1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  **************************************************************************/
7 
8 
9 /**
10  * Code to implement GL_OES_query_matrix.  See the spec at:
11  * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12  */
13 
14 
15 #include <stdlib.h>
16 #include "c99_math.h"
17 #include "glheader.h"
18 #include "querymatrix.h"
19 #include "main/get.h"
20 
21 
22 /**
23  * This is from the GL_OES_query_matrix extension specification:
24  *
25  *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
26  *                                GLint   exponent[16] )
27  *  mantissa[16] contains the contents of the current matrix in GLfixed
28  *  format.  exponent[16] contains the unbiased exponents applied to the
29  *  matrix components, so that the internal representation of component i
30  *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
31  *  word which is zero if all the components are valid. If
32  *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
33  *  The implementations are not required to keep track of overflows.  In
34  *  that case, the invalid bits are never set.
35  */
36 
37 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
38 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
39 
40 
41 GLbitfield GLAPIENTRY
_mesa_QueryMatrixxOES(GLfixed mantissa[16],GLint exponent[16])42 _mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
43 {
44    GLfloat matrix[16];
45    GLint tmp;
46    GLenum currentMode = GL_FALSE;
47    GLenum desiredMatrix = GL_FALSE;
48    /* The bitfield returns 1 for each component that is invalid (i.e.
49     * NaN or Inf).  In case of error, everything is invalid.
50     */
51    GLbitfield rv;
52    unsigned i, bit;
53 
54    /* This data structure defines the mapping between the current matrix
55     * mode and the desired matrix identifier.
56     */
57    static const struct {
58       GLenum currentMode;
59       GLenum desiredMatrix;
60    } modes[] = {
61       {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
62       {GL_PROJECTION, GL_PROJECTION_MATRIX},
63       {GL_TEXTURE, GL_TEXTURE_MATRIX},
64    };
65 
66    /* Call Mesa to get the current matrix in floating-point form.  First,
67     * we have to figure out what the current matrix mode is.
68     */
69    _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
70    currentMode = (GLenum) tmp;
71 
72    /* The mode is either GL_FALSE, if for some reason we failed to query
73     * the mode, or a given mode from the above table.  Search for the
74     * returned mode to get the desired matrix; if we don't find it,
75     * we can return immediately, as _mesa_GetInteger() will have
76     * logged the necessary error already.
77     */
78    for (i = 0; i < ARRAY_SIZE(modes); i++) {
79       if (modes[i].currentMode == currentMode) {
80          desiredMatrix = modes[i].desiredMatrix;
81          break;
82       }
83    }
84    if (desiredMatrix == GL_FALSE) {
85       /* Early error means all values are invalid. */
86       return 0xffff;
87    }
88 
89    /* Now pull the matrix itself. */
90    _mesa_GetFloatv(desiredMatrix, matrix);
91 
92    rv = 0;
93    for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
94       float normalizedFraction;
95       int exp;
96 
97       switch (fpclassify(matrix[i])) {
98       case FP_SUBNORMAL:
99       case FP_NORMAL:
100       case FP_ZERO:
101          /* A "subnormal" or denormalized number is too small to be
102           * represented in normal format; but despite that it's a
103           * valid floating point number.  FP_ZERO and FP_NORMAL
104           * are both valid as well.  We should be fine treating
105           * these three cases as legitimate floating-point numbers.
106           */
107          normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
108          mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
109          exponent[i] = (GLint) exp;
110          break;
111 
112       case FP_NAN:
113          /* If the entry is not-a-number or an infinity, then the
114           * matrix component is invalid.  The invalid flag for
115           * the component is already set; might as well set the
116           * other return values to known values.  We'll set
117           * distinct values so that a savvy end user could determine
118           * whether the matrix component was a NaN or an infinity,
119           * but this is more useful for debugging than anything else
120           * since the standard doesn't specify any such magic
121           * values to return.
122           */
123          mantissa[i] = INT_TO_FIXED(0);
124          exponent[i] = (GLint) 0;
125          rv |= bit;
126          break;
127 
128       case FP_INFINITE:
129          /* Return +/- 1 based on whether it's a positive or
130           * negative infinity.
131           */
132          if (matrix[i] > 0) {
133             mantissa[i] = INT_TO_FIXED(1);
134          }
135          else {
136             mantissa[i] = -INT_TO_FIXED(1);
137          }
138          exponent[i] = (GLint) 0;
139          rv |= bit;
140          break;
141 
142       default:
143          /* We should never get here; but here's a catching case
144           * in case fpclassify() is returnings something unexpected.
145           */
146          mantissa[i] = INT_TO_FIXED(2);
147          exponent[i] = (GLint) 0;
148          rv |= bit;
149          break;
150       }
151 
152    } /* for each component */
153 
154    /* All done */
155    return rv;
156 }
157