1 /* ehopt.c--optimize gcc exception frame information.
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3 Written by Ian Lance Taylor <ian@cygnus.com>.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "as.h"
23 #include "subsegs.h"
24 #include "struc-symbol.h"
25
26 /* We include this ELF file, even though we may not be assembling for
27 ELF, since the exception frame information is always in a format
28 derived from DWARF. */
29
30 #include "dwarf2.h"
31
32 /* Try to optimize gcc 2.8 exception frame information.
33
34 Exception frame information is emitted for every function in the
35 .eh_frame or .debug_frame sections. Simple information for a function
36 with no exceptions looks like this:
37
38 __FRAME_BEGIN__:
39 .4byte .LLCIE1 / Length of Common Information Entry
40 .LSCIE1:
41 #if .eh_frame
42 .4byte 0x0 / CIE Identifier Tag
43 #elif .debug_frame
44 .4byte 0xffffffff / CIE Identifier Tag
45 #endif
46 .byte 0x1 / CIE Version
47 .byte 0x0 / CIE Augmentation (none)
48 .byte 0x1 / ULEB128 0x1 (CIE Code Alignment Factor)
49 .byte 0x7c / SLEB128 -4 (CIE Data Alignment Factor)
50 .byte 0x8 / CIE RA Column
51 .byte 0xc / DW_CFA_def_cfa
52 .byte 0x4 / ULEB128 0x4
53 .byte 0x4 / ULEB128 0x4
54 .byte 0x88 / DW_CFA_offset, column 0x8
55 .byte 0x1 / ULEB128 0x1
56 .align 4
57 .LECIE1:
58 .set .LLCIE1,.LECIE1-.LSCIE1 / CIE Length Symbol
59 .4byte .LLFDE1 / FDE Length
60 .LSFDE1:
61 .4byte .LSFDE1-__FRAME_BEGIN__ / FDE CIE offset
62 .4byte .LFB1 / FDE initial location
63 .4byte .LFE1-.LFB1 / FDE address range
64 .byte 0x4 / DW_CFA_advance_loc4
65 .4byte .LCFI0-.LFB1
66 .byte 0xe / DW_CFA_def_cfa_offset
67 .byte 0x8 / ULEB128 0x8
68 .byte 0x85 / DW_CFA_offset, column 0x5
69 .byte 0x2 / ULEB128 0x2
70 .byte 0x4 / DW_CFA_advance_loc4
71 .4byte .LCFI1-.LCFI0
72 .byte 0xd / DW_CFA_def_cfa_register
73 .byte 0x5 / ULEB128 0x5
74 .byte 0x4 / DW_CFA_advance_loc4
75 .4byte .LCFI2-.LCFI1
76 .byte 0x2e / DW_CFA_GNU_args_size
77 .byte 0x4 / ULEB128 0x4
78 .byte 0x4 / DW_CFA_advance_loc4
79 .4byte .LCFI3-.LCFI2
80 .byte 0x2e / DW_CFA_GNU_args_size
81 .byte 0x0 / ULEB128 0x0
82 .align 4
83 .LEFDE1:
84 .set .LLFDE1,.LEFDE1-.LSFDE1 / FDE Length Symbol
85
86 The immediate issue we can address in the assembler is the
87 DW_CFA_advance_loc4 followed by a four byte value. The value is
88 the difference of two addresses in the function. Since gcc does
89 not know this value, it always uses four bytes. We will know the
90 value at the end of assembly, so we can do better. */
91
92 struct cie_info
93 {
94 unsigned code_alignment;
95 int z_augmentation;
96 };
97
98 static int get_cie_info (struct cie_info *);
99
100 /* Extract information from the CIE. */
101
102 static int
get_cie_info(struct cie_info * info)103 get_cie_info (struct cie_info *info)
104 {
105 fragS *f;
106 fixS *fix;
107 int offset;
108 char CIE_id;
109 char augmentation[10];
110 int iaug;
111 int code_alignment = 0;
112
113 /* We should find the CIE at the start of the section. */
114
115 f = seg_info (now_seg)->frchainP->frch_root;
116 fix = seg_info (now_seg)->frchainP->fix_root;
117
118 /* Look through the frags of the section to find the code alignment. */
119
120 /* First make sure that the CIE Identifier Tag is 0/-1. */
121
122 if (strncmp (segment_name (now_seg), ".debug_frame", 12) == 0)
123 CIE_id = (char)0xff;
124 else
125 CIE_id = 0;
126
127 offset = 4;
128 while (f != NULL && offset >= f->fr_fix)
129 {
130 offset -= f->fr_fix;
131 f = f->fr_next;
132 }
133 if (f == NULL
134 || f->fr_fix - offset < 4
135 || f->fr_literal[offset] != CIE_id
136 || f->fr_literal[offset + 1] != CIE_id
137 || f->fr_literal[offset + 2] != CIE_id
138 || f->fr_literal[offset + 3] != CIE_id)
139 return 0;
140
141 /* Next make sure the CIE version number is 1. */
142
143 offset += 4;
144 while (f != NULL && offset >= f->fr_fix)
145 {
146 offset -= f->fr_fix;
147 f = f->fr_next;
148 }
149 if (f == NULL
150 || f->fr_fix - offset < 1
151 || f->fr_literal[offset] != 1)
152 return 0;
153
154 /* Skip the augmentation (a null terminated string). */
155
156 iaug = 0;
157 ++offset;
158 while (1)
159 {
160 while (f != NULL && offset >= f->fr_fix)
161 {
162 offset -= f->fr_fix;
163 f = f->fr_next;
164 }
165 if (f == NULL)
166 return 0;
167
168 while (offset < f->fr_fix && f->fr_literal[offset] != '\0')
169 {
170 if ((size_t) iaug < (sizeof augmentation) - 1)
171 {
172 augmentation[iaug] = f->fr_literal[offset];
173 ++iaug;
174 }
175 ++offset;
176 }
177 if (offset < f->fr_fix)
178 break;
179 }
180 ++offset;
181 while (f != NULL && offset >= f->fr_fix)
182 {
183 offset -= f->fr_fix;
184 f = f->fr_next;
185 }
186 if (f == NULL)
187 return 0;
188
189 augmentation[iaug] = '\0';
190 if (augmentation[0] == '\0')
191 {
192 /* No augmentation. */
193 }
194 else if (strcmp (augmentation, "eh") == 0)
195 {
196 /* We have to skip a pointer. Unfortunately, we don't know how
197 large it is. We find out by looking for a matching fixup. */
198 while (fix != NULL
199 && (fix->fx_frag != f || fix->fx_where != offset))
200 fix = fix->fx_next;
201 if (fix == NULL)
202 offset += 4;
203 else
204 offset += fix->fx_size;
205 while (f != NULL && offset >= f->fr_fix)
206 {
207 offset -= f->fr_fix;
208 f = f->fr_next;
209 }
210 if (f == NULL)
211 return 0;
212 }
213 else if (augmentation[0] != 'z')
214 return 0;
215
216 /* We're now at the code alignment factor, which is a ULEB128. If
217 it isn't a single byte, forget it. */
218
219 code_alignment = f->fr_literal[offset] & 0xff;
220 if ((code_alignment & 0x80) != 0)
221 code_alignment = 0;
222
223 info->code_alignment = code_alignment;
224 info->z_augmentation = (augmentation[0] == 'z');
225
226 return 1;
227 }
228
229 enum frame_state
230 {
231 state_idle,
232 state_saw_size,
233 state_saw_cie_offset,
234 state_saw_pc_begin,
235 state_seeing_aug_size,
236 state_skipping_aug,
237 state_wait_loc4,
238 state_saw_loc4,
239 state_error,
240 };
241
242 /* This function is called from emit_expr. It looks for cases which
243 we can optimize.
244
245 Rather than try to parse all this information as we read it, we
246 look for a single byte DW_CFA_advance_loc4 followed by a 4 byte
247 difference. We turn that into a rs_cfa_advance frag, and handle
248 those frags at the end of the assembly. If the gcc output changes
249 somewhat, this optimization may stop working.
250
251 This function returns non-zero if it handled the expression and
252 emit_expr should not do anything, or zero otherwise. It can also
253 change *EXP and *PNBYTES. */
254
255 int
check_eh_frame(expressionS * exp,unsigned int * pnbytes)256 check_eh_frame (expressionS *exp, unsigned int *pnbytes)
257 {
258 struct frame_data
259 {
260 enum frame_state state;
261
262 int cie_info_ok;
263 struct cie_info cie_info;
264
265 symbolS *size_end_sym;
266 fragS *loc4_frag;
267 int loc4_fix;
268
269 int aug_size;
270 int aug_shift;
271 };
272
273 static struct frame_data eh_frame_data;
274 static struct frame_data debug_frame_data;
275 struct frame_data *d;
276
277 /* Don't optimize. */
278 if (flag_traditional_format)
279 return 0;
280
281 #ifdef md_allow_eh_opt
282 if (! md_allow_eh_opt)
283 return 0;
284 #endif
285
286 /* Select the proper section data. */
287 if (strncmp (segment_name (now_seg), ".eh_frame", 9) == 0
288 && segment_name (now_seg)[9] != '_')
289 d = &eh_frame_data;
290 else if (strncmp (segment_name (now_seg), ".debug_frame", 12) == 0)
291 d = &debug_frame_data;
292 else
293 return 0;
294
295 if (d->state >= state_saw_size && S_IS_DEFINED (d->size_end_sym))
296 {
297 /* We have come to the end of the CIE or FDE. See below where
298 we set saw_size. We must check this first because we may now
299 be looking at the next size. */
300 d->state = state_idle;
301 }
302
303 switch (d->state)
304 {
305 case state_idle:
306 if (*pnbytes == 4)
307 {
308 /* This might be the size of the CIE or FDE. We want to know
309 the size so that we don't accidentally optimize across an FDE
310 boundary. We recognize the size in one of two forms: a
311 symbol which will later be defined as a difference, or a
312 subtraction of two symbols. Either way, we can tell when we
313 are at the end of the FDE because the symbol becomes defined
314 (in the case of a subtraction, the end symbol, from which the
315 start symbol is being subtracted). Other ways of describing
316 the size will not be optimized. */
317 if ((exp->X_op == O_symbol || exp->X_op == O_subtract)
318 && ! S_IS_DEFINED (exp->X_add_symbol))
319 {
320 d->state = state_saw_size;
321 d->size_end_sym = exp->X_add_symbol;
322 }
323 }
324 break;
325
326 case state_saw_size:
327 case state_saw_cie_offset:
328 /* Assume whatever form it appears in, it appears atomically. */
329 d->state = (enum frame_state) (d->state + 1);
330 break;
331
332 case state_saw_pc_begin:
333 /* Decide whether we should see an augmentation. */
334 if (! d->cie_info_ok
335 && ! (d->cie_info_ok = get_cie_info (&d->cie_info)))
336 d->state = state_error;
337 else if (d->cie_info.z_augmentation)
338 {
339 d->state = state_seeing_aug_size;
340 d->aug_size = 0;
341 d->aug_shift = 0;
342 }
343 else
344 d->state = state_wait_loc4;
345 break;
346
347 case state_seeing_aug_size:
348 /* Bytes == -1 means this comes from an leb128 directive. */
349 if ((int)*pnbytes == -1 && exp->X_op == O_constant)
350 {
351 d->aug_size = exp->X_add_number;
352 d->state = state_skipping_aug;
353 }
354 else if (*pnbytes == 1 && exp->X_op == O_constant)
355 {
356 unsigned char byte = exp->X_add_number;
357 d->aug_size |= (byte & 0x7f) << d->aug_shift;
358 d->aug_shift += 7;
359 if ((byte & 0x80) == 0)
360 d->state = state_skipping_aug;
361 }
362 else
363 d->state = state_error;
364 if (d->state == state_skipping_aug && d->aug_size == 0)
365 d->state = state_wait_loc4;
366 break;
367
368 case state_skipping_aug:
369 if ((int)*pnbytes < 0)
370 d->state = state_error;
371 else
372 {
373 int left = (d->aug_size -= *pnbytes);
374 if (left == 0)
375 d->state = state_wait_loc4;
376 else if (left < 0)
377 d->state = state_error;
378 }
379 break;
380
381 case state_wait_loc4:
382 if (*pnbytes == 1
383 && exp->X_op == O_constant
384 && exp->X_add_number == DW_CFA_advance_loc4)
385 {
386 /* This might be a DW_CFA_advance_loc4. Record the frag and the
387 position within the frag, so that we can change it later. */
388 frag_grow (1);
389 d->state = state_saw_loc4;
390 d->loc4_frag = frag_now;
391 d->loc4_fix = frag_now_fix ();
392 }
393 break;
394
395 case state_saw_loc4:
396 d->state = state_wait_loc4;
397 if (*pnbytes != 4)
398 break;
399 if (exp->X_op == O_constant)
400 {
401 /* This is a case which we can optimize. The two symbols being
402 subtracted were in the same frag and the expression was
403 reduced to a constant. We can do the optimization entirely
404 in this function. */
405 if (exp->X_add_number < 0x40)
406 {
407 d->loc4_frag->fr_literal[d->loc4_fix]
408 = DW_CFA_advance_loc | exp->X_add_number;
409 /* No more bytes needed. */
410 return 1;
411 }
412 else if (exp->X_add_number < 0x100)
413 {
414 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc1;
415 *pnbytes = 1;
416 }
417 else if (exp->X_add_number < 0x10000)
418 {
419 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc2;
420 *pnbytes = 2;
421 }
422 }
423 else if (exp->X_op == O_subtract && d->cie_info.code_alignment == 1)
424 {
425 /* This is a case we can optimize. The expression was not
426 reduced, so we can not finish the optimization until the end
427 of the assembly. We set up a variant frag which we handle
428 later. */
429 frag_var (rs_cfa, 4, 0, 1 << 3, make_expr_symbol (exp),
430 d->loc4_fix, (char *) d->loc4_frag);
431 return 1;
432 }
433 else if ((exp->X_op == O_divide
434 || exp->X_op == O_right_shift)
435 && d->cie_info.code_alignment > 1)
436 {
437 if (exp->X_add_symbol->bsym
438 && exp->X_op_symbol->bsym
439 && exp->X_add_symbol->sy_value.X_op == O_subtract
440 && exp->X_op_symbol->sy_value.X_op == O_constant
441 && ((exp->X_op == O_divide
442 ? exp->X_op_symbol->sy_value.X_add_number
443 : (offsetT) 1 << exp->X_op_symbol->sy_value.X_add_number)
444 == (offsetT) d->cie_info.code_alignment))
445 {
446 /* This is a case we can optimize as well. The expression was
447 not reduced, so we can not finish the optimization until the
448 end of the assembly. We set up a variant frag which we
449 handle later. */
450 frag_var (rs_cfa, 4, 0, d->cie_info.code_alignment << 3,
451 make_expr_symbol (&exp->X_add_symbol->sy_value),
452 d->loc4_fix, (char *) d->loc4_frag);
453 return 1;
454 }
455 }
456 break;
457
458 case state_error:
459 /* Just skipping everything. */
460 break;
461 }
462
463 return 0;
464 }
465
466 /* The function estimates the size of a rs_cfa variant frag based on
467 the current values of the symbols. It is called before the
468 relaxation loop. We set fr_subtype{0:2} to the expected length. */
469
470 int
eh_frame_estimate_size_before_relax(fragS * frag)471 eh_frame_estimate_size_before_relax (fragS *frag)
472 {
473 offsetT diff;
474 int ca = frag->fr_subtype >> 3;
475 int ret;
476
477 diff = resolve_symbol_value (frag->fr_symbol);
478
479 gas_assert (ca > 0);
480 diff /= ca;
481 if (diff < 0x40)
482 ret = 0;
483 else if (diff < 0x100)
484 ret = 1;
485 else if (diff < 0x10000)
486 ret = 2;
487 else
488 ret = 4;
489
490 frag->fr_subtype = (frag->fr_subtype & ~7) | ret;
491
492 return ret;
493 }
494
495 /* This function relaxes a rs_cfa variant frag based on the current
496 values of the symbols. fr_subtype{0:2} is the current length of
497 the frag. This returns the change in frag length. */
498
499 int
eh_frame_relax_frag(fragS * frag)500 eh_frame_relax_frag (fragS *frag)
501 {
502 int oldsize, newsize;
503
504 oldsize = frag->fr_subtype & 7;
505 newsize = eh_frame_estimate_size_before_relax (frag);
506 return newsize - oldsize;
507 }
508
509 /* This function converts a rs_cfa variant frag into a normal fill
510 frag. This is called after all relaxation has been done.
511 fr_subtype{0:2} will be the desired length of the frag. */
512
513 void
eh_frame_convert_frag(fragS * frag)514 eh_frame_convert_frag (fragS *frag)
515 {
516 offsetT diff;
517 fragS *loc4_frag;
518 int loc4_fix, ca;
519
520 loc4_frag = (fragS *) frag->fr_opcode;
521 loc4_fix = (int) frag->fr_offset;
522
523 diff = resolve_symbol_value (frag->fr_symbol);
524
525 ca = frag->fr_subtype >> 3;
526 gas_assert (ca > 0);
527 diff /= ca;
528 switch (frag->fr_subtype & 7)
529 {
530 case 0:
531 gas_assert (diff < 0x40);
532 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc | diff;
533 break;
534
535 case 1:
536 gas_assert (diff < 0x100);
537 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc1;
538 frag->fr_literal[frag->fr_fix] = diff;
539 break;
540
541 case 2:
542 gas_assert (diff < 0x10000);
543 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc2;
544 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 2);
545 break;
546
547 default:
548 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 4);
549 break;
550 }
551
552 frag->fr_fix += frag->fr_subtype & 7;
553 frag->fr_type = rs_fill;
554 frag->fr_subtype = 0;
555 frag->fr_offset = 0;
556 }
557