1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
19 
20 #include <cstring>
21 #include <map>
22 
23 #include "arch/instruction_set.h"
24 #include "compiled_method.h"
25 #include "debug/dwarf/debug_info_entry_writer.h"
26 #include "debug/dwarf/register.h"
27 #include "debug/method_debug_info.h"
28 #include "stack_map.h"
29 
30 namespace art {
31 namespace debug {
32 using Reg = dwarf::Reg;
33 
GetDwarfCoreReg(InstructionSet isa,int machine_reg)34 static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) {
35   switch (isa) {
36     case InstructionSet::kArm:
37     case InstructionSet::kThumb2:
38       return Reg::ArmCore(machine_reg);
39     case InstructionSet::kArm64:
40       return Reg::Arm64Core(machine_reg);
41     case InstructionSet::kX86:
42       return Reg::X86Core(machine_reg);
43     case InstructionSet::kX86_64:
44       return Reg::X86_64Core(machine_reg);
45     case InstructionSet::kMips:
46       return Reg::MipsCore(machine_reg);
47     case InstructionSet::kMips64:
48       return Reg::Mips64Core(machine_reg);
49     case InstructionSet::kNone:
50       LOG(FATAL) << "No instruction set";
51   }
52   UNREACHABLE();
53 }
54 
GetDwarfFpReg(InstructionSet isa,int machine_reg)55 static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) {
56   switch (isa) {
57     case InstructionSet::kArm:
58     case InstructionSet::kThumb2:
59       return Reg::ArmFp(machine_reg);
60     case InstructionSet::kArm64:
61       return Reg::Arm64Fp(machine_reg);
62     case InstructionSet::kX86:
63       return Reg::X86Fp(machine_reg);
64     case InstructionSet::kX86_64:
65       return Reg::X86_64Fp(machine_reg);
66     case InstructionSet::kMips:
67       return Reg::MipsFp(machine_reg);
68     case InstructionSet::kMips64:
69       return Reg::Mips64Fp(machine_reg);
70     case InstructionSet::kNone:
71       LOG(FATAL) << "No instruction set";
72   }
73   UNREACHABLE();
74 }
75 
76 struct VariableLocation {
77   uint32_t low_pc;  // Relative to compilation unit.
78   uint32_t high_pc;  // Relative to compilation unit.
79   DexRegisterLocation reg_lo;  // May be None if the location is unknown.
80   DexRegisterLocation reg_hi;  // Most significant bits of 64-bit value.
81 };
82 
83 // Get the location of given dex register (e.g. stack or machine register).
84 // Note that the location might be different based on the current pc.
85 // The result will cover all ranges where the variable is in scope.
86 // PCs corresponding to stackmap with dex register map are accurate,
87 // all other PCs are best-effort only.
GetVariableLocations(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa)88 static std::vector<VariableLocation> GetVariableLocations(
89     const MethodDebugInfo* method_info,
90     const std::vector<DexRegisterMap>& dex_register_maps,
91     uint16_t vreg,
92     bool is64bitValue,
93     uint64_t compilation_unit_code_address,
94     uint32_t dex_pc_low,
95     uint32_t dex_pc_high,
96     InstructionSet isa) {
97   std::vector<VariableLocation> variable_locations;
98 
99   // Get stack maps sorted by pc (they might not be sorted internally).
100   // TODO(dsrbecky) Remove this once stackmaps get sorted by pc.
101   const CodeInfo code_info(method_info->code_info);
102   const CodeInfoEncoding encoding = code_info.ExtractEncoding();
103   std::map<uint32_t, uint32_t> stack_maps;  // low_pc -> stack_map_index.
104   for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); s++) {
105     StackMap stack_map = code_info.GetStackMapAt(s, encoding);
106     DCHECK(stack_map.IsValid());
107     if (!stack_map.HasDexRegisterMap(encoding.stack_map.encoding)) {
108       // The compiler creates stackmaps without register maps at the start of
109       // basic blocks in order to keep instruction-accurate line number mapping.
110       // However, we never stop at those (breakpoint locations always have map).
111       // Therefore, for the purpose of local variables, we ignore them.
112       // The main reason for this is to save space by avoiding undefined gaps.
113       continue;
114     }
115     const uint32_t pc_offset = stack_map.GetNativePcOffset(encoding.stack_map.encoding, isa);
116     DCHECK_LE(pc_offset, method_info->code_size);
117     DCHECK_LE(compilation_unit_code_address, method_info->code_address);
118     const uint32_t low_pc = dchecked_integral_cast<uint32_t>(
119         method_info->code_address + pc_offset - compilation_unit_code_address);
120     stack_maps.emplace(low_pc, s);
121   }
122 
123   // Create entries for the requested register based on stack map data.
124   for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) {
125     const uint32_t low_pc = it->first;
126     const uint32_t stack_map_index = it->second;
127     const StackMap& stack_map = code_info.GetStackMapAt(stack_map_index, encoding);
128     auto next_it = it;
129     next_it++;
130     const uint32_t high_pc = next_it != stack_maps.end()
131       ? next_it->first
132       : method_info->code_address + method_info->code_size - compilation_unit_code_address;
133     DCHECK_LE(low_pc, high_pc);
134     if (low_pc == high_pc) {
135       continue;  // Ignore if the address range is empty.
136     }
137 
138     // Check that the stack map is in the requested range.
139     uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map.encoding);
140     if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) {
141       // The variable is not in scope at this PC. Therefore omit the entry.
142       // Note that this is different to None() entry which means in scope, but unknown location.
143       continue;
144     }
145 
146     // Find the location of the dex register.
147     DexRegisterLocation reg_lo = DexRegisterLocation::None();
148     DexRegisterLocation reg_hi = DexRegisterLocation::None();
149     DCHECK_LT(stack_map_index, dex_register_maps.size());
150     DexRegisterMap dex_register_map = dex_register_maps[stack_map_index];
151     DCHECK(dex_register_map.IsValid());
152     CodeItemDataAccessor accessor(*method_info->dex_file, method_info->code_item);
153     reg_lo = dex_register_map.GetDexRegisterLocation(
154         vreg, accessor.RegistersSize(), code_info, encoding);
155     if (is64bitValue) {
156       reg_hi = dex_register_map.GetDexRegisterLocation(
157           vreg + 1, accessor.RegistersSize(), code_info, encoding);
158     }
159 
160     // Add location entry for this address range.
161     if (!variable_locations.empty() &&
162         variable_locations.back().reg_lo == reg_lo &&
163         variable_locations.back().reg_hi == reg_hi &&
164         variable_locations.back().high_pc == low_pc) {
165       // Merge with the previous entry (extend its range).
166       variable_locations.back().high_pc = high_pc;
167     } else {
168       variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi});
169     }
170   }
171 
172   return variable_locations;
173 }
174 
175 // Write table into .debug_loc which describes location of dex register.
176 // The dex register might be valid only at some points and it might
177 // move between machine registers and stack.
WriteDebugLocEntry(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa,dwarf::DebugInfoEntryWriter<> * debug_info,std::vector<uint8_t> * debug_loc_buffer,std::vector<uint8_t> * debug_ranges_buffer)178 static void WriteDebugLocEntry(const MethodDebugInfo* method_info,
179                                const std::vector<DexRegisterMap>& dex_register_maps,
180                                uint16_t vreg,
181                                bool is64bitValue,
182                                uint64_t compilation_unit_code_address,
183                                uint32_t dex_pc_low,
184                                uint32_t dex_pc_high,
185                                InstructionSet isa,
186                                dwarf::DebugInfoEntryWriter<>* debug_info,
187                                std::vector<uint8_t>* debug_loc_buffer,
188                                std::vector<uint8_t>* debug_ranges_buffer) {
189   using Kind = DexRegisterLocation::Kind;
190   if (method_info->code_info == nullptr || dex_register_maps.empty()) {
191     return;
192   }
193 
194   std::vector<VariableLocation> variable_locations = GetVariableLocations(
195       method_info,
196       dex_register_maps,
197       vreg,
198       is64bitValue,
199       compilation_unit_code_address,
200       dex_pc_low,
201       dex_pc_high,
202       isa);
203 
204   // Write .debug_loc entries.
205   dwarf::Writer<> debug_loc(debug_loc_buffer);
206   const size_t debug_loc_offset = debug_loc.size();
207   const bool is64bit = Is64BitInstructionSet(isa);
208   std::vector<uint8_t> expr_buffer;
209   for (const VariableLocation& variable_location : variable_locations) {
210     // Translate dex register location to DWARF expression.
211     // Note that 64-bit value might be split to two distinct locations.
212     // (for example, two 32-bit machine registers, or even stack and register)
213     dwarf::Expression expr(&expr_buffer);
214     DexRegisterLocation reg_lo = variable_location.reg_lo;
215     DexRegisterLocation reg_hi = variable_location.reg_hi;
216     for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) {
217       DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi);
218       const Kind kind = reg_loc.GetKind();
219       const int32_t value = reg_loc.GetValue();
220       if (kind == Kind::kInStack) {
221         // The stack offset is relative to SP. Make it relative to CFA.
222         expr.WriteOpFbreg(value - method_info->frame_size_in_bytes);
223         if (piece == 0 && reg_hi.GetKind() == Kind::kInStack &&
224             reg_hi.GetValue() == value + 4) {
225           break;  // the high word is correctly implied by the low word.
226         }
227       } else if (kind == Kind::kInRegister) {
228         expr.WriteOpReg(GetDwarfCoreReg(isa, value).num());
229         if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh &&
230             reg_hi.GetValue() == value) {
231           break;  // the high word is correctly implied by the low word.
232         }
233       } else if (kind == Kind::kInFpuRegister) {
234         if ((isa == InstructionSet::kArm || isa == InstructionSet::kThumb2) &&
235             piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister &&
236             reg_hi.GetValue() == value + 1 && value % 2 == 0) {
237           // Translate S register pair to D register (e.g. S4+S5 to D2).
238           expr.WriteOpReg(Reg::ArmDp(value / 2).num());
239           break;
240         }
241         expr.WriteOpReg(GetDwarfFpReg(isa, value).num());
242         if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh &&
243             reg_hi.GetValue() == reg_lo.GetValue()) {
244           break;  // the high word is correctly implied by the low word.
245         }
246       } else if (kind == Kind::kConstant) {
247         expr.WriteOpConsts(value);
248         expr.WriteOpStackValue();
249       } else if (kind == Kind::kNone) {
250         break;
251       } else {
252         // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind().
253         // kInRegisterHigh and kInFpuRegisterHigh should be handled by
254         // the special cases above and they should not occur alone.
255         LOG(WARNING) << "Unexpected register location: " << kind
256                      << " (This can indicate either a bug in the dexer when generating"
257                      << " local variable information, or a bug in ART compiler."
258                      << " Please file a bug at go/art-bug)";
259         break;
260       }
261       if (is64bitValue) {
262         // Write the marker which is needed by split 64-bit values.
263         // This code is skipped by the special cases.
264         expr.WriteOpPiece(4);
265       }
266     }
267 
268     if (expr.size() > 0) {
269       if (is64bit) {
270         debug_loc.PushUint64(variable_location.low_pc);
271         debug_loc.PushUint64(variable_location.high_pc);
272       } else {
273         debug_loc.PushUint32(variable_location.low_pc);
274         debug_loc.PushUint32(variable_location.high_pc);
275       }
276       // Write the expression.
277       debug_loc.PushUint16(expr.size());
278       debug_loc.PushData(expr.data());
279     } else {
280       // Do not generate .debug_loc if the location is not known.
281     }
282   }
283   // Write end-of-list entry.
284   if (is64bit) {
285     debug_loc.PushUint64(0);
286     debug_loc.PushUint64(0);
287   } else {
288     debug_loc.PushUint32(0);
289     debug_loc.PushUint32(0);
290   }
291 
292   // Write .debug_ranges entries.
293   // This includes ranges where the variable is in scope but the location is not known.
294   dwarf::Writer<> debug_ranges(debug_ranges_buffer);
295   size_t debug_ranges_offset = debug_ranges.size();
296   for (size_t i = 0; i < variable_locations.size(); i++) {
297     uint32_t low_pc = variable_locations[i].low_pc;
298     uint32_t high_pc = variable_locations[i].high_pc;
299     while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) {
300       // Merge address range with the next entry.
301       high_pc = variable_locations[++i].high_pc;
302     }
303     if (is64bit) {
304       debug_ranges.PushUint64(low_pc);
305       debug_ranges.PushUint64(high_pc);
306     } else {
307       debug_ranges.PushUint32(low_pc);
308       debug_ranges.PushUint32(high_pc);
309     }
310   }
311   // Write end-of-list entry.
312   if (is64bit) {
313     debug_ranges.PushUint64(0);
314     debug_ranges.PushUint64(0);
315   } else {
316     debug_ranges.PushUint32(0);
317     debug_ranges.PushUint32(0);
318   }
319 
320   // Simple de-duplication - check whether this entry is same as the last one (or tail of it).
321   size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset;
322   if (debug_ranges_offset >= debug_ranges_entry_size) {
323     size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size;
324     if (memcmp(debug_ranges_buffer->data() + previous_offset,
325                debug_ranges_buffer->data() + debug_ranges_offset,
326                debug_ranges_entry_size) == 0) {
327       // Remove what we have just written and use the last entry instead.
328       debug_ranges_buffer->resize(debug_ranges_offset);
329       debug_ranges_offset = previous_offset;
330     }
331   }
332 
333   // Write attributes to .debug_info.
334   debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset);
335   debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset);
336 }
337 
338 }  // namespace debug
339 }  // namespace art
340 
341 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
342 
343