1 /*
2  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are
6  * met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above
10  *       copyright notice, this list of conditions and the following
11  *       disclaimer in the documentation and/or other materials provided
12  *       with the distribution.
13  *     * Neither the name of The Linux Foundation nor the names of its
14  *       contributors may be used to endorse or promote products derived
15  *       from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
24  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
26  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
27  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #define _LARGEFILE64_SOURCE /* enable lseek64() */
31 
32 /******************************************************************************
33  * INCLUDE SECTION
34  ******************************************************************************/
35 #include <stdio.h>
36 #include <fcntl.h>
37 #include <string.h>
38 #include <errno.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <scsi/ufs/ioctl.h>
42 #include <scsi/ufs/ufs.h>
43 #include <unistd.h>
44 #include <linux/fs.h>
45 #include <limits.h>
46 #include <dirent.h>
47 #include <inttypes.h>
48 #include <linux/kernel.h>
49 #include <asm/byteorder.h>
50 #include <map>
51 #include <vector>
52 #include <string>
53 #define LOG_TAG "gpt-utils"
54 #include <cutils/log.h>
55 #include <cutils/properties.h>
56 #include "gpt-utils.h"
57 #include <endian.h>
58 #include <zlib.h>
59 
60 
61 /******************************************************************************
62  * DEFINE SECTION
63  ******************************************************************************/
64 #define BLK_DEV_FILE    "/dev/block/mmcblk0"
65 /* list the names of the backed-up partitions to be swapped */
66 /* extension used for the backup partitions - tzbak, abootbak, etc. */
67 #define BAK_PTN_NAME_EXT    "bak"
68 #define XBL_PRIMARY         "/dev/block/bootdevice/by-name/xbl"
69 #define XBL_BACKUP          "/dev/block/bootdevice/by-name/xblbak"
70 #define XBL_AB_PRIMARY      "/dev/block/bootdevice/by-name/xbl_a"
71 #define XBL_AB_SECONDARY    "/dev/block/bootdevice/by-name/xbl_b"
72 /* GPT defines */
73 #define MAX_LUNS                    26
74 //Size of the buffer that needs to be passed to the UFS ioctl
75 #define UFS_ATTR_DATA_SIZE          32
76 //This will allow us to get the root lun path from the path to the partition.
77 //i.e: from /dev/block/sdaXXX get /dev/block/sda. The assumption here is that
78 //the boot critical luns lie between sda to sdz which is acceptable because
79 //only user added external disks,etc would lie beyond that limit which do not
80 //contain partitions that interest us here.
81 #define PATH_TRUNCATE_LOC (sizeof("/dev/block/sda") - 1)
82 
83 //From /dev/block/sda get just sda
84 #define LUN_NAME_START_LOC (sizeof("/dev/block/") - 1)
85 #define BOOT_LUN_A_ID 1
86 #define BOOT_LUN_B_ID 2
87 /******************************************************************************
88  * MACROS
89  ******************************************************************************/
90 
91 
92 #define GET_4_BYTES(ptr)    ((uint32_t) *((uint8_t *)(ptr)) | \
93         ((uint32_t) *((uint8_t *)(ptr) + 1) << 8) | \
94         ((uint32_t) *((uint8_t *)(ptr) + 2) << 16) | \
95         ((uint32_t) *((uint8_t *)(ptr) + 3) << 24))
96 
97 #define GET_8_BYTES(ptr)    ((uint64_t) *((uint8_t *)(ptr)) | \
98         ((uint64_t) *((uint8_t *)(ptr) + 1) << 8) | \
99         ((uint64_t) *((uint8_t *)(ptr) + 2) << 16) | \
100         ((uint64_t) *((uint8_t *)(ptr) + 3) << 24) | \
101         ((uint64_t) *((uint8_t *)(ptr) + 4) << 32) | \
102         ((uint64_t) *((uint8_t *)(ptr) + 5) << 40) | \
103         ((uint64_t) *((uint8_t *)(ptr) + 6) << 48) | \
104         ((uint64_t) *((uint8_t *)(ptr) + 7) << 56))
105 
106 #define PUT_4_BYTES(ptr, y)   *((uint8_t *)(ptr)) = (y) & 0xff; \
107         *((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
108         *((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
109         *((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;
110 
111 /******************************************************************************
112  * TYPES
113  ******************************************************************************/
114 using namespace std;
115 enum gpt_state {
116     GPT_OK = 0,
117     GPT_BAD_SIGNATURE,
118     GPT_BAD_CRC
119 };
120 //List of LUN's containing boot critical images.
121 //Required in the case of UFS devices
122 struct update_data {
123      char lun_list[MAX_LUNS][PATH_MAX];
124      uint32_t num_valid_entries;
125 };
126 
127 /******************************************************************************
128  * FUNCTIONS
129  ******************************************************************************/
130 /**
131  *  ==========================================================================
132  *
133  *  \brief  Read/Write len bytes from/to block dev
134  *
135  *  \param [in] fd      block dev file descriptor (returned from open)
136  *  \param [in] rw      RW flag: 0 - read, != 0 - write
137  *  \param [in] offset  block dev offset [bytes] - RW start position
138  *  \param [in] buf     Pointer to the buffer containing the data
139  *  \param [in] len     RW size in bytes. Buf must be at least that big
140  *
141  *  \return  0 on success
142  *
143  *  ==========================================================================
144  */
blk_rw(int fd,int rw,int64_t offset,uint8_t * buf,unsigned len)145 static int blk_rw(int fd, int rw, int64_t offset, uint8_t *buf, unsigned len)
146 {
147     int r;
148 
149     if (lseek64(fd, offset, SEEK_SET) < 0) {
150         fprintf(stderr, "block dev lseek64 %" PRIi64 " failed: %s\n", offset,
151                 strerror(errno));
152         return -1;
153     }
154 
155     if (rw)
156         r = write(fd, buf, len);
157     else
158         r = read(fd, buf, len);
159 
160     if (r < 0)
161         fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read",
162                 strerror(errno));
163     else
164         r = 0;
165 
166     return r;
167 }
168 
169 
170 
171 /**
172  *  ==========================================================================
173  *
174  *  \brief  Search within GPT for partition entry with the given name
175  *  or it's backup twin (name-bak).
176  *
177  *  \param [in] ptn_name        Partition name to seek
178  *  \param [in] pentries_start  Partition entries array start pointer
179  *  \param [in] pentries_end    Partition entries array end pointer
180  *  \param [in] pentry_size     Single partition entry size [bytes]
181  *
182  *  \return  First partition entry pointer that matches the name or NULL
183  *
184  *  ==========================================================================
185  */
gpt_pentry_seek(const char * ptn_name,const uint8_t * pentries_start,const uint8_t * pentries_end,uint32_t pentry_size)186 static uint8_t *gpt_pentry_seek(const char *ptn_name,
187                                 const uint8_t *pentries_start,
188                                 const uint8_t *pentries_end,
189                                 uint32_t pentry_size)
190 {
191     char *pentry_name;
192     unsigned len = strlen(ptn_name);
193 
194     for (pentry_name = (char *) (pentries_start + PARTITION_NAME_OFFSET);
195          pentry_name < (char *) pentries_end; pentry_name += pentry_size) {
196         char name8[MAX_GPT_NAME_SIZE / 2];
197         unsigned i;
198 
199         /* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
200         for (i = 0; i < sizeof(name8); i++)
201             name8[i] = pentry_name[i * 2];
202         if (!strncmp(ptn_name, name8, len))
203             if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
204                 return (uint8_t *) (pentry_name - PARTITION_NAME_OFFSET);
205     }
206 
207     return NULL;
208 }
209 
210 
211 
212 /**
213  *  ==========================================================================
214  *
215  *  \brief  Swaps boot chain in GPT partition entries array
216  *
217  *  \param [in] pentries_start  Partition entries array start
218  *  \param [in] pentries_end    Partition entries array end
219  *  \param [in] pentry_size     Single partition entry size
220  *
221  *  \return  0 on success, 1 if no backup partitions found
222  *
223  *  ==========================================================================
224  */
gpt_boot_chain_swap(const uint8_t * pentries_start,const uint8_t * pentries_end,uint32_t pentry_size)225 static int gpt_boot_chain_swap(const uint8_t *pentries_start,
226                                 const uint8_t *pentries_end,
227                                 uint32_t pentry_size)
228 {
229     const char ptn_swap_list[][MAX_GPT_NAME_SIZE] = { PTN_SWAP_LIST };
230 
231     int backup_not_found = 1;
232     unsigned i;
233 
234     for (i = 0; i < ARRAY_SIZE(ptn_swap_list); i++) {
235         uint8_t *ptn_entry;
236         uint8_t *ptn_bak_entry;
237         uint8_t ptn_swap[PTN_ENTRY_SIZE];
238         //Skip the xbl partition on UFS devices. That is handled
239         //seperately.
240         if (gpt_utils_is_ufs_device() && !strncmp(ptn_swap_list[i],
241                                 PTN_XBL,
242                                 strlen(PTN_XBL)))
243             continue;
244 
245         ptn_entry = gpt_pentry_seek(ptn_swap_list[i], pentries_start,
246                         pentries_end, pentry_size);
247         if (ptn_entry == NULL)
248             continue;
249 
250         ptn_bak_entry = gpt_pentry_seek(ptn_swap_list[i],
251                         ptn_entry + pentry_size, pentries_end, pentry_size);
252         if (ptn_bak_entry == NULL) {
253             fprintf(stderr, "'%s' partition not backup - skip safe update\n",
254                     ptn_swap_list[i]);
255             continue;
256         }
257 
258         /* swap primary <-> backup partition entries */
259         memcpy(ptn_swap, ptn_entry, PTN_ENTRY_SIZE);
260         memcpy(ptn_entry, ptn_bak_entry, PTN_ENTRY_SIZE);
261         memcpy(ptn_bak_entry, ptn_swap, PTN_ENTRY_SIZE);
262         backup_not_found = 0;
263     }
264 
265     return backup_not_found;
266 }
267 
268 
269 
270 /**
271  *  ==========================================================================
272  *
273  *  \brief  Sets secondary GPT boot chain
274  *
275  *  \param [in] fd    block dev file descriptor
276  *  \param [in] boot  Boot chain to switch to
277  *
278  *  \return  0 on success
279  *
280  *  ==========================================================================
281  */
gpt2_set_boot_chain(int fd,enum boot_chain boot)282 static int gpt2_set_boot_chain(int fd, enum boot_chain boot)
283 {
284     int64_t  gpt2_header_offset;
285     uint64_t pentries_start_offset;
286     uint32_t gpt_header_size;
287     uint32_t pentry_size;
288     uint32_t pentries_array_size;
289 
290     uint8_t *gpt_header = NULL;
291     uint8_t  *pentries = NULL;
292     uint32_t crc;
293     uint32_t blk_size = 0;
294     int r;
295 
296     if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
297             fprintf(stderr, "Failed to get GPT device block size: %s\n",
298                             strerror(errno));
299             r = -1;
300             goto EXIT;
301     }
302     gpt_header = (uint8_t*)malloc(blk_size);
303     if (!gpt_header) {
304             fprintf(stderr, "Failed to allocate memory to hold GPT block\n");
305             r = -1;
306             goto EXIT;
307     }
308     gpt2_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
309     if (gpt2_header_offset < 0) {
310         fprintf(stderr, "Getting secondary GPT header offset failed: %s\n",
311                 strerror(errno));
312         r = -1;
313         goto EXIT;
314     }
315 
316     /* Read primary GPT header from block dev */
317     r = blk_rw(fd, 0, blk_size, gpt_header, blk_size);
318 
319     if (r) {
320             fprintf(stderr, "Failed to read primary GPT header from blk dev\n");
321             goto EXIT;
322     }
323     pentries_start_offset =
324         GET_8_BYTES(gpt_header + PENTRIES_OFFSET) * blk_size;
325     pentry_size = GET_4_BYTES(gpt_header + PENTRY_SIZE_OFFSET);
326     pentries_array_size =
327         GET_4_BYTES(gpt_header + PARTITION_COUNT_OFFSET) * pentry_size;
328 
329     pentries = (uint8_t *) calloc(1, pentries_array_size);
330     if (pentries == NULL) {
331         fprintf(stderr,
332                     "Failed to alloc memory for GPT partition entries array\n");
333         r = -1;
334         goto EXIT;
335     }
336     /* Read primary GPT partititon entries array from block dev */
337     r = blk_rw(fd, 0, pentries_start_offset, pentries, pentries_array_size);
338     if (r)
339         goto EXIT;
340 
341     crc = crc32(0, pentries, pentries_array_size);
342     if (GET_4_BYTES(gpt_header + PARTITION_CRC_OFFSET) != crc) {
343         fprintf(stderr, "Primary GPT partition entries array CRC invalid\n");
344         r = -1;
345         goto EXIT;
346     }
347 
348     /* Read secondary GPT header from block dev */
349     r = blk_rw(fd, 0, gpt2_header_offset, gpt_header, blk_size);
350     if (r)
351         goto EXIT;
352 
353     gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
354     pentries_start_offset =
355         GET_8_BYTES(gpt_header + PENTRIES_OFFSET) * blk_size;
356 
357     if (boot == BACKUP_BOOT) {
358         r = gpt_boot_chain_swap(pentries, pentries + pentries_array_size,
359                                 pentry_size);
360         if (r)
361             goto EXIT;
362     }
363 
364     crc = crc32(0, pentries, pentries_array_size);
365     PUT_4_BYTES(gpt_header + PARTITION_CRC_OFFSET, crc);
366 
367     /* header CRC is calculated with this field cleared */
368     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
369     crc = crc32(0, gpt_header, gpt_header_size);
370     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, crc);
371 
372     /* Write the modified GPT header back to block dev */
373     r = blk_rw(fd, 1, gpt2_header_offset, gpt_header, blk_size);
374     if (!r)
375         /* Write the modified GPT partititon entries array back to block dev */
376         r = blk_rw(fd, 1, pentries_start_offset, pentries,
377                     pentries_array_size);
378 
379 EXIT:
380     if(gpt_header)
381             free(gpt_header);
382     if (pentries)
383             free(pentries);
384     return r;
385 }
386 
387 /**
388  *  ==========================================================================
389  *
390  *  \brief  Checks GPT state (header signature and CRC)
391  *
392  *  \param [in] fd      block dev file descriptor
393  *  \param [in] gpt     GPT header to be checked
394  *  \param [out] state  GPT header state
395  *
396  *  \return  0 on success
397  *
398  *  ==========================================================================
399  */
gpt_get_state(int fd,enum gpt_instance gpt,enum gpt_state * state)400 static int gpt_get_state(int fd, enum gpt_instance gpt, enum gpt_state *state)
401 {
402     int64_t gpt_header_offset;
403     uint32_t gpt_header_size;
404     uint8_t  *gpt_header = NULL;
405     uint32_t crc;
406     uint32_t blk_size = 0;
407 
408     *state = GPT_OK;
409 
410     if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
411             fprintf(stderr, "Failed to get GPT device block size: %s\n",
412                             strerror(errno));
413             goto error;
414     }
415     gpt_header = (uint8_t*)malloc(blk_size);
416     if (!gpt_header) {
417             fprintf(stderr, "gpt_get_state:Failed to alloc memory for header\n");
418             goto error;
419     }
420     if (gpt == PRIMARY_GPT)
421         gpt_header_offset = blk_size;
422     else {
423         gpt_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
424         if (gpt_header_offset < 0) {
425             fprintf(stderr, "gpt_get_state:Seek to end of GPT part fail\n");
426             goto error;
427         }
428     }
429 
430     if (blk_rw(fd, 0, gpt_header_offset, gpt_header, blk_size)) {
431         fprintf(stderr, "gpt_get_state: blk_rw failed\n");
432         goto error;
433     }
434     if (memcmp(gpt_header, GPT_SIGNATURE, sizeof(GPT_SIGNATURE)))
435         *state = GPT_BAD_SIGNATURE;
436     gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
437 
438     crc = GET_4_BYTES(gpt_header + HEADER_CRC_OFFSET);
439     /* header CRC is calculated with this field cleared */
440     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
441     if (crc32(0, gpt_header, gpt_header_size) != crc)
442         *state = GPT_BAD_CRC;
443     free(gpt_header);
444     return 0;
445 error:
446     if (gpt_header)
447             free(gpt_header);
448     return -1;
449 }
450 
451 
452 
453 /**
454  *  ==========================================================================
455  *
456  *  \brief  Sets GPT header state (used to corrupt and fix GPT signature)
457  *
458  *  \param [in] fd     block dev file descriptor
459  *  \param [in] gpt    GPT header to be checked
460  *  \param [in] state  GPT header state to set (GPT_OK or GPT_BAD_SIGNATURE)
461  *
462  *  \return  0 on success
463  *
464  *  ==========================================================================
465  */
gpt_set_state(int fd,enum gpt_instance gpt,enum gpt_state state)466 static int gpt_set_state(int fd, enum gpt_instance gpt, enum gpt_state state)
467 {
468     int64_t gpt_header_offset;
469     uint32_t gpt_header_size;
470     uint8_t  *gpt_header = NULL;
471     uint32_t crc;
472     uint32_t blk_size = 0;
473 
474     if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
475             fprintf(stderr, "Failed to get GPT device block size: %s\n",
476                             strerror(errno));
477             goto error;
478     }
479     gpt_header = (uint8_t*)malloc(blk_size);
480     if (!gpt_header) {
481             fprintf(stderr, "Failed to alloc memory for gpt header\n");
482             goto error;
483     }
484     if (gpt == PRIMARY_GPT)
485         gpt_header_offset = blk_size;
486     else {
487         gpt_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
488         if (gpt_header_offset < 0) {
489             fprintf(stderr, "Failed to seek to end of GPT device\n");
490             goto error;
491         }
492     }
493     if (blk_rw(fd, 0, gpt_header_offset, gpt_header, blk_size)) {
494         fprintf(stderr, "Failed to r/w gpt header\n");
495         goto error;
496     }
497     if (state == GPT_OK)
498         memcpy(gpt_header, GPT_SIGNATURE, sizeof(GPT_SIGNATURE));
499     else if (state == GPT_BAD_SIGNATURE)
500         *gpt_header = 0;
501     else {
502         fprintf(stderr, "gpt_set_state: Invalid state\n");
503         goto error;
504     }
505 
506     gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
507 
508     /* header CRC is calculated with this field cleared */
509     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
510     crc = crc32(0, gpt_header, gpt_header_size);
511     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, crc);
512 
513     if (blk_rw(fd, 1, gpt_header_offset, gpt_header, blk_size)) {
514         fprintf(stderr, "gpt_set_state: blk write failed\n");
515         goto error;
516     }
517     return 0;
518 error:
519     if(gpt_header)
520            free(gpt_header);
521     return -1;
522 }
523 
get_scsi_node_from_bootdevice(const char * bootdev_path,char * sg_node_path,size_t buf_size)524 int get_scsi_node_from_bootdevice(const char *bootdev_path,
525                 char *sg_node_path,
526                 size_t buf_size)
527 {
528         char sg_dir_path[PATH_MAX] = {0};
529         char real_path[PATH_MAX] = {0};
530         DIR *scsi_dir = NULL;
531         struct dirent *de;
532         int node_found = 0;
533         if (!bootdev_path || !sg_node_path) {
534                 fprintf(stderr, "%s : invalid argument\n",
535                                  __func__);
536                 goto error;
537         }
538         if (readlink(bootdev_path, real_path, sizeof(real_path) - 1) < 0) {
539                         fprintf(stderr, "failed to resolve link for %s(%s)\n",
540                                         bootdev_path,
541                                         strerror(errno));
542                         goto error;
543         }
544         if(strlen(real_path) < PATH_TRUNCATE_LOC + 1){
545             fprintf(stderr, "Unrecognized path :%s:\n",
546                            real_path);
547             goto error;
548         }
549         //For the safe side in case there are additional partitions on
550         //the XBL lun we truncate the name.
551         real_path[PATH_TRUNCATE_LOC] = '\0';
552         if(strlen(real_path) < LUN_NAME_START_LOC + 1){
553             fprintf(stderr, "Unrecognized truncated path :%s:\n",
554                            real_path);
555             goto error;
556         }
557         //This will give us /dev/block/sdb/device/scsi_generic
558         //which contains a file sgY whose name gives us the path
559         //to /dev/sgY which we return
560         snprintf(sg_dir_path, sizeof(sg_dir_path) - 1,
561                         "/sys/block/%s/device/scsi_generic",
562                         &real_path[LUN_NAME_START_LOC]);
563         scsi_dir = opendir(sg_dir_path);
564         if (!scsi_dir) {
565                 fprintf(stderr, "%s : Failed to open %s(%s)\n",
566                                 __func__,
567                                 sg_dir_path,
568                                 strerror(errno));
569                 goto error;
570         }
571         while((de = readdir(scsi_dir))) {
572                 if (de->d_name[0] == '.')
573                         continue;
574                 else if (!strncmp(de->d_name, "sg", 2)) {
575                           snprintf(sg_node_path,
576                                         buf_size -1,
577                                         "/dev/%s",
578                                         de->d_name);
579                           fprintf(stderr, "%s:scsi generic node is :%s:\n",
580                                           __func__,
581                                           sg_node_path);
582                           node_found = 1;
583                           break;
584                 }
585         }
586         if(!node_found) {
587                 fprintf(stderr,"%s: Unable to locate scsi generic node\n",
588                                __func__);
589                 goto error;
590         }
591         closedir(scsi_dir);
592         return 0;
593 error:
594         if (scsi_dir)
595                 closedir(scsi_dir);
596         return -1;
597 }
598 
set_boot_lun(char * sg_dev,uint8_t boot_lun_id)599 int set_boot_lun(char *sg_dev, uint8_t boot_lun_id)
600 {
601         int fd = -1;
602         int rc;
603         struct ufs_ioctl_query_data *data = NULL;
604         size_t ioctl_data_size = sizeof(struct ufs_ioctl_query_data) + UFS_ATTR_DATA_SIZE;
605 
606         data = (struct ufs_ioctl_query_data*)malloc(ioctl_data_size);
607         if (!data) {
608                 fprintf(stderr, "%s: Failed to alloc query data struct\n",
609                                 __func__);
610                 goto error;
611         }
612         memset(data, 0, ioctl_data_size);
613         data->opcode = UPIU_QUERY_OPCODE_WRITE_ATTR;
614         data->idn = QUERY_ATTR_IDN_BOOT_LU_EN;
615         data->buf_size = UFS_ATTR_DATA_SIZE;
616         data->buffer[0] = boot_lun_id;
617         fd = open(sg_dev, O_RDWR);
618         if (fd < 0) {
619                 fprintf(stderr, "%s: Failed to open %s(%s)\n",
620                                 __func__,
621                                 sg_dev,
622                                 strerror(errno));
623                 goto error;
624         }
625         rc = ioctl(fd, UFS_IOCTL_QUERY, data);
626         if (rc) {
627                 fprintf(stderr, "%s: UFS query ioctl failed(%s)\n",
628                                 __func__,
629                                 strerror(errno));
630                 goto error;
631         }
632         close(fd);
633         free(data);
634         return 0;
635 error:
636         if (fd >= 0)
637                 close(fd);
638         if (data)
639                 free(data);
640         return -1;
641 }
642 
643 //Swtich betwieen using either the primary or the backup
644 //boot LUN for boot. This is required since UFS boot partitions
645 //cannot have a backup GPT which is what we use for failsafe
646 //updates of the other 'critical' partitions. This function will
647 //not be invoked for emmc targets and on UFS targets is only required
648 //to be invoked for XBL.
649 //
650 //The algorithm to do this is as follows:
651 //- Find the real block device(eg: /dev/block/sdb) that corresponds
652 //  to the /dev/block/bootdevice/by-name/xbl(bak) symlink
653 //
654 //- Once we have the block device 'node' name(sdb in the above example)
655 //  use this node to to locate the scsi generic device that represents
656 //  it by checking the file /sys/block/sdb/device/scsi_generic/sgY
657 //
658 //- Once we locate sgY we call the query ioctl on /dev/sgy to switch
659 //the boot lun to either LUNA or LUNB
gpt_utils_set_xbl_boot_partition(enum boot_chain chain)660 int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
661 {
662         struct stat st;
663         ///sys/block/sdX/device/scsi_generic/
664         char sg_dev_node[PATH_MAX] = {0};
665         uint8_t boot_lun_id = 0;
666         const char *boot_dev = NULL;
667 
668         if (chain == BACKUP_BOOT) {
669                 boot_lun_id = BOOT_LUN_B_ID;
670                 if (!stat(XBL_BACKUP, &st))
671                         boot_dev = XBL_BACKUP;
672                 else if (!stat(XBL_AB_SECONDARY, &st))
673                         boot_dev = XBL_AB_SECONDARY;
674                 else {
675                         fprintf(stderr, "%s: Failed to locate secondary xbl\n",
676                                         __func__);
677                         goto error;
678                 }
679         } else if (chain == NORMAL_BOOT) {
680                 boot_lun_id = BOOT_LUN_A_ID;
681                 if (!stat(XBL_PRIMARY, &st))
682                         boot_dev = XBL_PRIMARY;
683                 else if (!stat(XBL_AB_PRIMARY, &st))
684                         boot_dev = XBL_AB_PRIMARY;
685                 else {
686                         fprintf(stderr, "%s: Failed to locate primary xbl\n",
687                                         __func__);
688                         goto error;
689                 }
690         } else {
691                 fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
692                 goto error;
693         }
694         //We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
695         //the same time. If not the current configuration is invalid.
696         if((stat(XBL_PRIMARY, &st) ||
697                                 stat(XBL_BACKUP, &st)) &&
698                         (stat(XBL_AB_PRIMARY, &st) ||
699                          stat(XBL_AB_SECONDARY, &st))) {
700                 fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n",
701                                 __func__,
702                                 strerror(errno));
703                 goto error;
704         }
705         fprintf(stderr, "%s: setting %s lun as boot lun\n",
706                         __func__,
707                         boot_dev);
708         if (get_scsi_node_from_bootdevice(boot_dev,
709                                 sg_dev_node,
710                                 sizeof(sg_dev_node))) {
711                 fprintf(stderr, "%s: Failed to get scsi node path for xblbak\n",
712                                 __func__);
713                 goto error;
714         }
715         if (set_boot_lun(sg_dev_node, boot_lun_id)) {
716                 fprintf(stderr, "%s: Failed to set xblbak as boot partition\n",
717                                 __func__);
718                 goto error;
719         }
720         return 0;
721 error:
722         return -1;
723 }
724 
gpt_utils_is_ufs_device()725 int gpt_utils_is_ufs_device()
726 {
727     char bootdevice[PROPERTY_VALUE_MAX] = {0};
728     property_get("ro.boot.bootdevice", bootdevice, "N/A");
729     if (strlen(bootdevice) < strlen(".ufshc") + 1)
730         return 0;
731     return (!strncmp(&bootdevice[strlen(bootdevice) - strlen(".ufshc")],
732                             ".ufshc",
733                             sizeof(".ufshc")));
734 }
735 //dev_path is the path to the block device that contains the GPT image that
736 //needs to be updated. This would be the device which holds one or more critical
737 //boot partitions and their backups. In the case of EMMC this function would
738 //be invoked only once on /dev/block/mmcblk1 since it holds the GPT image
739 //containing all the partitions For UFS devices it could potentially be
740 //invoked multiple times, once for each LUN containing critical image(s) and
741 //their backups
prepare_partitions(enum boot_update_stage stage,const char * dev_path)742 int prepare_partitions(enum boot_update_stage stage, const char *dev_path)
743 {
744     int r = 0;
745     int fd = -1;
746     int is_ufs = gpt_utils_is_ufs_device();
747     enum gpt_state gpt_prim, gpt_second;
748     enum boot_update_stage internal_stage;
749     struct stat xbl_partition_stat;
750     struct stat ufs_dir_stat;
751 
752     if (!dev_path) {
753         fprintf(stderr, "%s: Invalid dev_path\n",
754                         __func__);
755         r = -1;
756         goto EXIT;
757     }
758     fd = open(dev_path, O_RDWR);
759     if (fd < 0) {
760         fprintf(stderr, "%s: Opening '%s' failed: %s\n",
761                         __func__,
762                        BLK_DEV_FILE,
763                        strerror(errno));
764         r = -1;
765         goto EXIT;
766     }
767     r = gpt_get_state(fd, PRIMARY_GPT, &gpt_prim) ||
768         gpt_get_state(fd, SECONDARY_GPT, &gpt_second);
769     if (r) {
770         fprintf(stderr, "%s: Getting GPT headers state failed\n",
771                         __func__);
772         goto EXIT;
773     }
774 
775     /* These 2 combinations are unexpected and unacceptable */
776     if (gpt_prim == GPT_BAD_CRC || gpt_second == GPT_BAD_CRC) {
777         fprintf(stderr, "%s: GPT headers CRC corruption detected, aborting\n",
778                         __func__);
779         r = -1;
780         goto EXIT;
781     }
782     if (gpt_prim == GPT_BAD_SIGNATURE && gpt_second == GPT_BAD_SIGNATURE) {
783         fprintf(stderr, "%s: Both GPT headers corrupted, aborting\n",
784                         __func__);
785         r = -1;
786         goto EXIT;
787     }
788 
789     /* Check internal update stage according GPT headers' state */
790     if (gpt_prim == GPT_OK && gpt_second == GPT_OK)
791         internal_stage = UPDATE_MAIN;
792     else if (gpt_prim == GPT_BAD_SIGNATURE)
793         internal_stage = UPDATE_BACKUP;
794     else if (gpt_second == GPT_BAD_SIGNATURE)
795         internal_stage = UPDATE_FINALIZE;
796     else {
797         fprintf(stderr, "%s: Abnormal GPTs state: primary (%d), secondary (%d), "
798                 "aborting\n", __func__, gpt_prim, gpt_second);
799         r = -1;
800         goto EXIT;
801     }
802 
803     /* Stage already set - ready for update, exitting */
804     if ((int) stage == (int) internal_stage - 1)
805         goto EXIT;
806     /* Unexpected stage given */
807     if (stage != internal_stage) {
808         r = -1;
809         goto EXIT;
810     }
811 
812     switch (stage) {
813     case UPDATE_MAIN:
814             if (is_ufs) {
815                 if(stat(XBL_PRIMARY, &xbl_partition_stat)||
816                                 stat(XBL_BACKUP, &xbl_partition_stat)){
817                         //Non fatal error. Just means this target does not
818                         //use XBL but relies on sbl whose update is handled
819                         //by the normal methods.
820                         fprintf(stderr, "%s: xbl part not found(%s).Assuming sbl in use\n",
821                                         __func__,
822                                         strerror(errno));
823                 } else {
824                         //Switch the boot lun so that backup boot LUN is used
825                         r = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
826                         if(r){
827                                 fprintf(stderr, "%s: Failed to set xbl backup partition as boot\n",
828                                                 __func__);
829                                 goto EXIT;
830                         }
831                 }
832         }
833         //Fix up the backup GPT table so that it actually points to
834         //the backup copy of the boot critical images
835         fprintf(stderr, "%s: Preparing for primary partition update\n",
836                         __func__);
837         r = gpt2_set_boot_chain(fd, BACKUP_BOOT);
838         if (r) {
839             if (r < 0)
840                 fprintf(stderr,
841                                 "%s: Setting secondary GPT to backup boot failed\n",
842                                 __func__);
843             /* No backup partitions - do not corrupt GPT, do not flag error */
844             else
845                 r = 0;
846             goto EXIT;
847         }
848         //corrupt the primary GPT so that the backup(which now points to
849         //the backup boot partitions is used)
850         r = gpt_set_state(fd, PRIMARY_GPT, GPT_BAD_SIGNATURE);
851         if (r) {
852             fprintf(stderr, "%s: Corrupting primary GPT header failed\n",
853                             __func__);
854             goto EXIT;
855         }
856         break;
857     case UPDATE_BACKUP:
858         if (is_ufs) {
859                 if(stat(XBL_PRIMARY, &xbl_partition_stat)||
860                                 stat(XBL_BACKUP, &xbl_partition_stat)){
861                         //Non fatal error. Just means this target does not
862                         //use XBL but relies on sbl whose update is handled
863                         //by the normal methods.
864                         fprintf(stderr, "%s: xbl part not found(%s).Assuming sbl in use\n",
865                                         __func__,
866                                         strerror(errno));
867                 } else {
868                         //Switch the boot lun so that backup boot LUN is used
869                         r = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
870                         if(r) {
871                                 fprintf(stderr, "%s: Failed to set xbl backup partition as boot\n",
872                                                 __func__);
873                                 goto EXIT;
874                         }
875                 }
876         }
877         //Fix the primary GPT header so that is used
878         fprintf(stderr, "%s: Preparing for backup partition update\n",
879                         __func__);
880         r = gpt_set_state(fd, PRIMARY_GPT, GPT_OK);
881         if (r) {
882             fprintf(stderr, "%s: Fixing primary GPT header failed\n",
883                              __func__);
884             goto EXIT;
885         }
886         //Corrupt the scondary GPT header
887         r = gpt_set_state(fd, SECONDARY_GPT, GPT_BAD_SIGNATURE);
888         if (r) {
889             fprintf(stderr, "%s: Corrupting secondary GPT header failed\n",
890                             __func__);
891             goto EXIT;
892         }
893         break;
894     case UPDATE_FINALIZE:
895         //Undo the changes we had made in the UPDATE_MAIN stage so that the
896         //primary/backup GPT headers once again point to the same set of
897         //partitions
898         fprintf(stderr, "%s: Finalizing partitions\n",
899                         __func__);
900         r = gpt2_set_boot_chain(fd, NORMAL_BOOT);
901         if (r < 0) {
902             fprintf(stderr, "%s: Setting secondary GPT to normal boot failed\n",
903                             __func__);
904             goto EXIT;
905         }
906 
907         r = gpt_set_state(fd, SECONDARY_GPT, GPT_OK);
908         if (r) {
909             fprintf(stderr, "%s: Fixing secondary GPT header failed\n",
910                             __func__);
911             goto EXIT;
912         }
913         break;
914     default:;
915     }
916 
917 EXIT:
918     if (fd >= 0) {
919        fsync(fd);
920        close(fd);
921     }
922     return r;
923 }
924 
add_lun_to_update_list(char * lun_path,struct update_data * dat)925 int add_lun_to_update_list(char *lun_path, struct update_data *dat)
926 {
927         uint32_t i = 0;
928         struct stat st;
929         if (!lun_path || !dat){
930                 fprintf(stderr, "%s: Invalid data",
931                                 __func__);
932                 return -1;
933         }
934         if (stat(lun_path, &st)) {
935                 fprintf(stderr, "%s: Unable to access %s. Skipping adding to list",
936                                 __func__,
937                                 lun_path);
938                 return -1;
939         }
940         if (dat->num_valid_entries == 0) {
941                 fprintf(stderr, "%s: Copying %s into lun_list[%d]\n",
942                                 __func__,
943                                 lun_path,
944                                 i);
945                 strlcpy(dat->lun_list[0], lun_path,
946                                 PATH_MAX * sizeof(char));
947                 dat->num_valid_entries = 1;
948         } else {
949                 for (i = 0; (i < dat->num_valid_entries) &&
950                                 (dat->num_valid_entries < MAX_LUNS - 1); i++) {
951                         //Check if the current LUN is not already part
952                         //of the lun list
953                         if (!strncmp(lun_path,dat->lun_list[i],
954                                                 strlen(dat->lun_list[i]))) {
955                                 //LUN already in list..Return
956                                 return 0;
957                         }
958                 }
959                 fprintf(stderr, "%s: Copying %s into lun_list[%d]\n",
960                                 __func__,
961                                 lun_path,
962                                 dat->num_valid_entries);
963                 //Add LUN path lun list
964                 strlcpy(dat->lun_list[dat->num_valid_entries], lun_path,
965                                 PATH_MAX * sizeof(char));
966                 dat->num_valid_entries++;
967         }
968         return 0;
969 }
970 
prepare_boot_update(enum boot_update_stage stage)971 int prepare_boot_update(enum boot_update_stage stage)
972 {
973         int r, fd;
974         int is_ufs = gpt_utils_is_ufs_device();
975         struct stat ufs_dir_stat;
976         struct update_data data;
977         int rcode = 0;
978         uint32_t i = 0;
979         int is_error = 0;
980         const char ptn_swap_list[][MAX_GPT_NAME_SIZE] = { PTN_SWAP_LIST };
981         //Holds /dev/block/bootdevice/by-name/*bak entry
982         char buf[PATH_MAX] = {0};
983         //Holds the resolved path of the symlink stored in buf
984         char real_path[PATH_MAX] = {0};
985 
986         if (!is_ufs) {
987                 //emmc device. Just pass in path to mmcblk0
988                 return prepare_partitions(stage, BLK_DEV_FILE);
989         } else {
990                 //Now we need to find the list of LUNs over
991                 //which the boot critical images are spread
992                 //and set them up for failsafe updates.To do
993                 //this we find out where the symlinks for the
994                 //each of the paths under
995                 ///dev/block/bootdevice/by-name/PTN_SWAP_LIST
996                 //actually point to.
997                 fprintf(stderr, "%s: Running on a UFS device\n",
998                                 __func__);
999                 memset(&data, '\0', sizeof(struct update_data));
1000                 for (i=0; i < ARRAY_SIZE(ptn_swap_list); i++) {
1001                         //XBL on UFS does not follow the convention
1002                         //of being loaded based on well known GUID'S.
1003                         //We take care of switching the UFS boot LUN
1004                         //explicitly later on.
1005                         if (!strncmp(ptn_swap_list[i],
1006                                                 PTN_XBL,
1007                                                 strlen(PTN_XBL)))
1008                                 continue;
1009                         snprintf(buf, sizeof(buf),
1010                                         "%s/%sbak",
1011                                         BOOT_DEV_DIR,
1012                                         ptn_swap_list[i]);
1013                         if (stat(buf, &ufs_dir_stat)) {
1014                                 continue;
1015                         }
1016                         if (readlink(buf, real_path, sizeof(real_path) - 1) < 0)
1017                         {
1018                                 fprintf(stderr, "%s: readlink error. Skipping %s",
1019                                                 __func__,
1020                                                 strerror(errno));
1021                         } else {
1022                               if(strlen(real_path) < PATH_TRUNCATE_LOC + 1){
1023                                     fprintf(stderr, "Unknown path.Skipping :%s:\n",
1024                                                 real_path);
1025                                 } else {
1026                                     real_path[PATH_TRUNCATE_LOC] = '\0';
1027                                     add_lun_to_update_list(real_path, &data);
1028                                 }
1029                         }
1030                         memset(buf, '\0', sizeof(buf));
1031                         memset(real_path, '\0', sizeof(real_path));
1032                 }
1033                 for (i=0; i < data.num_valid_entries; i++) {
1034                         fprintf(stderr, "%s: Preparing %s for update stage %d\n",
1035                                         __func__,
1036                                         data.lun_list[i],
1037                                         stage);
1038                         rcode = prepare_partitions(stage, data.lun_list[i]);
1039                         if (rcode != 0)
1040                         {
1041                                 fprintf(stderr, "%s: Failed to prepare %s.Continuing..\n",
1042                                                 __func__,
1043                                                 data.lun_list[i]);
1044                                 is_error = 1;
1045                         }
1046                 }
1047         }
1048         if (is_error)
1049                 return -1;
1050         return 0;
1051 }
1052 
1053 //Given a parttion name(eg: rpm) get the path to the block device that
1054 //represents the GPT disk the partition resides on. In the case of emmc it
1055 //would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
1056 //through the /dev/block/bootdevice/by-name/ tree for partname, and resolve
1057 //the path to the LUN from there.
get_dev_path_from_partition_name(const char * partname,char * buf,size_t buflen)1058 static int get_dev_path_from_partition_name(const char *partname,
1059                 char *buf,
1060                 size_t buflen)
1061 {
1062         struct stat st;
1063         char path[PATH_MAX] = {0};
1064         if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
1065                 ALOGE("%s: Invalid argument", __func__);
1066                 goto error;
1067         }
1068         if (gpt_utils_is_ufs_device()) {
1069                 //Need to find the lun that holds partition partname
1070                 snprintf(path, sizeof(path),
1071                                 "%s/%s",
1072                                 BOOT_DEV_DIR,
1073                                 partname);
1074                 if (stat(path, &st)) {
1075                         goto error;
1076                 }
1077                 if (readlink(path, buf, buflen) < 0)
1078                 {
1079                         goto error;
1080                 } else {
1081                         buf[PATH_TRUNCATE_LOC] = '\0';
1082                 }
1083         } else {
1084                 snprintf(buf, buflen, "/dev/mmcblk0");
1085         }
1086         return 0;
1087 
1088 error:
1089         return -1;
1090 }
1091 
gpt_utils_get_partition_map(vector<string> & ptn_list,map<string,vector<string>> & partition_map)1092 int gpt_utils_get_partition_map(vector<string>& ptn_list,
1093                 map<string, vector<string>>& partition_map) {
1094         char devpath[PATH_MAX] = {'\0'};
1095         map<string, vector<string>>::iterator it;
1096         if (ptn_list.size() < 1) {
1097                 fprintf(stderr, "%s: Invalid ptn list\n", __func__);
1098                 return -1;
1099         }
1100         //Go through the passed in list
1101         for (uint32_t i = 0; i < ptn_list.size(); i++)
1102         {
1103                 //Key in the map is the path to the device that holds the
1104                 //partition
1105                 if (get_dev_path_from_partition_name(ptn_list[i].c_str(),
1106                                 devpath,
1107                                 sizeof(devpath))) {
1108                         //Not necessarily an error. The partition may just
1109                         //not be present.
1110                         continue;
1111                 }
1112                 string path = devpath;
1113                 it = partition_map.find(path);
1114                 if (it != partition_map.end()) {
1115                         it->second.push_back(ptn_list[i]);
1116                 } else {
1117                         vector<string> str_vec;
1118                         str_vec.push_back( ptn_list[i]);
1119                         partition_map.insert(pair<string, vector<string>>
1120                                         (path, str_vec));
1121                 }
1122                 memset(devpath, '\0', sizeof(devpath));
1123         }
1124         return 0;
1125 }
1126 
1127 //Get the block size of the disk represented by decsriptor fd
gpt_get_block_size(int fd)1128 static uint32_t gpt_get_block_size(int fd)
1129 {
1130         uint32_t block_size = 0;
1131         if (fd < 0) {
1132                 ALOGE("%s: invalid descriptor",
1133                                 __func__);
1134                 goto error;
1135         }
1136         if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
1137                 ALOGE("%s: Failed to get GPT dev block size : %s",
1138                                 __func__,
1139                                 strerror(errno));
1140                 goto error;
1141         }
1142         return block_size;
1143 error:
1144         return 0;
1145 }
1146 
1147 //Write the GPT header present in the passed in buffer back to the
1148 //disk represented by fd
gpt_set_header(uint8_t * gpt_header,int fd,enum gpt_instance instance)1149 static int gpt_set_header(uint8_t *gpt_header, int fd,
1150                 enum gpt_instance instance)
1151 {
1152         uint32_t block_size = 0;
1153         off_t gpt_header_offset = 0;
1154         if (!gpt_header || fd < 0) {
1155                 ALOGE("%s: Invalid arguments",
1156                                 __func__);
1157                 goto error;
1158         }
1159         block_size = gpt_get_block_size(fd);
1160         ALOGI("%s: Block size is : %d", __func__, block_size);
1161         if (block_size == 0) {
1162                 ALOGE("%s: Failed to get block size", __func__);
1163                 goto error;
1164         }
1165         if (instance == PRIMARY_GPT)
1166                 gpt_header_offset = block_size;
1167         else
1168                 gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
1169         if (gpt_header_offset <= 0) {
1170                 ALOGE("%s: Failed to get gpt header offset",__func__);
1171                 goto error;
1172         }
1173         ALOGI("%s: Writing back header to offset %ld", __func__,
1174                 gpt_header_offset);
1175         if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
1176                 ALOGE("%s: Failed to write back GPT header", __func__);
1177                 goto error;
1178         }
1179         return 0;
1180 error:
1181         return -1;
1182 }
1183 
1184 //Read out the GPT header for the disk that contains the partition partname
gpt_get_header(const char * partname,enum gpt_instance instance)1185 static uint8_t* gpt_get_header(const char *partname, enum gpt_instance instance)
1186 {
1187         uint8_t* hdr = NULL;
1188         char devpath[PATH_MAX] = {0};
1189         int64_t hdr_offset = 0;
1190         uint32_t block_size = 0;
1191         int fd = -1;
1192         if (!partname) {
1193                 ALOGE("%s: Invalid partition name", __func__);
1194                 goto error;
1195         }
1196         if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath))
1197                         != 0) {
1198                 ALOGE("%s: Failed to resolve path for %s",
1199                                 __func__,
1200                                 partname);
1201                 goto error;
1202         }
1203         fd = open(devpath, O_RDWR);
1204         if (fd < 0) {
1205                 ALOGE("%s: Failed to open %s : %s",
1206                                 __func__,
1207                                 devpath,
1208                                 strerror(errno));
1209                 goto error;
1210         }
1211         block_size = gpt_get_block_size(fd);
1212         if (block_size == 0)
1213         {
1214                 ALOGE("%s: Failed to get gpt block size for %s",
1215                                 __func__,
1216                                 partname);
1217                 goto error;
1218         }
1219 
1220         hdr = (uint8_t*)malloc(block_size);
1221         if (!hdr) {
1222                 ALOGE("%s: Failed to allocate memory for gpt header",
1223                                 __func__);
1224         }
1225         if (instance == PRIMARY_GPT)
1226                 hdr_offset = block_size;
1227         else {
1228                 hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
1229         }
1230         if (hdr_offset < 0) {
1231                 ALOGE("%s: Failed to get gpt header offset",
1232                                 __func__);
1233                 goto error;
1234         }
1235         if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
1236                 ALOGE("%s: Failed to read GPT header from device",
1237                                 __func__);
1238                 goto error;
1239         }
1240         close(fd);
1241         return hdr;
1242 error:
1243         if (fd >= 0)
1244                 close(fd);
1245         if (hdr)
1246                 free(hdr);
1247         return NULL;
1248 }
1249 
1250 //Returns the partition entry array based on the
1251 //passed in buffer which contains the gpt header.
1252 //The fd here is the descriptor for the 'disk' which
1253 //holds the partition
gpt_get_pentry_arr(uint8_t * hdr,int fd)1254 static uint8_t* gpt_get_pentry_arr(uint8_t *hdr, int fd)
1255 {
1256         uint64_t pentries_start = 0;
1257         uint32_t pentry_size = 0;
1258         uint32_t block_size = 0;
1259         uint32_t pentries_arr_size = 0;
1260         uint8_t *pentry_arr = NULL;
1261         int rc = 0;
1262         if (!hdr) {
1263                 ALOGE("%s: Invalid header", __func__);
1264                 goto error;
1265         }
1266         if (fd < 0) {
1267                 ALOGE("%s: Invalid fd", __func__);
1268                 goto error;
1269         }
1270         block_size = gpt_get_block_size(fd);
1271         if (!block_size) {
1272                 ALOGE("%s: Failed to get gpt block size for",
1273                                 __func__);
1274                 goto error;
1275         }
1276         pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
1277         pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
1278         pentries_arr_size =
1279                 GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
1280         pentry_arr = (uint8_t*)calloc(1, pentries_arr_size);
1281         if (!pentry_arr) {
1282                 ALOGE("%s: Failed to allocate memory for partition array",
1283                                 __func__);
1284                 goto error;
1285         }
1286         rc = blk_rw(fd, 0,
1287                         pentries_start,
1288                         pentry_arr,
1289                         pentries_arr_size);
1290         if (rc) {
1291                 ALOGE("%s: Failed to read partition entry array",
1292                                 __func__);
1293                 goto error;
1294         }
1295         return pentry_arr;
1296 error:
1297         if (pentry_arr)
1298                 free(pentry_arr);
1299         return NULL;
1300 }
1301 
gpt_set_pentry_arr(uint8_t * hdr,int fd,uint8_t * arr)1302 static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t* arr)
1303 {
1304         uint32_t block_size = 0;
1305         uint64_t pentries_start = 0;
1306         uint32_t pentry_size = 0;
1307         uint32_t pentries_arr_size = 0;
1308         int rc = 0;
1309         if (!hdr || fd < 0 || !arr) {
1310                 ALOGE("%s: Invalid argument", __func__);
1311                 goto error;
1312         }
1313         block_size = gpt_get_block_size(fd);
1314         if (!block_size) {
1315                 ALOGE("%s: Failed to get gpt block size for",
1316                                 __func__);
1317                 goto error;
1318         }
1319         ALOGI("%s : Block size is %d", __func__, block_size);
1320         pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
1321         pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
1322         pentries_arr_size =
1323                 GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
1324         ALOGI("%s: Writing partition entry array of size %d to offset %" PRIu64,
1325                         __func__,
1326                         pentries_arr_size,
1327                         pentries_start);
1328         rc = blk_rw(fd, 1,
1329                         pentries_start,
1330                         arr,
1331                         pentries_arr_size);
1332         if (rc) {
1333                 ALOGE("%s: Failed to read partition entry array",
1334                                 __func__);
1335                 goto error;
1336         }
1337         return 0;
1338 error:
1339         return -1;
1340 }
1341 
1342 
1343 
1344 //Allocate a handle used by calls to the "gpt_disk" api's
gpt_disk_alloc()1345 struct gpt_disk * gpt_disk_alloc()
1346 {
1347         struct gpt_disk *disk;
1348         disk = (struct gpt_disk *)malloc(sizeof(struct gpt_disk));
1349         if (!disk) {
1350                 ALOGE("%s: Failed to allocate memory", __func__);
1351                 goto end;
1352         }
1353         memset(disk, 0, sizeof(struct gpt_disk));
1354 end:
1355         return disk;
1356 }
1357 
1358 //Free previously allocated/initialized handle
gpt_disk_free(struct gpt_disk * disk)1359 void gpt_disk_free(struct gpt_disk *disk)
1360 {
1361         if (!disk)
1362                 return;
1363         if (disk->hdr)
1364                 free(disk->hdr);
1365         if (disk->hdr_bak)
1366                 free(disk->hdr_bak);
1367         if (disk->pentry_arr)
1368                 free(disk->pentry_arr);
1369         if (disk->pentry_arr_bak)
1370                 free(disk->pentry_arr_bak);
1371         free(disk);
1372         return;
1373 }
1374 
1375 //fills up the passed in gpt_disk struct with information about the
1376 //disk represented by path dev. Returns 0 on success and -1 on error.
gpt_disk_get_disk_info(const char * dev,struct gpt_disk * dsk)1377 int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *dsk)
1378 {
1379         struct gpt_disk *disk = NULL;
1380         int fd = -1;
1381         uint32_t gpt_header_size = 0;
1382 
1383         if (!dsk || !dev) {
1384                 ALOGE("%s: Invalid arguments", __func__);
1385                 goto error;
1386         }
1387         disk = dsk;
1388         disk->hdr = gpt_get_header(dev, PRIMARY_GPT);
1389         if (!disk->hdr) {
1390                 ALOGE("%s: Failed to get primary header", __func__);
1391                 goto error;
1392         }
1393         gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
1394         disk->hdr_crc = crc32(0, disk->hdr, gpt_header_size);
1395         disk->hdr_bak = gpt_get_header(dev, PRIMARY_GPT);
1396         if (!disk->hdr_bak) {
1397                 ALOGE("%s: Failed to get backup header", __func__);
1398                 goto error;
1399         }
1400         disk->hdr_bak_crc = crc32(0, disk->hdr_bak, gpt_header_size);
1401 
1402         //Descriptor for the block device. We will use this for further
1403         //modifications to the partition table
1404         if (get_dev_path_from_partition_name(dev,
1405                                 disk->devpath,
1406                                 sizeof(disk->devpath)) != 0) {
1407                 ALOGE("%s: Failed to resolve path for %s",
1408                                 __func__,
1409                                 dev);
1410                 goto error;
1411         }
1412         fd = open(disk->devpath, O_RDWR);
1413         if (fd < 0) {
1414                 ALOGE("%s: Failed to open %s: %s",
1415                                 __func__,
1416                                 disk->devpath,
1417                                 strerror(errno));
1418                 goto error;
1419         }
1420         disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
1421         if (!disk->pentry_arr) {
1422                 ALOGE("%s: Failed to obtain partition entry array",
1423                                 __func__);
1424                 goto error;
1425         }
1426         disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
1427         if (!disk->pentry_arr_bak) {
1428                 ALOGE("%s: Failed to obtain backup partition entry array",
1429                                 __func__);
1430                 goto error;
1431         }
1432         disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
1433         disk->pentry_arr_size =
1434                 GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) *
1435                 disk->pentry_size;
1436         disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
1437         disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak +
1438                         PARTITION_CRC_OFFSET);
1439         disk->block_size = gpt_get_block_size(fd);
1440         close(fd);
1441         disk->is_initialized = GPT_DISK_INIT_MAGIC;
1442         return 0;
1443 error:
1444         if (fd >= 0)
1445                 close(fd);
1446         return -1;
1447 }
1448 
1449 //Get pointer to partition entry from a allocated gpt_disk structure
gpt_disk_get_pentry(struct gpt_disk * disk,const char * partname,enum gpt_instance instance)1450 uint8_t* gpt_disk_get_pentry(struct gpt_disk *disk,
1451                 const char *partname,
1452                 enum gpt_instance instance)
1453 {
1454         uint8_t *ptn_arr = NULL;
1455         if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
1456                 ALOGE("%s: Invalid argument",__func__);
1457                 goto error;
1458         }
1459         ptn_arr = (instance == PRIMARY_GPT) ?
1460                 disk->pentry_arr : disk->pentry_arr_bak;
1461         return (gpt_pentry_seek(partname, ptn_arr,
1462                         ptn_arr + disk->pentry_arr_size ,
1463                         disk->pentry_size));
1464 error:
1465         return NULL;
1466 }
1467 
1468 //Update CRC values for the various components of the gpt_disk
1469 //structure. This function should be called after any of the fields
1470 //have been updated before the structure contents are written back to
1471 //disk.
gpt_disk_update_crc(struct gpt_disk * disk)1472 int gpt_disk_update_crc(struct gpt_disk *disk)
1473 {
1474         uint32_t gpt_header_size = 0;
1475         if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
1476                 ALOGE("%s: invalid argument", __func__);
1477                 goto error;
1478         }
1479         //Recalculate the CRC of the primary partiton array
1480         disk->pentry_arr_crc = crc32(0,
1481                         disk->pentry_arr,
1482                         disk->pentry_arr_size);
1483         //Recalculate the CRC of the backup partition array
1484         disk->pentry_arr_bak_crc = crc32(0,
1485                         disk->pentry_arr_bak,
1486                         disk->pentry_arr_size);
1487         //Update the partition CRC value in the primary GPT header
1488         PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
1489         //Update the partition CRC value in the backup GPT header
1490         PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET,
1491                         disk->pentry_arr_bak_crc);
1492         //Update the CRC value of the primary header
1493         gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
1494         //Header CRC is calculated with its own CRC field set to 0
1495         PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
1496         PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
1497         disk->hdr_crc = crc32(0, disk->hdr, gpt_header_size);
1498         disk->hdr_bak_crc = crc32(0, disk->hdr_bak, gpt_header_size);
1499         PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
1500         PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
1501         return 0;
1502 error:
1503         return -1;
1504 }
1505 
1506 //Write the contents of struct gpt_disk back to the actual disk
gpt_disk_commit(struct gpt_disk * disk)1507 int gpt_disk_commit(struct gpt_disk *disk)
1508 {
1509         int fd = -1;
1510         if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)){
1511                 ALOGE("%s: Invalid args", __func__);
1512                 goto error;
1513         }
1514         fd = open(disk->devpath, O_RDWR);
1515         if (fd < 0) {
1516                 ALOGE("%s: Failed to open %s: %s",
1517                                 __func__,
1518                                 disk->devpath,
1519                                 strerror(errno));
1520                 goto error;
1521         }
1522         ALOGI("%s: Writing back primary GPT header", __func__);
1523         //Write the primary header
1524         if(gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
1525                 ALOGE("%s: Failed to update primary GPT header",
1526                                 __func__);
1527                 goto error;
1528         }
1529         ALOGI("%s: Writing back primary partition array", __func__);
1530         //Write back the primary partition array
1531         if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
1532                 ALOGE("%s: Failed to write primary GPT partition arr",
1533                                 __func__);
1534                 goto error;
1535         }
1536         close(fd);
1537         return 0;
1538 error:
1539         if (fd >= 0)
1540                 close(fd);
1541         return -1;
1542 }
1543