1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *, bfd_boolean collect);
407 static bfd_boolean generic_link_add_symbols
408 (bfd *, struct bfd_link_info *, bfd_boolean);
409 static bfd_boolean generic_link_check_archive_element_no_collect
410 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411 bfd_boolean *);
412 static bfd_boolean generic_link_check_archive_element_collect
413 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414 bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element
416 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417 bfd_boolean *, bfd_boolean);
418 static bfd_boolean generic_link_add_symbol_list
419 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420 bfd_boolean);
421 static bfd_boolean generic_add_output_symbol
422 (bfd *, size_t *psymalloc, asymbol *);
423 static bfd_boolean default_data_link_order
424 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425 static bfd_boolean default_indirect_link_order
426 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427 bfd_boolean);
428
429 /* The link hash table structure is defined in bfdlink.h. It provides
430 a base hash table which the backend specific hash tables are built
431 upon. */
432
433 /* Routine to create an entry in the link hash table. */
434
435 struct bfd_hash_entry *
_bfd_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437 struct bfd_hash_table *table,
438 const char *string)
439 {
440 /* Allocate the structure if it has not already been allocated by a
441 subclass. */
442 if (entry == NULL)
443 {
444 entry = (struct bfd_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 memset ((char *) &h->root + sizeof (h->root), 0,
458 sizeof (*h) - sizeof (h->root));
459 }
460
461 return entry;
462 }
463
464 /* Initialize a link hash table. The BFD argument is the one
465 responsible for creating this table. */
466
467 bfd_boolean
_bfd_link_hash_table_init(struct bfd_link_hash_table * table,bfd * abfd ATTRIBUTE_UNUSED,struct bfd_hash_entry * (* newfunc)(struct bfd_hash_entry *,struct bfd_hash_table *,const char *),unsigned int entsize)468 _bfd_link_hash_table_init
469 (struct bfd_link_hash_table *table,
470 bfd *abfd ATTRIBUTE_UNUSED,
471 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 struct bfd_hash_table *,
473 const char *),
474 unsigned int entsize)
475 {
476 bfd_boolean ret;
477
478 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
479 table->undefs = NULL;
480 table->undefs_tail = NULL;
481 table->type = bfd_link_generic_hash_table;
482
483 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484 if (ret)
485 {
486 /* Arrange for destruction of this hash table on closing ABFD. */
487 table->hash_table_free = _bfd_generic_link_hash_table_free;
488 abfd->link.hash = table;
489 abfd->is_linker_output = TRUE;
490 }
491 return ret;
492 }
493
494 /* Look up a symbol in a link hash table. If follow is TRUE, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
bfd_link_hash_lookup(struct bfd_link_hash_table * table,const char * string,bfd_boolean create,bfd_boolean copy,bfd_boolean follow)499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 const char *string,
501 bfd_boolean create,
502 bfd_boolean copy,
503 bfd_boolean follow)
504 {
505 struct bfd_link_hash_entry *ret;
506
507 ret = ((struct bfd_link_hash_entry *)
508 bfd_hash_lookup (&table->table, string, create, copy));
509
510 if (follow && ret != NULL)
511 {
512 while (ret->type == bfd_link_hash_indirect
513 || ret->type == bfd_link_hash_warning)
514 ret = ret->u.i.link;
515 }
516
517 return ret;
518 }
519
520 /* Look up a symbol in the main linker hash table if the symbol might
521 be wrapped. This should only be used for references to an
522 undefined symbol, not for definitions of a symbol. */
523
524 struct bfd_link_hash_entry *
bfd_wrapped_link_hash_lookup(bfd * abfd,struct bfd_link_info * info,const char * string,bfd_boolean create,bfd_boolean copy,bfd_boolean follow)525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 struct bfd_link_info *info,
527 const char *string,
528 bfd_boolean create,
529 bfd_boolean copy,
530 bfd_boolean follow)
531 {
532 bfd_size_type amt;
533
534 if (info->wrap_hash != NULL)
535 {
536 const char *l;
537 char prefix = '\0';
538
539 l = string;
540 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 {
542 prefix = *l;
543 ++l;
544 }
545
546 #undef WRAP
547 #define WRAP "__wrap_"
548
549 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 {
551 char *n;
552 struct bfd_link_hash_entry *h;
553
554 /* This symbol is being wrapped. We want to replace all
555 references to SYM with references to __wrap_SYM. */
556
557 amt = strlen (l) + sizeof WRAP + 1;
558 n = (char *) bfd_malloc (amt);
559 if (n == NULL)
560 return NULL;
561
562 n[0] = prefix;
563 n[1] = '\0';
564 strcat (n, WRAP);
565 strcat (n, l);
566 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 free (n);
568 return h;
569 }
570
571 #undef REAL
572 #define REAL "__real_"
573
574 if (*l == '_'
575 && CONST_STRNEQ (l, REAL)
576 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577 FALSE, FALSE) != NULL)
578 {
579 char *n;
580 struct bfd_link_hash_entry *h;
581
582 /* This is a reference to __real_SYM, where SYM is being
583 wrapped. We want to replace all references to __real_SYM
584 with references to SYM. */
585
586 amt = strlen (l + sizeof REAL - 1) + 2;
587 n = (char *) bfd_malloc (amt);
588 if (n == NULL)
589 return NULL;
590
591 n[0] = prefix;
592 n[1] = '\0';
593 strcat (n, l + sizeof REAL - 1);
594 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595 free (n);
596 return h;
597 }
598
599 #undef REAL
600 }
601
602 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603 }
604
605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606 and the remainder is found in wrap_hash, return the real symbol. */
607
608 struct bfd_link_hash_entry *
unwrap_hash_lookup(struct bfd_link_info * info,bfd * input_bfd,struct bfd_link_hash_entry * h)609 unwrap_hash_lookup (struct bfd_link_info *info,
610 bfd *input_bfd,
611 struct bfd_link_hash_entry *h)
612 {
613 const char *l = h->root.string;
614
615 if (*l == bfd_get_symbol_leading_char (input_bfd)
616 || *l == info->wrap_char)
617 ++l;
618
619 if (CONST_STRNEQ (l, WRAP))
620 {
621 l += sizeof WRAP - 1;
622
623 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624 {
625 char save = 0;
626 if (l - (sizeof WRAP - 1) != h->root.string)
627 {
628 --l;
629 save = *l;
630 *(char *) l = *h->root.string;
631 }
632 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633 if (save)
634 *(char *) l = save;
635 }
636 }
637 return h;
638 }
639 #undef WRAP
640
641 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
642 in the treatment of warning symbols. When warning symbols are
643 created they replace the real symbol, so you don't get to see the
644 real symbol in a bfd_hash_travere. This traversal calls func with
645 the real symbol. */
646
647 void
bfd_link_hash_traverse(struct bfd_link_hash_table * htab,bfd_boolean (* func)(struct bfd_link_hash_entry *,void *),void * info)648 bfd_link_hash_traverse
649 (struct bfd_link_hash_table *htab,
650 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651 void *info)
652 {
653 unsigned int i;
654
655 htab->table.frozen = 1;
656 for (i = 0; i < htab->table.size; i++)
657 {
658 struct bfd_link_hash_entry *p;
659
660 p = (struct bfd_link_hash_entry *) htab->table.table[i];
661 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663 goto out;
664 }
665 out:
666 htab->table.frozen = 0;
667 }
668
669 /* Add a symbol to the linker hash table undefs list. */
670
671 void
bfd_link_add_undef(struct bfd_link_hash_table * table,struct bfd_link_hash_entry * h)672 bfd_link_add_undef (struct bfd_link_hash_table *table,
673 struct bfd_link_hash_entry *h)
674 {
675 BFD_ASSERT (h->u.undef.next == NULL);
676 if (table->undefs_tail != NULL)
677 table->undefs_tail->u.undef.next = h;
678 if (table->undefs == NULL)
679 table->undefs = h;
680 table->undefs_tail = h;
681 }
682
683 /* The undefs list was designed so that in normal use we don't need to
684 remove entries. However, if symbols on the list are changed from
685 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686 bfd_link_hash_new for some reason, then they must be removed from the
687 list. Failure to do so might result in the linker attempting to add
688 the symbol to the list again at a later stage. */
689
690 void
bfd_link_repair_undef_list(struct bfd_link_hash_table * table)691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692 {
693 struct bfd_link_hash_entry **pun;
694
695 pun = &table->undefs;
696 while (*pun != NULL)
697 {
698 struct bfd_link_hash_entry *h = *pun;
699
700 if (h->type == bfd_link_hash_new
701 || h->type == bfd_link_hash_undefweak)
702 {
703 *pun = h->u.undef.next;
704 h->u.undef.next = NULL;
705 if (h == table->undefs_tail)
706 {
707 if (pun == &table->undefs)
708 table->undefs_tail = NULL;
709 else
710 /* pun points at an u.undef.next field. Go back to
711 the start of the link_hash_entry. */
712 table->undefs_tail = (struct bfd_link_hash_entry *)
713 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714 break;
715 }
716 }
717 else
718 pun = &h->u.undef.next;
719 }
720 }
721
722 /* Routine to create an entry in a generic link hash table. */
723
724 struct bfd_hash_entry *
_bfd_generic_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)725 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726 struct bfd_hash_table *table,
727 const char *string)
728 {
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
731 if (entry == NULL)
732 {
733 entry = (struct bfd_hash_entry *)
734 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735 if (entry == NULL)
736 return entry;
737 }
738
739 /* Call the allocation method of the superclass. */
740 entry = _bfd_link_hash_newfunc (entry, table, string);
741 if (entry)
742 {
743 struct generic_link_hash_entry *ret;
744
745 /* Set local fields. */
746 ret = (struct generic_link_hash_entry *) entry;
747 ret->written = FALSE;
748 ret->sym = NULL;
749 }
750
751 return entry;
752 }
753
754 /* Create a generic link hash table. */
755
756 struct bfd_link_hash_table *
_bfd_generic_link_hash_table_create(bfd * abfd)757 _bfd_generic_link_hash_table_create (bfd *abfd)
758 {
759 struct generic_link_hash_table *ret;
760 bfd_size_type amt = sizeof (struct generic_link_hash_table);
761
762 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763 if (ret == NULL)
764 return NULL;
765 if (! _bfd_link_hash_table_init (&ret->root, abfd,
766 _bfd_generic_link_hash_newfunc,
767 sizeof (struct generic_link_hash_entry)))
768 {
769 free (ret);
770 return NULL;
771 }
772 return &ret->root;
773 }
774
775 void
_bfd_generic_link_hash_table_free(bfd * obfd)776 _bfd_generic_link_hash_table_free (bfd *obfd)
777 {
778 struct generic_link_hash_table *ret;
779
780 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781 ret = (struct generic_link_hash_table *) obfd->link.hash;
782 bfd_hash_table_free (&ret->root.table);
783 free (ret);
784 obfd->link.hash = NULL;
785 obfd->is_linker_output = FALSE;
786 }
787
788 /* Grab the symbols for an object file when doing a generic link. We
789 store the symbols in the outsymbols field. We need to keep them
790 around for the entire link to ensure that we only read them once.
791 If we read them multiple times, we might wind up with relocs and
792 the hash table pointing to different instances of the symbol
793 structure. */
794
795 bfd_boolean
bfd_generic_link_read_symbols(bfd * abfd)796 bfd_generic_link_read_symbols (bfd *abfd)
797 {
798 if (bfd_get_outsymbols (abfd) == NULL)
799 {
800 long symsize;
801 long symcount;
802
803 symsize = bfd_get_symtab_upper_bound (abfd);
804 if (symsize < 0)
805 return FALSE;
806 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807 symsize);
808 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809 return FALSE;
810 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811 if (symcount < 0)
812 return FALSE;
813 bfd_get_symcount (abfd) = symcount;
814 }
815
816 return TRUE;
817 }
818
819 /* Generic function to add symbols to from an object file to the
820 global hash table. This version does not automatically collect
821 constructors by name. */
822
823 bfd_boolean
_bfd_generic_link_add_symbols(bfd * abfd,struct bfd_link_info * info)824 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825 {
826 return generic_link_add_symbols (abfd, info, FALSE);
827 }
828
829 /* Generic function to add symbols from an object file to the global
830 hash table. This version automatically collects constructors by
831 name, as the collect2 program does. It should be used for any
832 target which does not provide some other mechanism for setting up
833 constructors and destructors; these are approximately those targets
834 for which gcc uses collect2 and do not support stabs. */
835
836 bfd_boolean
_bfd_generic_link_add_symbols_collect(bfd * abfd,struct bfd_link_info * info)837 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838 {
839 return generic_link_add_symbols (abfd, info, TRUE);
840 }
841
842 /* Indicate that we are only retrieving symbol values from this
843 section. We want the symbols to act as though the values in the
844 file are absolute. */
845
846 void
_bfd_generic_link_just_syms(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED)847 _bfd_generic_link_just_syms (asection *sec,
848 struct bfd_link_info *info ATTRIBUTE_UNUSED)
849 {
850 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851 sec->output_section = bfd_abs_section_ptr;
852 sec->output_offset = sec->vma;
853 }
854
855 /* Copy the symbol type and other attributes for a linker script
856 assignment from HSRC to HDEST.
857 The default implementation does nothing. */
858 void
_bfd_generic_copy_link_hash_symbol_type(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)859 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
860 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
862 {
863 }
864
865 /* Add symbols from an object file to the global hash table. */
866
867 static bfd_boolean
generic_link_add_symbols(bfd * abfd,struct bfd_link_info * info,bfd_boolean collect)868 generic_link_add_symbols (bfd *abfd,
869 struct bfd_link_info *info,
870 bfd_boolean collect)
871 {
872 bfd_boolean ret;
873
874 switch (bfd_get_format (abfd))
875 {
876 case bfd_object:
877 ret = generic_link_add_object_symbols (abfd, info, collect);
878 break;
879 case bfd_archive:
880 ret = (_bfd_generic_link_add_archive_symbols
881 (abfd, info,
882 (collect
883 ? generic_link_check_archive_element_collect
884 : generic_link_check_archive_element_no_collect)));
885 break;
886 default:
887 bfd_set_error (bfd_error_wrong_format);
888 ret = FALSE;
889 }
890
891 return ret;
892 }
893
894 /* Add symbols from an object file to the global hash table. */
895
896 static bfd_boolean
generic_link_add_object_symbols(bfd * abfd,struct bfd_link_info * info,bfd_boolean collect)897 generic_link_add_object_symbols (bfd *abfd,
898 struct bfd_link_info *info,
899 bfd_boolean collect)
900 {
901 bfd_size_type symcount;
902 struct bfd_symbol **outsyms;
903
904 if (!bfd_generic_link_read_symbols (abfd))
905 return FALSE;
906 symcount = _bfd_generic_link_get_symcount (abfd);
907 outsyms = _bfd_generic_link_get_symbols (abfd);
908 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909 }
910
911 /* Generic function to add symbols from an archive file to the global
912 hash file. This function presumes that the archive symbol table
913 has already been read in (this is normally done by the
914 bfd_check_format entry point). It looks through the archive symbol
915 table for symbols that are undefined or common in the linker global
916 symbol hash table. When one is found, the CHECKFN argument is used
917 to see if an object file should be included. This allows targets
918 to customize common symbol behaviour. CHECKFN should set *PNEEDED
919 to TRUE if the object file should be included, and must also call
920 the bfd_link_info add_archive_element callback function and handle
921 adding the symbols to the global hash table. CHECKFN must notice
922 if the callback indicates a substitute BFD, and arrange to add
923 those symbols instead if it does so. CHECKFN should only return
924 FALSE if some sort of error occurs. */
925
926 bfd_boolean
_bfd_generic_link_add_archive_symbols(bfd * abfd,struct bfd_link_info * info,bfd_boolean (* checkfn)(bfd *,struct bfd_link_info *,struct bfd_link_hash_entry *,const char *,bfd_boolean *))927 _bfd_generic_link_add_archive_symbols
928 (bfd *abfd,
929 struct bfd_link_info *info,
930 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931 struct bfd_link_hash_entry *, const char *,
932 bfd_boolean *))
933 {
934 bfd_boolean loop;
935 bfd_size_type amt;
936 unsigned char *included;
937
938 if (! bfd_has_map (abfd))
939 {
940 /* An empty archive is a special case. */
941 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942 return TRUE;
943 bfd_set_error (bfd_error_no_armap);
944 return FALSE;
945 }
946
947 amt = bfd_ardata (abfd)->symdef_count;
948 if (amt == 0)
949 return TRUE;
950 amt *= sizeof (*included);
951 included = (unsigned char *) bfd_zmalloc (amt);
952 if (included == NULL)
953 return FALSE;
954
955 do
956 {
957 carsym *arsyms;
958 carsym *arsym_end;
959 carsym *arsym;
960 unsigned int indx;
961 file_ptr last_ar_offset = -1;
962 bfd_boolean needed = FALSE;
963 bfd *element = NULL;
964
965 loop = FALSE;
966 arsyms = bfd_ardata (abfd)->symdefs;
967 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969 {
970 struct bfd_link_hash_entry *h;
971 struct bfd_link_hash_entry *undefs_tail;
972
973 if (included[indx])
974 continue;
975 if (needed && arsym->file_offset == last_ar_offset)
976 {
977 included[indx] = 1;
978 continue;
979 }
980
981 h = bfd_link_hash_lookup (info->hash, arsym->name,
982 FALSE, FALSE, TRUE);
983
984 if (h == NULL
985 && info->pei386_auto_import
986 && CONST_STRNEQ (arsym->name, "__imp_"))
987 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988 FALSE, FALSE, TRUE);
989 if (h == NULL)
990 continue;
991
992 if (h->type != bfd_link_hash_undefined
993 && h->type != bfd_link_hash_common)
994 {
995 if (h->type != bfd_link_hash_undefweak)
996 /* Symbol must be defined. Don't check it again. */
997 included[indx] = 1;
998 continue;
999 }
1000
1001 if (last_ar_offset != arsym->file_offset)
1002 {
1003 last_ar_offset = arsym->file_offset;
1004 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005 if (element == NULL
1006 || !bfd_check_format (element, bfd_object))
1007 goto error_return;
1008 }
1009
1010 undefs_tail = info->hash->undefs_tail;
1011
1012 /* CHECKFN will see if this element should be included, and
1013 go ahead and include it if appropriate. */
1014 if (! (*checkfn) (element, info, h, arsym->name, &needed))
1015 goto error_return;
1016
1017 if (needed)
1018 {
1019 unsigned int mark;
1020
1021 /* Look backward to mark all symbols from this object file
1022 which we have already seen in this pass. */
1023 mark = indx;
1024 do
1025 {
1026 included[mark] = 1;
1027 if (mark == 0)
1028 break;
1029 --mark;
1030 }
1031 while (arsyms[mark].file_offset == last_ar_offset);
1032
1033 if (undefs_tail != info->hash->undefs_tail)
1034 loop = TRUE;
1035 }
1036 }
1037 } while (loop);
1038
1039 free (included);
1040 return TRUE;
1041
1042 error_return:
1043 free (included);
1044 return FALSE;
1045 }
1046
1047 /* See if we should include an archive element. This version is used
1048 when we do not want to automatically collect constructors based on
1049 the symbol name, presumably because we have some other mechanism
1050 for finding them. */
1051
1052 static bfd_boolean
generic_link_check_archive_element_no_collect(bfd * abfd,struct bfd_link_info * info,struct bfd_link_hash_entry * h,const char * name,bfd_boolean * pneeded)1053 generic_link_check_archive_element_no_collect (bfd *abfd,
1054 struct bfd_link_info *info,
1055 struct bfd_link_hash_entry *h,
1056 const char *name,
1057 bfd_boolean *pneeded)
1058 {
1059 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060 FALSE);
1061 }
1062
1063 /* See if we should include an archive element. This version is used
1064 when we want to automatically collect constructors based on the
1065 symbol name, as collect2 does. */
1066
1067 static bfd_boolean
generic_link_check_archive_element_collect(bfd * abfd,struct bfd_link_info * info,struct bfd_link_hash_entry * h,const char * name,bfd_boolean * pneeded)1068 generic_link_check_archive_element_collect (bfd *abfd,
1069 struct bfd_link_info *info,
1070 struct bfd_link_hash_entry *h,
1071 const char *name,
1072 bfd_boolean *pneeded)
1073 {
1074 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075 TRUE);
1076 }
1077
1078 /* See if we should include an archive element. Optionally collect
1079 constructors. */
1080
1081 static bfd_boolean
generic_link_check_archive_element(bfd * abfd,struct bfd_link_info * info,struct bfd_link_hash_entry * h,const char * name ATTRIBUTE_UNUSED,bfd_boolean * pneeded,bfd_boolean collect)1082 generic_link_check_archive_element (bfd *abfd,
1083 struct bfd_link_info *info,
1084 struct bfd_link_hash_entry *h,
1085 const char *name ATTRIBUTE_UNUSED,
1086 bfd_boolean *pneeded,
1087 bfd_boolean collect)
1088 {
1089 asymbol **pp, **ppend;
1090
1091 *pneeded = FALSE;
1092
1093 if (!bfd_generic_link_read_symbols (abfd))
1094 return FALSE;
1095
1096 pp = _bfd_generic_link_get_symbols (abfd);
1097 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098 for (; pp < ppend; pp++)
1099 {
1100 asymbol *p;
1101
1102 p = *pp;
1103
1104 /* We are only interested in globally visible symbols. */
1105 if (! bfd_is_com_section (p->section)
1106 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107 continue;
1108
1109 /* We are only interested if we know something about this
1110 symbol, and it is undefined or common. An undefined weak
1111 symbol (type bfd_link_hash_undefweak) is not considered to be
1112 a reference when pulling files out of an archive. See the
1113 SVR4 ABI, p. 4-27. */
1114 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115 FALSE, TRUE);
1116 if (h == NULL
1117 || (h->type != bfd_link_hash_undefined
1118 && h->type != bfd_link_hash_common))
1119 continue;
1120
1121 /* P is a symbol we are looking for. */
1122
1123 if (! bfd_is_com_section (p->section)
1124 || (h->type == bfd_link_hash_undefined
1125 && h->u.undef.abfd == NULL))
1126 {
1127 /* P is not a common symbol, or an undefined reference was
1128 created from outside BFD such as from a linker -u option.
1129 This object file defines the symbol, so pull it in. */
1130 *pneeded = TRUE;
1131 if (!(*info->callbacks
1132 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133 &abfd))
1134 return FALSE;
1135 /* Potentially, the add_archive_element hook may have set a
1136 substitute BFD for us. */
1137 return generic_link_add_object_symbols (abfd, info, collect);
1138 }
1139
1140 /* P is a common symbol. */
1141
1142 if (h->type == bfd_link_hash_undefined)
1143 {
1144 bfd *symbfd;
1145 bfd_vma size;
1146 unsigned int power;
1147
1148 /* Turn the symbol into a common symbol but do not link in
1149 the object file. This is how a.out works. Object
1150 formats that require different semantics must implement
1151 this function differently. This symbol is already on the
1152 undefs list. We add the section to a common section
1153 attached to symbfd to ensure that it is in a BFD which
1154 will be linked in. */
1155 symbfd = h->u.undef.abfd;
1156 h->type = bfd_link_hash_common;
1157 h->u.c.p = (struct bfd_link_hash_common_entry *)
1158 bfd_hash_allocate (&info->hash->table,
1159 sizeof (struct bfd_link_hash_common_entry));
1160 if (h->u.c.p == NULL)
1161 return FALSE;
1162
1163 size = bfd_asymbol_value (p);
1164 h->u.c.size = size;
1165
1166 power = bfd_log2 (size);
1167 if (power > 4)
1168 power = 4;
1169 h->u.c.p->alignment_power = power;
1170
1171 if (p->section == bfd_com_section_ptr)
1172 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173 else
1174 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175 p->section->name);
1176 h->u.c.p->section->flags |= SEC_ALLOC;
1177 }
1178 else
1179 {
1180 /* Adjust the size of the common symbol if necessary. This
1181 is how a.out works. Object formats that require
1182 different semantics must implement this function
1183 differently. */
1184 if (bfd_asymbol_value (p) > h->u.c.size)
1185 h->u.c.size = bfd_asymbol_value (p);
1186 }
1187 }
1188
1189 /* This archive element is not needed. */
1190 return TRUE;
1191 }
1192
1193 /* Add the symbols from an object file to the global hash table. ABFD
1194 is the object file. INFO is the linker information. SYMBOL_COUNT
1195 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1196 is TRUE if constructors should be automatically collected by name
1197 as is done by collect2. */
1198
1199 static bfd_boolean
generic_link_add_symbol_list(bfd * abfd,struct bfd_link_info * info,bfd_size_type symbol_count,asymbol ** symbols,bfd_boolean collect)1200 generic_link_add_symbol_list (bfd *abfd,
1201 struct bfd_link_info *info,
1202 bfd_size_type symbol_count,
1203 asymbol **symbols,
1204 bfd_boolean collect)
1205 {
1206 asymbol **pp, **ppend;
1207
1208 pp = symbols;
1209 ppend = symbols + symbol_count;
1210 for (; pp < ppend; pp++)
1211 {
1212 asymbol *p;
1213
1214 p = *pp;
1215
1216 if ((p->flags & (BSF_INDIRECT
1217 | BSF_WARNING
1218 | BSF_GLOBAL
1219 | BSF_CONSTRUCTOR
1220 | BSF_WEAK)) != 0
1221 || bfd_is_und_section (bfd_get_section (p))
1222 || bfd_is_com_section (bfd_get_section (p))
1223 || bfd_is_ind_section (bfd_get_section (p)))
1224 {
1225 const char *name;
1226 const char *string;
1227 struct generic_link_hash_entry *h;
1228 struct bfd_link_hash_entry *bh;
1229
1230 string = name = bfd_asymbol_name (p);
1231 if (((p->flags & BSF_INDIRECT) != 0
1232 || bfd_is_ind_section (p->section))
1233 && pp + 1 < ppend)
1234 {
1235 pp++;
1236 string = bfd_asymbol_name (*pp);
1237 }
1238 else if ((p->flags & BSF_WARNING) != 0
1239 && pp + 1 < ppend)
1240 {
1241 /* The name of P is actually the warning string, and the
1242 next symbol is the one to warn about. */
1243 pp++;
1244 name = bfd_asymbol_name (*pp);
1245 }
1246
1247 bh = NULL;
1248 if (! (_bfd_generic_link_add_one_symbol
1249 (info, abfd, name, p->flags, bfd_get_section (p),
1250 p->value, string, FALSE, collect, &bh)))
1251 return FALSE;
1252 h = (struct generic_link_hash_entry *) bh;
1253
1254 /* If this is a constructor symbol, and the linker didn't do
1255 anything with it, then we want to just pass the symbol
1256 through to the output file. This will happen when
1257 linking with -r. */
1258 if ((p->flags & BSF_CONSTRUCTOR) != 0
1259 && (h == NULL || h->root.type == bfd_link_hash_new))
1260 {
1261 p->udata.p = NULL;
1262 continue;
1263 }
1264
1265 /* Save the BFD symbol so that we don't lose any backend
1266 specific information that may be attached to it. We only
1267 want this one if it gives more information than the
1268 existing one; we don't want to replace a defined symbol
1269 with an undefined one. This routine may be called with a
1270 hash table other than the generic hash table, so we only
1271 do this if we are certain that the hash table is a
1272 generic one. */
1273 if (info->output_bfd->xvec == abfd->xvec)
1274 {
1275 if (h->sym == NULL
1276 || (! bfd_is_und_section (bfd_get_section (p))
1277 && (! bfd_is_com_section (bfd_get_section (p))
1278 || bfd_is_und_section (bfd_get_section (h->sym)))))
1279 {
1280 h->sym = p;
1281 /* BSF_OLD_COMMON is a hack to support COFF reloc
1282 reading, and it should go away when the COFF
1283 linker is switched to the new version. */
1284 if (bfd_is_com_section (bfd_get_section (p)))
1285 p->flags |= BSF_OLD_COMMON;
1286 }
1287 }
1288
1289 /* Store a back pointer from the symbol to the hash
1290 table entry for the benefit of relaxation code until
1291 it gets rewritten to not use asymbol structures.
1292 Setting this is also used to check whether these
1293 symbols were set up by the generic linker. */
1294 p->udata.p = h;
1295 }
1296 }
1297
1298 return TRUE;
1299 }
1300
1301 /* We use a state table to deal with adding symbols from an object
1302 file. The first index into the state table describes the symbol
1303 from the object file. The second index into the state table is the
1304 type of the symbol in the hash table. */
1305
1306 /* The symbol from the object file is turned into one of these row
1307 values. */
1308
1309 enum link_row
1310 {
1311 UNDEF_ROW, /* Undefined. */
1312 UNDEFW_ROW, /* Weak undefined. */
1313 DEF_ROW, /* Defined. */
1314 DEFW_ROW, /* Weak defined. */
1315 COMMON_ROW, /* Common. */
1316 INDR_ROW, /* Indirect. */
1317 WARN_ROW, /* Warning. */
1318 SET_ROW /* Member of set. */
1319 };
1320
1321 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322 #undef FAIL
1323
1324 /* The actions to take in the state table. */
1325
1326 enum link_action
1327 {
1328 FAIL, /* Abort. */
1329 UND, /* Mark symbol undefined. */
1330 WEAK, /* Mark symbol weak undefined. */
1331 DEF, /* Mark symbol defined. */
1332 DEFW, /* Mark symbol weak defined. */
1333 COM, /* Mark symbol common. */
1334 REF, /* Mark defined symbol referenced. */
1335 CREF, /* Possibly warn about common reference to defined symbol. */
1336 CDEF, /* Define existing common symbol. */
1337 NOACT, /* No action. */
1338 BIG, /* Mark symbol common using largest size. */
1339 MDEF, /* Multiple definition error. */
1340 MIND, /* Multiple indirect symbols. */
1341 IND, /* Make indirect symbol. */
1342 CIND, /* Make indirect symbol from existing common symbol. */
1343 SET, /* Add value to set. */
1344 MWARN, /* Make warning symbol. */
1345 WARN, /* Warn if referenced, else MWARN. */
1346 CYCLE, /* Repeat with symbol pointed to. */
1347 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1348 WARNC /* Issue warning and then CYCLE. */
1349 };
1350
1351 /* The state table itself. The first index is a link_row and the
1352 second index is a bfd_link_hash_type. */
1353
1354 static const enum link_action link_action[8][8] =
1355 {
1356 /* current\prev new undef undefw def defw com indr warn */
1357 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1358 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1359 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1360 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1361 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1362 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1363 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1364 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1365 };
1366
1367 /* Most of the entries in the LINK_ACTION table are straightforward,
1368 but a few are somewhat subtle.
1369
1370 A reference to an indirect symbol (UNDEF_ROW/indr or
1371 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372 symbol and to the symbol the indirect symbol points to.
1373
1374 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375 causes the warning to be issued.
1376
1377 A common definition of an indirect symbol (COMMON_ROW/indr) is
1378 treated as a multiple definition error. Likewise for an indirect
1379 definition of a common symbol (INDR_ROW/com).
1380
1381 An indirect definition of a warning (INDR_ROW/warn) does not cause
1382 the warning to be issued.
1383
1384 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385 warning is created for the symbol the indirect symbol points to.
1386
1387 Adding an entry to a set does not count as a reference to a set,
1388 and no warning is issued (SET_ROW/warn). */
1389
1390 /* Return the BFD in which a hash entry has been defined, if known. */
1391
1392 static bfd *
hash_entry_bfd(struct bfd_link_hash_entry * h)1393 hash_entry_bfd (struct bfd_link_hash_entry *h)
1394 {
1395 while (h->type == bfd_link_hash_warning)
1396 h = h->u.i.link;
1397 switch (h->type)
1398 {
1399 default:
1400 return NULL;
1401 case bfd_link_hash_undefined:
1402 case bfd_link_hash_undefweak:
1403 return h->u.undef.abfd;
1404 case bfd_link_hash_defined:
1405 case bfd_link_hash_defweak:
1406 return h->u.def.section->owner;
1407 case bfd_link_hash_common:
1408 return h->u.c.p->section->owner;
1409 }
1410 /*NOTREACHED*/
1411 }
1412
1413 /* Add a symbol to the global hash table.
1414 ABFD is the BFD the symbol comes from.
1415 NAME is the name of the symbol.
1416 FLAGS is the BSF_* bits associated with the symbol.
1417 SECTION is the section in which the symbol is defined; this may be
1418 bfd_und_section_ptr or bfd_com_section_ptr.
1419 VALUE is the value of the symbol, relative to the section.
1420 STRING is used for either an indirect symbol, in which case it is
1421 the name of the symbol to indirect to, or a warning symbol, in
1422 which case it is the warning string.
1423 COPY is TRUE if NAME or STRING must be copied into locally
1424 allocated memory if they need to be saved.
1425 COLLECT is TRUE if we should automatically collect gcc constructor
1426 or destructor names as collect2 does.
1427 HASHP, if not NULL, is a place to store the created hash table
1428 entry; if *HASHP is not NULL, the caller has already looked up
1429 the hash table entry, and stored it in *HASHP. */
1430
1431 bfd_boolean
_bfd_generic_link_add_one_symbol(struct bfd_link_info * info,bfd * abfd,const char * name,flagword flags,asection * section,bfd_vma value,const char * string,bfd_boolean copy,bfd_boolean collect,struct bfd_link_hash_entry ** hashp)1432 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433 bfd *abfd,
1434 const char *name,
1435 flagword flags,
1436 asection *section,
1437 bfd_vma value,
1438 const char *string,
1439 bfd_boolean copy,
1440 bfd_boolean collect,
1441 struct bfd_link_hash_entry **hashp)
1442 {
1443 enum link_row row;
1444 struct bfd_link_hash_entry *h;
1445 struct bfd_link_hash_entry *inh = NULL;
1446 bfd_boolean cycle;
1447
1448 BFD_ASSERT (section != NULL);
1449
1450 if (bfd_is_ind_section (section)
1451 || (flags & BSF_INDIRECT) != 0)
1452 {
1453 row = INDR_ROW;
1454 /* Create the indirect symbol here. This is for the benefit of
1455 the plugin "notice" function.
1456 STRING is the name of the symbol we want to indirect to. */
1457 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458 copy, FALSE);
1459 if (inh == NULL)
1460 return FALSE;
1461 }
1462 else if ((flags & BSF_WARNING) != 0)
1463 row = WARN_ROW;
1464 else if ((flags & BSF_CONSTRUCTOR) != 0)
1465 row = SET_ROW;
1466 else if (bfd_is_und_section (section))
1467 {
1468 if ((flags & BSF_WEAK) != 0)
1469 row = UNDEFW_ROW;
1470 else
1471 row = UNDEF_ROW;
1472 }
1473 else if ((flags & BSF_WEAK) != 0)
1474 row = DEFW_ROW;
1475 else if (bfd_is_com_section (section))
1476 {
1477 row = COMMON_ROW;
1478 if (!bfd_link_relocatable (info)
1479 && strcmp (name, "__gnu_lto_slim") == 0)
1480 (*_bfd_error_handler)
1481 (_("%s: plugin needed to handle lto object"),
1482 bfd_get_filename (abfd));
1483 }
1484 else
1485 row = DEF_ROW;
1486
1487 if (hashp != NULL && *hashp != NULL)
1488 h = *hashp;
1489 else
1490 {
1491 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1492 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1493 else
1494 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1495 if (h == NULL)
1496 {
1497 if (hashp != NULL)
1498 *hashp = NULL;
1499 return FALSE;
1500 }
1501 }
1502
1503 if (info->notice_all
1504 || (info->notice_hash != NULL
1505 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1506 {
1507 if (! (*info->callbacks->notice) (info, h, inh,
1508 abfd, section, value, flags))
1509 return FALSE;
1510 }
1511
1512 if (hashp != NULL)
1513 *hashp = h;
1514
1515 do
1516 {
1517 enum link_action action;
1518
1519 cycle = FALSE;
1520 action = link_action[(int) row][(int) h->type];
1521 switch (action)
1522 {
1523 case FAIL:
1524 abort ();
1525
1526 case NOACT:
1527 /* Do nothing. */
1528 break;
1529
1530 case UND:
1531 /* Make a new undefined symbol. */
1532 h->type = bfd_link_hash_undefined;
1533 h->u.undef.abfd = abfd;
1534 bfd_link_add_undef (info->hash, h);
1535 break;
1536
1537 case WEAK:
1538 /* Make a new weak undefined symbol. */
1539 h->type = bfd_link_hash_undefweak;
1540 h->u.undef.abfd = abfd;
1541 break;
1542
1543 case CDEF:
1544 /* We have found a definition for a symbol which was
1545 previously common. */
1546 BFD_ASSERT (h->type == bfd_link_hash_common);
1547 (*info->callbacks->multiple_common) (info, h, abfd,
1548 bfd_link_hash_defined, 0);
1549 /* Fall through. */
1550 case DEF:
1551 case DEFW:
1552 {
1553 enum bfd_link_hash_type oldtype;
1554
1555 /* Define a symbol. */
1556 oldtype = h->type;
1557 if (action == DEFW)
1558 h->type = bfd_link_hash_defweak;
1559 else
1560 h->type = bfd_link_hash_defined;
1561 h->u.def.section = section;
1562 h->u.def.value = value;
1563 h->linker_def = 0;
1564
1565 /* If we have been asked to, we act like collect2 and
1566 identify all functions that might be global
1567 constructors and destructors and pass them up in a
1568 callback. We only do this for certain object file
1569 types, since many object file types can handle this
1570 automatically. */
1571 if (collect && name[0] == '_')
1572 {
1573 const char *s;
1574
1575 /* A constructor or destructor name starts like this:
1576 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1577 the second are the same character (we accept any
1578 character there, in case a new object file format
1579 comes along with even worse naming restrictions). */
1580
1581 #define CONS_PREFIX "GLOBAL_"
1582 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1583
1584 s = name + 1;
1585 while (*s == '_')
1586 ++s;
1587 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1588 {
1589 char c;
1590
1591 c = s[CONS_PREFIX_LEN + 1];
1592 if ((c == 'I' || c == 'D')
1593 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1594 {
1595 /* If this is a definition of a symbol which
1596 was previously weakly defined, we are in
1597 trouble. We have already added a
1598 constructor entry for the weak defined
1599 symbol, and now we are trying to add one
1600 for the new symbol. Fortunately, this case
1601 should never arise in practice. */
1602 if (oldtype == bfd_link_hash_defweak)
1603 abort ();
1604
1605 (*info->callbacks->constructor) (info, c == 'I',
1606 h->root.string, abfd,
1607 section, value);
1608 }
1609 }
1610 }
1611 }
1612
1613 break;
1614
1615 case COM:
1616 /* We have found a common definition for a symbol. */
1617 if (h->type == bfd_link_hash_new)
1618 bfd_link_add_undef (info->hash, h);
1619 h->type = bfd_link_hash_common;
1620 h->u.c.p = (struct bfd_link_hash_common_entry *)
1621 bfd_hash_allocate (&info->hash->table,
1622 sizeof (struct bfd_link_hash_common_entry));
1623 if (h->u.c.p == NULL)
1624 return FALSE;
1625
1626 h->u.c.size = value;
1627
1628 /* Select a default alignment based on the size. This may
1629 be overridden by the caller. */
1630 {
1631 unsigned int power;
1632
1633 power = bfd_log2 (value);
1634 if (power > 4)
1635 power = 4;
1636 h->u.c.p->alignment_power = power;
1637 }
1638
1639 /* The section of a common symbol is only used if the common
1640 symbol is actually allocated. It basically provides a
1641 hook for the linker script to decide which output section
1642 the common symbols should be put in. In most cases, the
1643 section of a common symbol will be bfd_com_section_ptr,
1644 the code here will choose a common symbol section named
1645 "COMMON", and the linker script will contain *(COMMON) in
1646 the appropriate place. A few targets use separate common
1647 sections for small symbols, and they require special
1648 handling. */
1649 if (section == bfd_com_section_ptr)
1650 {
1651 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1652 h->u.c.p->section->flags |= SEC_ALLOC;
1653 }
1654 else if (section->owner != abfd)
1655 {
1656 h->u.c.p->section = bfd_make_section_old_way (abfd,
1657 section->name);
1658 h->u.c.p->section->flags |= SEC_ALLOC;
1659 }
1660 else
1661 h->u.c.p->section = section;
1662 h->linker_def = 0;
1663 break;
1664
1665 case REF:
1666 /* A reference to a defined symbol. */
1667 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1668 h->u.undef.next = h;
1669 break;
1670
1671 case BIG:
1672 /* We have found a common definition for a symbol which
1673 already had a common definition. Use the maximum of the
1674 two sizes, and use the section required by the larger symbol. */
1675 BFD_ASSERT (h->type == bfd_link_hash_common);
1676 (*info->callbacks->multiple_common) (info, h, abfd,
1677 bfd_link_hash_common, value);
1678 if (value > h->u.c.size)
1679 {
1680 unsigned int power;
1681
1682 h->u.c.size = value;
1683
1684 /* Select a default alignment based on the size. This may
1685 be overridden by the caller. */
1686 power = bfd_log2 (value);
1687 if (power > 4)
1688 power = 4;
1689 h->u.c.p->alignment_power = power;
1690
1691 /* Some systems have special treatment for small commons,
1692 hence we want to select the section used by the larger
1693 symbol. This makes sure the symbol does not go in a
1694 small common section if it is now too large. */
1695 if (section == bfd_com_section_ptr)
1696 {
1697 h->u.c.p->section
1698 = bfd_make_section_old_way (abfd, "COMMON");
1699 h->u.c.p->section->flags |= SEC_ALLOC;
1700 }
1701 else if (section->owner != abfd)
1702 {
1703 h->u.c.p->section
1704 = bfd_make_section_old_way (abfd, section->name);
1705 h->u.c.p->section->flags |= SEC_ALLOC;
1706 }
1707 else
1708 h->u.c.p->section = section;
1709 }
1710 break;
1711
1712 case CREF:
1713 /* We have found a common definition for a symbol which
1714 was already defined. */
1715 (*info->callbacks->multiple_common) (info, h, abfd,
1716 bfd_link_hash_common, value);
1717 break;
1718
1719 case MIND:
1720 /* Multiple indirect symbols. This is OK if they both point
1721 to the same symbol. */
1722 if (strcmp (h->u.i.link->root.string, string) == 0)
1723 break;
1724 /* Fall through. */
1725 case MDEF:
1726 /* Handle a multiple definition. */
1727 (*info->callbacks->multiple_definition) (info, h,
1728 abfd, section, value);
1729 break;
1730
1731 case CIND:
1732 /* Create an indirect symbol from an existing common symbol. */
1733 BFD_ASSERT (h->type == bfd_link_hash_common);
1734 (*info->callbacks->multiple_common) (info, h, abfd,
1735 bfd_link_hash_indirect, 0);
1736 /* Fall through. */
1737 case IND:
1738 if (inh->type == bfd_link_hash_indirect
1739 && inh->u.i.link == h)
1740 {
1741 (*_bfd_error_handler)
1742 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1743 abfd, name, string);
1744 bfd_set_error (bfd_error_invalid_operation);
1745 return FALSE;
1746 }
1747 if (inh->type == bfd_link_hash_new)
1748 {
1749 inh->type = bfd_link_hash_undefined;
1750 inh->u.undef.abfd = abfd;
1751 bfd_link_add_undef (info->hash, inh);
1752 }
1753
1754 /* If the indirect symbol has been referenced, we need to
1755 push the reference down to the symbol we are referencing. */
1756 if (h->type != bfd_link_hash_new)
1757 {
1758 /* ??? If inh->type == bfd_link_hash_undefweak this
1759 converts inh to bfd_link_hash_undefined. */
1760 row = UNDEF_ROW;
1761 cycle = TRUE;
1762 }
1763
1764 h->type = bfd_link_hash_indirect;
1765 h->u.i.link = inh;
1766 /* Not setting h = h->u.i.link here means that when cycle is
1767 set above we'll always go to REFC, and then cycle again
1768 to the indirected symbol. This means that any successful
1769 change of an existing symbol to indirect counts as a
1770 reference. ??? That may not be correct when the existing
1771 symbol was defweak. */
1772 break;
1773
1774 case SET:
1775 /* Add an entry to a set. */
1776 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1777 abfd, section, value);
1778 break;
1779
1780 case WARNC:
1781 /* Issue a warning and cycle, except when the reference is
1782 in LTO IR. */
1783 if (h->u.i.warning != NULL
1784 && (abfd->flags & BFD_PLUGIN) == 0)
1785 {
1786 (*info->callbacks->warning) (info, h->u.i.warning,
1787 h->root.string, abfd, NULL, 0);
1788 /* Only issue a warning once. */
1789 h->u.i.warning = NULL;
1790 }
1791 /* Fall through. */
1792 case CYCLE:
1793 /* Try again with the referenced symbol. */
1794 h = h->u.i.link;
1795 cycle = TRUE;
1796 break;
1797
1798 case REFC:
1799 /* A reference to an indirect symbol. */
1800 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1801 h->u.undef.next = h;
1802 h = h->u.i.link;
1803 cycle = TRUE;
1804 break;
1805
1806 case WARN:
1807 /* Warn if this symbol has been referenced already from non-IR,
1808 otherwise add a warning. */
1809 if ((!info->lto_plugin_active
1810 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1811 || h->non_ir_ref)
1812 {
1813 (*info->callbacks->warning) (info, string, h->root.string,
1814 hash_entry_bfd (h), NULL, 0);
1815 break;
1816 }
1817 /* Fall through. */
1818 case MWARN:
1819 /* Make a warning symbol. */
1820 {
1821 struct bfd_link_hash_entry *sub;
1822
1823 /* STRING is the warning to give. */
1824 sub = ((struct bfd_link_hash_entry *)
1825 ((*info->hash->table.newfunc)
1826 (NULL, &info->hash->table, h->root.string)));
1827 if (sub == NULL)
1828 return FALSE;
1829 *sub = *h;
1830 sub->type = bfd_link_hash_warning;
1831 sub->u.i.link = h;
1832 if (! copy)
1833 sub->u.i.warning = string;
1834 else
1835 {
1836 char *w;
1837 size_t len = strlen (string) + 1;
1838
1839 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1840 if (w == NULL)
1841 return FALSE;
1842 memcpy (w, string, len);
1843 sub->u.i.warning = w;
1844 }
1845
1846 bfd_hash_replace (&info->hash->table,
1847 (struct bfd_hash_entry *) h,
1848 (struct bfd_hash_entry *) sub);
1849 if (hashp != NULL)
1850 *hashp = sub;
1851 }
1852 break;
1853 }
1854 }
1855 while (cycle);
1856
1857 return TRUE;
1858 }
1859
1860 /* Generic final link routine. */
1861
1862 bfd_boolean
_bfd_generic_final_link(bfd * abfd,struct bfd_link_info * info)1863 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1864 {
1865 bfd *sub;
1866 asection *o;
1867 struct bfd_link_order *p;
1868 size_t outsymalloc;
1869 struct generic_write_global_symbol_info wginfo;
1870
1871 bfd_get_outsymbols (abfd) = NULL;
1872 bfd_get_symcount (abfd) = 0;
1873 outsymalloc = 0;
1874
1875 /* Mark all sections which will be included in the output file. */
1876 for (o = abfd->sections; o != NULL; o = o->next)
1877 for (p = o->map_head.link_order; p != NULL; p = p->next)
1878 if (p->type == bfd_indirect_link_order)
1879 p->u.indirect.section->linker_mark = TRUE;
1880
1881 /* Build the output symbol table. */
1882 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1883 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1884 return FALSE;
1885
1886 /* Accumulate the global symbols. */
1887 wginfo.info = info;
1888 wginfo.output_bfd = abfd;
1889 wginfo.psymalloc = &outsymalloc;
1890 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1891 _bfd_generic_link_write_global_symbol,
1892 &wginfo);
1893
1894 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1895 shouldn't really need one, since we have SYMCOUNT, but some old
1896 code still expects one. */
1897 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1898 return FALSE;
1899
1900 if (bfd_link_relocatable (info))
1901 {
1902 /* Allocate space for the output relocs for each section. */
1903 for (o = abfd->sections; o != NULL; o = o->next)
1904 {
1905 o->reloc_count = 0;
1906 for (p = o->map_head.link_order; p != NULL; p = p->next)
1907 {
1908 if (p->type == bfd_section_reloc_link_order
1909 || p->type == bfd_symbol_reloc_link_order)
1910 ++o->reloc_count;
1911 else if (p->type == bfd_indirect_link_order)
1912 {
1913 asection *input_section;
1914 bfd *input_bfd;
1915 long relsize;
1916 arelent **relocs;
1917 asymbol **symbols;
1918 long reloc_count;
1919
1920 input_section = p->u.indirect.section;
1921 input_bfd = input_section->owner;
1922 relsize = bfd_get_reloc_upper_bound (input_bfd,
1923 input_section);
1924 if (relsize < 0)
1925 return FALSE;
1926 relocs = (arelent **) bfd_malloc (relsize);
1927 if (!relocs && relsize != 0)
1928 return FALSE;
1929 symbols = _bfd_generic_link_get_symbols (input_bfd);
1930 reloc_count = bfd_canonicalize_reloc (input_bfd,
1931 input_section,
1932 relocs,
1933 symbols);
1934 free (relocs);
1935 if (reloc_count < 0)
1936 return FALSE;
1937 BFD_ASSERT ((unsigned long) reloc_count
1938 == input_section->reloc_count);
1939 o->reloc_count += reloc_count;
1940 }
1941 }
1942 if (o->reloc_count > 0)
1943 {
1944 bfd_size_type amt;
1945
1946 amt = o->reloc_count;
1947 amt *= sizeof (arelent *);
1948 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1949 if (!o->orelocation)
1950 return FALSE;
1951 o->flags |= SEC_RELOC;
1952 /* Reset the count so that it can be used as an index
1953 when putting in the output relocs. */
1954 o->reloc_count = 0;
1955 }
1956 }
1957 }
1958
1959 /* Handle all the link order information for the sections. */
1960 for (o = abfd->sections; o != NULL; o = o->next)
1961 {
1962 for (p = o->map_head.link_order; p != NULL; p = p->next)
1963 {
1964 switch (p->type)
1965 {
1966 case bfd_section_reloc_link_order:
1967 case bfd_symbol_reloc_link_order:
1968 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1969 return FALSE;
1970 break;
1971 case bfd_indirect_link_order:
1972 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1973 return FALSE;
1974 break;
1975 default:
1976 if (! _bfd_default_link_order (abfd, info, o, p))
1977 return FALSE;
1978 break;
1979 }
1980 }
1981 }
1982
1983 return TRUE;
1984 }
1985
1986 /* Add an output symbol to the output BFD. */
1987
1988 static bfd_boolean
generic_add_output_symbol(bfd * output_bfd,size_t * psymalloc,asymbol * sym)1989 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1990 {
1991 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1992 {
1993 asymbol **newsyms;
1994 bfd_size_type amt;
1995
1996 if (*psymalloc == 0)
1997 *psymalloc = 124;
1998 else
1999 *psymalloc *= 2;
2000 amt = *psymalloc;
2001 amt *= sizeof (asymbol *);
2002 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2003 if (newsyms == NULL)
2004 return FALSE;
2005 bfd_get_outsymbols (output_bfd) = newsyms;
2006 }
2007
2008 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2009 if (sym != NULL)
2010 ++ bfd_get_symcount (output_bfd);
2011
2012 return TRUE;
2013 }
2014
2015 /* Handle the symbols for an input BFD. */
2016
2017 bfd_boolean
_bfd_generic_link_output_symbols(bfd * output_bfd,bfd * input_bfd,struct bfd_link_info * info,size_t * psymalloc)2018 _bfd_generic_link_output_symbols (bfd *output_bfd,
2019 bfd *input_bfd,
2020 struct bfd_link_info *info,
2021 size_t *psymalloc)
2022 {
2023 asymbol **sym_ptr;
2024 asymbol **sym_end;
2025
2026 if (!bfd_generic_link_read_symbols (input_bfd))
2027 return FALSE;
2028
2029 /* Create a filename symbol if we are supposed to. */
2030 if (info->create_object_symbols_section != NULL)
2031 {
2032 asection *sec;
2033
2034 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2035 {
2036 if (sec->output_section == info->create_object_symbols_section)
2037 {
2038 asymbol *newsym;
2039
2040 newsym = bfd_make_empty_symbol (input_bfd);
2041 if (!newsym)
2042 return FALSE;
2043 newsym->name = input_bfd->filename;
2044 newsym->value = 0;
2045 newsym->flags = BSF_LOCAL | BSF_FILE;
2046 newsym->section = sec;
2047
2048 if (! generic_add_output_symbol (output_bfd, psymalloc,
2049 newsym))
2050 return FALSE;
2051
2052 break;
2053 }
2054 }
2055 }
2056
2057 /* Adjust the values of the globally visible symbols, and write out
2058 local symbols. */
2059 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2060 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2061 for (; sym_ptr < sym_end; sym_ptr++)
2062 {
2063 asymbol *sym;
2064 struct generic_link_hash_entry *h;
2065 bfd_boolean output;
2066
2067 h = NULL;
2068 sym = *sym_ptr;
2069 if ((sym->flags & (BSF_INDIRECT
2070 | BSF_WARNING
2071 | BSF_GLOBAL
2072 | BSF_CONSTRUCTOR
2073 | BSF_WEAK)) != 0
2074 || bfd_is_und_section (bfd_get_section (sym))
2075 || bfd_is_com_section (bfd_get_section (sym))
2076 || bfd_is_ind_section (bfd_get_section (sym)))
2077 {
2078 if (sym->udata.p != NULL)
2079 h = (struct generic_link_hash_entry *) sym->udata.p;
2080 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2081 {
2082 /* This case normally means that the main linker code
2083 deliberately ignored this constructor symbol. We
2084 should just pass it through. This will screw up if
2085 the constructor symbol is from a different,
2086 non-generic, object file format, but the case will
2087 only arise when linking with -r, which will probably
2088 fail anyhow, since there will be no way to represent
2089 the relocs in the output format being used. */
2090 h = NULL;
2091 }
2092 else if (bfd_is_und_section (bfd_get_section (sym)))
2093 h = ((struct generic_link_hash_entry *)
2094 bfd_wrapped_link_hash_lookup (output_bfd, info,
2095 bfd_asymbol_name (sym),
2096 FALSE, FALSE, TRUE));
2097 else
2098 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2099 bfd_asymbol_name (sym),
2100 FALSE, FALSE, TRUE);
2101
2102 if (h != NULL)
2103 {
2104 /* Force all references to this symbol to point to
2105 the same area in memory. It is possible that
2106 this routine will be called with a hash table
2107 other than a generic hash table, so we double
2108 check that. */
2109 if (info->output_bfd->xvec == input_bfd->xvec)
2110 {
2111 if (h->sym != NULL)
2112 *sym_ptr = sym = h->sym;
2113 }
2114
2115 switch (h->root.type)
2116 {
2117 default:
2118 case bfd_link_hash_new:
2119 abort ();
2120 case bfd_link_hash_undefined:
2121 break;
2122 case bfd_link_hash_undefweak:
2123 sym->flags |= BSF_WEAK;
2124 break;
2125 case bfd_link_hash_indirect:
2126 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2127 /* fall through */
2128 case bfd_link_hash_defined:
2129 sym->flags |= BSF_GLOBAL;
2130 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2131 sym->value = h->root.u.def.value;
2132 sym->section = h->root.u.def.section;
2133 break;
2134 case bfd_link_hash_defweak:
2135 sym->flags |= BSF_WEAK;
2136 sym->flags &=~ BSF_CONSTRUCTOR;
2137 sym->value = h->root.u.def.value;
2138 sym->section = h->root.u.def.section;
2139 break;
2140 case bfd_link_hash_common:
2141 sym->value = h->root.u.c.size;
2142 sym->flags |= BSF_GLOBAL;
2143 if (! bfd_is_com_section (sym->section))
2144 {
2145 BFD_ASSERT (bfd_is_und_section (sym->section));
2146 sym->section = bfd_com_section_ptr;
2147 }
2148 /* We do not set the section of the symbol to
2149 h->root.u.c.p->section. That value was saved so
2150 that we would know where to allocate the symbol
2151 if it was defined. In this case the type is
2152 still bfd_link_hash_common, so we did not define
2153 it, so we do not want to use that section. */
2154 break;
2155 }
2156 }
2157 }
2158
2159 /* This switch is straight from the old code in
2160 write_file_locals in ldsym.c. */
2161 if (info->strip == strip_all
2162 || (info->strip == strip_some
2163 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2164 FALSE, FALSE) == NULL))
2165 output = FALSE;
2166 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2167 {
2168 /* If this symbol is marked as occurring now, rather
2169 than at the end, output it now. This is used for
2170 COFF C_EXT FCN symbols. FIXME: There must be a
2171 better way. */
2172 if (bfd_asymbol_bfd (sym) == input_bfd
2173 && (sym->flags & BSF_NOT_AT_END) != 0)
2174 output = TRUE;
2175 else
2176 output = FALSE;
2177 }
2178 else if (bfd_is_ind_section (sym->section))
2179 output = FALSE;
2180 else if ((sym->flags & BSF_DEBUGGING) != 0)
2181 {
2182 if (info->strip == strip_none)
2183 output = TRUE;
2184 else
2185 output = FALSE;
2186 }
2187 else if (bfd_is_und_section (sym->section)
2188 || bfd_is_com_section (sym->section))
2189 output = FALSE;
2190 else if ((sym->flags & BSF_LOCAL) != 0)
2191 {
2192 if ((sym->flags & BSF_WARNING) != 0)
2193 output = FALSE;
2194 else
2195 {
2196 switch (info->discard)
2197 {
2198 default:
2199 case discard_all:
2200 output = FALSE;
2201 break;
2202 case discard_sec_merge:
2203 output = TRUE;
2204 if (bfd_link_relocatable (info)
2205 || ! (sym->section->flags & SEC_MERGE))
2206 break;
2207 /* FALLTHROUGH */
2208 case discard_l:
2209 if (bfd_is_local_label (input_bfd, sym))
2210 output = FALSE;
2211 else
2212 output = TRUE;
2213 break;
2214 case discard_none:
2215 output = TRUE;
2216 break;
2217 }
2218 }
2219 }
2220 else if ((sym->flags & BSF_CONSTRUCTOR))
2221 {
2222 if (info->strip != strip_all)
2223 output = TRUE;
2224 else
2225 output = FALSE;
2226 }
2227 else if (sym->flags == 0
2228 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2229 /* LTO doesn't set symbol information. We get here with the
2230 generic linker for a symbol that was "common" but no longer
2231 needs to be global. */
2232 output = FALSE;
2233 else
2234 abort ();
2235
2236 /* If this symbol is in a section which is not being included
2237 in the output file, then we don't want to output the
2238 symbol. */
2239 if (!bfd_is_abs_section (sym->section)
2240 && bfd_section_removed_from_list (output_bfd,
2241 sym->section->output_section))
2242 output = FALSE;
2243
2244 if (output)
2245 {
2246 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2247 return FALSE;
2248 if (h != NULL)
2249 h->written = TRUE;
2250 }
2251 }
2252
2253 return TRUE;
2254 }
2255
2256 /* Set the section and value of a generic BFD symbol based on a linker
2257 hash table entry. */
2258
2259 static void
set_symbol_from_hash(asymbol * sym,struct bfd_link_hash_entry * h)2260 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2261 {
2262 switch (h->type)
2263 {
2264 default:
2265 abort ();
2266 break;
2267 case bfd_link_hash_new:
2268 /* This can happen when a constructor symbol is seen but we are
2269 not building constructors. */
2270 if (sym->section != NULL)
2271 {
2272 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2273 }
2274 else
2275 {
2276 sym->flags |= BSF_CONSTRUCTOR;
2277 sym->section = bfd_abs_section_ptr;
2278 sym->value = 0;
2279 }
2280 break;
2281 case bfd_link_hash_undefined:
2282 sym->section = bfd_und_section_ptr;
2283 sym->value = 0;
2284 break;
2285 case bfd_link_hash_undefweak:
2286 sym->section = bfd_und_section_ptr;
2287 sym->value = 0;
2288 sym->flags |= BSF_WEAK;
2289 break;
2290 case bfd_link_hash_defined:
2291 sym->section = h->u.def.section;
2292 sym->value = h->u.def.value;
2293 break;
2294 case bfd_link_hash_defweak:
2295 sym->flags |= BSF_WEAK;
2296 sym->section = h->u.def.section;
2297 sym->value = h->u.def.value;
2298 break;
2299 case bfd_link_hash_common:
2300 sym->value = h->u.c.size;
2301 if (sym->section == NULL)
2302 sym->section = bfd_com_section_ptr;
2303 else if (! bfd_is_com_section (sym->section))
2304 {
2305 BFD_ASSERT (bfd_is_und_section (sym->section));
2306 sym->section = bfd_com_section_ptr;
2307 }
2308 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2309 break;
2310 case bfd_link_hash_indirect:
2311 case bfd_link_hash_warning:
2312 /* FIXME: What should we do here? */
2313 break;
2314 }
2315 }
2316
2317 /* Write out a global symbol, if it hasn't already been written out.
2318 This is called for each symbol in the hash table. */
2319
2320 bfd_boolean
_bfd_generic_link_write_global_symbol(struct generic_link_hash_entry * h,void * data)2321 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2322 void *data)
2323 {
2324 struct generic_write_global_symbol_info *wginfo =
2325 (struct generic_write_global_symbol_info *) data;
2326 asymbol *sym;
2327
2328 if (h->written)
2329 return TRUE;
2330
2331 h->written = TRUE;
2332
2333 if (wginfo->info->strip == strip_all
2334 || (wginfo->info->strip == strip_some
2335 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2336 FALSE, FALSE) == NULL))
2337 return TRUE;
2338
2339 if (h->sym != NULL)
2340 sym = h->sym;
2341 else
2342 {
2343 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2344 if (!sym)
2345 return FALSE;
2346 sym->name = h->root.root.string;
2347 sym->flags = 0;
2348 }
2349
2350 set_symbol_from_hash (sym, &h->root);
2351
2352 sym->flags |= BSF_GLOBAL;
2353
2354 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2355 sym))
2356 {
2357 /* FIXME: No way to return failure. */
2358 abort ();
2359 }
2360
2361 return TRUE;
2362 }
2363
2364 /* Create a relocation. */
2365
2366 bfd_boolean
_bfd_generic_reloc_link_order(bfd * abfd,struct bfd_link_info * info,asection * sec,struct bfd_link_order * link_order)2367 _bfd_generic_reloc_link_order (bfd *abfd,
2368 struct bfd_link_info *info,
2369 asection *sec,
2370 struct bfd_link_order *link_order)
2371 {
2372 arelent *r;
2373
2374 if (! bfd_link_relocatable (info))
2375 abort ();
2376 if (sec->orelocation == NULL)
2377 abort ();
2378
2379 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2380 if (r == NULL)
2381 return FALSE;
2382
2383 r->address = link_order->offset;
2384 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2385 if (r->howto == 0)
2386 {
2387 bfd_set_error (bfd_error_bad_value);
2388 return FALSE;
2389 }
2390
2391 /* Get the symbol to use for the relocation. */
2392 if (link_order->type == bfd_section_reloc_link_order)
2393 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2394 else
2395 {
2396 struct generic_link_hash_entry *h;
2397
2398 h = ((struct generic_link_hash_entry *)
2399 bfd_wrapped_link_hash_lookup (abfd, info,
2400 link_order->u.reloc.p->u.name,
2401 FALSE, FALSE, TRUE));
2402 if (h == NULL
2403 || ! h->written)
2404 {
2405 (*info->callbacks->unattached_reloc)
2406 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2407 bfd_set_error (bfd_error_bad_value);
2408 return FALSE;
2409 }
2410 r->sym_ptr_ptr = &h->sym;
2411 }
2412
2413 /* If this is an inplace reloc, write the addend to the object file.
2414 Otherwise, store it in the reloc addend. */
2415 if (! r->howto->partial_inplace)
2416 r->addend = link_order->u.reloc.p->addend;
2417 else
2418 {
2419 bfd_size_type size;
2420 bfd_reloc_status_type rstat;
2421 bfd_byte *buf;
2422 bfd_boolean ok;
2423 file_ptr loc;
2424
2425 size = bfd_get_reloc_size (r->howto);
2426 buf = (bfd_byte *) bfd_zmalloc (size);
2427 if (buf == NULL && size != 0)
2428 return FALSE;
2429 rstat = _bfd_relocate_contents (r->howto, abfd,
2430 (bfd_vma) link_order->u.reloc.p->addend,
2431 buf);
2432 switch (rstat)
2433 {
2434 case bfd_reloc_ok:
2435 break;
2436 default:
2437 case bfd_reloc_outofrange:
2438 abort ();
2439 case bfd_reloc_overflow:
2440 (*info->callbacks->reloc_overflow)
2441 (info, NULL,
2442 (link_order->type == bfd_section_reloc_link_order
2443 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2444 : link_order->u.reloc.p->u.name),
2445 r->howto->name, link_order->u.reloc.p->addend,
2446 NULL, NULL, 0);
2447 break;
2448 }
2449 loc = link_order->offset * bfd_octets_per_byte (abfd);
2450 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2451 free (buf);
2452 if (! ok)
2453 return FALSE;
2454
2455 r->addend = 0;
2456 }
2457
2458 sec->orelocation[sec->reloc_count] = r;
2459 ++sec->reloc_count;
2460
2461 return TRUE;
2462 }
2463
2464 /* Allocate a new link_order for a section. */
2465
2466 struct bfd_link_order *
bfd_new_link_order(bfd * abfd,asection * section)2467 bfd_new_link_order (bfd *abfd, asection *section)
2468 {
2469 bfd_size_type amt = sizeof (struct bfd_link_order);
2470 struct bfd_link_order *new_lo;
2471
2472 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2473 if (!new_lo)
2474 return NULL;
2475
2476 new_lo->type = bfd_undefined_link_order;
2477
2478 if (section->map_tail.link_order != NULL)
2479 section->map_tail.link_order->next = new_lo;
2480 else
2481 section->map_head.link_order = new_lo;
2482 section->map_tail.link_order = new_lo;
2483
2484 return new_lo;
2485 }
2486
2487 /* Default link order processing routine. Note that we can not handle
2488 the reloc_link_order types here, since they depend upon the details
2489 of how the particular backends generates relocs. */
2490
2491 bfd_boolean
_bfd_default_link_order(bfd * abfd,struct bfd_link_info * info,asection * sec,struct bfd_link_order * link_order)2492 _bfd_default_link_order (bfd *abfd,
2493 struct bfd_link_info *info,
2494 asection *sec,
2495 struct bfd_link_order *link_order)
2496 {
2497 switch (link_order->type)
2498 {
2499 case bfd_undefined_link_order:
2500 case bfd_section_reloc_link_order:
2501 case bfd_symbol_reloc_link_order:
2502 default:
2503 abort ();
2504 case bfd_indirect_link_order:
2505 return default_indirect_link_order (abfd, info, sec, link_order,
2506 FALSE);
2507 case bfd_data_link_order:
2508 return default_data_link_order (abfd, info, sec, link_order);
2509 }
2510 }
2511
2512 /* Default routine to handle a bfd_data_link_order. */
2513
2514 static bfd_boolean
default_data_link_order(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,struct bfd_link_order * link_order)2515 default_data_link_order (bfd *abfd,
2516 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2517 asection *sec,
2518 struct bfd_link_order *link_order)
2519 {
2520 bfd_size_type size;
2521 size_t fill_size;
2522 bfd_byte *fill;
2523 file_ptr loc;
2524 bfd_boolean result;
2525
2526 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2527
2528 size = link_order->size;
2529 if (size == 0)
2530 return TRUE;
2531
2532 fill = link_order->u.data.contents;
2533 fill_size = link_order->u.data.size;
2534 if (fill_size == 0)
2535 {
2536 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2537 (sec->flags & SEC_CODE) != 0);
2538 if (fill == NULL)
2539 return FALSE;
2540 }
2541 else if (fill_size < size)
2542 {
2543 bfd_byte *p;
2544 fill = (bfd_byte *) bfd_malloc (size);
2545 if (fill == NULL)
2546 return FALSE;
2547 p = fill;
2548 if (fill_size == 1)
2549 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2550 else
2551 {
2552 do
2553 {
2554 memcpy (p, link_order->u.data.contents, fill_size);
2555 p += fill_size;
2556 size -= fill_size;
2557 }
2558 while (size >= fill_size);
2559 if (size != 0)
2560 memcpy (p, link_order->u.data.contents, (size_t) size);
2561 size = link_order->size;
2562 }
2563 }
2564
2565 loc = link_order->offset * bfd_octets_per_byte (abfd);
2566 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2567
2568 if (fill != link_order->u.data.contents)
2569 free (fill);
2570 return result;
2571 }
2572
2573 /* Default routine to handle a bfd_indirect_link_order. */
2574
2575 static bfd_boolean
default_indirect_link_order(bfd * output_bfd,struct bfd_link_info * info,asection * output_section,struct bfd_link_order * link_order,bfd_boolean generic_linker)2576 default_indirect_link_order (bfd *output_bfd,
2577 struct bfd_link_info *info,
2578 asection *output_section,
2579 struct bfd_link_order *link_order,
2580 bfd_boolean generic_linker)
2581 {
2582 asection *input_section;
2583 bfd *input_bfd;
2584 bfd_byte *contents = NULL;
2585 bfd_byte *new_contents;
2586 bfd_size_type sec_size;
2587 file_ptr loc;
2588
2589 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2590
2591 input_section = link_order->u.indirect.section;
2592 input_bfd = input_section->owner;
2593 if (input_section->size == 0)
2594 return TRUE;
2595
2596 BFD_ASSERT (input_section->output_section == output_section);
2597 BFD_ASSERT (input_section->output_offset == link_order->offset);
2598 BFD_ASSERT (input_section->size == link_order->size);
2599
2600 if (bfd_link_relocatable (info)
2601 && input_section->reloc_count > 0
2602 && output_section->orelocation == NULL)
2603 {
2604 /* Space has not been allocated for the output relocations.
2605 This can happen when we are called by a specific backend
2606 because somebody is attempting to link together different
2607 types of object files. Handling this case correctly is
2608 difficult, and sometimes impossible. */
2609 (*_bfd_error_handler)
2610 (_("Attempt to do relocatable link with %s input and %s output"),
2611 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2612 bfd_set_error (bfd_error_wrong_format);
2613 return FALSE;
2614 }
2615
2616 if (! generic_linker)
2617 {
2618 asymbol **sympp;
2619 asymbol **symppend;
2620
2621 /* Get the canonical symbols. The generic linker will always
2622 have retrieved them by this point, but we are being called by
2623 a specific linker, presumably because we are linking
2624 different types of object files together. */
2625 if (!bfd_generic_link_read_symbols (input_bfd))
2626 return FALSE;
2627
2628 /* Since we have been called by a specific linker, rather than
2629 the generic linker, the values of the symbols will not be
2630 right. They will be the values as seen in the input file,
2631 not the values of the final link. We need to fix them up
2632 before we can relocate the section. */
2633 sympp = _bfd_generic_link_get_symbols (input_bfd);
2634 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2635 for (; sympp < symppend; sympp++)
2636 {
2637 asymbol *sym;
2638 struct bfd_link_hash_entry *h;
2639
2640 sym = *sympp;
2641
2642 if ((sym->flags & (BSF_INDIRECT
2643 | BSF_WARNING
2644 | BSF_GLOBAL
2645 | BSF_CONSTRUCTOR
2646 | BSF_WEAK)) != 0
2647 || bfd_is_und_section (bfd_get_section (sym))
2648 || bfd_is_com_section (bfd_get_section (sym))
2649 || bfd_is_ind_section (bfd_get_section (sym)))
2650 {
2651 /* sym->udata may have been set by
2652 generic_link_add_symbol_list. */
2653 if (sym->udata.p != NULL)
2654 h = (struct bfd_link_hash_entry *) sym->udata.p;
2655 else if (bfd_is_und_section (bfd_get_section (sym)))
2656 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2657 bfd_asymbol_name (sym),
2658 FALSE, FALSE, TRUE);
2659 else
2660 h = bfd_link_hash_lookup (info->hash,
2661 bfd_asymbol_name (sym),
2662 FALSE, FALSE, TRUE);
2663 if (h != NULL)
2664 set_symbol_from_hash (sym, h);
2665 }
2666 }
2667 }
2668
2669 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2670 && input_section->size != 0)
2671 {
2672 /* Group section contents are set by bfd_elf_set_group_contents. */
2673 if (!output_bfd->output_has_begun)
2674 {
2675 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2676 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2677 goto error_return;
2678 }
2679 new_contents = output_section->contents;
2680 BFD_ASSERT (new_contents != NULL);
2681 BFD_ASSERT (input_section->output_offset == 0);
2682 }
2683 else
2684 {
2685 /* Get and relocate the section contents. */
2686 sec_size = (input_section->rawsize > input_section->size
2687 ? input_section->rawsize
2688 : input_section->size);
2689 contents = (bfd_byte *) bfd_malloc (sec_size);
2690 if (contents == NULL && sec_size != 0)
2691 goto error_return;
2692 new_contents = (bfd_get_relocated_section_contents
2693 (output_bfd, info, link_order, contents,
2694 bfd_link_relocatable (info),
2695 _bfd_generic_link_get_symbols (input_bfd)));
2696 if (!new_contents)
2697 goto error_return;
2698 }
2699
2700 /* Output the section contents. */
2701 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2702 if (! bfd_set_section_contents (output_bfd, output_section,
2703 new_contents, loc, input_section->size))
2704 goto error_return;
2705
2706 if (contents != NULL)
2707 free (contents);
2708 return TRUE;
2709
2710 error_return:
2711 if (contents != NULL)
2712 free (contents);
2713 return FALSE;
2714 }
2715
2716 /* A little routine to count the number of relocs in a link_order
2717 list. */
2718
2719 unsigned int
_bfd_count_link_order_relocs(struct bfd_link_order * link_order)2720 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2721 {
2722 register unsigned int c;
2723 register struct bfd_link_order *l;
2724
2725 c = 0;
2726 for (l = link_order; l != NULL; l = l->next)
2727 {
2728 if (l->type == bfd_section_reloc_link_order
2729 || l->type == bfd_symbol_reloc_link_order)
2730 ++c;
2731 }
2732
2733 return c;
2734 }
2735
2736 /*
2737 FUNCTION
2738 bfd_link_split_section
2739
2740 SYNOPSIS
2741 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2742
2743 DESCRIPTION
2744 Return nonzero if @var{sec} should be split during a
2745 reloceatable or final link.
2746
2747 .#define bfd_link_split_section(abfd, sec) \
2748 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2749 .
2750
2751 */
2752
2753 bfd_boolean
_bfd_generic_link_split_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED)2754 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2755 asection *sec ATTRIBUTE_UNUSED)
2756 {
2757 return FALSE;
2758 }
2759
2760 /*
2761 FUNCTION
2762 bfd_section_already_linked
2763
2764 SYNOPSIS
2765 bfd_boolean bfd_section_already_linked (bfd *abfd,
2766 asection *sec,
2767 struct bfd_link_info *info);
2768
2769 DESCRIPTION
2770 Check if @var{data} has been already linked during a reloceatable
2771 or final link. Return TRUE if it has.
2772
2773 .#define bfd_section_already_linked(abfd, sec, info) \
2774 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2775 .
2776
2777 */
2778
2779 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2780 once into the output. This routine checks each section, and
2781 arrange to discard it if a section of the same name has already
2782 been linked. This code assumes that all relevant sections have the
2783 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2784 section name. bfd_section_already_linked is called via
2785 bfd_map_over_sections. */
2786
2787 /* The hash table. */
2788
2789 static struct bfd_hash_table _bfd_section_already_linked_table;
2790
2791 /* Support routines for the hash table used by section_already_linked,
2792 initialize the table, traverse, lookup, fill in an entry and remove
2793 the table. */
2794
2795 void
bfd_section_already_linked_table_traverse(bfd_boolean (* func)(struct bfd_section_already_linked_hash_entry *,void *),void * info)2796 bfd_section_already_linked_table_traverse
2797 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2798 void *), void *info)
2799 {
2800 bfd_hash_traverse (&_bfd_section_already_linked_table,
2801 (bfd_boolean (*) (struct bfd_hash_entry *,
2802 void *)) func,
2803 info);
2804 }
2805
2806 struct bfd_section_already_linked_hash_entry *
bfd_section_already_linked_table_lookup(const char * name)2807 bfd_section_already_linked_table_lookup (const char *name)
2808 {
2809 return ((struct bfd_section_already_linked_hash_entry *)
2810 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2811 TRUE, FALSE));
2812 }
2813
2814 bfd_boolean
bfd_section_already_linked_table_insert(struct bfd_section_already_linked_hash_entry * already_linked_list,asection * sec)2815 bfd_section_already_linked_table_insert
2816 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2817 asection *sec)
2818 {
2819 struct bfd_section_already_linked *l;
2820
2821 /* Allocate the memory from the same obstack as the hash table is
2822 kept in. */
2823 l = (struct bfd_section_already_linked *)
2824 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2825 if (l == NULL)
2826 return FALSE;
2827 l->sec = sec;
2828 l->next = already_linked_list->entry;
2829 already_linked_list->entry = l;
2830 return TRUE;
2831 }
2832
2833 static struct bfd_hash_entry *
already_linked_newfunc(struct bfd_hash_entry * entry ATTRIBUTE_UNUSED,struct bfd_hash_table * table,const char * string ATTRIBUTE_UNUSED)2834 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2835 struct bfd_hash_table *table,
2836 const char *string ATTRIBUTE_UNUSED)
2837 {
2838 struct bfd_section_already_linked_hash_entry *ret =
2839 (struct bfd_section_already_linked_hash_entry *)
2840 bfd_hash_allocate (table, sizeof *ret);
2841
2842 if (ret == NULL)
2843 return NULL;
2844
2845 ret->entry = NULL;
2846
2847 return &ret->root;
2848 }
2849
2850 bfd_boolean
bfd_section_already_linked_table_init(void)2851 bfd_section_already_linked_table_init (void)
2852 {
2853 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2854 already_linked_newfunc,
2855 sizeof (struct bfd_section_already_linked_hash_entry),
2856 42);
2857 }
2858
2859 void
bfd_section_already_linked_table_free(void)2860 bfd_section_already_linked_table_free (void)
2861 {
2862 bfd_hash_table_free (&_bfd_section_already_linked_table);
2863 }
2864
2865 /* Report warnings as appropriate for duplicate section SEC.
2866 Return FALSE if we decide to keep SEC after all. */
2867
2868 bfd_boolean
_bfd_handle_already_linked(asection * sec,struct bfd_section_already_linked * l,struct bfd_link_info * info)2869 _bfd_handle_already_linked (asection *sec,
2870 struct bfd_section_already_linked *l,
2871 struct bfd_link_info *info)
2872 {
2873 switch (sec->flags & SEC_LINK_DUPLICATES)
2874 {
2875 default:
2876 abort ();
2877
2878 case SEC_LINK_DUPLICATES_DISCARD:
2879 /* If we found an LTO IR match for this comdat group on
2880 the first pass, replace it with the LTO output on the
2881 second pass. We can't simply choose real object
2882 files over IR because the first pass may contain a
2883 mix of LTO and normal objects and we must keep the
2884 first match, be it IR or real. */
2885 if (sec->owner->lto_output
2886 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2887 {
2888 l->sec = sec;
2889 return FALSE;
2890 }
2891 break;
2892
2893 case SEC_LINK_DUPLICATES_ONE_ONLY:
2894 info->callbacks->einfo
2895 (_("%B: ignoring duplicate section `%A'\n"),
2896 sec->owner, sec);
2897 break;
2898
2899 case SEC_LINK_DUPLICATES_SAME_SIZE:
2900 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2901 ;
2902 else if (sec->size != l->sec->size)
2903 info->callbacks->einfo
2904 (_("%B: duplicate section `%A' has different size\n"),
2905 sec->owner, sec);
2906 break;
2907
2908 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2909 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2910 ;
2911 else if (sec->size != l->sec->size)
2912 info->callbacks->einfo
2913 (_("%B: duplicate section `%A' has different size\n"),
2914 sec->owner, sec);
2915 else if (sec->size != 0)
2916 {
2917 bfd_byte *sec_contents, *l_sec_contents = NULL;
2918
2919 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2920 info->callbacks->einfo
2921 (_("%B: could not read contents of section `%A'\n"),
2922 sec->owner, sec);
2923 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2924 &l_sec_contents))
2925 info->callbacks->einfo
2926 (_("%B: could not read contents of section `%A'\n"),
2927 l->sec->owner, l->sec);
2928 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2929 info->callbacks->einfo
2930 (_("%B: duplicate section `%A' has different contents\n"),
2931 sec->owner, sec);
2932
2933 if (sec_contents)
2934 free (sec_contents);
2935 if (l_sec_contents)
2936 free (l_sec_contents);
2937 }
2938 break;
2939 }
2940
2941 /* Set the output_section field so that lang_add_section
2942 does not create a lang_input_section structure for this
2943 section. Since there might be a symbol in the section
2944 being discarded, we must retain a pointer to the section
2945 which we are really going to use. */
2946 sec->output_section = bfd_abs_section_ptr;
2947 sec->kept_section = l->sec;
2948 return TRUE;
2949 }
2950
2951 /* This is used on non-ELF inputs. */
2952
2953 bfd_boolean
_bfd_generic_section_already_linked(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,struct bfd_link_info * info)2954 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2955 asection *sec,
2956 struct bfd_link_info *info)
2957 {
2958 const char *name;
2959 struct bfd_section_already_linked *l;
2960 struct bfd_section_already_linked_hash_entry *already_linked_list;
2961
2962 if ((sec->flags & SEC_LINK_ONCE) == 0)
2963 return FALSE;
2964
2965 /* The generic linker doesn't handle section groups. */
2966 if ((sec->flags & SEC_GROUP) != 0)
2967 return FALSE;
2968
2969 /* FIXME: When doing a relocatable link, we may have trouble
2970 copying relocations in other sections that refer to local symbols
2971 in the section being discarded. Those relocations will have to
2972 be converted somehow; as of this writing I'm not sure that any of
2973 the backends handle that correctly.
2974
2975 It is tempting to instead not discard link once sections when
2976 doing a relocatable link (technically, they should be discarded
2977 whenever we are building constructors). However, that fails,
2978 because the linker winds up combining all the link once sections
2979 into a single large link once section, which defeats the purpose
2980 of having link once sections in the first place. */
2981
2982 name = bfd_get_section_name (abfd, sec);
2983
2984 already_linked_list = bfd_section_already_linked_table_lookup (name);
2985
2986 l = already_linked_list->entry;
2987 if (l != NULL)
2988 {
2989 /* The section has already been linked. See if we should
2990 issue a warning. */
2991 return _bfd_handle_already_linked (sec, l, info);
2992 }
2993
2994 /* This is the first section with this name. Record it. */
2995 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2996 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2997 return FALSE;
2998 }
2999
3000 /* Choose a neighbouring section to S in OBFD that will be output, or
3001 the absolute section if ADDR is out of bounds of the neighbours. */
3002
3003 asection *
_bfd_nearby_section(bfd * obfd,asection * s,bfd_vma addr)3004 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3005 {
3006 asection *next, *prev, *best;
3007
3008 /* Find preceding kept section. */
3009 for (prev = s->prev; prev != NULL; prev = prev->prev)
3010 if ((prev->flags & SEC_EXCLUDE) == 0
3011 && !bfd_section_removed_from_list (obfd, prev))
3012 break;
3013
3014 /* Find following kept section. Start at prev->next because
3015 other sections may have been added after S was removed. */
3016 if (s->prev != NULL)
3017 next = s->prev->next;
3018 else
3019 next = s->owner->sections;
3020 for (; next != NULL; next = next->next)
3021 if ((next->flags & SEC_EXCLUDE) == 0
3022 && !bfd_section_removed_from_list (obfd, next))
3023 break;
3024
3025 /* Choose better of two sections, based on flags. The idea
3026 is to choose a section that will be in the same segment
3027 as S would have been if it was kept. */
3028 best = next;
3029 if (prev == NULL)
3030 {
3031 if (next == NULL)
3032 best = bfd_abs_section_ptr;
3033 }
3034 else if (next == NULL)
3035 best = prev;
3036 else if (((prev->flags ^ next->flags)
3037 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3038 {
3039 if (((next->flags ^ s->flags)
3040 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3041 /* We prefer to choose a loaded section. Section S
3042 doesn't have SEC_LOAD set (it being excluded, that
3043 part of the flag processing didn't happen) so we
3044 can't compare that flag to those of NEXT and PREV. */
3045 || ((prev->flags & SEC_LOAD) != 0
3046 && (next->flags & SEC_LOAD) == 0))
3047 best = prev;
3048 }
3049 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3050 {
3051 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3052 best = prev;
3053 }
3054 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3055 {
3056 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3057 best = prev;
3058 }
3059 else
3060 {
3061 /* Flags we care about are the same. Prefer the following
3062 section if that will result in a positive valued sym. */
3063 if (addr < next->vma)
3064 best = prev;
3065 }
3066
3067 return best;
3068 }
3069
3070 /* Convert symbols in excluded output sections to use a kept section. */
3071
3072 static bfd_boolean
fix_syms(struct bfd_link_hash_entry * h,void * data)3073 fix_syms (struct bfd_link_hash_entry *h, void *data)
3074 {
3075 bfd *obfd = (bfd *) data;
3076
3077 if (h->type == bfd_link_hash_defined
3078 || h->type == bfd_link_hash_defweak)
3079 {
3080 asection *s = h->u.def.section;
3081 if (s != NULL
3082 && s->output_section != NULL
3083 && (s->output_section->flags & SEC_EXCLUDE) != 0
3084 && bfd_section_removed_from_list (obfd, s->output_section))
3085 {
3086 asection *op;
3087
3088 h->u.def.value += s->output_offset + s->output_section->vma;
3089 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3090 h->u.def.value -= op->vma;
3091 h->u.def.section = op;
3092 }
3093 }
3094
3095 return TRUE;
3096 }
3097
3098 void
_bfd_fix_excluded_sec_syms(bfd * obfd,struct bfd_link_info * info)3099 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3100 {
3101 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3102 }
3103
3104 /*
3105 FUNCTION
3106 bfd_generic_define_common_symbol
3107
3108 SYNOPSIS
3109 bfd_boolean bfd_generic_define_common_symbol
3110 (bfd *output_bfd, struct bfd_link_info *info,
3111 struct bfd_link_hash_entry *h);
3112
3113 DESCRIPTION
3114 Convert common symbol @var{h} into a defined symbol.
3115 Return TRUE on success and FALSE on failure.
3116
3117 .#define bfd_define_common_symbol(output_bfd, info, h) \
3118 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3119 .
3120 */
3121
3122 bfd_boolean
bfd_generic_define_common_symbol(bfd * output_bfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct bfd_link_hash_entry * h)3123 bfd_generic_define_common_symbol (bfd *output_bfd,
3124 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3125 struct bfd_link_hash_entry *h)
3126 {
3127 unsigned int power_of_two;
3128 bfd_vma alignment, size;
3129 asection *section;
3130
3131 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3132
3133 size = h->u.c.size;
3134 power_of_two = h->u.c.p->alignment_power;
3135 section = h->u.c.p->section;
3136
3137 /* Increase the size of the section to align the common symbol.
3138 The alignment must be a power of two. */
3139 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3140 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3141 section->size += alignment - 1;
3142 section->size &= -alignment;
3143
3144 /* Adjust the section's overall alignment if necessary. */
3145 if (power_of_two > section->alignment_power)
3146 section->alignment_power = power_of_two;
3147
3148 /* Change the symbol from common to defined. */
3149 h->type = bfd_link_hash_defined;
3150 h->u.def.section = section;
3151 h->u.def.value = section->size;
3152
3153 /* Increase the size of the section. */
3154 section->size += size;
3155
3156 /* Make sure the section is allocated in memory, and make sure that
3157 it is no longer a common section. */
3158 section->flags |= SEC_ALLOC;
3159 section->flags &= ~SEC_IS_COMMON;
3160 return TRUE;
3161 }
3162
3163 /*
3164 FUNCTION
3165 bfd_find_version_for_sym
3166
3167 SYNOPSIS
3168 struct bfd_elf_version_tree * bfd_find_version_for_sym
3169 (struct bfd_elf_version_tree *verdefs,
3170 const char *sym_name, bfd_boolean *hide);
3171
3172 DESCRIPTION
3173 Search an elf version script tree for symbol versioning
3174 info and export / don't-export status for a given symbol.
3175 Return non-NULL on success and NULL on failure; also sets
3176 the output @samp{hide} boolean parameter.
3177
3178 */
3179
3180 struct bfd_elf_version_tree *
bfd_find_version_for_sym(struct bfd_elf_version_tree * verdefs,const char * sym_name,bfd_boolean * hide)3181 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3182 const char *sym_name,
3183 bfd_boolean *hide)
3184 {
3185 struct bfd_elf_version_tree *t;
3186 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3187 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3188
3189 local_ver = NULL;
3190 global_ver = NULL;
3191 star_local_ver = NULL;
3192 star_global_ver = NULL;
3193 exist_ver = NULL;
3194 for (t = verdefs; t != NULL; t = t->next)
3195 {
3196 if (t->globals.list != NULL)
3197 {
3198 struct bfd_elf_version_expr *d = NULL;
3199
3200 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3201 {
3202 if (d->literal || strcmp (d->pattern, "*") != 0)
3203 global_ver = t;
3204 else
3205 star_global_ver = t;
3206 if (d->symver)
3207 exist_ver = t;
3208 d->script = 1;
3209 /* If the match is a wildcard pattern, keep looking for
3210 a more explicit, perhaps even local, match. */
3211 if (d->literal)
3212 break;
3213 }
3214
3215 if (d != NULL)
3216 break;
3217 }
3218
3219 if (t->locals.list != NULL)
3220 {
3221 struct bfd_elf_version_expr *d = NULL;
3222
3223 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3224 {
3225 if (d->literal || strcmp (d->pattern, "*") != 0)
3226 local_ver = t;
3227 else
3228 star_local_ver = t;
3229 /* If the match is a wildcard pattern, keep looking for
3230 a more explicit, perhaps even global, match. */
3231 if (d->literal)
3232 {
3233 /* An exact match overrides a global wildcard. */
3234 global_ver = NULL;
3235 star_global_ver = NULL;
3236 break;
3237 }
3238 }
3239
3240 if (d != NULL)
3241 break;
3242 }
3243 }
3244
3245 if (global_ver == NULL && local_ver == NULL)
3246 global_ver = star_global_ver;
3247
3248 if (global_ver != NULL)
3249 {
3250 /* If we already have a versioned symbol that matches the
3251 node for this symbol, then we don't want to create a
3252 duplicate from the unversioned symbol. Instead hide the
3253 unversioned symbol. */
3254 *hide = exist_ver == global_ver;
3255 return global_ver;
3256 }
3257
3258 if (local_ver == NULL)
3259 local_ver = star_local_ver;
3260
3261 if (local_ver != NULL)
3262 {
3263 *hide = TRUE;
3264 return local_ver;
3265 }
3266
3267 return NULL;
3268 }
3269
3270 /*
3271 FUNCTION
3272 bfd_hide_sym_by_version
3273
3274 SYNOPSIS
3275 bfd_boolean bfd_hide_sym_by_version
3276 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3277
3278 DESCRIPTION
3279 Search an elf version script tree for symbol versioning
3280 info for a given symbol. Return TRUE if the symbol is hidden.
3281
3282 */
3283
3284 bfd_boolean
bfd_hide_sym_by_version(struct bfd_elf_version_tree * verdefs,const char * sym_name)3285 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3286 const char *sym_name)
3287 {
3288 bfd_boolean hidden = FALSE;
3289 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3290 return hidden;
3291 }
3292
3293 /*
3294 FUNCTION
3295 bfd_link_check_relocs
3296
3297 SYNOPSIS
3298 bfd_boolean bfd_link_check_relocs
3299 (bfd *abfd, struct bfd_link_info *info);
3300
3301 DESCRIPTION
3302 Checks the relocs in ABFD for validity.
3303 Does not execute the relocs.
3304 Return TRUE if everything is OK, FALSE otherwise.
3305 This is the external entry point to this code.
3306 */
3307
3308 bfd_boolean
bfd_link_check_relocs(bfd * abfd,struct bfd_link_info * info)3309 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3310 {
3311 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3312 }
3313
3314 /*
3315 FUNCTION
3316 _bfd_generic_link_check_relocs
3317
3318 SYNOPSIS
3319 bfd_boolean _bfd_generic_link_check_relocs
3320 (bfd *abfd, struct bfd_link_info *info);
3321
3322 DESCRIPTION
3323 Stub function for targets that do not implement reloc checking.
3324 Return TRUE.
3325 This is an internal function. It should not be called from
3326 outside the BFD library.
3327 */
3328
3329 bfd_boolean
_bfd_generic_link_check_relocs(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED)3330 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3331 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3332 {
3333 return TRUE;
3334 }
3335