1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
19
20 #include <cstring>
21 #include <map>
22
23 #include "arch/instruction_set.h"
24 #include "compiled_method.h"
25 #include "debug/dwarf/debug_info_entry_writer.h"
26 #include "debug/dwarf/register.h"
27 #include "debug/method_debug_info.h"
28 #include "stack_map.h"
29
30 namespace art {
31 namespace debug {
32 using Reg = dwarf::Reg;
33
GetDwarfCoreReg(InstructionSet isa,int machine_reg)34 static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) {
35 switch (isa) {
36 case InstructionSet::kArm:
37 case InstructionSet::kThumb2:
38 return Reg::ArmCore(machine_reg);
39 case InstructionSet::kArm64:
40 return Reg::Arm64Core(machine_reg);
41 case InstructionSet::kX86:
42 return Reg::X86Core(machine_reg);
43 case InstructionSet::kX86_64:
44 return Reg::X86_64Core(machine_reg);
45 case InstructionSet::kMips:
46 return Reg::MipsCore(machine_reg);
47 case InstructionSet::kMips64:
48 return Reg::Mips64Core(machine_reg);
49 case InstructionSet::kNone:
50 LOG(FATAL) << "No instruction set";
51 }
52 UNREACHABLE();
53 }
54
GetDwarfFpReg(InstructionSet isa,int machine_reg)55 static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) {
56 switch (isa) {
57 case InstructionSet::kArm:
58 case InstructionSet::kThumb2:
59 return Reg::ArmFp(machine_reg);
60 case InstructionSet::kArm64:
61 return Reg::Arm64Fp(machine_reg);
62 case InstructionSet::kX86:
63 return Reg::X86Fp(machine_reg);
64 case InstructionSet::kX86_64:
65 return Reg::X86_64Fp(machine_reg);
66 case InstructionSet::kMips:
67 return Reg::MipsFp(machine_reg);
68 case InstructionSet::kMips64:
69 return Reg::Mips64Fp(machine_reg);
70 case InstructionSet::kNone:
71 LOG(FATAL) << "No instruction set";
72 }
73 UNREACHABLE();
74 }
75
76 struct VariableLocation {
77 uint32_t low_pc; // Relative to compilation unit.
78 uint32_t high_pc; // Relative to compilation unit.
79 DexRegisterLocation reg_lo; // May be None if the location is unknown.
80 DexRegisterLocation reg_hi; // Most significant bits of 64-bit value.
81 };
82
83 // Get the location of given dex register (e.g. stack or machine register).
84 // Note that the location might be different based on the current pc.
85 // The result will cover all ranges where the variable is in scope.
86 // PCs corresponding to stackmap with dex register map are accurate,
87 // all other PCs are best-effort only.
GetVariableLocations(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa)88 static std::vector<VariableLocation> GetVariableLocations(
89 const MethodDebugInfo* method_info,
90 const std::vector<DexRegisterMap>& dex_register_maps,
91 uint16_t vreg,
92 bool is64bitValue,
93 uint64_t compilation_unit_code_address,
94 uint32_t dex_pc_low,
95 uint32_t dex_pc_high,
96 InstructionSet isa) {
97 std::vector<VariableLocation> variable_locations;
98
99 // Get stack maps sorted by pc (they might not be sorted internally).
100 // TODO(dsrbecky) Remove this once stackmaps get sorted by pc.
101 const CodeInfo code_info(method_info->code_info);
102 const CodeInfoEncoding encoding = code_info.ExtractEncoding();
103 std::map<uint32_t, uint32_t> stack_maps; // low_pc -> stack_map_index.
104 for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); s++) {
105 StackMap stack_map = code_info.GetStackMapAt(s, encoding);
106 DCHECK(stack_map.IsValid());
107 if (!stack_map.HasDexRegisterMap(encoding.stack_map.encoding)) {
108 // The compiler creates stackmaps without register maps at the start of
109 // basic blocks in order to keep instruction-accurate line number mapping.
110 // However, we never stop at those (breakpoint locations always have map).
111 // Therefore, for the purpose of local variables, we ignore them.
112 // The main reason for this is to save space by avoiding undefined gaps.
113 continue;
114 }
115 const uint32_t pc_offset = stack_map.GetNativePcOffset(encoding.stack_map.encoding, isa);
116 DCHECK_LE(pc_offset, method_info->code_size);
117 DCHECK_LE(compilation_unit_code_address, method_info->code_address);
118 const uint32_t low_pc = dchecked_integral_cast<uint32_t>(
119 method_info->code_address + pc_offset - compilation_unit_code_address);
120 stack_maps.emplace(low_pc, s);
121 }
122
123 // Create entries for the requested register based on stack map data.
124 for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) {
125 const uint32_t low_pc = it->first;
126 const uint32_t stack_map_index = it->second;
127 const StackMap& stack_map = code_info.GetStackMapAt(stack_map_index, encoding);
128 auto next_it = it;
129 next_it++;
130 const uint32_t high_pc = next_it != stack_maps.end()
131 ? next_it->first
132 : method_info->code_address + method_info->code_size - compilation_unit_code_address;
133 DCHECK_LE(low_pc, high_pc);
134 if (low_pc == high_pc) {
135 continue; // Ignore if the address range is empty.
136 }
137
138 // Check that the stack map is in the requested range.
139 uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map.encoding);
140 if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) {
141 // The variable is not in scope at this PC. Therefore omit the entry.
142 // Note that this is different to None() entry which means in scope, but unknown location.
143 continue;
144 }
145
146 // Find the location of the dex register.
147 DexRegisterLocation reg_lo = DexRegisterLocation::None();
148 DexRegisterLocation reg_hi = DexRegisterLocation::None();
149 DCHECK_LT(stack_map_index, dex_register_maps.size());
150 DexRegisterMap dex_register_map = dex_register_maps[stack_map_index];
151 DCHECK(dex_register_map.IsValid());
152 CodeItemDataAccessor accessor(*method_info->dex_file, method_info->code_item);
153 reg_lo = dex_register_map.GetDexRegisterLocation(
154 vreg, accessor.RegistersSize(), code_info, encoding);
155 if (is64bitValue) {
156 reg_hi = dex_register_map.GetDexRegisterLocation(
157 vreg + 1, accessor.RegistersSize(), code_info, encoding);
158 }
159
160 // Add location entry for this address range.
161 if (!variable_locations.empty() &&
162 variable_locations.back().reg_lo == reg_lo &&
163 variable_locations.back().reg_hi == reg_hi &&
164 variable_locations.back().high_pc == low_pc) {
165 // Merge with the previous entry (extend its range).
166 variable_locations.back().high_pc = high_pc;
167 } else {
168 variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi});
169 }
170 }
171
172 return variable_locations;
173 }
174
175 // Write table into .debug_loc which describes location of dex register.
176 // The dex register might be valid only at some points and it might
177 // move between machine registers and stack.
WriteDebugLocEntry(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa,dwarf::DebugInfoEntryWriter<> * debug_info,std::vector<uint8_t> * debug_loc_buffer,std::vector<uint8_t> * debug_ranges_buffer)178 static void WriteDebugLocEntry(const MethodDebugInfo* method_info,
179 const std::vector<DexRegisterMap>& dex_register_maps,
180 uint16_t vreg,
181 bool is64bitValue,
182 uint64_t compilation_unit_code_address,
183 uint32_t dex_pc_low,
184 uint32_t dex_pc_high,
185 InstructionSet isa,
186 dwarf::DebugInfoEntryWriter<>* debug_info,
187 std::vector<uint8_t>* debug_loc_buffer,
188 std::vector<uint8_t>* debug_ranges_buffer) {
189 using Kind = DexRegisterLocation::Kind;
190 if (method_info->code_info == nullptr || dex_register_maps.empty()) {
191 return;
192 }
193
194 std::vector<VariableLocation> variable_locations = GetVariableLocations(
195 method_info,
196 dex_register_maps,
197 vreg,
198 is64bitValue,
199 compilation_unit_code_address,
200 dex_pc_low,
201 dex_pc_high,
202 isa);
203
204 // Write .debug_loc entries.
205 dwarf::Writer<> debug_loc(debug_loc_buffer);
206 const size_t debug_loc_offset = debug_loc.size();
207 const bool is64bit = Is64BitInstructionSet(isa);
208 std::vector<uint8_t> expr_buffer;
209 for (const VariableLocation& variable_location : variable_locations) {
210 // Translate dex register location to DWARF expression.
211 // Note that 64-bit value might be split to two distinct locations.
212 // (for example, two 32-bit machine registers, or even stack and register)
213 dwarf::Expression expr(&expr_buffer);
214 DexRegisterLocation reg_lo = variable_location.reg_lo;
215 DexRegisterLocation reg_hi = variable_location.reg_hi;
216 for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) {
217 DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi);
218 const Kind kind = reg_loc.GetKind();
219 const int32_t value = reg_loc.GetValue();
220 if (kind == Kind::kInStack) {
221 // The stack offset is relative to SP. Make it relative to CFA.
222 expr.WriteOpFbreg(value - method_info->frame_size_in_bytes);
223 if (piece == 0 && reg_hi.GetKind() == Kind::kInStack &&
224 reg_hi.GetValue() == value + 4) {
225 break; // the high word is correctly implied by the low word.
226 }
227 } else if (kind == Kind::kInRegister) {
228 expr.WriteOpReg(GetDwarfCoreReg(isa, value).num());
229 if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh &&
230 reg_hi.GetValue() == value) {
231 break; // the high word is correctly implied by the low word.
232 }
233 } else if (kind == Kind::kInFpuRegister) {
234 if ((isa == InstructionSet::kArm || isa == InstructionSet::kThumb2) &&
235 piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister &&
236 reg_hi.GetValue() == value + 1 && value % 2 == 0) {
237 // Translate S register pair to D register (e.g. S4+S5 to D2).
238 expr.WriteOpReg(Reg::ArmDp(value / 2).num());
239 break;
240 }
241 expr.WriteOpReg(GetDwarfFpReg(isa, value).num());
242 if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh &&
243 reg_hi.GetValue() == reg_lo.GetValue()) {
244 break; // the high word is correctly implied by the low word.
245 }
246 } else if (kind == Kind::kConstant) {
247 expr.WriteOpConsts(value);
248 expr.WriteOpStackValue();
249 } else if (kind == Kind::kNone) {
250 break;
251 } else {
252 // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind().
253 // kInRegisterHigh and kInFpuRegisterHigh should be handled by
254 // the special cases above and they should not occur alone.
255 LOG(WARNING) << "Unexpected register location: " << kind
256 << " (This can indicate either a bug in the dexer when generating"
257 << " local variable information, or a bug in ART compiler."
258 << " Please file a bug at go/art-bug)";
259 break;
260 }
261 if (is64bitValue) {
262 // Write the marker which is needed by split 64-bit values.
263 // This code is skipped by the special cases.
264 expr.WriteOpPiece(4);
265 }
266 }
267
268 if (expr.size() > 0) {
269 if (is64bit) {
270 debug_loc.PushUint64(variable_location.low_pc);
271 debug_loc.PushUint64(variable_location.high_pc);
272 } else {
273 debug_loc.PushUint32(variable_location.low_pc);
274 debug_loc.PushUint32(variable_location.high_pc);
275 }
276 // Write the expression.
277 debug_loc.PushUint16(expr.size());
278 debug_loc.PushData(expr.data());
279 } else {
280 // Do not generate .debug_loc if the location is not known.
281 }
282 }
283 // Write end-of-list entry.
284 if (is64bit) {
285 debug_loc.PushUint64(0);
286 debug_loc.PushUint64(0);
287 } else {
288 debug_loc.PushUint32(0);
289 debug_loc.PushUint32(0);
290 }
291
292 // Write .debug_ranges entries.
293 // This includes ranges where the variable is in scope but the location is not known.
294 dwarf::Writer<> debug_ranges(debug_ranges_buffer);
295 size_t debug_ranges_offset = debug_ranges.size();
296 for (size_t i = 0; i < variable_locations.size(); i++) {
297 uint32_t low_pc = variable_locations[i].low_pc;
298 uint32_t high_pc = variable_locations[i].high_pc;
299 while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) {
300 // Merge address range with the next entry.
301 high_pc = variable_locations[++i].high_pc;
302 }
303 if (is64bit) {
304 debug_ranges.PushUint64(low_pc);
305 debug_ranges.PushUint64(high_pc);
306 } else {
307 debug_ranges.PushUint32(low_pc);
308 debug_ranges.PushUint32(high_pc);
309 }
310 }
311 // Write end-of-list entry.
312 if (is64bit) {
313 debug_ranges.PushUint64(0);
314 debug_ranges.PushUint64(0);
315 } else {
316 debug_ranges.PushUint32(0);
317 debug_ranges.PushUint32(0);
318 }
319
320 // Simple de-duplication - check whether this entry is same as the last one (or tail of it).
321 size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset;
322 if (debug_ranges_offset >= debug_ranges_entry_size) {
323 size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size;
324 if (memcmp(debug_ranges_buffer->data() + previous_offset,
325 debug_ranges_buffer->data() + debug_ranges_offset,
326 debug_ranges_entry_size) == 0) {
327 // Remove what we have just written and use the last entry instead.
328 debug_ranges_buffer->resize(debug_ranges_offset);
329 debug_ranges_offset = previous_offset;
330 }
331 }
332
333 // Write attributes to .debug_info.
334 debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset);
335 debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset);
336 }
337
338 } // namespace debug
339 } // namespace art
340
341 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
342
343