -1 if unknown. 529 private int mPredictedRotation; 530 531 // Timestamp of when the predicted rotation most recently changed. 532 private long mPredictedRotationTimestampNanos; 533 534 // Timestamp when the device last appeared to be flat for sure (the flat delay elapsed). 535 private long mFlatTimestampNanos; 536 private boolean mFlat; 537 538 // Timestamp when the device last appeared to be swinging. 539 private long mSwingTimestampNanos; 540 private boolean mSwinging; 541 542 // Timestamp when the device last appeared to be undergoing external acceleration. 543 private long mAccelerationTimestampNanos; 544 private boolean mAccelerating; 545 546 // Timestamp when the last touch to the touch screen ended 547 private long mTouchEndedTimestampNanos = Long.MIN_VALUE; 548 private boolean mTouched; 549 550 // Whether we are locked into an overhead usage mode. 551 private boolean mOverhead; 552 553 // History of observed tilt angles. 554 private static final int TILT_HISTORY_SIZE = 200; 555 private float[] mTiltHistory = new float[TILT_HISTORY_SIZE]; 556 private long[] mTiltHistoryTimestampNanos = new long[TILT_HISTORY_SIZE]; 557 private int mTiltHistoryIndex; 558 AccelSensorJudge(Context context)559 public AccelSensorJudge(Context context) { 560 // Load tilt tolerance configuration. 561 int[] tiltTolerance = context.getResources().getIntArray( 562 com.android.internal.R.array.config_autoRotationTiltTolerance); 563 if (tiltTolerance.length == 8) { 564 for (int i = 0; i < 4; i++) { 565 int min = tiltTolerance[i * 2]; 566 int max = tiltTolerance[i * 2 + 1]; 567 if (min >= -90 && min <= max && max <= 90) { 568 mTiltToleranceConfig[i][0] = min; 569 mTiltToleranceConfig[i][1] = max; 570 } else { 571 Slog.wtf(TAG, "config_autoRotationTiltTolerance contains invalid range: " 572 + "min=" + min + ", max=" + max); 573 } 574 } 575 } else { 576 Slog.wtf(TAG, "config_autoRotationTiltTolerance should have exactly 8 elements"); 577 } 578 } 579 580 @Override getProposedRotationLocked()581 public int getProposedRotationLocked() { 582 return mProposedRotation; 583 } 584 585 @Override dumpLocked(PrintWriter pw, String prefix)586 public void dumpLocked(PrintWriter pw, String prefix) { 587 pw.println(prefix + "AccelSensorJudge"); 588 prefix += " "; 589 pw.println(prefix + "mProposedRotation=" + mProposedRotation); 590 pw.println(prefix + "mPredictedRotation=" + mPredictedRotation); 591 pw.println(prefix + "mLastFilteredX=" + mLastFilteredX); 592 pw.println(prefix + "mLastFilteredY=" + mLastFilteredY); 593 pw.println(prefix + "mLastFilteredZ=" + mLastFilteredZ); 594 final long delta = SystemClock.elapsedRealtimeNanos() - mLastFilteredTimestampNanos; 595 pw.println(prefix + "mLastFilteredTimestampNanos=" + mLastFilteredTimestampNanos 596 + " (" + (delta * 0.000001f) + "ms ago)"); 597 pw.println(prefix + "mTiltHistory={last: " + getLastTiltLocked() + "}"); 598 pw.println(prefix + "mFlat=" + mFlat); 599 pw.println(prefix + "mSwinging=" + mSwinging); 600 pw.println(prefix + "mAccelerating=" + mAccelerating); 601 pw.println(prefix + "mOverhead=" + mOverhead); 602 pw.println(prefix + "mTouched=" + mTouched); 603 pw.print(prefix + "mTiltToleranceConfig=["); 604 for (int i = 0; i < 4; i++) { 605 if (i != 0) { 606 pw.print(", "); 607 } 608 pw.print("["); 609 pw.print(mTiltToleranceConfig[i][0]); 610 pw.print(", "); 611 pw.print(mTiltToleranceConfig[i][1]); 612 pw.print("]"); 613 } 614 pw.println("]"); 615 } 616 617 @Override onAccuracyChanged(Sensor sensor, int accuracy)618 public void onAccuracyChanged(Sensor sensor, int accuracy) { 619 } 620 621 @Override onSensorChanged(SensorEvent event)622 public void onSensorChanged(SensorEvent event) { 623 int proposedRotation; 624 int oldProposedRotation; 625 626 synchronized (mLock) { 627 // The vector given in the SensorEvent points straight up (towards the sky) under 628 // ideal conditions (the phone is not accelerating). I'll call this up vector 629 // elsewhere. 630 float x = event.values[ACCELEROMETER_DATA_X]; 631 float y = event.values[ACCELEROMETER_DATA_Y]; 632 float z = event.values[ACCELEROMETER_DATA_Z]; 633 634 if (LOG) { 635 Slog.v(TAG, "Raw acceleration vector: " 636 + "x=" + x + ", y=" + y + ", z=" + z 637 + ", magnitude=" + Math.sqrt(x * x + y * y + z * z)); 638 } 639 640 // Apply a low-pass filter to the acceleration up vector in cartesian space. 641 // Reset the orientation listener state if the samples are too far apart in time 642 // or when we see values of (0, 0, 0) which indicates that we polled the 643 // accelerometer too soon after turning it on and we don't have any data yet. 644 final long now = event.timestamp; 645 final long then = mLastFilteredTimestampNanos; 646 final float timeDeltaMS = (now - then) * 0.000001f; 647 final boolean skipSample; 648 if (now < then 649 || now > then + MAX_FILTER_DELTA_TIME_NANOS 650 || (x == 0 && y == 0 && z == 0)) { 651 if (LOG) { 652 Slog.v(TAG, "Resetting orientation listener."); 653 } 654 resetLocked(true /* clearCurrentRotation */); 655 skipSample = true; 656 } else { 657 final float alpha = timeDeltaMS / (FILTER_TIME_CONSTANT_MS + timeDeltaMS); 658 x = alpha * (x - mLastFilteredX) + mLastFilteredX; 659 y = alpha * (y - mLastFilteredY) + mLastFilteredY; 660 z = alpha * (z - mLastFilteredZ) + mLastFilteredZ; 661 if (LOG) { 662 Slog.v(TAG, "Filtered acceleration vector: " 663 + "x=" + x + ", y=" + y + ", z=" + z 664 + ", magnitude=" + Math.sqrt(x * x + y * y + z * z)); 665 } 666 skipSample = false; 667 } 668 mLastFilteredTimestampNanos = now; 669 mLastFilteredX = x; 670 mLastFilteredY = y; 671 mLastFilteredZ = z; 672 673 boolean isAccelerating = false; 674 boolean isFlat = false; 675 boolean isSwinging = false; 676 if (!skipSample) { 677 // Calculate the magnitude of the acceleration vector. 678 final float magnitude = (float) Math.sqrt(x * x + y * y + z * z); 679 if (magnitude < NEAR_ZERO_MAGNITUDE) { 680 if (LOG) { 681 Slog.v(TAG, "Ignoring sensor data, magnitude too close to zero."); 682 } 683 clearPredictedRotationLocked(); 684 } else { 685 // Determine whether the device appears to be undergoing external 686 // acceleration. 687 if (isAcceleratingLocked(magnitude)) { 688 isAccelerating = true; 689 mAccelerationTimestampNanos = now; 690 } 691 692 // Calculate the tilt angle. 693 // This is the angle between the up vector and the x-y plane (the plane of 694 // the screen) in a range of [-90, 90] degrees. 695 // -90 degrees: screen horizontal and facing the ground (overhead) 696 // 0 degrees: screen vertical 697 // 90 degrees: screen horizontal and facing the sky (on table) 698 final int tiltAngle = (int) Math.round( 699 Math.asin(z / magnitude) * RADIANS_TO_DEGREES); 700 addTiltHistoryEntryLocked(now, tiltAngle); 701 702 // Determine whether the device appears to be flat or swinging. 703 if (isFlatLocked(now)) { 704 isFlat = true; 705 mFlatTimestampNanos = now; 706 } 707 if (isSwingingLocked(now, tiltAngle)) { 708 isSwinging = true; 709 mSwingTimestampNanos = now; 710 } 711 712 // If the tilt angle is too close to horizontal then we cannot determine 713 // the orientation angle of the screen. 714 if (tiltAngle <= TILT_OVERHEAD_ENTER) { 715 mOverhead = true; 716 } else if (tiltAngle >= TILT_OVERHEAD_EXIT) { 717 mOverhead = false; 718 } 719 if (mOverhead) { 720 if (LOG) { 721 Slog.v(TAG, "Ignoring sensor data, device is overhead: " 722 + "tiltAngle=" + tiltAngle); 723 } 724 clearPredictedRotationLocked(); 725 } else if (Math.abs(tiltAngle) > MAX_TILT) { 726 if (LOG) { 727 Slog.v(TAG, "Ignoring sensor data, tilt angle too high: " 728 + "tiltAngle=" + tiltAngle); 729 } 730 clearPredictedRotationLocked(); 731 } else { 732 // Calculate the orientation angle. 733 // This is the angle between the x-y projection of the up vector onto 734 // the +y-axis, increasing clockwise in a range of [0, 360] degrees. 735 int orientationAngle = (int) Math.round( 736 -Math.atan2(-x, y) * RADIANS_TO_DEGREES); 737 if (orientationAngle < 0) { 738 // atan2 returns [-180, 180]; normalize to [0, 360] 739 orientationAngle += 360; 740 } 741 742 // Find the nearest rotation. 743 int nearestRotation = (orientationAngle + 45) / 90; 744 if (nearestRotation == 4) { 745 nearestRotation = 0; 746 } 747 748 // Determine the predicted orientation. 749 if (isTiltAngleAcceptableLocked(nearestRotation, tiltAngle) 750 && isOrientationAngleAcceptableLocked(nearestRotation, 751 orientationAngle)) { 752 updatePredictedRotationLocked(now, nearestRotation); 753 if (LOG) { 754 Slog.v(TAG, "Predicted: " 755 + "tiltAngle=" + tiltAngle 756 + ", orientationAngle=" + orientationAngle 757 + ", predictedRotation=" + mPredictedRotation 758 + ", predictedRotationAgeMS=" 759 + ((now - mPredictedRotationTimestampNanos) 760 * 0.000001f)); 761 } 762 } else { 763 if (LOG) { 764 Slog.v(TAG, "Ignoring sensor data, no predicted rotation: " 765 + "tiltAngle=" + tiltAngle 766 + ", orientationAngle=" + orientationAngle); 767 } 768 clearPredictedRotationLocked(); 769 } 770 } 771 } 772 } 773 mFlat = isFlat; 774 mSwinging = isSwinging; 775 mAccelerating = isAccelerating; 776 777 // Determine new proposed rotation. 778 oldProposedRotation = mProposedRotation; 779 if (mPredictedRotation < 0 || isPredictedRotationAcceptableLocked(now)) { 780 mProposedRotation = mPredictedRotation; 781 } 782 proposedRotation = mProposedRotation; 783 784 // Write final statistics about where we are in the orientation detection process. 785 if (LOG) { 786 Slog.v(TAG, "Result: currentRotation=" + mCurrentRotation 787 + ", proposedRotation=" + proposedRotation 788 + ", predictedRotation=" + mPredictedRotation 789 + ", timeDeltaMS=" + timeDeltaMS 790 + ", isAccelerating=" + isAccelerating 791 + ", isFlat=" + isFlat 792 + ", isSwinging=" + isSwinging 793 + ", isOverhead=" + mOverhead 794 + ", isTouched=" + mTouched 795 + ", timeUntilSettledMS=" + remainingMS(now, 796 mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS) 797 + ", timeUntilAccelerationDelayExpiredMS=" + remainingMS(now, 798 mAccelerationTimestampNanos + PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS) 799 + ", timeUntilFlatDelayExpiredMS=" + remainingMS(now, 800 mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS) 801 + ", timeUntilSwingDelayExpiredMS=" + remainingMS(now, 802 mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS) 803 + ", timeUntilTouchDelayExpiredMS=" + remainingMS(now, 804 mTouchEndedTimestampNanos + PROPOSAL_MIN_TIME_SINCE_TOUCH_END_NANOS)); 805 } 806 } 807 808 // Tell the listener. 809 if (proposedRotation != oldProposedRotation && proposedRotation >= 0) { 810 if (LOG) { 811 Slog.v(TAG, "Proposed rotation changed! proposedRotation=" + proposedRotation 812 + ", oldProposedRotation=" + oldProposedRotation); 813 } 814 onProposedRotationChanged(proposedRotation); 815 } 816 } 817 818 @Override onTouchStartLocked()819 public void onTouchStartLocked() { 820 mTouched = true; 821 } 822 823 @Override onTouchEndLocked(long whenElapsedNanos)824 public void onTouchEndLocked(long whenElapsedNanos) { 825 mTouched = false; 826 mTouchEndedTimestampNanos = whenElapsedNanos; 827 } 828 829 @Override resetLocked(boolean clearCurrentRotation)830 public void resetLocked(boolean clearCurrentRotation) { 831 mLastFilteredTimestampNanos = Long.MIN_VALUE; 832 if (clearCurrentRotation) { 833 mProposedRotation = -1; 834 } 835 mFlatTimestampNanos = Long.MIN_VALUE; 836 mFlat = false; 837 mSwingTimestampNanos = Long.MIN_VALUE; 838 mSwinging = false; 839 mAccelerationTimestampNanos = Long.MIN_VALUE; 840 mAccelerating = false; 841 mOverhead = false; 842 clearPredictedRotationLocked(); 843 clearTiltHistoryLocked(); 844 } 845 846 847 /** 848 * Returns true if the tilt angle is acceptable for a given predicted rotation. 849 */ isTiltAngleAcceptableLocked(int rotation, int tiltAngle)850 private boolean isTiltAngleAcceptableLocked(int rotation, int tiltAngle) { 851 return tiltAngle >= mTiltToleranceConfig[rotation][0] 852 && tiltAngle <= mTiltToleranceConfig[rotation][1]; 853 } 854 855 /** 856 * Returns true if the orientation angle is acceptable for a given predicted rotation. 857 * 858 * This function takes into account the gap between adjacent orientations 859 * for hysteresis. 860 */ isOrientationAngleAcceptableLocked(int rotation, int orientationAngle)861 private boolean isOrientationAngleAcceptableLocked(int rotation, int orientationAngle) { 862 // If there is no current rotation, then there is no gap. 863 // The gap is used only to introduce hysteresis among advertised orientation 864 // changes to avoid flapping. 865 final int currentRotation = mCurrentRotation; 866 if (currentRotation >= 0) { 867 // If the specified rotation is the same or is counter-clockwise adjacent 868 // to the current rotation, then we set a lower bound on the orientation angle. 869 // For example, if currentRotation is ROTATION_0 and proposed is ROTATION_90, 870 // then we want to check orientationAngle > 45 + GAP / 2. 871 if (rotation == currentRotation 872 || rotation == (currentRotation + 1) % 4) { 873 int lowerBound = rotation * 90 - 45 874 + ADJACENT_ORIENTATION_ANGLE_GAP / 2; 875 if (rotation == 0) { 876 if (orientationAngle >= 315 && orientationAngle < lowerBound + 360) { 877 return false; 878 } 879 } else { 880 if (orientationAngle < lowerBound) { 881 return false; 882 } 883 } 884 } 885 886 // If the specified rotation is the same or is clockwise adjacent, 887 // then we set an upper bound on the orientation angle. 888 // For example, if currentRotation is ROTATION_0 and rotation is ROTATION_270, 889 // then we want to check orientationAngle < 315 - GAP / 2. 890 if (rotation == currentRotation 891 || rotation == (currentRotation + 3) % 4) { 892 int upperBound = rotation * 90 + 45 893 - ADJACENT_ORIENTATION_ANGLE_GAP / 2; 894 if (rotation == 0) { 895 if (orientationAngle <= 45 && orientationAngle > upperBound) { 896 return false; 897 } 898 } else { 899 if (orientationAngle > upperBound) { 900 return false; 901 } 902 } 903 } 904 } 905 return true; 906 } 907 908 /** 909 * Returns true if the predicted rotation is ready to be advertised as a 910 * proposed rotation. 911 */ isPredictedRotationAcceptableLocked(long now)912 private boolean isPredictedRotationAcceptableLocked(long now) { 913 // The predicted rotation must have settled long enough. 914 if (now < mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS) { 915 return false; 916 } 917 918 // The last flat state (time since picked up) must have been sufficiently long ago. 919 if (now < mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS) { 920 return false; 921 } 922 923 // The last swing state (time since last movement to put down) must have been 924 // sufficiently long ago. 925 if (now < mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS) { 926 return false; 927 } 928 929 // The last acceleration state must have been sufficiently long ago. 930 if (now < mAccelerationTimestampNanos 931 + PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS) { 932 return false; 933 } 934 935 // The last touch must have ended sufficiently long ago. 936 if (mTouched || now < mTouchEndedTimestampNanos 937 + PROPOSAL_MIN_TIME_SINCE_TOUCH_END_NANOS) { 938 return false; 939 } 940 941 // Looks good! 942 return true; 943 } 944 clearPredictedRotationLocked()945 private void clearPredictedRotationLocked() { 946 mPredictedRotation = -1; 947 mPredictedRotationTimestampNanos = Long.MIN_VALUE; 948 } 949 updatePredictedRotationLocked(long now, int rotation)950 private void updatePredictedRotationLocked(long now, int rotation) { 951 if (mPredictedRotation != rotation) { 952 mPredictedRotation = rotation; 953 mPredictedRotationTimestampNanos = now; 954 } 955 } 956 isAcceleratingLocked(float magnitude)957 private boolean isAcceleratingLocked(float magnitude) { 958 return magnitude < MIN_ACCELERATION_MAGNITUDE 959 || magnitude > MAX_ACCELERATION_MAGNITUDE; 960 } 961 clearTiltHistoryLocked()962 private void clearTiltHistoryLocked() { 963 mTiltHistoryTimestampNanos[0] = Long.MIN_VALUE; 964 mTiltHistoryIndex = 1; 965 } 966 addTiltHistoryEntryLocked(long now, float tilt)967 private void addTiltHistoryEntryLocked(long now, float tilt) { 968 mTiltHistory[mTiltHistoryIndex] = tilt; 969 mTiltHistoryTimestampNanos[mTiltHistoryIndex] = now; 970 mTiltHistoryIndex = (mTiltHistoryIndex + 1) % TILT_HISTORY_SIZE; 971 mTiltHistoryTimestampNanos[mTiltHistoryIndex] = Long.MIN_VALUE; 972 } 973 isFlatLocked(long now)974 private boolean isFlatLocked(long now) { 975 for (int i = mTiltHistoryIndex; (i = nextTiltHistoryIndexLocked(i)) >= 0; ) { 976 if (mTiltHistory[i] < FLAT_ANGLE) { 977 break; 978 } 979 if (mTiltHistoryTimestampNanos[i] + FLAT_TIME_NANOS <= now) { 980 // Tilt has remained greater than FLAT_TILT_ANGLE for FLAT_TIME_NANOS. 981 return true; 982 } 983 } 984 return false; 985 } 986 isSwingingLocked(long now, float tilt)987 private boolean isSwingingLocked(long now, float tilt) { 988 for (int i = mTiltHistoryIndex; (i = nextTiltHistoryIndexLocked(i)) >= 0; ) { 989 if (mTiltHistoryTimestampNanos[i] + SWING_TIME_NANOS < now) { 990 break; 991 } 992 if (mTiltHistory[i] + SWING_AWAY_ANGLE_DELTA <= tilt) { 993 // Tilted away by SWING_AWAY_ANGLE_DELTA within SWING_TIME_NANOS. 994 return true; 995 } 996 } 997 return false; 998 } 999 nextTiltHistoryIndexLocked(int index)1000 private int nextTiltHistoryIndexLocked(int index) { 1001 index = (index == 0 ? TILT_HISTORY_SIZE : index) - 1; 1002 return mTiltHistoryTimestampNanos[index] != Long.MIN_VALUE ? index : -1; 1003 } 1004 getLastTiltLocked()1005 private float getLastTiltLocked() { 1006 int index = nextTiltHistoryIndexLocked(mTiltHistoryIndex); 1007 return index >= 0 ? mTiltHistory[index] : Float.NaN; 1008 } 1009 remainingMS(long now, long until)1010 private float remainingMS(long now, long until) { 1011 return now >= until ? 0 : (until - now) * 0.000001f; 1012 } 1013 } 1014 1015 final class OrientationSensorJudge extends OrientationJudge { 1016 private boolean mTouching; 1017 private long mTouchEndedTimestampNanos = Long.MIN_VALUE; 1018 private int mProposedRotation = -1; 1019 private int mDesiredRotation = -1; 1020 private boolean mRotationEvaluationScheduled; 1021 1022 @Override getProposedRotationLocked()1023 public int getProposedRotationLocked() { 1024 return mProposedRotation; 1025 } 1026 1027 @Override onTouchStartLocked()1028 public void onTouchStartLocked() { 1029 mTouching = true; 1030 } 1031 1032 @Override onTouchEndLocked(long whenElapsedNanos)1033 public void onTouchEndLocked(long whenElapsedNanos) { 1034 mTouching = false; 1035 mTouchEndedTimestampNanos = whenElapsedNanos; 1036 if (mDesiredRotation != mProposedRotation) { 1037 final long now = SystemClock.elapsedRealtimeNanos(); 1038 scheduleRotationEvaluationIfNecessaryLocked(now); 1039 } 1040 } 1041 1042 1043 @Override onSensorChanged(SensorEvent event)1044 public void onSensorChanged(SensorEvent event) { 1045 int newRotation; 1046 synchronized (mLock) { 1047 mDesiredRotation = (int) event.values[0]; 1048 newRotation = evaluateRotationChangeLocked(); 1049 } 1050 if (newRotation >=0) { 1051 onProposedRotationChanged(newRotation); 1052 } 1053 } 1054 1055 @Override onAccuracyChanged(Sensor sensor, int accuracy)1056 public void onAccuracyChanged(Sensor sensor, int accuracy) { } 1057 1058 @Override dumpLocked(PrintWriter pw, String prefix)1059 public void dumpLocked(PrintWriter pw, String prefix) { 1060 pw.println(prefix + "OrientationSensorJudge"); 1061 prefix += " "; 1062 pw.println(prefix + "mDesiredRotation=" + Surface.rotationToString(mDesiredRotation)); 1063 pw.println(prefix + "mProposedRotation=" 1064 + Surface.rotationToString(mProposedRotation)); 1065 pw.println(prefix + "mTouching=" + mTouching); 1066 pw.println(prefix + "mTouchEndedTimestampNanos=" + mTouchEndedTimestampNanos); 1067 } 1068 1069 @Override resetLocked(boolean clearCurrentRotation)1070 public void resetLocked(boolean clearCurrentRotation) { 1071 if (clearCurrentRotation) { 1072 mProposedRotation = -1; 1073 mDesiredRotation = -1; 1074 } 1075 mTouching = false; 1076 mTouchEndedTimestampNanos = Long.MIN_VALUE; 1077 unscheduleRotationEvaluationLocked(); 1078 } 1079 evaluateRotationChangeLocked()1080 public int evaluateRotationChangeLocked() { 1081 unscheduleRotationEvaluationLocked(); 1082 if (mDesiredRotation == mProposedRotation) { 1083 return -1; 1084 } 1085 final long now = SystemClock.elapsedRealtimeNanos(); 1086 if (isDesiredRotationAcceptableLocked(now)) { 1087 mProposedRotation = mDesiredRotation; 1088 return mProposedRotation; 1089 } else { 1090 scheduleRotationEvaluationIfNecessaryLocked(now); 1091 } 1092 return -1; 1093 } 1094 isDesiredRotationAcceptableLocked(long now)1095 private boolean isDesiredRotationAcceptableLocked(long now) { 1096 if (mTouching) { 1097 return false; 1098 } 1099 if (now < mTouchEndedTimestampNanos + PROPOSAL_MIN_TIME_SINCE_TOUCH_END_NANOS) { 1100 return false; 1101 } 1102 return true; 1103 } 1104 scheduleRotationEvaluationIfNecessaryLocked(long now)1105 private void scheduleRotationEvaluationIfNecessaryLocked(long now) { 1106 if (mRotationEvaluationScheduled || mDesiredRotation == mProposedRotation) { 1107 if (LOG) { 1108 Slog.d(TAG, "scheduleRotationEvaluationLocked: " + 1109 "ignoring, an evaluation is already scheduled or is unnecessary."); 1110 } 1111 return; 1112 } 1113 if (mTouching) { 1114 if (LOG) { 1115 Slog.d(TAG, "scheduleRotationEvaluationLocked: " + 1116 "ignoring, user is still touching the screen."); 1117 } 1118 return; 1119 } 1120 long timeOfNextPossibleRotationNanos = 1121 mTouchEndedTimestampNanos + PROPOSAL_MIN_TIME_SINCE_TOUCH_END_NANOS; 1122 if (now >= timeOfNextPossibleRotationNanos) { 1123 if (LOG) { 1124 Slog.d(TAG, "scheduleRotationEvaluationLocked: " + 1125 "ignoring, already past the next possible time of rotation."); 1126 } 1127 return; 1128 } 1129 // Use a delay instead of an absolute time since handlers are in uptime millis and we 1130 // use elapsed realtime. 1131 final long delayMs = 1132 (long) Math.ceil((timeOfNextPossibleRotationNanos - now) * MILLIS_PER_NANO); 1133 mHandler.postDelayed(mRotationEvaluator, delayMs); 1134 mRotationEvaluationScheduled = true; 1135 } 1136 unscheduleRotationEvaluationLocked()1137 private void unscheduleRotationEvaluationLocked() { 1138 if (!mRotationEvaluationScheduled) { 1139 return; 1140 } 1141 mHandler.removeCallbacks(mRotationEvaluator); 1142 mRotationEvaluationScheduled = false; 1143 } 1144 1145 private Runnable mRotationEvaluator = new Runnable() { 1146 @Override 1147 public void run() { 1148 int newRotation; 1149 synchronized (mLock) { 1150 mRotationEvaluationScheduled = false; 1151 newRotation = evaluateRotationChangeLocked(); 1152 } 1153 if (newRotation >= 0) { 1154 onProposedRotationChanged(newRotation); 1155 } 1156 } 1157 }; 1158 } 1159 } 1160