1 // symtab.cc -- the gold symbol table
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32 
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44 
45 namespace gold
46 {
47 
48 // Class Symbol.
49 
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52 
53 void
init_fields(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)54 Symbol::init_fields(const char* name, const char* version,
55 		    elfcpp::STT type, elfcpp::STB binding,
56 		    elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83   this->is_protected_ = false;
84 }
85 
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
88 
89 static std::string
demangle(const char * name)90 demangle(const char* name)
91 {
92   if (!parameters->options().do_demangle())
93     return name;
94 
95   // cplus_demangle allocates memory for the result it returns,
96   // and returns NULL if the name is already demangled.
97   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98   if (demangled_name == NULL)
99     return name;
100 
101   std::string retval(demangled_name);
102   free(demangled_name);
103   return retval;
104 }
105 
106 std::string
demangled_name() const107 Symbol::demangled_name() const
108 {
109   return demangle(this->name());
110 }
111 
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 
114 template<int size, bool big_endian>
115 void
init_base_object(const char * name,const char * version,Object * object,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary)116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117 			 const elfcpp::Sym<size, big_endian>& sym,
118 			 unsigned int st_shndx, bool is_ordinary)
119 {
120   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121 		    sym.get_st_visibility(), sym.get_st_nonvis());
122   this->u_.from_object.object = object;
123   this->u_.from_object.shndx = st_shndx;
124   this->is_ordinary_shndx_ = is_ordinary;
125   this->source_ = FROM_OBJECT;
126   this->in_reg_ = !object->is_dynamic();
127   this->in_dyn_ = object->is_dynamic();
128   this->in_real_elf_ = object->pluginobj() == NULL;
129 }
130 
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
133 
134 void
init_base_output_data(const char * name,const char * version,Output_data * od,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool is_predefined)135 Symbol::init_base_output_data(const char* name, const char* version,
136 			      Output_data* od, elfcpp::STT type,
137 			      elfcpp::STB binding, elfcpp::STV visibility,
138 			      unsigned char nonvis, bool offset_is_from_end,
139 			      bool is_predefined)
140 {
141   this->init_fields(name, version, type, binding, visibility, nonvis);
142   this->u_.in_output_data.output_data = od;
143   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144   this->source_ = IN_OUTPUT_DATA;
145   this->in_reg_ = true;
146   this->in_real_elf_ = true;
147   this->is_predefined_ = is_predefined;
148 }
149 
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
152 
153 void
init_base_output_segment(const char * name,const char * version,Output_segment * os,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Segment_offset_base offset_base,bool is_predefined)154 Symbol::init_base_output_segment(const char* name, const char* version,
155 				 Output_segment* os, elfcpp::STT type,
156 				 elfcpp::STB binding, elfcpp::STV visibility,
157 				 unsigned char nonvis,
158 				 Segment_offset_base offset_base,
159 				 bool is_predefined)
160 {
161   this->init_fields(name, version, type, binding, visibility, nonvis);
162   this->u_.in_output_segment.output_segment = os;
163   this->u_.in_output_segment.offset_base = offset_base;
164   this->source_ = IN_OUTPUT_SEGMENT;
165   this->in_reg_ = true;
166   this->in_real_elf_ = true;
167   this->is_predefined_ = is_predefined;
168 }
169 
170 // Initialize the fields in the base class Symbol for a symbol defined
171 // as a constant.
172 
173 void
init_base_constant(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool is_predefined)174 Symbol::init_base_constant(const char* name, const char* version,
175 			   elfcpp::STT type, elfcpp::STB binding,
176 			   elfcpp::STV visibility, unsigned char nonvis,
177 			   bool is_predefined)
178 {
179   this->init_fields(name, version, type, binding, visibility, nonvis);
180   this->source_ = IS_CONSTANT;
181   this->in_reg_ = true;
182   this->in_real_elf_ = true;
183   this->is_predefined_ = is_predefined;
184 }
185 
186 // Initialize the fields in the base class Symbol for an undefined
187 // symbol.
188 
189 void
init_base_undefined(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)190 Symbol::init_base_undefined(const char* name, const char* version,
191 			    elfcpp::STT type, elfcpp::STB binding,
192 			    elfcpp::STV visibility, unsigned char nonvis)
193 {
194   this->init_fields(name, version, type, binding, visibility, nonvis);
195   this->dynsym_index_ = -1U;
196   this->source_ = IS_UNDEFINED;
197   this->in_reg_ = true;
198   this->in_real_elf_ = true;
199 }
200 
201 // Allocate a common symbol in the base.
202 
203 void
allocate_base_common(Output_data * od)204 Symbol::allocate_base_common(Output_data* od)
205 {
206   gold_assert(this->is_common());
207   this->source_ = IN_OUTPUT_DATA;
208   this->u_.in_output_data.output_data = od;
209   this->u_.in_output_data.offset_is_from_end = false;
210 }
211 
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213 
214 template<int size>
215 template<bool big_endian>
216 void
init_object(const char * name,const char * version,Object * object,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary)217 Sized_symbol<size>::init_object(const char* name, const char* version,
218 				Object* object,
219 				const elfcpp::Sym<size, big_endian>& sym,
220 				unsigned int st_shndx, bool is_ordinary)
221 {
222   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223   this->value_ = sym.get_st_value();
224   this->symsize_ = sym.get_st_size();
225 }
226 
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_data.
229 
230 template<int size>
231 void
init_output_data(const char * name,const char * version,Output_data * od,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool is_predefined)232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233 				     Output_data* od, Value_type value,
234 				     Size_type symsize, elfcpp::STT type,
235 				     elfcpp::STB binding,
236 				     elfcpp::STV visibility,
237 				     unsigned char nonvis,
238 				     bool offset_is_from_end,
239 				     bool is_predefined)
240 {
241   this->init_base_output_data(name, version, od, type, binding, visibility,
242 			      nonvis, offset_is_from_end, is_predefined);
243   this->value_ = value;
244   this->symsize_ = symsize;
245 }
246 
247 // Initialize the fields in Sized_symbol for a symbol defined in an
248 // Output_segment.
249 
250 template<int size>
251 void
init_output_segment(const char * name,const char * version,Output_segment * os,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Segment_offset_base offset_base,bool is_predefined)252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253 					Output_segment* os, Value_type value,
254 					Size_type symsize, elfcpp::STT type,
255 					elfcpp::STB binding,
256 					elfcpp::STV visibility,
257 					unsigned char nonvis,
258 					Segment_offset_base offset_base,
259 					bool is_predefined)
260 {
261   this->init_base_output_segment(name, version, os, type, binding, visibility,
262 				 nonvis, offset_base, is_predefined);
263   this->value_ = value;
264   this->symsize_ = symsize;
265 }
266 
267 // Initialize the fields in Sized_symbol for a symbol defined as a
268 // constant.
269 
270 template<int size>
271 void
init_constant(const char * name,const char * version,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool is_predefined)272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273 				  Value_type value, Size_type symsize,
274 				  elfcpp::STT type, elfcpp::STB binding,
275 				  elfcpp::STV visibility, unsigned char nonvis,
276 				  bool is_predefined)
277 {
278   this->init_base_constant(name, version, type, binding, visibility, nonvis,
279 			   is_predefined);
280   this->value_ = value;
281   this->symsize_ = symsize;
282 }
283 
284 // Initialize the fields in Sized_symbol for an undefined symbol.
285 
286 template<int size>
287 void
init_undefined(const char * name,const char * version,Value_type value,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289 				   Value_type value, elfcpp::STT type,
290 				   elfcpp::STB binding, elfcpp::STV visibility,
291 				   unsigned char nonvis)
292 {
293   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294   this->value_ = value;
295   this->symsize_ = 0;
296 }
297 
298 // Return an allocated string holding the symbol's name as
299 // name@version.  This is used for relocatable links.
300 
301 std::string
versioned_name() const302 Symbol::versioned_name() const
303 {
304   gold_assert(this->version_ != NULL);
305   std::string ret = this->name_;
306   ret.push_back('@');
307   if (this->is_def_)
308     ret.push_back('@');
309   ret += this->version_;
310   return ret;
311 }
312 
313 // Return true if SHNDX represents a common symbol.
314 
315 bool
is_common_shndx(unsigned int shndx)316 Symbol::is_common_shndx(unsigned int shndx)
317 {
318   return (shndx == elfcpp::SHN_COMMON
319 	  || shndx == parameters->target().small_common_shndx()
320 	  || shndx == parameters->target().large_common_shndx());
321 }
322 
323 // Allocate a common symbol.
324 
325 template<int size>
326 void
allocate_common(Output_data * od,Value_type value)327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328 {
329   this->allocate_base_common(od);
330   this->value_ = value;
331 }
332 
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
335 
336 // Return true if this symbol should be added to the dynamic symbol
337 // table.
338 
339 bool
should_add_dynsym_entry(Symbol_table * symtab) const340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341 {
342   // If the symbol is only present on plugin files, the plugin decided we
343   // don't need it.
344   if (!this->in_real_elf())
345     return false;
346 
347   // If the symbol is used by a dynamic relocation, we need to add it.
348   if (this->needs_dynsym_entry())
349     return true;
350 
351   // If this symbol's section is not added, the symbol need not be added.
352   // The section may have been GCed.  Note that export_dynamic is being
353   // overridden here.  This should not be done for shared objects.
354   if (parameters->options().gc_sections()
355       && !parameters->options().shared()
356       && this->source() == Symbol::FROM_OBJECT
357       && !this->object()->is_dynamic())
358     {
359       Relobj* relobj = static_cast<Relobj*>(this->object());
360       bool is_ordinary;
361       unsigned int shndx = this->shndx(&is_ordinary);
362       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363           && !relobj->is_section_included(shndx)
364           && !symtab->is_section_folded(relobj, shndx))
365         return false;
366     }
367 
368   // If the symbol was forced dynamic in a --dynamic-list file
369   // or an --export-dynamic-symbol option, add it.
370   if (!this->is_from_dynobj()
371       && (parameters->options().in_dynamic_list(this->name())
372 	  || parameters->options().is_export_dynamic_symbol(this->name())))
373     {
374       if (!this->is_forced_local())
375         return true;
376       gold_warning(_("Cannot export local symbol '%s'"),
377 		   this->demangled_name().c_str());
378       return false;
379     }
380 
381   // If the symbol was forced local in a version script, do not add it.
382   if (this->is_forced_local())
383     return false;
384 
385   // If dynamic-list-data was specified, add any STT_OBJECT.
386   if (parameters->options().dynamic_list_data()
387       && !this->is_from_dynobj()
388       && this->type() == elfcpp::STT_OBJECT)
389     return true;
390 
391   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393   if ((parameters->options().dynamic_list_cpp_new()
394        || parameters->options().dynamic_list_cpp_typeinfo())
395       && !this->is_from_dynobj())
396     {
397       // TODO(csilvers): We could probably figure out if we're an operator
398       //                 new/delete or typeinfo without the need to demangle.
399       char* demangled_name = cplus_demangle(this->name(),
400                                             DMGL_ANSI | DMGL_PARAMS);
401       if (demangled_name == NULL)
402         {
403           // Not a C++ symbol, so it can't satisfy these flags
404         }
405       else if (parameters->options().dynamic_list_cpp_new()
406                && (strprefix(demangled_name, "operator new")
407                    || strprefix(demangled_name, "operator delete")))
408         {
409           free(demangled_name);
410           return true;
411         }
412       else if (parameters->options().dynamic_list_cpp_typeinfo()
413                && (strprefix(demangled_name, "typeinfo name for")
414                    || strprefix(demangled_name, "typeinfo for")))
415         {
416           free(demangled_name);
417           return true;
418         }
419       else
420         free(demangled_name);
421     }
422 
423   // If exporting all symbols or building a shared library,
424   // or the symbol should be globally unique (GNU_UNIQUE),
425   // and the symbol is defined in a regular object and is
426   // externally visible, we need to add it.
427   if ((parameters->options().export_dynamic()
428        || parameters->options().shared()
429        || (parameters->options().gnu_unique()
430            && this->binding() == elfcpp::STB_GNU_UNIQUE))
431       && !this->is_from_dynobj()
432       && !this->is_undefined()
433       && this->is_externally_visible())
434     return true;
435 
436   return false;
437 }
438 
439 // Return true if the final value of this symbol is known at link
440 // time.
441 
442 bool
final_value_is_known() const443 Symbol::final_value_is_known() const
444 {
445   // If we are not generating an executable, then no final values are
446   // known, since they will change at runtime, with the exception of
447   // TLS symbols in a position-independent executable.
448   if ((parameters->options().output_is_position_independent()
449        || parameters->options().relocatable())
450       && !(this->type() == elfcpp::STT_TLS
451            && parameters->options().pie()))
452     return false;
453 
454   // If the symbol is not from an object file, and is not undefined,
455   // then it is defined, and known.
456   if (this->source_ != FROM_OBJECT)
457     {
458       if (this->source_ != IS_UNDEFINED)
459 	return true;
460     }
461   else
462     {
463       // If the symbol is from a dynamic object, then the final value
464       // is not known.
465       if (this->object()->is_dynamic())
466 	return false;
467 
468       // If the symbol is not undefined (it is defined or common),
469       // then the final value is known.
470       if (!this->is_undefined())
471 	return true;
472     }
473 
474   // If the symbol is undefined, then whether the final value is known
475   // depends on whether we are doing a static link.  If we are doing a
476   // dynamic link, then the final value could be filled in at runtime.
477   // This could reasonably be the case for a weak undefined symbol.
478   return parameters->doing_static_link();
479 }
480 
481 // Return the output section where this symbol is defined.
482 
483 Output_section*
output_section() const484 Symbol::output_section() const
485 {
486   switch (this->source_)
487     {
488     case FROM_OBJECT:
489       {
490 	unsigned int shndx = this->u_.from_object.shndx;
491 	if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492 	  {
493 	    gold_assert(!this->u_.from_object.object->is_dynamic());
494 	    gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495 	    Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496 	    return relobj->output_section(shndx);
497 	  }
498 	return NULL;
499       }
500 
501     case IN_OUTPUT_DATA:
502       return this->u_.in_output_data.output_data->output_section();
503 
504     case IN_OUTPUT_SEGMENT:
505     case IS_CONSTANT:
506     case IS_UNDEFINED:
507       return NULL;
508 
509     default:
510       gold_unreachable();
511     }
512 }
513 
514 // Set the symbol's output section.  This is used for symbols defined
515 // in scripts.  This should only be called after the symbol table has
516 // been finalized.
517 
518 void
set_output_section(Output_section * os)519 Symbol::set_output_section(Output_section* os)
520 {
521   switch (this->source_)
522     {
523     case FROM_OBJECT:
524     case IN_OUTPUT_DATA:
525       gold_assert(this->output_section() == os);
526       break;
527     case IS_CONSTANT:
528       this->source_ = IN_OUTPUT_DATA;
529       this->u_.in_output_data.output_data = os;
530       this->u_.in_output_data.offset_is_from_end = false;
531       break;
532     case IN_OUTPUT_SEGMENT:
533     case IS_UNDEFINED:
534     default:
535       gold_unreachable();
536     }
537 }
538 
539 // Set the symbol's output segment.  This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
542 
543 void
set_output_segment(Output_segment * os,Segment_offset_base base)544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545 {
546   gold_assert(this->is_predefined_);
547   this->source_ = IN_OUTPUT_SEGMENT;
548   this->u_.in_output_segment.output_segment = os;
549   this->u_.in_output_segment.offset_base = base;
550 }
551 
552 // Set the symbol to undefined.  This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
555 
556 void
set_undefined()557 Symbol::set_undefined()
558 {
559   this->source_ = IS_UNDEFINED;
560   this->is_predefined_ = false;
561 }
562 
563 // Class Symbol_table.
564 
Symbol_table(unsigned int count,const Version_script_info & version_script)565 Symbol_table::Symbol_table(unsigned int count,
566                            const Version_script_info& version_script)
567   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568     forwarders_(), commons_(), tls_commons_(), small_commons_(),
569     large_commons_(), forced_locals_(), warnings_(),
570     version_script_(version_script), gc_(NULL), icf_(NULL),
571     target_symbols_()
572 {
573   namepool_.reserve(count);
574 }
575 
~Symbol_table()576 Symbol_table::~Symbol_table()
577 {
578 }
579 
580 // The symbol table key equality function.  This is called with
581 // Stringpool keys.
582 
583 inline bool
operator ()(const Symbol_table_key & k1,const Symbol_table_key & k2) const584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585 					  const Symbol_table_key& k2) const
586 {
587   return k1.first == k2.first && k1.second == k2.second;
588 }
589 
590 bool
is_section_folded(Relobj * obj,unsigned int shndx) const591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592 {
593   return (parameters->options().icf_enabled()
594           && this->icf_->is_section_folded(obj, shndx));
595 }
596 
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
599 
600 void
gc_mark_undef_symbols(Layout * layout)601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
602 {
603   for (options::String_set::const_iterator p =
604 	 parameters->options().undefined_begin();
605        p != parameters->options().undefined_end();
606        ++p)
607     {
608       const char* name = p->c_str();
609       Symbol* sym = this->lookup(name);
610       gold_assert(sym != NULL);
611       if (sym->source() == Symbol::FROM_OBJECT
612           && !sym->object()->is_dynamic())
613         {
614 	  this->gc_mark_symbol(sym);
615         }
616     }
617 
618   for (options::String_set::const_iterator p =
619 	 parameters->options().export_dynamic_symbol_begin();
620        p != parameters->options().export_dynamic_symbol_end();
621        ++p)
622     {
623       const char* name = p->c_str();
624       Symbol* sym = this->lookup(name);
625       // It's not an error if a symbol named by --export-dynamic-symbol
626       // is undefined.
627       if (sym != NULL
628 	  && sym->source() == Symbol::FROM_OBJECT
629           && !sym->object()->is_dynamic())
630         {
631 	  this->gc_mark_symbol(sym);
632         }
633     }
634 
635   for (Script_options::referenced_const_iterator p =
636 	 layout->script_options()->referenced_begin();
637        p != layout->script_options()->referenced_end();
638        ++p)
639     {
640       Symbol* sym = this->lookup(p->c_str());
641       gold_assert(sym != NULL);
642       if (sym->source() == Symbol::FROM_OBJECT
643 	  && !sym->object()->is_dynamic())
644 	{
645 	  this->gc_mark_symbol(sym);
646 	}
647     }
648 }
649 
650 void
gc_mark_symbol(Symbol * sym)651 Symbol_table::gc_mark_symbol(Symbol* sym)
652 {
653   // Add the object and section to the work list.
654   bool is_ordinary;
655   unsigned int shndx = sym->shndx(&is_ordinary);
656   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657     {
658       gold_assert(this->gc_!= NULL);
659       Relobj* relobj = static_cast<Relobj*>(sym->object());
660       this->gc_->worklist().push_back(Section_id(relobj, shndx));
661     }
662   parameters->target().gc_mark_symbol(this, sym);
663 }
664 
665 // When doing garbage collection, keep symbols that have been seen in
666 // dynamic objects.
667 inline void
gc_mark_dyn_syms(Symbol * sym)668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669 {
670   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671       && !sym->object()->is_dynamic())
672     this->gc_mark_symbol(sym);
673 }
674 
675 // Make TO a symbol which forwards to FROM.
676 
677 void
make_forwarder(Symbol * from,Symbol * to)678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679 {
680   gold_assert(from != to);
681   gold_assert(!from->is_forwarder() && !to->is_forwarder());
682   this->forwarders_[from] = to;
683   from->set_forwarder();
684 }
685 
686 // Resolve the forwards from FROM, returning the real symbol.
687 
688 Symbol*
resolve_forwards(const Symbol * from) const689 Symbol_table::resolve_forwards(const Symbol* from) const
690 {
691   gold_assert(from->is_forwarder());
692   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693     this->forwarders_.find(from);
694   gold_assert(p != this->forwarders_.end());
695   return p->second;
696 }
697 
698 // Look up a symbol by name.
699 
700 Symbol*
lookup(const char * name,const char * version) const701 Symbol_table::lookup(const char* name, const char* version) const
702 {
703   Stringpool::Key name_key;
704   name = this->namepool_.find(name, &name_key);
705   if (name == NULL)
706     return NULL;
707 
708   Stringpool::Key version_key = 0;
709   if (version != NULL)
710     {
711       version = this->namepool_.find(version, &version_key);
712       if (version == NULL)
713 	return NULL;
714     }
715 
716   Symbol_table_key key(name_key, version_key);
717   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718   if (p == this->table_.end())
719     return NULL;
720   return p->second;
721 }
722 
723 // Resolve a Symbol with another Symbol.  This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version.  Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
728 
729 template<int size, bool big_endian>
730 void
resolve(Sized_symbol<size> * to,const Sized_symbol<size> * from)731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732 {
733   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734   elfcpp::Sym_write<size, big_endian> esym(buf);
735   // We don't bother to set the st_name or the st_shndx field.
736   esym.put_st_value(from->value());
737   esym.put_st_size(from->symsize());
738   esym.put_st_info(from->binding(), from->type());
739   esym.put_st_other(from->visibility(), from->nonvis());
740   bool is_ordinary;
741   unsigned int shndx = from->shndx(&is_ordinary);
742   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743 		from->version(), true);
744   if (from->in_reg())
745     to->set_in_reg();
746   if (from->in_dyn())
747     to->set_in_dyn();
748   if (parameters->options().gc_sections())
749     this->gc_mark_dyn_syms(to);
750 }
751 
752 // Record that a symbol is forced to be local by a version script or
753 // by visibility.
754 
755 void
force_local(Symbol * sym)756 Symbol_table::force_local(Symbol* sym)
757 {
758   if (!sym->is_defined() && !sym->is_common())
759     return;
760   if (sym->is_forced_local())
761     {
762       // We already got this one.
763       return;
764     }
765   sym->set_is_forced_local();
766   this->forced_locals_.push_back(sym);
767 }
768 
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
770 // is only called for undefined symbols, when at least one --wrap
771 // option was used.
772 
773 const char*
wrap_symbol(const char * name,Stringpool::Key * name_key)774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775 {
776   // For some targets, we need to ignore a specific character when
777   // wrapping, and add it back later.
778   char prefix = '\0';
779   if (name[0] == parameters->target().wrap_char())
780     {
781       prefix = name[0];
782       ++name;
783     }
784 
785   if (parameters->options().is_wrap(name))
786     {
787       // Turn NAME into __wrap_NAME.
788       std::string s;
789       if (prefix != '\0')
790 	s += prefix;
791       s += "__wrap_";
792       s += name;
793 
794       // This will give us both the old and new name in NAMEPOOL_, but
795       // that is OK.  Only the versions we need will wind up in the
796       // real string table in the output file.
797       return this->namepool_.add(s.c_str(), true, name_key);
798     }
799 
800   const char* const real_prefix = "__real_";
801   const size_t real_prefix_length = strlen(real_prefix);
802   if (strncmp(name, real_prefix, real_prefix_length) == 0
803       && parameters->options().is_wrap(name + real_prefix_length))
804     {
805       // Turn __real_NAME into NAME.
806       std::string s;
807       if (prefix != '\0')
808 	s += prefix;
809       s += name + real_prefix_length;
810       return this->namepool_.add(s.c_str(), true, name_key);
811     }
812 
813   return name;
814 }
815 
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version.  SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
821 
822 template<int size, bool big_endian>
823 void
define_default_version(Sized_symbol<size> * sym,bool default_is_new,Symbol_table_type::iterator pdef)824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
825 				     bool default_is_new,
826 				     Symbol_table_type::iterator pdef)
827 {
828   if (default_is_new)
829     {
830       // This is the first time we have seen NAME/NULL.  Make
831       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832       // version.
833       pdef->second = sym;
834       sym->set_is_default();
835     }
836   else if (pdef->second == sym)
837     {
838       // NAME/NULL already points to NAME/VERSION.  Don't mark the
839       // symbol as the default if it is not already the default.
840     }
841   else
842     {
843       // This is the unfortunate case where we already have entries
844       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
845       // NAME/VERSION where VERSION is the default version.  We have
846       // already resolved this new symbol with the existing
847       // NAME/VERSION symbol.
848 
849       // It's possible that NAME/NULL and NAME/VERSION are both
850       // defined in regular objects.  This can only happen if one
851       // object file defines foo and another defines foo@@ver.  This
852       // is somewhat obscure, but we call it a multiple definition
853       // error.
854 
855       // It's possible that NAME/NULL actually has a version, in which
856       // case it won't be the same as VERSION.  This happens with
857       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
858       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
859       // then see an unadorned t2_2 in an object file and give it
860       // version VER1 from the version script.  This looks like a
861       // default definition for VER1, so it looks like we should merge
862       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
863       // not obvious that this is an error, either.  So we just punt.
864 
865       // If one of the symbols has non-default visibility, and the
866       // other is defined in a shared object, then they are different
867       // symbols.
868 
869       // If the two symbols are from different shared objects,
870       // they are different symbols.
871 
872       // Otherwise, we just resolve the symbols as though they were
873       // the same.
874 
875       if (pdef->second->version() != NULL)
876 	gold_assert(pdef->second->version() != sym->version());
877       else if (sym->visibility() != elfcpp::STV_DEFAULT
878 	       && pdef->second->is_from_dynobj())
879 	;
880       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881 	       && sym->is_from_dynobj())
882 	;
883       else if (pdef->second->is_from_dynobj()
884 	       && sym->is_from_dynobj()
885 	       && pdef->second->is_defined()
886 	       && pdef->second->object() != sym->object())
887         ;
888       else
889 	{
890 	  const Sized_symbol<size>* symdef;
891 	  symdef = this->get_sized_symbol<size>(pdef->second);
892 	  Symbol_table::resolve<size, big_endian>(sym, symdef);
893 	  this->make_forwarder(pdef->second, sym);
894 	  pdef->second = sym;
895 	  sym->set_is_default();
896 	}
897     }
898 }
899 
900 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
901 // name and VERSION is the version; both are canonicalized.  DEF is
902 // whether this is the default version.  ST_SHNDX is the symbol's
903 // section index; IS_ORDINARY is whether this is a normal section
904 // rather than a special code.
905 
906 // If IS_DEFAULT_VERSION is true, then this is the definition of a
907 // default version of a symbol.  That means that any lookup of
908 // NAME/NULL and any lookup of NAME/VERSION should always return the
909 // same symbol.  This is obvious for references, but in particular we
910 // want to do this for definitions: overriding NAME/NULL should also
911 // override NAME/VERSION.  If we don't do that, it would be very hard
912 // to override functions in a shared library which uses versioning.
913 
914 // We implement this by simply making both entries in the hash table
915 // point to the same Symbol structure.  That is easy enough if this is
916 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
917 // that we have seen both already, in which case they will both have
918 // independent entries in the symbol table.  We can't simply change
919 // the symbol table entry, because we have pointers to the entries
920 // attached to the object files.  So we mark the entry attached to the
921 // object file as a forwarder, and record it in the forwarders_ map.
922 // Note that entries in the hash table will never be marked as
923 // forwarders.
924 //
925 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
926 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
927 // for a special section code.  ST_SHNDX may be modified if the symbol
928 // is defined in a section being discarded.
929 
930 template<int size, bool big_endian>
931 Sized_symbol<size>*
add_from_object(Object * object,const char * name,Stringpool::Key name_key,const char * version,Stringpool::Key version_key,bool is_default_version,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx)932 Symbol_table::add_from_object(Object* object,
933 			      const char* name,
934 			      Stringpool::Key name_key,
935 			      const char* version,
936 			      Stringpool::Key version_key,
937 			      bool is_default_version,
938 			      const elfcpp::Sym<size, big_endian>& sym,
939 			      unsigned int st_shndx,
940 			      bool is_ordinary,
941 			      unsigned int orig_st_shndx)
942 {
943   // Print a message if this symbol is being traced.
944   if (parameters->options().is_trace_symbol(name))
945     {
946       if (orig_st_shndx == elfcpp::SHN_UNDEF)
947         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
948       else
949         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
950     }
951 
952   // For an undefined symbol, we may need to adjust the name using
953   // --wrap.
954   if (orig_st_shndx == elfcpp::SHN_UNDEF
955       && parameters->options().any_wrap())
956     {
957       const char* wrap_name = this->wrap_symbol(name, &name_key);
958       if (wrap_name != name)
959 	{
960 	  // If we see a reference to malloc with version GLIBC_2.0,
961 	  // and we turn it into a reference to __wrap_malloc, then we
962 	  // discard the version number.  Otherwise the user would be
963 	  // required to specify the correct version for
964 	  // __wrap_malloc.
965 	  version = NULL;
966 	  version_key = 0;
967 	  name = wrap_name;
968 	}
969     }
970 
971   Symbol* const snull = NULL;
972   std::pair<typename Symbol_table_type::iterator, bool> ins =
973     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
974 				       snull));
975 
976   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
977     std::make_pair(this->table_.end(), false);
978   if (is_default_version)
979     {
980       const Stringpool::Key vnull_key = 0;
981       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
982 								     vnull_key),
983 						      snull));
984     }
985 
986   // ins.first: an iterator, which is a pointer to a pair.
987   // ins.first->first: the key (a pair of name and version).
988   // ins.first->second: the value (Symbol*).
989   // ins.second: true if new entry was inserted, false if not.
990 
991   Sized_symbol<size>* ret;
992   bool was_undefined;
993   bool was_common;
994   if (!ins.second)
995     {
996       // We already have an entry for NAME/VERSION.
997       ret = this->get_sized_symbol<size>(ins.first->second);
998       gold_assert(ret != NULL);
999 
1000       was_undefined = ret->is_undefined();
1001       // Commons from plugins are just placeholders.
1002       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1003 
1004       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1005 		    version, is_default_version);
1006       if (parameters->options().gc_sections())
1007         this->gc_mark_dyn_syms(ret);
1008 
1009       if (is_default_version)
1010 	this->define_default_version<size, big_endian>(ret, insdefault.second,
1011 						       insdefault.first);
1012       else
1013 	{
1014 	  bool dummy;
1015 	  if (version != NULL
1016 	      && ret->source() == Symbol::FROM_OBJECT
1017 	      && ret->object() == object
1018 	      && is_ordinary
1019 	      && ret->shndx(&dummy) == st_shndx
1020 	      && ret->is_default())
1021 	    {
1022 	      // We have seen NAME/VERSION already, and marked it as the
1023 	      // default version, but now we see a definition for
1024 	      // NAME/VERSION that is not the default version. This can
1025 	      // happen when the assembler generates two symbols for
1026 	      // a symbol as a result of a ".symver foo,foo@VER"
1027 	      // directive. We see the first unversioned symbol and
1028 	      // we may mark it as the default version (from a
1029 	      // version script); then we see the second versioned
1030 	      // symbol and we need to override the first.
1031 	      // In any other case, the two symbols should have generated
1032 	      // a multiple definition error.
1033 	      // (See PR gold/18703.)
1034 	      ret->set_is_not_default();
1035 	      const Stringpool::Key vnull_key = 0;
1036 	      this->table_.erase(std::make_pair(name_key, vnull_key));
1037 	    }
1038 	}
1039     }
1040   else
1041     {
1042       // This is the first time we have seen NAME/VERSION.
1043       gold_assert(ins.first->second == NULL);
1044 
1045       if (is_default_version && !insdefault.second)
1046 	{
1047 	  // We already have an entry for NAME/NULL.  If we override
1048 	  // it, then change it to NAME/VERSION.
1049 	  ret = this->get_sized_symbol<size>(insdefault.first->second);
1050 
1051 	  was_undefined = ret->is_undefined();
1052 	  // Commons from plugins are just placeholders.
1053 	  was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1054 
1055 	  this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1056 			version, is_default_version);
1057           if (parameters->options().gc_sections())
1058             this->gc_mark_dyn_syms(ret);
1059 	  ins.first->second = ret;
1060 	}
1061       else
1062 	{
1063 	  was_undefined = false;
1064 	  was_common = false;
1065 
1066 	  Sized_target<size, big_endian>* target =
1067 	    parameters->sized_target<size, big_endian>();
1068 	  if (!target->has_make_symbol())
1069 	    ret = new Sized_symbol<size>();
1070 	  else
1071 	    {
1072 	      ret = target->make_symbol(name, sym.get_st_type(), object,
1073 					st_shndx, sym.get_st_value());
1074 	      if (ret == NULL)
1075 		{
1076 		  // This means that we don't want a symbol table
1077 		  // entry after all.
1078 		  if (!is_default_version)
1079 		    this->table_.erase(ins.first);
1080 		  else
1081 		    {
1082 		      this->table_.erase(insdefault.first);
1083 		      // Inserting INSDEFAULT invalidated INS.
1084 		      this->table_.erase(std::make_pair(name_key,
1085 							version_key));
1086 		    }
1087 		  return NULL;
1088 		}
1089 	    }
1090 
1091 	  ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1092 
1093 	  ins.first->second = ret;
1094 	  if (is_default_version)
1095 	    {
1096 	      // This is the first time we have seen NAME/NULL.  Point
1097 	      // it at the new entry for NAME/VERSION.
1098 	      gold_assert(insdefault.second);
1099 	      insdefault.first->second = ret;
1100 	    }
1101 	}
1102 
1103       if (is_default_version)
1104 	ret->set_is_default();
1105     }
1106 
1107   // Record every time we see a new undefined symbol, to speed up
1108   // archive groups.
1109   if (!was_undefined && ret->is_undefined())
1110     {
1111       ++this->saw_undefined_;
1112       if (parameters->options().has_plugins())
1113 	parameters->options().plugins()->new_undefined_symbol(ret);
1114     }
1115 
1116   // Keep track of common symbols, to speed up common symbol
1117   // allocation.  Don't record commons from plugin objects;
1118   // we need to wait until we see the real symbol in the
1119   // replacement file.
1120   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1121     {
1122       if (ret->type() == elfcpp::STT_TLS)
1123 	this->tls_commons_.push_back(ret);
1124       else if (!is_ordinary
1125 	       && st_shndx == parameters->target().small_common_shndx())
1126 	this->small_commons_.push_back(ret);
1127       else if (!is_ordinary
1128 	       && st_shndx == parameters->target().large_common_shndx())
1129 	this->large_commons_.push_back(ret);
1130       else
1131 	this->commons_.push_back(ret);
1132     }
1133 
1134   // If we're not doing a relocatable link, then any symbol with
1135   // hidden or internal visibility is local.
1136   if ((ret->visibility() == elfcpp::STV_HIDDEN
1137        || ret->visibility() == elfcpp::STV_INTERNAL)
1138       && (ret->binding() == elfcpp::STB_GLOBAL
1139 	  || ret->binding() == elfcpp::STB_GNU_UNIQUE
1140 	  || ret->binding() == elfcpp::STB_WEAK)
1141       && !parameters->options().relocatable())
1142     this->force_local(ret);
1143 
1144   return ret;
1145 }
1146 
1147 // Add all the symbols in a relocatable object to the hash table.
1148 
1149 template<int size, bool big_endian>
1150 void
add_from_relobj(Sized_relobj_file<size,big_endian> * relobj,const unsigned char * syms,size_t count,size_t symndx_offset,const char * sym_names,size_t sym_name_size,typename Sized_relobj_file<size,big_endian>::Symbols * sympointers,size_t * defined)1151 Symbol_table::add_from_relobj(
1152     Sized_relobj_file<size, big_endian>* relobj,
1153     const unsigned char* syms,
1154     size_t count,
1155     size_t symndx_offset,
1156     const char* sym_names,
1157     size_t sym_name_size,
1158     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1159     size_t* defined)
1160 {
1161   *defined = 0;
1162 
1163   gold_assert(size == parameters->target().get_size());
1164 
1165   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1166 
1167   const bool just_symbols = relobj->just_symbols();
1168 
1169   const unsigned char* p = syms;
1170   for (size_t i = 0; i < count; ++i, p += sym_size)
1171     {
1172       (*sympointers)[i] = NULL;
1173 
1174       elfcpp::Sym<size, big_endian> sym(p);
1175 
1176       unsigned int st_name = sym.get_st_name();
1177       if (st_name >= sym_name_size)
1178 	{
1179 	  relobj->error(_("bad global symbol name offset %u at %zu"),
1180 			st_name, i);
1181 	  continue;
1182 	}
1183 
1184       const char* name = sym_names + st_name;
1185 
1186       if (!parameters->options().relocatable()
1187 	  && strcmp (name, "__gnu_lto_slim") == 0)
1188         gold_info(_("%s: plugin needed to handle lto object"),
1189 		  relobj->name().c_str());
1190 
1191       bool is_ordinary;
1192       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1193 						       sym.get_st_shndx(),
1194 						       &is_ordinary);
1195       unsigned int orig_st_shndx = st_shndx;
1196       if (!is_ordinary)
1197 	orig_st_shndx = elfcpp::SHN_UNDEF;
1198 
1199       if (st_shndx != elfcpp::SHN_UNDEF)
1200 	++*defined;
1201 
1202       // A symbol defined in a section which we are not including must
1203       // be treated as an undefined symbol.
1204       bool is_defined_in_discarded_section = false;
1205       if (st_shndx != elfcpp::SHN_UNDEF
1206 	  && is_ordinary
1207 	  && !relobj->is_section_included(st_shndx)
1208           && !this->is_section_folded(relobj, st_shndx))
1209 	{
1210 	  st_shndx = elfcpp::SHN_UNDEF;
1211 	  is_defined_in_discarded_section = true;
1212 	}
1213 
1214       // In an object file, an '@' in the name separates the symbol
1215       // name from the version name.  If there are two '@' characters,
1216       // this is the default version.
1217       const char* ver = strchr(name, '@');
1218       Stringpool::Key ver_key = 0;
1219       int namelen = 0;
1220       // IS_DEFAULT_VERSION: is the version default?
1221       // IS_FORCED_LOCAL: is the symbol forced local?
1222       bool is_default_version = false;
1223       bool is_forced_local = false;
1224 
1225       // FIXME: For incremental links, we don't store version information,
1226       // so we need to ignore version symbols for now.
1227       if (parameters->incremental_update() && ver != NULL)
1228 	{
1229 	  namelen = ver - name;
1230 	  ver = NULL;
1231 	}
1232 
1233       if (ver != NULL)
1234         {
1235           // The symbol name is of the form foo@VERSION or foo@@VERSION
1236           namelen = ver - name;
1237           ++ver;
1238 	  if (*ver == '@')
1239 	    {
1240 	      is_default_version = true;
1241 	      ++ver;
1242 	    }
1243 	  ver = this->namepool_.add(ver, true, &ver_key);
1244         }
1245       // We don't want to assign a version to an undefined symbol,
1246       // even if it is listed in the version script.  FIXME: What
1247       // about a common symbol?
1248       else
1249 	{
1250 	  namelen = strlen(name);
1251 	  if (!this->version_script_.empty()
1252 	      && st_shndx != elfcpp::SHN_UNDEF)
1253 	    {
1254 	      // The symbol name did not have a version, but the
1255 	      // version script may assign a version anyway.
1256 	      std::string version;
1257 	      bool is_global;
1258 	      if (this->version_script_.get_symbol_version(name, &version,
1259 							   &is_global))
1260 		{
1261 		  if (!is_global)
1262 		    is_forced_local = true;
1263 		  else if (!version.empty())
1264 		    {
1265 		      ver = this->namepool_.add_with_length(version.c_str(),
1266 							    version.length(),
1267 							    true,
1268 							    &ver_key);
1269 		      is_default_version = true;
1270 		    }
1271 		}
1272 	    }
1273 	}
1274 
1275       elfcpp::Sym<size, big_endian>* psym = &sym;
1276       unsigned char symbuf[sym_size];
1277       elfcpp::Sym<size, big_endian> sym2(symbuf);
1278       if (just_symbols)
1279 	{
1280 	  memcpy(symbuf, p, sym_size);
1281 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1282 	  if (orig_st_shndx != elfcpp::SHN_UNDEF
1283 	      && is_ordinary
1284 	      && relobj->e_type() == elfcpp::ET_REL)
1285 	    {
1286 	      // Symbol values in relocatable object files are section
1287 	      // relative.  This is normally what we want, but since here
1288 	      // we are converting the symbol to absolute we need to add
1289 	      // the section address.  The section address in an object
1290 	      // file is normally zero, but people can use a linker
1291 	      // script to change it.
1292 	      sw.put_st_value(sym.get_st_value()
1293 			      + relobj->section_address(orig_st_shndx));
1294 	    }
1295 	  st_shndx = elfcpp::SHN_ABS;
1296 	  is_ordinary = false;
1297 	  psym = &sym2;
1298 	}
1299 
1300       // Fix up visibility if object has no-export set.
1301       if (relobj->no_export()
1302 	  && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1303         {
1304 	  // We may have copied symbol already above.
1305 	  if (psym != &sym2)
1306 	    {
1307 	      memcpy(symbuf, p, sym_size);
1308 	      psym = &sym2;
1309 	    }
1310 
1311 	  elfcpp::STV visibility = sym2.get_st_visibility();
1312 	  if (visibility == elfcpp::STV_DEFAULT
1313 	      || visibility == elfcpp::STV_PROTECTED)
1314 	    {
1315 	      elfcpp::Sym_write<size, big_endian> sw(symbuf);
1316 	      unsigned char nonvis = sym2.get_st_nonvis();
1317 	      sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1318 	    }
1319         }
1320 
1321       Stringpool::Key name_key;
1322       name = this->namepool_.add_with_length(name, namelen, true,
1323 					     &name_key);
1324 
1325       Sized_symbol<size>* res;
1326       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1327 				  is_default_version, *psym, st_shndx,
1328 				  is_ordinary, orig_st_shndx);
1329 
1330       if (res == NULL)
1331 	continue;
1332 
1333       if (is_forced_local)
1334 	this->force_local(res);
1335 
1336       // Do not treat this symbol as garbage if this symbol will be
1337       // exported to the dynamic symbol table.  This is true when
1338       // building a shared library or using --export-dynamic and
1339       // the symbol is externally visible.
1340       if (parameters->options().gc_sections()
1341 	  && res->is_externally_visible()
1342 	  && !res->is_from_dynobj()
1343           && (parameters->options().shared()
1344 	      || parameters->options().export_dynamic()
1345 	      || parameters->options().in_dynamic_list(res->name())))
1346         this->gc_mark_symbol(res);
1347 
1348       if (is_defined_in_discarded_section)
1349 	res->set_is_defined_in_discarded_section();
1350 
1351       (*sympointers)[i] = res;
1352     }
1353 }
1354 
1355 // Add a symbol from a plugin-claimed file.
1356 
1357 template<int size, bool big_endian>
1358 Symbol*
add_from_pluginobj(Sized_pluginobj<size,big_endian> * obj,const char * name,const char * ver,elfcpp::Sym<size,big_endian> * sym)1359 Symbol_table::add_from_pluginobj(
1360     Sized_pluginobj<size, big_endian>* obj,
1361     const char* name,
1362     const char* ver,
1363     elfcpp::Sym<size, big_endian>* sym)
1364 {
1365   unsigned int st_shndx = sym->get_st_shndx();
1366   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1367 
1368   Stringpool::Key ver_key = 0;
1369   bool is_default_version = false;
1370   bool is_forced_local = false;
1371 
1372   if (ver != NULL)
1373     {
1374       ver = this->namepool_.add(ver, true, &ver_key);
1375     }
1376   // We don't want to assign a version to an undefined symbol,
1377   // even if it is listed in the version script.  FIXME: What
1378   // about a common symbol?
1379   else
1380     {
1381       if (!this->version_script_.empty()
1382           && st_shndx != elfcpp::SHN_UNDEF)
1383         {
1384           // The symbol name did not have a version, but the
1385           // version script may assign a version anyway.
1386           std::string version;
1387 	  bool is_global;
1388           if (this->version_script_.get_symbol_version(name, &version,
1389 						       &is_global))
1390             {
1391 	      if (!is_global)
1392 		is_forced_local = true;
1393 	      else if (!version.empty())
1394                 {
1395                   ver = this->namepool_.add_with_length(version.c_str(),
1396                                                         version.length(),
1397                                                         true,
1398                                                         &ver_key);
1399                   is_default_version = true;
1400                 }
1401             }
1402         }
1403     }
1404 
1405   Stringpool::Key name_key;
1406   name = this->namepool_.add(name, true, &name_key);
1407 
1408   Sized_symbol<size>* res;
1409   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1410 		              is_default_version, *sym, st_shndx,
1411 			      is_ordinary, st_shndx);
1412 
1413   if (res == NULL)
1414     return NULL;
1415 
1416   if (is_forced_local)
1417     this->force_local(res);
1418 
1419   return res;
1420 }
1421 
1422 // Add all the symbols in a dynamic object to the hash table.
1423 
1424 template<int size, bool big_endian>
1425 void
add_from_dynobj(Sized_dynobj<size,big_endian> * dynobj,const unsigned char * syms,size_t count,const char * sym_names,size_t sym_name_size,const unsigned char * versym,size_t versym_size,const std::vector<const char * > * version_map,typename Sized_relobj_file<size,big_endian>::Symbols * sympointers,size_t * defined)1426 Symbol_table::add_from_dynobj(
1427     Sized_dynobj<size, big_endian>* dynobj,
1428     const unsigned char* syms,
1429     size_t count,
1430     const char* sym_names,
1431     size_t sym_name_size,
1432     const unsigned char* versym,
1433     size_t versym_size,
1434     const std::vector<const char*>* version_map,
1435     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1436     size_t* defined)
1437 {
1438   *defined = 0;
1439 
1440   gold_assert(size == parameters->target().get_size());
1441 
1442   if (dynobj->just_symbols())
1443     {
1444       gold_error(_("--just-symbols does not make sense with a shared object"));
1445       return;
1446     }
1447 
1448   // FIXME: For incremental links, we don't store version information,
1449   // so we need to ignore version symbols for now.
1450   if (parameters->incremental_update())
1451     versym = NULL;
1452 
1453   if (versym != NULL && versym_size / 2 < count)
1454     {
1455       dynobj->error(_("too few symbol versions"));
1456       return;
1457     }
1458 
1459   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1460 
1461   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1462   // weak aliases.  This is necessary because if the dynamic object
1463   // provides the same variable under two names, one of which is a
1464   // weak definition, and the regular object refers to the weak
1465   // definition, we have to put both the weak definition and the
1466   // strong definition into the dynamic symbol table.  Given a weak
1467   // definition, the only way that we can find the corresponding
1468   // strong definition, if any, is to search the symbol table.
1469   std::vector<Sized_symbol<size>*> object_symbols;
1470 
1471   const unsigned char* p = syms;
1472   const unsigned char* vs = versym;
1473   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1474     {
1475       elfcpp::Sym<size, big_endian> sym(p);
1476 
1477       if (sympointers != NULL)
1478 	(*sympointers)[i] = NULL;
1479 
1480       // Ignore symbols with local binding or that have
1481       // internal or hidden visibility.
1482       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1483           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1484           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1485 	continue;
1486 
1487       // A protected symbol in a shared library must be treated as a
1488       // normal symbol when viewed from outside the shared library.
1489       // Implement this by overriding the visibility here.
1490       // Likewise, an IFUNC symbol in a shared library must be treated
1491       // as a normal FUNC symbol.
1492       elfcpp::Sym<size, big_endian>* psym = &sym;
1493       unsigned char symbuf[sym_size];
1494       elfcpp::Sym<size, big_endian> sym2(symbuf);
1495       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1496 	  || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1497 	{
1498 	  memcpy(symbuf, p, sym_size);
1499 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1500 	  if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1501 	    sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1502 	  if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1503 	    sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1504 	  psym = &sym2;
1505 	}
1506 
1507       unsigned int st_name = psym->get_st_name();
1508       if (st_name >= sym_name_size)
1509 	{
1510 	  dynobj->error(_("bad symbol name offset %u at %zu"),
1511 			st_name, i);
1512 	  continue;
1513 	}
1514 
1515       const char* name = sym_names + st_name;
1516 
1517       bool is_ordinary;
1518       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1519 						       &is_ordinary);
1520 
1521       if (st_shndx != elfcpp::SHN_UNDEF)
1522 	++*defined;
1523 
1524       Sized_symbol<size>* res;
1525 
1526       if (versym == NULL)
1527 	{
1528 	  Stringpool::Key name_key;
1529 	  name = this->namepool_.add(name, true, &name_key);
1530 	  res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531 				      false, *psym, st_shndx, is_ordinary,
1532 				      st_shndx);
1533 	}
1534       else
1535 	{
1536 	  // Read the version information.
1537 
1538 	  unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1539 
1540 	  bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1541 	  v &= elfcpp::VERSYM_VERSION;
1542 
1543 	  // The Sun documentation says that V can be VER_NDX_LOCAL,
1544 	  // or VER_NDX_GLOBAL, or a version index.  The meaning of
1545 	  // VER_NDX_LOCAL is defined as "Symbol has local scope."
1546 	  // The old GNU linker will happily generate VER_NDX_LOCAL
1547 	  // for an undefined symbol.  I don't know what the Sun
1548 	  // linker will generate.
1549 
1550 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1551 	      && st_shndx != elfcpp::SHN_UNDEF)
1552 	    {
1553 	      // This symbol should not be visible outside the object.
1554 	      continue;
1555 	    }
1556 
1557 	  // At this point we are definitely going to add this symbol.
1558 	  Stringpool::Key name_key;
1559 	  name = this->namepool_.add(name, true, &name_key);
1560 
1561 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1562 	      || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1563 	    {
1564 	      // This symbol does not have a version.
1565 	      res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1566 					  false, *psym, st_shndx, is_ordinary,
1567 					  st_shndx);
1568 	    }
1569 	  else
1570 	    {
1571 	      if (v >= version_map->size())
1572 		{
1573 		  dynobj->error(_("versym for symbol %zu out of range: %u"),
1574 				i, v);
1575 		  continue;
1576 		}
1577 
1578 	      const char* version = (*version_map)[v];
1579 	      if (version == NULL)
1580 		{
1581 		  dynobj->error(_("versym for symbol %zu has no name: %u"),
1582 				i, v);
1583 		  continue;
1584 		}
1585 
1586 	      Stringpool::Key version_key;
1587 	      version = this->namepool_.add(version, true, &version_key);
1588 
1589 	      // If this is an absolute symbol, and the version name
1590 	      // and symbol name are the same, then this is the
1591 	      // version definition symbol.  These symbols exist to
1592 	      // support using -u to pull in particular versions.  We
1593 	      // do not want to record a version for them.
1594 	      if (st_shndx == elfcpp::SHN_ABS
1595 		  && !is_ordinary
1596 		  && name_key == version_key)
1597 		res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1598 					    false, *psym, st_shndx, is_ordinary,
1599 					    st_shndx);
1600 	      else
1601 		{
1602 		  const bool is_default_version =
1603 		    !hidden && st_shndx != elfcpp::SHN_UNDEF;
1604 		  res = this->add_from_object(dynobj, name, name_key, version,
1605 					      version_key, is_default_version,
1606 					      *psym, st_shndx,
1607 					      is_ordinary, st_shndx);
1608 		}
1609 	    }
1610 	}
1611 
1612       if (res == NULL)
1613 	continue;
1614 
1615       // Note that it is possible that RES was overridden by an
1616       // earlier object, in which case it can't be aliased here.
1617       if (st_shndx != elfcpp::SHN_UNDEF
1618 	  && is_ordinary
1619 	  && psym->get_st_type() == elfcpp::STT_OBJECT
1620 	  && res->source() == Symbol::FROM_OBJECT
1621 	  && res->object() == dynobj)
1622 	object_symbols.push_back(res);
1623 
1624       // If the symbol has protected visibility in the dynobj,
1625       // mark it as such if it was not overridden.
1626       if (res->source() == Symbol::FROM_OBJECT
1627           && res->object() == dynobj
1628           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1629         res->set_is_protected();
1630 
1631       if (sympointers != NULL)
1632 	(*sympointers)[i] = res;
1633     }
1634 
1635   this->record_weak_aliases(&object_symbols);
1636 }
1637 
1638 // Add a symbol from a incremental object file.
1639 
1640 template<int size, bool big_endian>
1641 Sized_symbol<size>*
add_from_incrobj(Object * obj,const char * name,const char * ver,elfcpp::Sym<size,big_endian> * sym)1642 Symbol_table::add_from_incrobj(
1643     Object* obj,
1644     const char* name,
1645     const char* ver,
1646     elfcpp::Sym<size, big_endian>* sym)
1647 {
1648   unsigned int st_shndx = sym->get_st_shndx();
1649   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1650 
1651   Stringpool::Key ver_key = 0;
1652   bool is_default_version = false;
1653 
1654   Stringpool::Key name_key;
1655   name = this->namepool_.add(name, true, &name_key);
1656 
1657   Sized_symbol<size>* res;
1658   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1659 		              is_default_version, *sym, st_shndx,
1660 			      is_ordinary, st_shndx);
1661 
1662   return res;
1663 }
1664 
1665 // This is used to sort weak aliases.  We sort them first by section
1666 // index, then by offset, then by weak ahead of strong.
1667 
1668 template<int size>
1669 class Weak_alias_sorter
1670 {
1671  public:
1672   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1673 };
1674 
1675 template<int size>
1676 bool
operator ()(const Sized_symbol<size> * s1,const Sized_symbol<size> * s2) const1677 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1678 				    const Sized_symbol<size>* s2) const
1679 {
1680   bool is_ordinary;
1681   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1682   gold_assert(is_ordinary);
1683   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1684   gold_assert(is_ordinary);
1685   if (s1_shndx != s2_shndx)
1686     return s1_shndx < s2_shndx;
1687 
1688   if (s1->value() != s2->value())
1689     return s1->value() < s2->value();
1690   if (s1->binding() != s2->binding())
1691     {
1692       if (s1->binding() == elfcpp::STB_WEAK)
1693 	return true;
1694       if (s2->binding() == elfcpp::STB_WEAK)
1695 	return false;
1696     }
1697   return std::string(s1->name()) < std::string(s2->name());
1698 }
1699 
1700 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1701 // for any weak aliases, and record them so that if we add the weak
1702 // alias to the dynamic symbol table, we also add the corresponding
1703 // strong symbol.
1704 
1705 template<int size>
1706 void
record_weak_aliases(std::vector<Sized_symbol<size> * > * symbols)1707 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1708 {
1709   // Sort the vector by section index, then by offset, then by weak
1710   // ahead of strong.
1711   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1712 
1713   // Walk through the vector.  For each weak definition, record
1714   // aliases.
1715   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1716 	 symbols->begin();
1717        p != symbols->end();
1718        ++p)
1719     {
1720       if ((*p)->binding() != elfcpp::STB_WEAK)
1721 	continue;
1722 
1723       // Build a circular list of weak aliases.  Each symbol points to
1724       // the next one in the circular list.
1725 
1726       Sized_symbol<size>* from_sym = *p;
1727       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1728       for (q = p + 1; q != symbols->end(); ++q)
1729 	{
1730 	  bool dummy;
1731 	  if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1732 	      || (*q)->value() != from_sym->value())
1733 	    break;
1734 
1735 	  this->weak_aliases_[from_sym] = *q;
1736 	  from_sym->set_has_alias();
1737 	  from_sym = *q;
1738 	}
1739 
1740       if (from_sym != *p)
1741 	{
1742 	  this->weak_aliases_[from_sym] = *p;
1743 	  from_sym->set_has_alias();
1744 	}
1745 
1746       p = q - 1;
1747     }
1748 }
1749 
1750 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1751 // true, then only create the symbol if there is a reference to it.
1752 // If this does not return NULL, it sets *POLDSYM to the existing
1753 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1754 // resolve the newly created symbol to the old one.  This
1755 // canonicalizes *PNAME and *PVERSION.
1756 
1757 template<int size, bool big_endian>
1758 Sized_symbol<size>*
define_special_symbol(const char ** pname,const char ** pversion,bool only_if_ref,Sized_symbol<size> ** poldsym,bool * resolve_oldsym)1759 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1760 				    bool only_if_ref,
1761                                     Sized_symbol<size>** poldsym,
1762 				    bool* resolve_oldsym)
1763 {
1764   *resolve_oldsym = false;
1765   *poldsym = NULL;
1766 
1767   // If the caller didn't give us a version, see if we get one from
1768   // the version script.
1769   std::string v;
1770   bool is_default_version = false;
1771   if (*pversion == NULL)
1772     {
1773       bool is_global;
1774       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1775 	{
1776 	  if (is_global && !v.empty())
1777 	    {
1778 	      *pversion = v.c_str();
1779 	      // If we get the version from a version script, then we
1780 	      // are also the default version.
1781 	      is_default_version = true;
1782 	    }
1783 	}
1784     }
1785 
1786   Symbol* oldsym;
1787   Sized_symbol<size>* sym;
1788 
1789   bool add_to_table = false;
1790   typename Symbol_table_type::iterator add_loc = this->table_.end();
1791   bool add_def_to_table = false;
1792   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1793 
1794   if (only_if_ref)
1795     {
1796       oldsym = this->lookup(*pname, *pversion);
1797       if (oldsym == NULL && is_default_version)
1798 	oldsym = this->lookup(*pname, NULL);
1799       if (oldsym == NULL || !oldsym->is_undefined())
1800 	return NULL;
1801 
1802       *pname = oldsym->name();
1803       if (is_default_version)
1804 	*pversion = this->namepool_.add(*pversion, true, NULL);
1805       else
1806 	*pversion = oldsym->version();
1807     }
1808   else
1809     {
1810       // Canonicalize NAME and VERSION.
1811       Stringpool::Key name_key;
1812       *pname = this->namepool_.add(*pname, true, &name_key);
1813 
1814       Stringpool::Key version_key = 0;
1815       if (*pversion != NULL)
1816 	*pversion = this->namepool_.add(*pversion, true, &version_key);
1817 
1818       Symbol* const snull = NULL;
1819       std::pair<typename Symbol_table_type::iterator, bool> ins =
1820 	this->table_.insert(std::make_pair(std::make_pair(name_key,
1821 							  version_key),
1822 					   snull));
1823 
1824       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1825 	std::make_pair(this->table_.end(), false);
1826       if (is_default_version)
1827 	{
1828 	  const Stringpool::Key vnull = 0;
1829 	  insdefault =
1830 	    this->table_.insert(std::make_pair(std::make_pair(name_key,
1831 							      vnull),
1832 					       snull));
1833 	}
1834 
1835       if (!ins.second)
1836 	{
1837 	  // We already have a symbol table entry for NAME/VERSION.
1838 	  oldsym = ins.first->second;
1839 	  gold_assert(oldsym != NULL);
1840 
1841 	  if (is_default_version)
1842 	    {
1843 	      Sized_symbol<size>* soldsym =
1844 		this->get_sized_symbol<size>(oldsym);
1845 	      this->define_default_version<size, big_endian>(soldsym,
1846 							     insdefault.second,
1847 							     insdefault.first);
1848 	    }
1849 	}
1850       else
1851 	{
1852 	  // We haven't seen this symbol before.
1853 	  gold_assert(ins.first->second == NULL);
1854 
1855 	  add_to_table = true;
1856 	  add_loc = ins.first;
1857 
1858 	  if (is_default_version && !insdefault.second)
1859 	    {
1860 	      // We are adding NAME/VERSION, and it is the default
1861 	      // version.  We already have an entry for NAME/NULL.
1862 	      oldsym = insdefault.first->second;
1863 	      *resolve_oldsym = true;
1864 	    }
1865 	  else
1866 	    {
1867 	      oldsym = NULL;
1868 
1869 	      if (is_default_version)
1870 		{
1871 		  add_def_to_table = true;
1872 		  add_def_loc = insdefault.first;
1873 		}
1874 	    }
1875 	}
1876     }
1877 
1878   const Target& target = parameters->target();
1879   if (!target.has_make_symbol())
1880     sym = new Sized_symbol<size>();
1881   else
1882     {
1883       Sized_target<size, big_endian>* sized_target =
1884 	parameters->sized_target<size, big_endian>();
1885       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1886 				      NULL, elfcpp::SHN_UNDEF, 0);
1887       if (sym == NULL)
1888         return NULL;
1889     }
1890 
1891   if (add_to_table)
1892     add_loc->second = sym;
1893   else
1894     gold_assert(oldsym != NULL);
1895 
1896   if (add_def_to_table)
1897     add_def_loc->second = sym;
1898 
1899   *poldsym = this->get_sized_symbol<size>(oldsym);
1900 
1901   return sym;
1902 }
1903 
1904 // Define a symbol based on an Output_data.
1905 
1906 Symbol*
define_in_output_data(const char * name,const char * version,Defined defined,Output_data * od,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool only_if_ref)1907 Symbol_table::define_in_output_data(const char* name,
1908 				    const char* version,
1909 				    Defined defined,
1910 				    Output_data* od,
1911 				    uint64_t value,
1912 				    uint64_t symsize,
1913 				    elfcpp::STT type,
1914 				    elfcpp::STB binding,
1915 				    elfcpp::STV visibility,
1916 				    unsigned char nonvis,
1917 				    bool offset_is_from_end,
1918 				    bool only_if_ref)
1919 {
1920   if (parameters->target().get_size() == 32)
1921     {
1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1923       return this->do_define_in_output_data<32>(name, version, defined, od,
1924                                                 value, symsize, type, binding,
1925                                                 visibility, nonvis,
1926                                                 offset_is_from_end,
1927                                                 only_if_ref);
1928 #else
1929       gold_unreachable();
1930 #endif
1931     }
1932   else if (parameters->target().get_size() == 64)
1933     {
1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935       return this->do_define_in_output_data<64>(name, version, defined, od,
1936                                                 value, symsize, type, binding,
1937                                                 visibility, nonvis,
1938                                                 offset_is_from_end,
1939                                                 only_if_ref);
1940 #else
1941       gold_unreachable();
1942 #endif
1943     }
1944   else
1945     gold_unreachable();
1946 }
1947 
1948 // Define a symbol in an Output_data, sized version.
1949 
1950 template<int size>
1951 Sized_symbol<size>*
do_define_in_output_data(const char * name,const char * version,Defined defined,Output_data * od,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool only_if_ref)1952 Symbol_table::do_define_in_output_data(
1953     const char* name,
1954     const char* version,
1955     Defined defined,
1956     Output_data* od,
1957     typename elfcpp::Elf_types<size>::Elf_Addr value,
1958     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1959     elfcpp::STT type,
1960     elfcpp::STB binding,
1961     elfcpp::STV visibility,
1962     unsigned char nonvis,
1963     bool offset_is_from_end,
1964     bool only_if_ref)
1965 {
1966   Sized_symbol<size>* sym;
1967   Sized_symbol<size>* oldsym;
1968   bool resolve_oldsym;
1969 
1970   if (parameters->target().is_big_endian())
1971     {
1972 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1973       sym = this->define_special_symbol<size, true>(&name, &version,
1974 						    only_if_ref, &oldsym,
1975 						    &resolve_oldsym);
1976 #else
1977       gold_unreachable();
1978 #endif
1979     }
1980   else
1981     {
1982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1983       sym = this->define_special_symbol<size, false>(&name, &version,
1984 						     only_if_ref, &oldsym,
1985 						     &resolve_oldsym);
1986 #else
1987       gold_unreachable();
1988 #endif
1989     }
1990 
1991   if (sym == NULL)
1992     return NULL;
1993 
1994   sym->init_output_data(name, version, od, value, symsize, type, binding,
1995 			visibility, nonvis, offset_is_from_end,
1996 			defined == PREDEFINED);
1997 
1998   if (oldsym == NULL)
1999     {
2000       if (binding == elfcpp::STB_LOCAL
2001 	  || this->version_script_.symbol_is_local(name))
2002 	this->force_local(sym);
2003       else if (version != NULL)
2004 	sym->set_is_default();
2005       return sym;
2006     }
2007 
2008   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2009     this->override_with_special(oldsym, sym);
2010 
2011   if (resolve_oldsym)
2012     return sym;
2013   else
2014     {
2015       if (defined == PREDEFINED
2016 	  && (binding == elfcpp::STB_LOCAL
2017 	      || this->version_script_.symbol_is_local(name)))
2018 	this->force_local(oldsym);
2019       delete sym;
2020       return oldsym;
2021     }
2022 }
2023 
2024 // Define a symbol based on an Output_segment.
2025 
2026 Symbol*
define_in_output_segment(const char * name,const char * version,Defined defined,Output_segment * os,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Symbol::Segment_offset_base offset_base,bool only_if_ref)2027 Symbol_table::define_in_output_segment(const char* name,
2028 				       const char* version,
2029 				       Defined defined,
2030 				       Output_segment* os,
2031 				       uint64_t value,
2032 				       uint64_t symsize,
2033 				       elfcpp::STT type,
2034 				       elfcpp::STB binding,
2035 				       elfcpp::STV visibility,
2036 				       unsigned char nonvis,
2037 				       Symbol::Segment_offset_base offset_base,
2038 				       bool only_if_ref)
2039 {
2040   if (parameters->target().get_size() == 32)
2041     {
2042 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2043       return this->do_define_in_output_segment<32>(name, version, defined, os,
2044                                                    value, symsize, type,
2045                                                    binding, visibility, nonvis,
2046                                                    offset_base, only_if_ref);
2047 #else
2048       gold_unreachable();
2049 #endif
2050     }
2051   else if (parameters->target().get_size() == 64)
2052     {
2053 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2054       return this->do_define_in_output_segment<64>(name, version, defined, os,
2055                                                    value, symsize, type,
2056                                                    binding, visibility, nonvis,
2057                                                    offset_base, only_if_ref);
2058 #else
2059       gold_unreachable();
2060 #endif
2061     }
2062   else
2063     gold_unreachable();
2064 }
2065 
2066 // Define a symbol in an Output_segment, sized version.
2067 
2068 template<int size>
2069 Sized_symbol<size>*
do_define_in_output_segment(const char * name,const char * version,Defined defined,Output_segment * os,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Symbol::Segment_offset_base offset_base,bool only_if_ref)2070 Symbol_table::do_define_in_output_segment(
2071     const char* name,
2072     const char* version,
2073     Defined defined,
2074     Output_segment* os,
2075     typename elfcpp::Elf_types<size>::Elf_Addr value,
2076     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2077     elfcpp::STT type,
2078     elfcpp::STB binding,
2079     elfcpp::STV visibility,
2080     unsigned char nonvis,
2081     Symbol::Segment_offset_base offset_base,
2082     bool only_if_ref)
2083 {
2084   Sized_symbol<size>* sym;
2085   Sized_symbol<size>* oldsym;
2086   bool resolve_oldsym;
2087 
2088   if (parameters->target().is_big_endian())
2089     {
2090 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2091       sym = this->define_special_symbol<size, true>(&name, &version,
2092 						    only_if_ref, &oldsym,
2093 						    &resolve_oldsym);
2094 #else
2095       gold_unreachable();
2096 #endif
2097     }
2098   else
2099     {
2100 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2101       sym = this->define_special_symbol<size, false>(&name, &version,
2102 						     only_if_ref, &oldsym,
2103 						     &resolve_oldsym);
2104 #else
2105       gold_unreachable();
2106 #endif
2107     }
2108 
2109   if (sym == NULL)
2110     return NULL;
2111 
2112   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2113 			   visibility, nonvis, offset_base,
2114 			   defined == PREDEFINED);
2115 
2116   if (oldsym == NULL)
2117     {
2118       if (binding == elfcpp::STB_LOCAL
2119 	  || this->version_script_.symbol_is_local(name))
2120 	this->force_local(sym);
2121       else if (version != NULL)
2122 	sym->set_is_default();
2123       return sym;
2124     }
2125 
2126   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2127     this->override_with_special(oldsym, sym);
2128 
2129   if (resolve_oldsym)
2130     return sym;
2131   else
2132     {
2133       if (binding == elfcpp::STB_LOCAL
2134 	  || this->version_script_.symbol_is_local(name))
2135 	this->force_local(oldsym);
2136       delete sym;
2137       return oldsym;
2138     }
2139 }
2140 
2141 // Define a special symbol with a constant value.  It is a multiple
2142 // definition error if this symbol is already defined.
2143 
2144 Symbol*
define_as_constant(const char * name,const char * version,Defined defined,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool only_if_ref,bool force_override)2145 Symbol_table::define_as_constant(const char* name,
2146 				 const char* version,
2147 				 Defined defined,
2148 				 uint64_t value,
2149 				 uint64_t symsize,
2150 				 elfcpp::STT type,
2151 				 elfcpp::STB binding,
2152 				 elfcpp::STV visibility,
2153 				 unsigned char nonvis,
2154 				 bool only_if_ref,
2155                                  bool force_override)
2156 {
2157   if (parameters->target().get_size() == 32)
2158     {
2159 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2160       return this->do_define_as_constant<32>(name, version, defined, value,
2161                                              symsize, type, binding,
2162                                              visibility, nonvis, only_if_ref,
2163                                              force_override);
2164 #else
2165       gold_unreachable();
2166 #endif
2167     }
2168   else if (parameters->target().get_size() == 64)
2169     {
2170 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2171       return this->do_define_as_constant<64>(name, version, defined, value,
2172                                              symsize, type, binding,
2173                                              visibility, nonvis, only_if_ref,
2174                                              force_override);
2175 #else
2176       gold_unreachable();
2177 #endif
2178     }
2179   else
2180     gold_unreachable();
2181 }
2182 
2183 // Define a symbol as a constant, sized version.
2184 
2185 template<int size>
2186 Sized_symbol<size>*
do_define_as_constant(const char * name,const char * version,Defined defined,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool only_if_ref,bool force_override)2187 Symbol_table::do_define_as_constant(
2188     const char* name,
2189     const char* version,
2190     Defined defined,
2191     typename elfcpp::Elf_types<size>::Elf_Addr value,
2192     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2193     elfcpp::STT type,
2194     elfcpp::STB binding,
2195     elfcpp::STV visibility,
2196     unsigned char nonvis,
2197     bool only_if_ref,
2198     bool force_override)
2199 {
2200   Sized_symbol<size>* sym;
2201   Sized_symbol<size>* oldsym;
2202   bool resolve_oldsym;
2203 
2204   if (parameters->target().is_big_endian())
2205     {
2206 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2207       sym = this->define_special_symbol<size, true>(&name, &version,
2208 						    only_if_ref, &oldsym,
2209 						    &resolve_oldsym);
2210 #else
2211       gold_unreachable();
2212 #endif
2213     }
2214   else
2215     {
2216 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2217       sym = this->define_special_symbol<size, false>(&name, &version,
2218 						     only_if_ref, &oldsym,
2219 						     &resolve_oldsym);
2220 #else
2221       gold_unreachable();
2222 #endif
2223     }
2224 
2225   if (sym == NULL)
2226     return NULL;
2227 
2228   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2229 		     nonvis, defined == PREDEFINED);
2230 
2231   if (oldsym == NULL)
2232     {
2233       // Version symbols are absolute symbols with name == version.
2234       // We don't want to force them to be local.
2235       if ((version == NULL
2236 	   || name != version
2237 	   || value != 0)
2238 	  && (binding == elfcpp::STB_LOCAL
2239 	      || this->version_script_.symbol_is_local(name)))
2240 	this->force_local(sym);
2241       else if (version != NULL
2242 	       && (name != version || value != 0))
2243 	sym->set_is_default();
2244       return sym;
2245     }
2246 
2247   if (force_override
2248       || Symbol_table::should_override_with_special(oldsym, type, defined))
2249     this->override_with_special(oldsym, sym);
2250 
2251   if (resolve_oldsym)
2252     return sym;
2253   else
2254     {
2255       if (binding == elfcpp::STB_LOCAL
2256 	  || this->version_script_.symbol_is_local(name))
2257 	this->force_local(oldsym);
2258       delete sym;
2259       return oldsym;
2260     }
2261 }
2262 
2263 // Define a set of symbols in output sections.
2264 
2265 void
define_symbols(const Layout * layout,int count,const Define_symbol_in_section * p,bool only_if_ref)2266 Symbol_table::define_symbols(const Layout* layout, int count,
2267 			     const Define_symbol_in_section* p,
2268 			     bool only_if_ref)
2269 {
2270   for (int i = 0; i < count; ++i, ++p)
2271     {
2272       Output_section* os = layout->find_output_section(p->output_section);
2273       if (os != NULL)
2274 	this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2275 				    p->size, p->type, p->binding,
2276 				    p->visibility, p->nonvis,
2277 				    p->offset_is_from_end,
2278 				    only_if_ref || p->only_if_ref);
2279       else
2280 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2281 				 p->type, p->binding, p->visibility, p->nonvis,
2282 				 only_if_ref || p->only_if_ref,
2283                                  false);
2284     }
2285 }
2286 
2287 // Define a set of symbols in output segments.
2288 
2289 void
define_symbols(const Layout * layout,int count,const Define_symbol_in_segment * p,bool only_if_ref)2290 Symbol_table::define_symbols(const Layout* layout, int count,
2291 			     const Define_symbol_in_segment* p,
2292 			     bool only_if_ref)
2293 {
2294   for (int i = 0; i < count; ++i, ++p)
2295     {
2296       Output_segment* os = layout->find_output_segment(p->segment_type,
2297 						       p->segment_flags_set,
2298 						       p->segment_flags_clear);
2299       if (os != NULL)
2300 	this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2301 				       p->size, p->type, p->binding,
2302 				       p->visibility, p->nonvis,
2303 				       p->offset_base,
2304 				       only_if_ref || p->only_if_ref);
2305       else
2306 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2307 				 p->type, p->binding, p->visibility, p->nonvis,
2308 				 only_if_ref || p->only_if_ref,
2309                                  false);
2310     }
2311 }
2312 
2313 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2314 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2315 // the offset within POSD.
2316 
2317 template<int size>
2318 void
define_with_copy_reloc(Sized_symbol<size> * csym,Output_data * posd,typename elfcpp::Elf_types<size>::Elf_Addr value)2319 Symbol_table::define_with_copy_reloc(
2320     Sized_symbol<size>* csym,
2321     Output_data* posd,
2322     typename elfcpp::Elf_types<size>::Elf_Addr value)
2323 {
2324   gold_assert(csym->is_from_dynobj());
2325   gold_assert(!csym->is_copied_from_dynobj());
2326   Object* object = csym->object();
2327   gold_assert(object->is_dynamic());
2328   Dynobj* dynobj = static_cast<Dynobj*>(object);
2329 
2330   // Our copied variable has to override any variable in a shared
2331   // library.
2332   elfcpp::STB binding = csym->binding();
2333   if (binding == elfcpp::STB_WEAK)
2334     binding = elfcpp::STB_GLOBAL;
2335 
2336   this->define_in_output_data(csym->name(), csym->version(), COPY,
2337 			      posd, value, csym->symsize(),
2338 			      csym->type(), binding,
2339 			      csym->visibility(), csym->nonvis(),
2340 			      false, false);
2341 
2342   csym->set_is_copied_from_dynobj();
2343   csym->set_needs_dynsym_entry();
2344 
2345   this->copied_symbol_dynobjs_[csym] = dynobj;
2346 
2347   // We have now defined all aliases, but we have not entered them all
2348   // in the copied_symbol_dynobjs_ map.
2349   if (csym->has_alias())
2350     {
2351       Symbol* sym = csym;
2352       while (true)
2353 	{
2354 	  sym = this->weak_aliases_[sym];
2355 	  if (sym == csym)
2356 	    break;
2357 	  gold_assert(sym->output_data() == posd);
2358 
2359 	  sym->set_is_copied_from_dynobj();
2360 	  this->copied_symbol_dynobjs_[sym] = dynobj;
2361 	}
2362     }
2363 }
2364 
2365 // SYM is defined using a COPY reloc.  Return the dynamic object where
2366 // the original definition was found.
2367 
2368 Dynobj*
get_copy_source(const Symbol * sym) const2369 Symbol_table::get_copy_source(const Symbol* sym) const
2370 {
2371   gold_assert(sym->is_copied_from_dynobj());
2372   Copied_symbol_dynobjs::const_iterator p =
2373     this->copied_symbol_dynobjs_.find(sym);
2374   gold_assert(p != this->copied_symbol_dynobjs_.end());
2375   return p->second;
2376 }
2377 
2378 // Add any undefined symbols named on the command line.
2379 
2380 void
add_undefined_symbols_from_command_line(Layout * layout)2381 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2382 {
2383   if (parameters->options().any_undefined()
2384       || layout->script_options()->any_unreferenced())
2385     {
2386       if (parameters->target().get_size() == 32)
2387 	{
2388 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2389 	  this->do_add_undefined_symbols_from_command_line<32>(layout);
2390 #else
2391 	  gold_unreachable();
2392 #endif
2393 	}
2394       else if (parameters->target().get_size() == 64)
2395 	{
2396 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2397 	  this->do_add_undefined_symbols_from_command_line<64>(layout);
2398 #else
2399 	  gold_unreachable();
2400 #endif
2401 	}
2402       else
2403 	gold_unreachable();
2404     }
2405 }
2406 
2407 template<int size>
2408 void
do_add_undefined_symbols_from_command_line(Layout * layout)2409 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2410 {
2411   for (options::String_set::const_iterator p =
2412 	 parameters->options().undefined_begin();
2413        p != parameters->options().undefined_end();
2414        ++p)
2415     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2416 
2417   for (options::String_set::const_iterator p =
2418 	 parameters->options().export_dynamic_symbol_begin();
2419        p != parameters->options().export_dynamic_symbol_end();
2420        ++p)
2421     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2422 
2423   for (Script_options::referenced_const_iterator p =
2424 	 layout->script_options()->referenced_begin();
2425        p != layout->script_options()->referenced_end();
2426        ++p)
2427     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2428 }
2429 
2430 template<int size>
2431 void
add_undefined_symbol_from_command_line(const char * name)2432 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2433 {
2434   if (this->lookup(name) != NULL)
2435     return;
2436 
2437   const char* version = NULL;
2438 
2439   Sized_symbol<size>* sym;
2440   Sized_symbol<size>* oldsym;
2441   bool resolve_oldsym;
2442   if (parameters->target().is_big_endian())
2443     {
2444 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2445       sym = this->define_special_symbol<size, true>(&name, &version,
2446 						    false, &oldsym,
2447 						    &resolve_oldsym);
2448 #else
2449       gold_unreachable();
2450 #endif
2451     }
2452   else
2453     {
2454 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2455       sym = this->define_special_symbol<size, false>(&name, &version,
2456 						     false, &oldsym,
2457 						     &resolve_oldsym);
2458 #else
2459       gold_unreachable();
2460 #endif
2461     }
2462 
2463   gold_assert(oldsym == NULL);
2464 
2465   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2466 		      elfcpp::STV_DEFAULT, 0);
2467   ++this->saw_undefined_;
2468 }
2469 
2470 // Set the dynamic symbol indexes.  INDEX is the index of the first
2471 // global dynamic symbol.  Pointers to the symbols are stored into the
2472 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2473 // updated dynamic symbol index.
2474 
2475 unsigned int
set_dynsym_indexes(unsigned int index,std::vector<Symbol * > * syms,Stringpool * dynpool,Versions * versions)2476 Symbol_table::set_dynsym_indexes(unsigned int index,
2477 				 std::vector<Symbol*>* syms,
2478 				 Stringpool* dynpool,
2479 				 Versions* versions)
2480 {
2481   std::vector<Symbol*> as_needed_sym;
2482 
2483   // Allow a target to set dynsym indexes.
2484   if (parameters->target().has_custom_set_dynsym_indexes())
2485     {
2486       std::vector<Symbol*> dyn_symbols;
2487       for (Symbol_table_type::iterator p = this->table_.begin();
2488            p != this->table_.end();
2489            ++p)
2490         {
2491           Symbol* sym = p->second;
2492           if (!sym->should_add_dynsym_entry(this))
2493             sym->set_dynsym_index(-1U);
2494           else
2495             dyn_symbols.push_back(sym);
2496         }
2497 
2498       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2499                                                      dynpool, versions, this);
2500     }
2501 
2502   for (Symbol_table_type::iterator p = this->table_.begin();
2503        p != this->table_.end();
2504        ++p)
2505     {
2506       Symbol* sym = p->second;
2507 
2508       // Note that SYM may already have a dynamic symbol index, since
2509       // some symbols appear more than once in the symbol table, with
2510       // and without a version.
2511 
2512       if (!sym->should_add_dynsym_entry(this))
2513 	sym->set_dynsym_index(-1U);
2514       else if (!sym->has_dynsym_index())
2515 	{
2516 	  sym->set_dynsym_index(index);
2517 	  ++index;
2518 	  syms->push_back(sym);
2519 	  dynpool->add(sym->name(), false, NULL);
2520 
2521 	  // If the symbol is defined in a dynamic object and is
2522 	  // referenced strongly in a regular object, then mark the
2523 	  // dynamic object as needed.  This is used to implement
2524 	  // --as-needed.
2525 	  if (sym->is_from_dynobj()
2526 	      && sym->in_reg()
2527 	      && !sym->is_undef_binding_weak())
2528 	    sym->object()->set_is_needed();
2529 
2530 	  // Record any version information, except those from
2531 	  // as-needed libraries not seen to be needed.  Note that the
2532 	  // is_needed state for such libraries can change in this loop.
2533 	  if (sym->version() != NULL)
2534 	    {
2535 	      if (!sym->is_from_dynobj()
2536 		  || !sym->object()->as_needed()
2537 		  || sym->object()->is_needed())
2538 		versions->record_version(this, dynpool, sym);
2539 	      else
2540 		as_needed_sym.push_back(sym);
2541 	    }
2542 	}
2543     }
2544 
2545   // Process version information for symbols from as-needed libraries.
2546   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2547        p != as_needed_sym.end();
2548        ++p)
2549     {
2550       Symbol* sym = *p;
2551 
2552       if (sym->object()->is_needed())
2553 	versions->record_version(this, dynpool, sym);
2554       else
2555 	sym->clear_version();
2556     }
2557 
2558   // Finish up the versions.  In some cases this may add new dynamic
2559   // symbols.
2560   index = versions->finalize(this, index, syms);
2561 
2562   // Process target-specific symbols.
2563   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2564        p != this->target_symbols_.end();
2565        ++p)
2566     {
2567       (*p)->set_dynsym_index(index);
2568       ++index;
2569       syms->push_back(*p);
2570       dynpool->add((*p)->name(), false, NULL);
2571     }
2572 
2573   return index;
2574 }
2575 
2576 // Set the final values for all the symbols.  The index of the first
2577 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2578 // file offset OFF.  Add their names to POOL.  Return the new file
2579 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2580 
2581 off_t
finalize(off_t off,off_t dynoff,size_t dyn_global_index,size_t dyncount,Stringpool * pool,unsigned int * plocal_symcount)2582 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2583 		       size_t dyncount, Stringpool* pool,
2584 		       unsigned int* plocal_symcount)
2585 {
2586   off_t ret;
2587 
2588   gold_assert(*plocal_symcount != 0);
2589   this->first_global_index_ = *plocal_symcount;
2590 
2591   this->dynamic_offset_ = dynoff;
2592   this->first_dynamic_global_index_ = dyn_global_index;
2593   this->dynamic_count_ = dyncount;
2594 
2595   if (parameters->target().get_size() == 32)
2596     {
2597 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2598       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2599 #else
2600       gold_unreachable();
2601 #endif
2602     }
2603   else if (parameters->target().get_size() == 64)
2604     {
2605 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2606       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2607 #else
2608       gold_unreachable();
2609 #endif
2610     }
2611   else
2612     gold_unreachable();
2613 
2614   // Now that we have the final symbol table, we can reliably note
2615   // which symbols should get warnings.
2616   this->warnings_.note_warnings(this);
2617 
2618   return ret;
2619 }
2620 
2621 // SYM is going into the symbol table at *PINDEX.  Add the name to
2622 // POOL, update *PINDEX and *POFF.
2623 
2624 template<int size>
2625 void
add_to_final_symtab(Symbol * sym,Stringpool * pool,unsigned int * pindex,off_t * poff)2626 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2627 				  unsigned int* pindex, off_t* poff)
2628 {
2629   sym->set_symtab_index(*pindex);
2630   if (sym->version() == NULL || !parameters->options().relocatable())
2631     pool->add(sym->name(), false, NULL);
2632   else
2633     pool->add(sym->versioned_name(), true, NULL);
2634   ++*pindex;
2635   *poff += elfcpp::Elf_sizes<size>::sym_size;
2636 }
2637 
2638 // Set the final value for all the symbols.  This is called after
2639 // Layout::finalize, so all the output sections have their final
2640 // address.
2641 
2642 template<int size>
2643 off_t
sized_finalize(off_t off,Stringpool * pool,unsigned int * plocal_symcount)2644 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2645 			     unsigned int* plocal_symcount)
2646 {
2647   off = align_address(off, size >> 3);
2648   this->offset_ = off;
2649 
2650   unsigned int index = *plocal_symcount;
2651   const unsigned int orig_index = index;
2652 
2653   // First do all the symbols which have been forced to be local, as
2654   // they must appear before all global symbols.
2655   for (Forced_locals::iterator p = this->forced_locals_.begin();
2656        p != this->forced_locals_.end();
2657        ++p)
2658     {
2659       Symbol* sym = *p;
2660       gold_assert(sym->is_forced_local());
2661       if (this->sized_finalize_symbol<size>(sym))
2662 	{
2663 	  this->add_to_final_symtab<size>(sym, pool, &index, &off);
2664 	  ++*plocal_symcount;
2665 	}
2666     }
2667 
2668   // Now do all the remaining symbols.
2669   for (Symbol_table_type::iterator p = this->table_.begin();
2670        p != this->table_.end();
2671        ++p)
2672     {
2673       Symbol* sym = p->second;
2674       if (this->sized_finalize_symbol<size>(sym))
2675 	this->add_to_final_symtab<size>(sym, pool, &index, &off);
2676     }
2677 
2678   // Now do target-specific symbols.
2679   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2680        p != this->target_symbols_.end();
2681        ++p)
2682     {
2683       this->add_to_final_symtab<size>(*p, pool, &index, &off);
2684     }
2685 
2686   this->output_count_ = index - orig_index;
2687 
2688   return off;
2689 }
2690 
2691 // Compute the final value of SYM and store status in location PSTATUS.
2692 // During relaxation, this may be called multiple times for a symbol to
2693 // compute its would-be final value in each relaxation pass.
2694 
2695 template<int size>
2696 typename Sized_symbol<size>::Value_type
compute_final_value(const Sized_symbol<size> * sym,Compute_final_value_status * pstatus) const2697 Symbol_table::compute_final_value(
2698     const Sized_symbol<size>* sym,
2699     Compute_final_value_status* pstatus) const
2700 {
2701   typedef typename Sized_symbol<size>::Value_type Value_type;
2702   Value_type value;
2703 
2704   switch (sym->source())
2705     {
2706     case Symbol::FROM_OBJECT:
2707       {
2708 	bool is_ordinary;
2709 	unsigned int shndx = sym->shndx(&is_ordinary);
2710 
2711 	if (!is_ordinary
2712 	    && shndx != elfcpp::SHN_ABS
2713 	    && !Symbol::is_common_shndx(shndx))
2714 	  {
2715 	    *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2716 	    return 0;
2717 	  }
2718 
2719 	Object* symobj = sym->object();
2720 	if (symobj->is_dynamic())
2721 	  {
2722 	    value = 0;
2723 	    shndx = elfcpp::SHN_UNDEF;
2724 	  }
2725 	else if (symobj->pluginobj() != NULL)
2726 	  {
2727 	    value = 0;
2728 	    shndx = elfcpp::SHN_UNDEF;
2729 	  }
2730 	else if (shndx == elfcpp::SHN_UNDEF)
2731 	  value = 0;
2732 	else if (!is_ordinary
2733 		 && (shndx == elfcpp::SHN_ABS
2734 		     || Symbol::is_common_shndx(shndx)))
2735 	  value = sym->value();
2736 	else
2737 	  {
2738 	    Relobj* relobj = static_cast<Relobj*>(symobj);
2739 	    Output_section* os = relobj->output_section(shndx);
2740 
2741             if (this->is_section_folded(relobj, shndx))
2742               {
2743                 gold_assert(os == NULL);
2744                 // Get the os of the section it is folded onto.
2745                 Section_id folded = this->icf_->get_folded_section(relobj,
2746                                                                    shndx);
2747                 gold_assert(folded.first != NULL);
2748                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2749 		unsigned folded_shndx = folded.second;
2750 
2751                 os = folded_obj->output_section(folded_shndx);
2752                 gold_assert(os != NULL);
2753 
2754 		// Replace (relobj, shndx) with canonical ICF input section.
2755 		shndx = folded_shndx;
2756 		relobj = folded_obj;
2757               }
2758 
2759             uint64_t secoff64 = relobj->output_section_offset(shndx);
2760  	    if (os == NULL)
2761 	      {
2762                 bool static_or_reloc = (parameters->doing_static_link() ||
2763                                         parameters->options().relocatable());
2764                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2765 
2766 		*pstatus = CFVS_NO_OUTPUT_SECTION;
2767 		return 0;
2768 	      }
2769 
2770             if (secoff64 == -1ULL)
2771               {
2772                 // The section needs special handling (e.g., a merge section).
2773 
2774 	        value = os->output_address(relobj, shndx, sym->value());
2775 	      }
2776             else
2777               {
2778                 Value_type secoff =
2779                   convert_types<Value_type, uint64_t>(secoff64);
2780 	        if (sym->type() == elfcpp::STT_TLS)
2781 	          value = sym->value() + os->tls_offset() + secoff;
2782 	        else
2783 	          value = sym->value() + os->address() + secoff;
2784 	      }
2785 	  }
2786       }
2787       break;
2788 
2789     case Symbol::IN_OUTPUT_DATA:
2790       {
2791 	Output_data* od = sym->output_data();
2792 	value = sym->value();
2793 	if (sym->type() != elfcpp::STT_TLS)
2794 	  value += od->address();
2795 	else
2796 	  {
2797 	    Output_section* os = od->output_section();
2798 	    gold_assert(os != NULL);
2799 	    value += os->tls_offset() + (od->address() - os->address());
2800 	  }
2801 	if (sym->offset_is_from_end())
2802 	  value += od->data_size();
2803       }
2804       break;
2805 
2806     case Symbol::IN_OUTPUT_SEGMENT:
2807       {
2808 	Output_segment* os = sym->output_segment();
2809 	value = sym->value();
2810         if (sym->type() != elfcpp::STT_TLS)
2811 	  value += os->vaddr();
2812 	switch (sym->offset_base())
2813 	  {
2814 	  case Symbol::SEGMENT_START:
2815 	    break;
2816 	  case Symbol::SEGMENT_END:
2817 	    value += os->memsz();
2818 	    break;
2819 	  case Symbol::SEGMENT_BSS:
2820 	    value += os->filesz();
2821 	    break;
2822 	  default:
2823 	    gold_unreachable();
2824 	  }
2825       }
2826       break;
2827 
2828     case Symbol::IS_CONSTANT:
2829       value = sym->value();
2830       break;
2831 
2832     case Symbol::IS_UNDEFINED:
2833       value = 0;
2834       break;
2835 
2836     default:
2837       gold_unreachable();
2838     }
2839 
2840   *pstatus = CFVS_OK;
2841   return value;
2842 }
2843 
2844 // Finalize the symbol SYM.  This returns true if the symbol should be
2845 // added to the symbol table, false otherwise.
2846 
2847 template<int size>
2848 bool
sized_finalize_symbol(Symbol * unsized_sym)2849 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2850 {
2851   typedef typename Sized_symbol<size>::Value_type Value_type;
2852 
2853   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2854 
2855   // The default version of a symbol may appear twice in the symbol
2856   // table.  We only need to finalize it once.
2857   if (sym->has_symtab_index())
2858     return false;
2859 
2860   if (!sym->in_reg())
2861     {
2862       gold_assert(!sym->has_symtab_index());
2863       sym->set_symtab_index(-1U);
2864       gold_assert(sym->dynsym_index() == -1U);
2865       return false;
2866     }
2867 
2868   // If the symbol is only present on plugin files, the plugin decided we
2869   // don't need it.
2870   if (!sym->in_real_elf())
2871     {
2872       gold_assert(!sym->has_symtab_index());
2873       sym->set_symtab_index(-1U);
2874       return false;
2875     }
2876 
2877   // Compute final symbol value.
2878   Compute_final_value_status status;
2879   Value_type value = this->compute_final_value(sym, &status);
2880 
2881   switch (status)
2882     {
2883     case CFVS_OK:
2884       break;
2885     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2886       {
2887 	bool is_ordinary;
2888 	unsigned int shndx = sym->shndx(&is_ordinary);
2889 	gold_error(_("%s: unsupported symbol section 0x%x"),
2890 		   sym->demangled_name().c_str(), shndx);
2891       }
2892       break;
2893     case CFVS_NO_OUTPUT_SECTION:
2894       sym->set_symtab_index(-1U);
2895       return false;
2896     default:
2897       gold_unreachable();
2898     }
2899 
2900   sym->set_value(value);
2901 
2902   if (parameters->options().strip_all()
2903       || !parameters->options().should_retain_symbol(sym->name()))
2904     {
2905       sym->set_symtab_index(-1U);
2906       return false;
2907     }
2908 
2909   return true;
2910 }
2911 
2912 // Write out the global symbols.
2913 
2914 void
write_globals(const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,Output_file * of) const2915 Symbol_table::write_globals(const Stringpool* sympool,
2916 			    const Stringpool* dynpool,
2917 			    Output_symtab_xindex* symtab_xindex,
2918 			    Output_symtab_xindex* dynsym_xindex,
2919 			    Output_file* of) const
2920 {
2921   switch (parameters->size_and_endianness())
2922     {
2923 #ifdef HAVE_TARGET_32_LITTLE
2924     case Parameters::TARGET_32_LITTLE:
2925       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2926 					   dynsym_xindex, of);
2927       break;
2928 #endif
2929 #ifdef HAVE_TARGET_32_BIG
2930     case Parameters::TARGET_32_BIG:
2931       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2932 					  dynsym_xindex, of);
2933       break;
2934 #endif
2935 #ifdef HAVE_TARGET_64_LITTLE
2936     case Parameters::TARGET_64_LITTLE:
2937       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2938 					   dynsym_xindex, of);
2939       break;
2940 #endif
2941 #ifdef HAVE_TARGET_64_BIG
2942     case Parameters::TARGET_64_BIG:
2943       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2944 					  dynsym_xindex, of);
2945       break;
2946 #endif
2947     default:
2948       gold_unreachable();
2949     }
2950 }
2951 
2952 // Write out the global symbols.
2953 
2954 template<int size, bool big_endian>
2955 void
sized_write_globals(const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,Output_file * of) const2956 Symbol_table::sized_write_globals(const Stringpool* sympool,
2957 				  const Stringpool* dynpool,
2958 				  Output_symtab_xindex* symtab_xindex,
2959 				  Output_symtab_xindex* dynsym_xindex,
2960 				  Output_file* of) const
2961 {
2962   const Target& target = parameters->target();
2963 
2964   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2965 
2966   const unsigned int output_count = this->output_count_;
2967   const section_size_type oview_size = output_count * sym_size;
2968   const unsigned int first_global_index = this->first_global_index_;
2969   unsigned char* psyms;
2970   if (this->offset_ == 0 || output_count == 0)
2971     psyms = NULL;
2972   else
2973     psyms = of->get_output_view(this->offset_, oview_size);
2974 
2975   const unsigned int dynamic_count = this->dynamic_count_;
2976   const section_size_type dynamic_size = dynamic_count * sym_size;
2977   const unsigned int first_dynamic_global_index =
2978     this->first_dynamic_global_index_;
2979   unsigned char* dynamic_view;
2980   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2981     dynamic_view = NULL;
2982   else
2983     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2984 
2985   for (Symbol_table_type::const_iterator p = this->table_.begin();
2986        p != this->table_.end();
2987        ++p)
2988     {
2989       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2990 
2991       // Possibly warn about unresolved symbols in shared libraries.
2992       this->warn_about_undefined_dynobj_symbol(sym);
2993 
2994       unsigned int sym_index = sym->symtab_index();
2995       unsigned int dynsym_index;
2996       if (dynamic_view == NULL)
2997 	dynsym_index = -1U;
2998       else
2999 	dynsym_index = sym->dynsym_index();
3000 
3001       if (sym_index == -1U && dynsym_index == -1U)
3002 	{
3003 	  // This symbol is not included in the output file.
3004 	  continue;
3005 	}
3006 
3007       unsigned int shndx;
3008       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3009       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3010       elfcpp::STB binding = sym->binding();
3011 
3012       // If --weak-unresolved-symbols is set, change binding of unresolved
3013       // global symbols to STB_WEAK.
3014       if (parameters->options().weak_unresolved_symbols()
3015 	  && binding == elfcpp::STB_GLOBAL
3016 	  && sym->is_undefined())
3017 	binding = elfcpp::STB_WEAK;
3018 
3019       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3020       if (binding == elfcpp::STB_GNU_UNIQUE
3021 	  && !parameters->options().gnu_unique())
3022 	binding = elfcpp::STB_GLOBAL;
3023 
3024       switch (sym->source())
3025 	{
3026 	case Symbol::FROM_OBJECT:
3027 	  {
3028 	    bool is_ordinary;
3029 	    unsigned int in_shndx = sym->shndx(&is_ordinary);
3030 
3031 	    if (!is_ordinary
3032 		&& in_shndx != elfcpp::SHN_ABS
3033 		&& !Symbol::is_common_shndx(in_shndx))
3034 	      {
3035 		gold_error(_("%s: unsupported symbol section 0x%x"),
3036 			   sym->demangled_name().c_str(), in_shndx);
3037 		shndx = in_shndx;
3038 	      }
3039 	    else
3040 	      {
3041 		Object* symobj = sym->object();
3042 		if (symobj->is_dynamic())
3043 		  {
3044 		    if (sym->needs_dynsym_value())
3045 		      dynsym_value = target.dynsym_value(sym);
3046 		    shndx = elfcpp::SHN_UNDEF;
3047 		    if (sym->is_undef_binding_weak())
3048 		      binding = elfcpp::STB_WEAK;
3049 		    else
3050 		      binding = elfcpp::STB_GLOBAL;
3051 		  }
3052 		else if (symobj->pluginobj() != NULL)
3053 		  shndx = elfcpp::SHN_UNDEF;
3054 		else if (in_shndx == elfcpp::SHN_UNDEF
3055 			 || (!is_ordinary
3056 			     && (in_shndx == elfcpp::SHN_ABS
3057 				 || Symbol::is_common_shndx(in_shndx))))
3058 		  shndx = in_shndx;
3059 		else
3060 		  {
3061 		    Relobj* relobj = static_cast<Relobj*>(symobj);
3062 		    Output_section* os = relobj->output_section(in_shndx);
3063                     if (this->is_section_folded(relobj, in_shndx))
3064                       {
3065                         // This global symbol must be written out even though
3066                         // it is folded.
3067                         // Get the os of the section it is folded onto.
3068                         Section_id folded =
3069                              this->icf_->get_folded_section(relobj, in_shndx);
3070                         gold_assert(folded.first !=NULL);
3071                         Relobj* folded_obj =
3072                           reinterpret_cast<Relobj*>(folded.first);
3073                         os = folded_obj->output_section(folded.second);
3074                         gold_assert(os != NULL);
3075                       }
3076 		    gold_assert(os != NULL);
3077 		    shndx = os->out_shndx();
3078 
3079 		    if (shndx >= elfcpp::SHN_LORESERVE)
3080 		      {
3081 			if (sym_index != -1U)
3082 			  symtab_xindex->add(sym_index, shndx);
3083 			if (dynsym_index != -1U)
3084 			  dynsym_xindex->add(dynsym_index, shndx);
3085 			shndx = elfcpp::SHN_XINDEX;
3086 		      }
3087 
3088 		    // In object files symbol values are section
3089 		    // relative.
3090 		    if (parameters->options().relocatable())
3091 		      sym_value -= os->address();
3092 		  }
3093 	      }
3094 	  }
3095 	  break;
3096 
3097 	case Symbol::IN_OUTPUT_DATA:
3098 	  {
3099 	    Output_data* od = sym->output_data();
3100 
3101 	    shndx = od->out_shndx();
3102 	    if (shndx >= elfcpp::SHN_LORESERVE)
3103 	      {
3104 		if (sym_index != -1U)
3105 		  symtab_xindex->add(sym_index, shndx);
3106 		if (dynsym_index != -1U)
3107 		  dynsym_xindex->add(dynsym_index, shndx);
3108 		shndx = elfcpp::SHN_XINDEX;
3109 	      }
3110 
3111 	    // In object files symbol values are section
3112 	    // relative.
3113 	    if (parameters->options().relocatable())
3114 	      sym_value -= od->address();
3115 	  }
3116 	  break;
3117 
3118 	case Symbol::IN_OUTPUT_SEGMENT:
3119 	  shndx = elfcpp::SHN_ABS;
3120 	  break;
3121 
3122 	case Symbol::IS_CONSTANT:
3123 	  shndx = elfcpp::SHN_ABS;
3124 	  break;
3125 
3126 	case Symbol::IS_UNDEFINED:
3127 	  shndx = elfcpp::SHN_UNDEF;
3128 	  break;
3129 
3130 	default:
3131 	  gold_unreachable();
3132 	}
3133 
3134       if (sym_index != -1U)
3135 	{
3136 	  sym_index -= first_global_index;
3137 	  gold_assert(sym_index < output_count);
3138 	  unsigned char* ps = psyms + (sym_index * sym_size);
3139 	  this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3140 						     binding, sympool, ps);
3141 	}
3142 
3143       if (dynsym_index != -1U)
3144 	{
3145 	  dynsym_index -= first_dynamic_global_index;
3146 	  gold_assert(dynsym_index < dynamic_count);
3147 	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3148 	  this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3149 						     binding, dynpool, pd);
3150           // Allow a target to adjust dynamic symbol value.
3151           parameters->target().adjust_dyn_symbol(sym, pd);
3152 	}
3153     }
3154 
3155   // Write the target-specific symbols.
3156   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3157        p != this->target_symbols_.end();
3158        ++p)
3159     {
3160       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3161 
3162       unsigned int sym_index = sym->symtab_index();
3163       unsigned int dynsym_index;
3164       if (dynamic_view == NULL)
3165 	dynsym_index = -1U;
3166       else
3167 	dynsym_index = sym->dynsym_index();
3168 
3169       unsigned int shndx;
3170       switch (sym->source())
3171 	{
3172 	case Symbol::IS_CONSTANT:
3173 	  shndx = elfcpp::SHN_ABS;
3174 	  break;
3175 	case Symbol::IS_UNDEFINED:
3176 	  shndx = elfcpp::SHN_UNDEF;
3177 	  break;
3178 	default:
3179 	  gold_unreachable();
3180 	}
3181 
3182       if (sym_index != -1U)
3183 	{
3184 	  sym_index -= first_global_index;
3185 	  gold_assert(sym_index < output_count);
3186 	  unsigned char* ps = psyms + (sym_index * sym_size);
3187 	  this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3188 						     sym->binding(), sympool,
3189 						     ps);
3190 	}
3191 
3192       if (dynsym_index != -1U)
3193 	{
3194 	  dynsym_index -= first_dynamic_global_index;
3195 	  gold_assert(dynsym_index < dynamic_count);
3196 	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3197 	  this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3198 						     sym->binding(), dynpool,
3199 						     pd);
3200 	}
3201     }
3202 
3203   of->write_output_view(this->offset_, oview_size, psyms);
3204   if (dynamic_view != NULL)
3205     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3206 }
3207 
3208 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3209 // strtab holding the name.
3210 
3211 template<int size, bool big_endian>
3212 void
sized_write_symbol(Sized_symbol<size> * sym,typename elfcpp::Elf_types<size>::Elf_Addr value,unsigned int shndx,elfcpp::STB binding,const Stringpool * pool,unsigned char * p) const3213 Symbol_table::sized_write_symbol(
3214     Sized_symbol<size>* sym,
3215     typename elfcpp::Elf_types<size>::Elf_Addr value,
3216     unsigned int shndx,
3217     elfcpp::STB binding,
3218     const Stringpool* pool,
3219     unsigned char* p) const
3220 {
3221   elfcpp::Sym_write<size, big_endian> osym(p);
3222   if (sym->version() == NULL || !parameters->options().relocatable())
3223     osym.put_st_name(pool->get_offset(sym->name()));
3224   else
3225     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3226   osym.put_st_value(value);
3227   // Use a symbol size of zero for undefined symbols from shared libraries.
3228   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3229     osym.put_st_size(0);
3230   else
3231     osym.put_st_size(sym->symsize());
3232   elfcpp::STT type = sym->type();
3233   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3234   // A version script may have overridden the default binding.
3235   if (sym->is_forced_local())
3236     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3237   else
3238     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3239   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3240   osym.put_st_shndx(shndx);
3241 }
3242 
3243 // Check for unresolved symbols in shared libraries.  This is
3244 // controlled by the --allow-shlib-undefined option.
3245 
3246 // We only warn about libraries for which we have seen all the
3247 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3248 // which were not seen in this link.  If we didn't see a DT_NEEDED
3249 // entry, we aren't going to be able to reliably report whether the
3250 // symbol is undefined.
3251 
3252 // We also don't warn about libraries found in a system library
3253 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3254 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3255 // can have undefined references satisfied by ld-linux.so.
3256 
3257 inline void
warn_about_undefined_dynobj_symbol(Symbol * sym) const3258 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3259 {
3260   bool dummy;
3261   if (sym->source() == Symbol::FROM_OBJECT
3262       && sym->object()->is_dynamic()
3263       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3264       && sym->binding() != elfcpp::STB_WEAK
3265       && !parameters->options().allow_shlib_undefined()
3266       && !parameters->target().is_defined_by_abi(sym)
3267       && !sym->object()->is_in_system_directory())
3268     {
3269       // A very ugly cast.
3270       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3271       if (!dynobj->has_unknown_needed_entries())
3272         gold_undefined_symbol(sym);
3273     }
3274 }
3275 
3276 // Write out a section symbol.  Return the update offset.
3277 
3278 void
write_section_symbol(const Output_section * os,Output_symtab_xindex * symtab_xindex,Output_file * of,off_t offset) const3279 Symbol_table::write_section_symbol(const Output_section* os,
3280 				   Output_symtab_xindex* symtab_xindex,
3281 				   Output_file* of,
3282 				   off_t offset) const
3283 {
3284   switch (parameters->size_and_endianness())
3285     {
3286 #ifdef HAVE_TARGET_32_LITTLE
3287     case Parameters::TARGET_32_LITTLE:
3288       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3289 						  offset);
3290       break;
3291 #endif
3292 #ifdef HAVE_TARGET_32_BIG
3293     case Parameters::TARGET_32_BIG:
3294       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3295 						 offset);
3296       break;
3297 #endif
3298 #ifdef HAVE_TARGET_64_LITTLE
3299     case Parameters::TARGET_64_LITTLE:
3300       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3301 						  offset);
3302       break;
3303 #endif
3304 #ifdef HAVE_TARGET_64_BIG
3305     case Parameters::TARGET_64_BIG:
3306       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3307 						 offset);
3308       break;
3309 #endif
3310     default:
3311       gold_unreachable();
3312     }
3313 }
3314 
3315 // Write out a section symbol, specialized for size and endianness.
3316 
3317 template<int size, bool big_endian>
3318 void
sized_write_section_symbol(const Output_section * os,Output_symtab_xindex * symtab_xindex,Output_file * of,off_t offset) const3319 Symbol_table::sized_write_section_symbol(const Output_section* os,
3320 					 Output_symtab_xindex* symtab_xindex,
3321 					 Output_file* of,
3322 					 off_t offset) const
3323 {
3324   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3325 
3326   unsigned char* pov = of->get_output_view(offset, sym_size);
3327 
3328   elfcpp::Sym_write<size, big_endian> osym(pov);
3329   osym.put_st_name(0);
3330   if (parameters->options().relocatable())
3331     osym.put_st_value(0);
3332   else
3333     osym.put_st_value(os->address());
3334   osym.put_st_size(0);
3335   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3336 				       elfcpp::STT_SECTION));
3337   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3338 
3339   unsigned int shndx = os->out_shndx();
3340   if (shndx >= elfcpp::SHN_LORESERVE)
3341     {
3342       symtab_xindex->add(os->symtab_index(), shndx);
3343       shndx = elfcpp::SHN_XINDEX;
3344     }
3345   osym.put_st_shndx(shndx);
3346 
3347   of->write_output_view(offset, sym_size, pov);
3348 }
3349 
3350 // Print statistical information to stderr.  This is used for --stats.
3351 
3352 void
print_stats() const3353 Symbol_table::print_stats() const
3354 {
3355 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3356   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3357 	  program_name, this->table_.size(), this->table_.bucket_count());
3358 #else
3359   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3360 	  program_name, this->table_.size());
3361 #endif
3362   this->namepool_.print_stats("symbol table stringpool");
3363 }
3364 
3365 // We check for ODR violations by looking for symbols with the same
3366 // name for which the debugging information reports that they were
3367 // defined in disjoint source locations.  When comparing the source
3368 // location, we consider instances with the same base filename to be
3369 // the same.  This is because different object files/shared libraries
3370 // can include the same header file using different paths, and
3371 // different optimization settings can make the line number appear to
3372 // be a couple lines off, and we don't want to report an ODR violation
3373 // in those cases.
3374 
3375 // This struct is used to compare line information, as returned by
3376 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3377 // operator used with std::sort.
3378 
3379 struct Odr_violation_compare
3380 {
3381   bool
operator ()gold::Odr_violation_compare3382   operator()(const std::string& s1, const std::string& s2) const
3383   {
3384     // Inputs should be of the form "dirname/filename:linenum" where
3385     // "dirname/" is optional.  We want to compare just the filename:linenum.
3386 
3387     // Find the last '/' in each string.
3388     std::string::size_type s1begin = s1.rfind('/');
3389     std::string::size_type s2begin = s2.rfind('/');
3390     // If there was no '/' in a string, start at the beginning.
3391     if (s1begin == std::string::npos)
3392       s1begin = 0;
3393     if (s2begin == std::string::npos)
3394       s2begin = 0;
3395     return s1.compare(s1begin, std::string::npos,
3396 		      s2, s2begin, std::string::npos) < 0;
3397   }
3398 };
3399 
3400 // Returns all of the lines attached to LOC, not just the one the
3401 // instruction actually came from.
3402 std::vector<std::string>
linenos_from_loc(const Task * task,const Symbol_location & loc)3403 Symbol_table::linenos_from_loc(const Task* task,
3404                                const Symbol_location& loc)
3405 {
3406   // We need to lock the object in order to read it.  This
3407   // means that we have to run in a singleton Task.  If we
3408   // want to run this in a general Task for better
3409   // performance, we will need one Task for object, plus
3410   // appropriate locking to ensure that we don't conflict with
3411   // other uses of the object.  Also note, one_addr2line is not
3412   // currently thread-safe.
3413   Task_lock_obj<Object> tl(task, loc.object);
3414 
3415   std::vector<std::string> result;
3416   Symbol_location code_loc = loc;
3417   parameters->target().function_location(&code_loc);
3418   // 16 is the size of the object-cache that one_addr2line should use.
3419   std::string canonical_result = Dwarf_line_info::one_addr2line(
3420       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3421   if (!canonical_result.empty())
3422     result.push_back(canonical_result);
3423   return result;
3424 }
3425 
3426 // OutputIterator that records if it was ever assigned to.  This
3427 // allows it to be used with std::set_intersection() to check for
3428 // intersection rather than computing the intersection.
3429 struct Check_intersection
3430 {
Check_intersectiongold::Check_intersection3431   Check_intersection()
3432     : value_(false)
3433   {}
3434 
had_intersectiongold::Check_intersection3435   bool had_intersection() const
3436   { return this->value_; }
3437 
operator ++gold::Check_intersection3438   Check_intersection& operator++()
3439   { return *this; }
3440 
operator *gold::Check_intersection3441   Check_intersection& operator*()
3442   { return *this; }
3443 
3444   template<typename T>
operator =gold::Check_intersection3445   Check_intersection& operator=(const T&)
3446   {
3447     this->value_ = true;
3448     return *this;
3449   }
3450 
3451  private:
3452   bool value_;
3453 };
3454 
3455 // Check candidate_odr_violations_ to find symbols with the same name
3456 // but apparently different definitions (different source-file/line-no
3457 // for each line assigned to the first instruction).
3458 
3459 void
detect_odr_violations(const Task * task,const char * output_file_name) const3460 Symbol_table::detect_odr_violations(const Task* task,
3461 				    const char* output_file_name) const
3462 {
3463   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3464        it != candidate_odr_violations_.end();
3465        ++it)
3466     {
3467       const char* const symbol_name = it->first;
3468 
3469       std::string first_object_name;
3470       std::vector<std::string> first_object_linenos;
3471 
3472       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3473           locs = it->second.begin();
3474       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3475           locs_end = it->second.end();
3476       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3477         {
3478           // Save the line numbers from the first definition to
3479           // compare to the other definitions.  Ideally, we'd compare
3480           // every definition to every other, but we don't want to
3481           // take O(N^2) time to do this.  This shortcut may cause
3482           // false negatives that appear or disappear depending on the
3483           // link order, but it won't cause false positives.
3484           first_object_name = locs->object->name();
3485           first_object_linenos = this->linenos_from_loc(task, *locs);
3486         }
3487       if (first_object_linenos.empty())
3488 	continue;
3489 
3490       // Sort by Odr_violation_compare to make std::set_intersection work.
3491       std::string first_object_canonical_result = first_object_linenos.back();
3492       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3493                 Odr_violation_compare());
3494 
3495       for (; locs != locs_end; ++locs)
3496         {
3497           std::vector<std::string> linenos =
3498               this->linenos_from_loc(task, *locs);
3499           // linenos will be empty if we couldn't parse the debug info.
3500           if (linenos.empty())
3501             continue;
3502           // Sort by Odr_violation_compare to make std::set_intersection work.
3503           gold_assert(!linenos.empty());
3504           std::string second_object_canonical_result = linenos.back();
3505           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3506 
3507           Check_intersection intersection_result =
3508               std::set_intersection(first_object_linenos.begin(),
3509                                     first_object_linenos.end(),
3510                                     linenos.begin(),
3511                                     linenos.end(),
3512                                     Check_intersection(),
3513                                     Odr_violation_compare());
3514           if (!intersection_result.had_intersection())
3515             {
3516               gold_warning(_("while linking %s: symbol '%s' defined in "
3517                              "multiple places (possible ODR violation):"),
3518                            output_file_name, demangle(symbol_name).c_str());
3519               // This only prints one location from each definition,
3520               // which may not be the location we expect to intersect
3521               // with another definition.  We could print the whole
3522               // set of locations, but that seems too verbose.
3523               fprintf(stderr, _("  %s from %s\n"),
3524                       first_object_canonical_result.c_str(),
3525                       first_object_name.c_str());
3526               fprintf(stderr, _("  %s from %s\n"),
3527                       second_object_canonical_result.c_str(),
3528                       locs->object->name().c_str());
3529               // Only print one broken pair, to avoid needing to
3530               // compare against a list of the disjoint definition
3531               // locations we've found so far.  (If we kept comparing
3532               // against just the first one, we'd get a lot of
3533               // redundant complaints about the second definition
3534               // location.)
3535               break;
3536             }
3537         }
3538     }
3539   // We only call one_addr2line() in this function, so we can clear its cache.
3540   Dwarf_line_info::clear_addr2line_cache();
3541 }
3542 
3543 // Warnings functions.
3544 
3545 // Add a new warning.
3546 
3547 void
add_warning(Symbol_table * symtab,const char * name,Object * obj,const std::string & warning)3548 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3549 		      const std::string& warning)
3550 {
3551   name = symtab->canonicalize_name(name);
3552   this->warnings_[name].set(obj, warning);
3553 }
3554 
3555 // Look through the warnings and mark the symbols for which we should
3556 // warn.  This is called during Layout::finalize when we know the
3557 // sources for all the symbols.
3558 
3559 void
note_warnings(Symbol_table * symtab)3560 Warnings::note_warnings(Symbol_table* symtab)
3561 {
3562   for (Warning_table::iterator p = this->warnings_.begin();
3563        p != this->warnings_.end();
3564        ++p)
3565     {
3566       Symbol* sym = symtab->lookup(p->first, NULL);
3567       if (sym != NULL
3568 	  && sym->source() == Symbol::FROM_OBJECT
3569 	  && sym->object() == p->second.object)
3570 	sym->set_has_warning();
3571     }
3572 }
3573 
3574 // Issue a warning.  This is called when we see a relocation against a
3575 // symbol for which has a warning.
3576 
3577 template<int size, bool big_endian>
3578 void
issue_warning(const Symbol * sym,const Relocate_info<size,big_endian> * relinfo,size_t relnum,off_t reloffset) const3579 Warnings::issue_warning(const Symbol* sym,
3580 			const Relocate_info<size, big_endian>* relinfo,
3581 			size_t relnum, off_t reloffset) const
3582 {
3583   gold_assert(sym->has_warning());
3584 
3585   // We don't want to issue a warning for a relocation against the
3586   // symbol in the same object file in which the symbol is defined.
3587   if (sym->object() == relinfo->object)
3588     return;
3589 
3590   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3591   gold_assert(p != this->warnings_.end());
3592   gold_warning_at_location(relinfo, relnum, reloffset,
3593 			   "%s", p->second.text.c_str());
3594 }
3595 
3596 // Instantiate the templates we need.  We could use the configure
3597 // script to restrict this to only the ones needed for implemented
3598 // targets.
3599 
3600 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3601 template
3602 void
3603 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3604 #endif
3605 
3606 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3607 template
3608 void
3609 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3610 #endif
3611 
3612 #ifdef HAVE_TARGET_32_LITTLE
3613 template
3614 void
3615 Symbol_table::add_from_relobj<32, false>(
3616     Sized_relobj_file<32, false>* relobj,
3617     const unsigned char* syms,
3618     size_t count,
3619     size_t symndx_offset,
3620     const char* sym_names,
3621     size_t sym_name_size,
3622     Sized_relobj_file<32, false>::Symbols* sympointers,
3623     size_t* defined);
3624 #endif
3625 
3626 #ifdef HAVE_TARGET_32_BIG
3627 template
3628 void
3629 Symbol_table::add_from_relobj<32, true>(
3630     Sized_relobj_file<32, true>* relobj,
3631     const unsigned char* syms,
3632     size_t count,
3633     size_t symndx_offset,
3634     const char* sym_names,
3635     size_t sym_name_size,
3636     Sized_relobj_file<32, true>::Symbols* sympointers,
3637     size_t* defined);
3638 #endif
3639 
3640 #ifdef HAVE_TARGET_64_LITTLE
3641 template
3642 void
3643 Symbol_table::add_from_relobj<64, false>(
3644     Sized_relobj_file<64, false>* relobj,
3645     const unsigned char* syms,
3646     size_t count,
3647     size_t symndx_offset,
3648     const char* sym_names,
3649     size_t sym_name_size,
3650     Sized_relobj_file<64, false>::Symbols* sympointers,
3651     size_t* defined);
3652 #endif
3653 
3654 #ifdef HAVE_TARGET_64_BIG
3655 template
3656 void
3657 Symbol_table::add_from_relobj<64, true>(
3658     Sized_relobj_file<64, true>* relobj,
3659     const unsigned char* syms,
3660     size_t count,
3661     size_t symndx_offset,
3662     const char* sym_names,
3663     size_t sym_name_size,
3664     Sized_relobj_file<64, true>::Symbols* sympointers,
3665     size_t* defined);
3666 #endif
3667 
3668 #ifdef HAVE_TARGET_32_LITTLE
3669 template
3670 Symbol*
3671 Symbol_table::add_from_pluginobj<32, false>(
3672     Sized_pluginobj<32, false>* obj,
3673     const char* name,
3674     const char* ver,
3675     elfcpp::Sym<32, false>* sym);
3676 #endif
3677 
3678 #ifdef HAVE_TARGET_32_BIG
3679 template
3680 Symbol*
3681 Symbol_table::add_from_pluginobj<32, true>(
3682     Sized_pluginobj<32, true>* obj,
3683     const char* name,
3684     const char* ver,
3685     elfcpp::Sym<32, true>* sym);
3686 #endif
3687 
3688 #ifdef HAVE_TARGET_64_LITTLE
3689 template
3690 Symbol*
3691 Symbol_table::add_from_pluginobj<64, false>(
3692     Sized_pluginobj<64, false>* obj,
3693     const char* name,
3694     const char* ver,
3695     elfcpp::Sym<64, false>* sym);
3696 #endif
3697 
3698 #ifdef HAVE_TARGET_64_BIG
3699 template
3700 Symbol*
3701 Symbol_table::add_from_pluginobj<64, true>(
3702     Sized_pluginobj<64, true>* obj,
3703     const char* name,
3704     const char* ver,
3705     elfcpp::Sym<64, true>* sym);
3706 #endif
3707 
3708 #ifdef HAVE_TARGET_32_LITTLE
3709 template
3710 void
3711 Symbol_table::add_from_dynobj<32, false>(
3712     Sized_dynobj<32, false>* dynobj,
3713     const unsigned char* syms,
3714     size_t count,
3715     const char* sym_names,
3716     size_t sym_name_size,
3717     const unsigned char* versym,
3718     size_t versym_size,
3719     const std::vector<const char*>* version_map,
3720     Sized_relobj_file<32, false>::Symbols* sympointers,
3721     size_t* defined);
3722 #endif
3723 
3724 #ifdef HAVE_TARGET_32_BIG
3725 template
3726 void
3727 Symbol_table::add_from_dynobj<32, true>(
3728     Sized_dynobj<32, true>* dynobj,
3729     const unsigned char* syms,
3730     size_t count,
3731     const char* sym_names,
3732     size_t sym_name_size,
3733     const unsigned char* versym,
3734     size_t versym_size,
3735     const std::vector<const char*>* version_map,
3736     Sized_relobj_file<32, true>::Symbols* sympointers,
3737     size_t* defined);
3738 #endif
3739 
3740 #ifdef HAVE_TARGET_64_LITTLE
3741 template
3742 void
3743 Symbol_table::add_from_dynobj<64, false>(
3744     Sized_dynobj<64, false>* dynobj,
3745     const unsigned char* syms,
3746     size_t count,
3747     const char* sym_names,
3748     size_t sym_name_size,
3749     const unsigned char* versym,
3750     size_t versym_size,
3751     const std::vector<const char*>* version_map,
3752     Sized_relobj_file<64, false>::Symbols* sympointers,
3753     size_t* defined);
3754 #endif
3755 
3756 #ifdef HAVE_TARGET_64_BIG
3757 template
3758 void
3759 Symbol_table::add_from_dynobj<64, true>(
3760     Sized_dynobj<64, true>* dynobj,
3761     const unsigned char* syms,
3762     size_t count,
3763     const char* sym_names,
3764     size_t sym_name_size,
3765     const unsigned char* versym,
3766     size_t versym_size,
3767     const std::vector<const char*>* version_map,
3768     Sized_relobj_file<64, true>::Symbols* sympointers,
3769     size_t* defined);
3770 #endif
3771 
3772 #ifdef HAVE_TARGET_32_LITTLE
3773 template
3774 Sized_symbol<32>*
3775 Symbol_table::add_from_incrobj(
3776     Object* obj,
3777     const char* name,
3778     const char* ver,
3779     elfcpp::Sym<32, false>* sym);
3780 #endif
3781 
3782 #ifdef HAVE_TARGET_32_BIG
3783 template
3784 Sized_symbol<32>*
3785 Symbol_table::add_from_incrobj(
3786     Object* obj,
3787     const char* name,
3788     const char* ver,
3789     elfcpp::Sym<32, true>* sym);
3790 #endif
3791 
3792 #ifdef HAVE_TARGET_64_LITTLE
3793 template
3794 Sized_symbol<64>*
3795 Symbol_table::add_from_incrobj(
3796     Object* obj,
3797     const char* name,
3798     const char* ver,
3799     elfcpp::Sym<64, false>* sym);
3800 #endif
3801 
3802 #ifdef HAVE_TARGET_64_BIG
3803 template
3804 Sized_symbol<64>*
3805 Symbol_table::add_from_incrobj(
3806     Object* obj,
3807     const char* name,
3808     const char* ver,
3809     elfcpp::Sym<64, true>* sym);
3810 #endif
3811 
3812 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3813 template
3814 void
3815 Symbol_table::define_with_copy_reloc<32>(
3816     Sized_symbol<32>* sym,
3817     Output_data* posd,
3818     elfcpp::Elf_types<32>::Elf_Addr value);
3819 #endif
3820 
3821 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3822 template
3823 void
3824 Symbol_table::define_with_copy_reloc<64>(
3825     Sized_symbol<64>* sym,
3826     Output_data* posd,
3827     elfcpp::Elf_types<64>::Elf_Addr value);
3828 #endif
3829 
3830 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3831 template
3832 void
3833 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3834 				   Output_data* od, Value_type value,
3835 				   Size_type symsize, elfcpp::STT type,
3836 				   elfcpp::STB binding,
3837 				   elfcpp::STV visibility,
3838 				   unsigned char nonvis,
3839 				   bool offset_is_from_end,
3840 				   bool is_predefined);
3841 
3842 template
3843 void
3844 Sized_symbol<32>::init_constant(const char* name, const char* version,
3845 				Value_type value, Size_type symsize,
3846 				elfcpp::STT type, elfcpp::STB binding,
3847 				elfcpp::STV visibility, unsigned char nonvis,
3848 				bool is_predefined);
3849 
3850 template
3851 void
3852 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3853 				 Value_type value, elfcpp::STT type,
3854 				 elfcpp::STB binding, elfcpp::STV visibility,
3855 				 unsigned char nonvis);
3856 #endif
3857 
3858 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3859 template
3860 void
3861 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3862 				   Output_data* od, Value_type value,
3863 				   Size_type symsize, elfcpp::STT type,
3864 				   elfcpp::STB binding,
3865 				   elfcpp::STV visibility,
3866 				   unsigned char nonvis,
3867 				   bool offset_is_from_end,
3868 				   bool is_predefined);
3869 
3870 template
3871 void
3872 Sized_symbol<64>::init_constant(const char* name, const char* version,
3873 				Value_type value, Size_type symsize,
3874 				elfcpp::STT type, elfcpp::STB binding,
3875 				elfcpp::STV visibility, unsigned char nonvis,
3876 				bool is_predefined);
3877 
3878 template
3879 void
3880 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3881 				 Value_type value, elfcpp::STT type,
3882 				 elfcpp::STB binding, elfcpp::STV visibility,
3883 				 unsigned char nonvis);
3884 #endif
3885 
3886 #ifdef HAVE_TARGET_32_LITTLE
3887 template
3888 void
3889 Warnings::issue_warning<32, false>(const Symbol* sym,
3890 				   const Relocate_info<32, false>* relinfo,
3891 				   size_t relnum, off_t reloffset) const;
3892 #endif
3893 
3894 #ifdef HAVE_TARGET_32_BIG
3895 template
3896 void
3897 Warnings::issue_warning<32, true>(const Symbol* sym,
3898 				  const Relocate_info<32, true>* relinfo,
3899 				  size_t relnum, off_t reloffset) const;
3900 #endif
3901 
3902 #ifdef HAVE_TARGET_64_LITTLE
3903 template
3904 void
3905 Warnings::issue_warning<64, false>(const Symbol* sym,
3906 				   const Relocate_info<64, false>* relinfo,
3907 				   size_t relnum, off_t reloffset) const;
3908 #endif
3909 
3910 #ifdef HAVE_TARGET_64_BIG
3911 template
3912 void
3913 Warnings::issue_warning<64, true>(const Symbol* sym,
3914 				  const Relocate_info<64, true>* relinfo,
3915 				  size_t relnum, off_t reloffset) const;
3916 #endif
3917 
3918 } // End namespace gold.
3919