1 /* Table of relaxations for Xtensa assembly.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 /* This file contains the code for generating runtime data structures
22 for relaxation pattern matching from statically specified strings.
23 Each action contains an instruction pattern to match and
24 preconditions for the match as well as an expansion if the pattern
25 matches. The preconditions can specify that two operands are the
26 same or an operand is a specific constant or register. The expansion
27 uses the bound variables from the pattern to specify that specific
28 operands from the pattern should be used in the result.
29
30 The code determines whether the condition applies to a constant or
31 a register depending on the type of the operand. You may get
32 unexpected results if you don't match the rule against the operand
33 type correctly.
34
35 The patterns match a language like:
36
37 INSN_PATTERN ::= INSN_TEMPL ( '|' PRECOND )* ( '?' OPTIONPRED )*
38 INSN_TEMPL ::= OPCODE ' ' [ OPERAND (',' OPERAND)* ]
39 OPCODE ::= id
40 OPERAND ::= CONSTANT | VARIABLE | SPECIALFN '(' VARIABLE ')'
41 SPECIALFN ::= 'HI24S' | 'F32MINUS' | 'LOW8'
42 | 'HI16' | 'LOW16'
43 VARIABLE ::= '%' id
44 PRECOND ::= OPERAND CMPOP OPERAND
45 CMPOP ::= '==' | '!='
46 OPTIONPRED ::= OPTIONNAME ('+' OPTIONNAME)
47 OPTIONNAME ::= '"' id '"'
48
49 The replacement language
50 INSN_REPL ::= INSN_LABEL_LIT ( ';' INSN_LABEL_LIT )*
51 INSN_LABEL_LIT ::= INSN_TEMPL
52 | 'LABEL'
53 | 'LITERAL' VARIABLE
54
55 The operands in a PRECOND must be constants or variables bound by
56 the INSN_PATTERN.
57
58 The configuration options define a predicate on the availability of
59 options which must be TRUE for this rule to be valid. Examples are
60 requiring "density" for replacements with density instructions,
61 requiring "const16" for replacements that require const16
62 instructions, etc. The names are interpreted by the assembler to a
63 truth value for a particular frag.
64
65 The operands in the INSN_REPL must be constants, variables bound in
66 the associated INSN_PATTERN, special variables that are bound in
67 the INSN_REPL by LABEL or LITERAL definitions, or special value
68 manipulation functions.
69
70 A simple example of a replacement pattern:
71 {"movi.n %as,%imm", "movi %as,%imm"} would convert the narrow
72 movi.n instruction to the wide movi instruction.
73
74 A more complex example of a branch around:
75 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"}
76 would convert a branch to a negated branch to the following instruction
77 with a jump to the original label.
78
79 An Xtensa-specific example that generates a literal:
80 {"movi %at,%imm", "LITERAL %imm; l32r %at,%LITERAL"}
81 will convert a movi instruction to an l32r of a literal
82 literal defined in the literal pool.
83
84 Even more complex is a conversion of a load with immediate offset
85 to a load of a freshly generated literal, an explicit add and
86 a load with 0 offset. This transformation is only valid, though
87 when the first and second operands are not the same as specified
88 by the "| %at!=%as" precondition clause.
89 {"l32i %at,%as,%imm | %at!=%as",
90 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"}
91
92 There is special case for loop instructions here, but because we do
93 not currently have the ability to represent the difference of two
94 symbols, the conversion requires special code in the assembler to
95 write the operands of the addi/addmi pair representing the
96 difference of the old and new loop end label. */
97
98 #include "as.h"
99 #include "xtensa-isa.h"
100 #include "xtensa-relax.h"
101 #include <stddef.h>
102 #include "xtensa-config.h"
103
104 #ifndef XCHAL_HAVE_WIDE_BRANCHES
105 #define XCHAL_HAVE_WIDE_BRANCHES 0
106 #endif
107
108 /* Imported from bfd. */
109 extern xtensa_isa xtensa_default_isa;
110
111 /* The opname_list is a small list of names that we use for opcode and
112 operand variable names to simplify ownership of these commonly used
113 strings. Strings entered in the table can be compared by pointer
114 equality. */
115
116 typedef struct opname_list_struct opname_list;
117 typedef opname_list opname_e;
118
119 struct opname_list_struct
120 {
121 char *opname;
122 opname_list *next;
123 };
124
125 static opname_list *local_opnames = NULL;
126
127
128 /* The "opname_map" and its element structure "opname_map_e" are used
129 for binding an operand number to a name or a constant. */
130
131 typedef struct opname_map_e_struct opname_map_e;
132 typedef struct opname_map_struct opname_map;
133
134 struct opname_map_e_struct
135 {
136 const char *operand_name; /* If null, then use constant_value. */
137 int operand_num;
138 unsigned constant_value;
139 opname_map_e *next;
140 };
141
142 struct opname_map_struct
143 {
144 opname_map_e *head;
145 opname_map_e **tail;
146 };
147
148 /* The "precond_list" and its element structure "precond_e" represents
149 explicit preconditions comparing operand variables and constants.
150 In the "precond_e" structure, a variable is identified by the name
151 in the "opname" field. If that field is NULL, then the operand
152 is the constant in field "opval". */
153
154 typedef struct precond_e_struct precond_e;
155 typedef struct precond_list_struct precond_list;
156
157 struct precond_e_struct
158 {
159 const char *opname1;
160 unsigned opval1;
161 CmpOp cmpop;
162 const char *opname2;
163 unsigned opval2;
164 precond_e *next;
165 };
166
167 struct precond_list_struct
168 {
169 precond_e *head;
170 precond_e **tail;
171 };
172
173
174 /* The insn_templ represents the INSN_TEMPL instruction template. It
175 is an opcode name with a list of operands. These are used for
176 instruction patterns and replacement patterns. */
177
178 typedef struct insn_templ_struct insn_templ;
179 struct insn_templ_struct
180 {
181 const char *opcode_name;
182 opname_map operand_map;
183 };
184
185
186 /* The insn_pattern represents an INSN_PATTERN instruction pattern.
187 It is an instruction template with preconditions that specify when
188 it actually matches a given instruction. */
189
190 typedef struct insn_pattern_struct insn_pattern;
191 struct insn_pattern_struct
192 {
193 insn_templ t;
194 precond_list preconds;
195 ReqOptionList *options;
196 };
197
198
199 /* The "insn_repl" and associated element structure "insn_repl_e"
200 instruction replacement list is a list of
201 instructions/LITERALS/LABELS with constant operands or operands
202 with names bound to the operand names in the associated pattern. */
203
204 typedef struct insn_repl_e_struct insn_repl_e;
205 struct insn_repl_e_struct
206 {
207 insn_templ t;
208 insn_repl_e *next;
209 };
210
211 typedef struct insn_repl_struct insn_repl;
212 struct insn_repl_struct
213 {
214 insn_repl_e *head;
215 insn_repl_e **tail;
216 };
217
218
219 /* The split_rec is a vector of allocated char * pointers. */
220
221 typedef struct split_rec_struct split_rec;
222 struct split_rec_struct
223 {
224 char **vec;
225 int count;
226 };
227
228 /* The "string_pattern_pair" is a set of pairs containing instruction
229 patterns and replacement strings. */
230
231 typedef struct string_pattern_pair_struct string_pattern_pair;
232 struct string_pattern_pair_struct
233 {
234 const char *pattern;
235 const char *replacement;
236 };
237
238
239 /* The widen_spec_list is a list of valid substitutions that generate
240 wider representations. These are generally used to specify
241 replacements for instructions whose immediates do not fit their
242 encodings. A valid transition may require multiple steps of
243 one-to-one instruction replacements with a final multiple
244 instruction replacement. As an example, here are the transitions
245 required to replace an 'addi.n' with an 'addi', 'addmi'.
246
247 addi.n a4, 0x1010
248 => addi a4, 0x1010
249 => addmi a4, 0x1010
250 => addmi a4, 0x1000, addi a4, 0x10.
251
252 See the comments in xg_assembly_relax for some important details
253 regarding how these chains must be built. */
254
255 static string_pattern_pair widen_spec_list[] =
256 {
257 {"add.n %ar,%as,%at ? IsaUseDensityInstruction", "add %ar,%as,%at"},
258 {"addi.n %ar,%as,%imm ? IsaUseDensityInstruction", "addi %ar,%as,%imm"},
259 {"beqz.n %as,%label ? IsaUseDensityInstruction", "beqz %as,%label"},
260 {"bnez.n %as,%label ? IsaUseDensityInstruction", "bnez %as,%label"},
261 {"l32i.n %at,%as,%imm ? IsaUseDensityInstruction", "l32i %at,%as,%imm"},
262 {"mov.n %at,%as ? IsaUseDensityInstruction", "or %at,%as,%as"},
263 {"movi.n %as,%imm ? IsaUseDensityInstruction", "movi %as,%imm"},
264 {"nop.n ? IsaUseDensityInstruction ? realnop", "nop"},
265 {"nop.n ? IsaUseDensityInstruction ? no-realnop", "or 1,1,1"},
266 {"ret.n %as ? IsaUseDensityInstruction", "ret %as"},
267 {"retw.n %as ? IsaUseDensityInstruction", "retw %as"},
268 {"s32i.n %at,%as,%imm ? IsaUseDensityInstruction", "s32i %at,%as,%imm"},
269 {"srli %at,%as,%imm", "extui %at,%as,%imm,F32MINUS(%imm)"},
270 {"slli %ar,%as,0", "or %ar,%as,%as"},
271
272 /* Widening with literals or const16. */
273 {"movi %at,%imm ? IsaUseL32R ",
274 "LITERAL %imm; l32r %at,%LITERAL"},
275 {"movi %at,%imm ? IsaUseConst16",
276 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm)"},
277
278 {"addi %ar,%as,%imm", "addmi %ar,%as,%imm"},
279 /* LOW8 is the low 8 bits of the Immed
280 MID8S is the middle 8 bits of the Immed */
281 {"addmi %ar,%as,%imm", "addmi %ar,%as,HI24S(%imm); addi %ar,%ar,LOW8(%imm)"},
282
283 /* In the end convert to either an l32r or const16. */
284 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseL32R",
285 "LITERAL %imm; l32r %ar,%LITERAL; add %ar,%as,%ar"},
286 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseConst16",
287 "const16 %ar,HI16U(%imm); const16 %ar,LOW16U(%imm); add %ar,%as,%ar"},
288
289 /* Widening the load instructions with too-large immediates */
290 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
291 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l8ui %at,%at,0"},
292 {"l16si %at,%as,%imm | %at!=%as ? IsaUseL32R",
293 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16si %at,%at,0"},
294 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
295 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16ui %at,%at,0"},
296 {"l32i %at,%as,%imm | %at!=%as ? IsaUseL32R",
297 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"},
298
299 /* Widening load instructions with const16s. */
300 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
301 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l8ui %at,%at,0"},
302 {"l16si %at,%as,%imm | %at!=%as ? IsaUseConst16",
303 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16si %at,%at,0"},
304 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
305 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16ui %at,%at,0"},
306 {"l32i %at,%as,%imm | %at!=%as ? IsaUseConst16",
307 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l32i %at,%at,0"},
308
309 /* This is only PART of the loop instruction. In addition,
310 hardcoded into its use is a modification of the final operand in
311 the instruction in bytes 9 and 12. */
312 {"loop %as,%label | %as!=1 ? IsaUseLoops",
313 "loop %as,%LABEL;"
314 "rsr.lend %as;" /* LEND */
315 "wsr.lbeg %as;" /* LBEG */
316 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
317 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
318 "wsr.lend %as;"
319 "isync;"
320 "rsr.lcount %as;" /* LCOUNT */
321 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
322 "LABEL"},
323 {"loopgtz %as,%label | %as!=1 ? IsaUseLoops",
324 "beqz %as,%label;"
325 "bltz %as,%label;"
326 "loopgtz %as,%LABEL;"
327 "rsr.lend %as;" /* LEND */
328 "wsr.lbeg %as;" /* LBEG */
329 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
330 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
331 "wsr.lend %as;"
332 "isync;"
333 "rsr.lcount %as;" /* LCOUNT */
334 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
335 "LABEL"},
336 {"loopnez %as,%label | %as!=1 ? IsaUseLoops",
337 "beqz %as,%label;"
338 "loopnez %as,%LABEL;"
339 "rsr.lend %as;" /* LEND */
340 "wsr.lbeg %as;" /* LBEG */
341 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
342 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
343 "wsr.lend %as;"
344 "isync;"
345 "rsr.lcount %as;" /* LCOUNT */
346 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
347 "LABEL"},
348
349 /* Relaxing to wide branches. Order is important here. With wide
350 branches, there is more than one correct relaxation for an
351 out-of-range branch. Put the wide branch relaxations first in the
352 table since they are more efficient than the branch-around
353 relaxations. */
354
355 {"beqz %as,%label ? IsaUseWideBranches", "WIDE.beqz %as,%label"},
356 {"bnez %as,%label ? IsaUseWideBranches", "WIDE.bnez %as,%label"},
357 {"bgez %as,%label ? IsaUseWideBranches", "WIDE.bgez %as,%label"},
358 {"bltz %as,%label ? IsaUseWideBranches", "WIDE.bltz %as,%label"},
359 {"beqi %as,%imm,%label ? IsaUseWideBranches", "WIDE.beqi %as,%imm,%label"},
360 {"bnei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bnei %as,%imm,%label"},
361 {"bgei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgei %as,%imm,%label"},
362 {"blti %as,%imm,%label ? IsaUseWideBranches", "WIDE.blti %as,%imm,%label"},
363 {"bgeui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgeui %as,%imm,%label"},
364 {"bltui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bltui %as,%imm,%label"},
365 {"bbci %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbci %as,%imm,%label"},
366 {"bbsi %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbsi %as,%imm,%label"},
367 {"beq %as,%at,%label ? IsaUseWideBranches", "WIDE.beq %as,%at,%label"},
368 {"bne %as,%at,%label ? IsaUseWideBranches", "WIDE.bne %as,%at,%label"},
369 {"bge %as,%at,%label ? IsaUseWideBranches", "WIDE.bge %as,%at,%label"},
370 {"blt %as,%at,%label ? IsaUseWideBranches", "WIDE.blt %as,%at,%label"},
371 {"bgeu %as,%at,%label ? IsaUseWideBranches", "WIDE.bgeu %as,%at,%label"},
372 {"bltu %as,%at,%label ? IsaUseWideBranches", "WIDE.bltu %as,%at,%label"},
373 {"bany %as,%at,%label ? IsaUseWideBranches", "WIDE.bany %as,%at,%label"},
374 {"bnone %as,%at,%label ? IsaUseWideBranches", "WIDE.bnone %as,%at,%label"},
375 {"ball %as,%at,%label ? IsaUseWideBranches", "WIDE.ball %as,%at,%label"},
376 {"bnall %as,%at,%label ? IsaUseWideBranches", "WIDE.bnall %as,%at,%label"},
377 {"bbc %as,%at,%label ? IsaUseWideBranches", "WIDE.bbc %as,%at,%label"},
378 {"bbs %as,%at,%label ? IsaUseWideBranches", "WIDE.bbs %as,%at,%label"},
379
380 /* Widening branch comparisons eq/ne to zero. Prefer relaxing to narrow
381 branches if the density option is available. */
382 {"beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
383 {"bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
384 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
385 {"bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
386 {"WIDE.beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
387 {"WIDE.bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
388 {"WIDE.beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
389 {"WIDE.bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
390
391 /* Widening expect-taken branches. */
392 {"beqzt %as,%label ? IsaUsePredictedBranches", "bnez %as,%LABEL;j %label;LABEL"},
393 {"bnezt %as,%label ? IsaUsePredictedBranches", "beqz %as,%LABEL;j %label;LABEL"},
394 {"beqt %as,%at,%label ? IsaUsePredictedBranches", "bne %as,%at,%LABEL;j %label;LABEL"},
395 {"bnet %as,%at,%label ? IsaUsePredictedBranches", "beq %as,%at,%LABEL;j %label;LABEL"},
396
397 /* Widening branches from the Xtensa boolean option. */
398 {"bt %bs,%label ? IsaUseBooleans", "bf %bs,%LABEL;j %label;LABEL"},
399 {"bf %bs,%label ? IsaUseBooleans", "bt %bs,%LABEL;j %label;LABEL"},
400
401 /* Other branch-around-jump widenings. */
402 {"bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
403 {"bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
404 {"beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
405 {"bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
406 {"bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
407 {"blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
408 {"bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
409 {"bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
410 {"bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
411 {"bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
412 {"beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
413 {"bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
414 {"bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
415 {"blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
416 {"bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
417 {"bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
418 {"bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
419 {"bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
420 {"ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
421 {"bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
422 {"bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
423 {"bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
424
425 {"WIDE.bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
426 {"WIDE.bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
427 {"WIDE.beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
428 {"WIDE.bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
429 {"WIDE.bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
430 {"WIDE.blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
431 {"WIDE.bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
432 {"WIDE.bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
433 {"WIDE.bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
434 {"WIDE.bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
435 {"WIDE.beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
436 {"WIDE.bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
437 {"WIDE.bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
438 {"WIDE.blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
439 {"WIDE.bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
440 {"WIDE.bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
441 {"WIDE.bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
442 {"WIDE.bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
443 {"WIDE.ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
444 {"WIDE.bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
445 {"WIDE.bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
446 {"WIDE.bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
447
448 /* Expanding calls with literals. */
449 {"call0 %label,%ar0 ? IsaUseL32R",
450 "LITERAL %label; l32r a0,%LITERAL; callx0 a0,%ar0"},
451 {"call4 %label,%ar4 ? IsaUseL32R",
452 "LITERAL %label; l32r a4,%LITERAL; callx4 a4,%ar4"},
453 {"call8 %label,%ar8 ? IsaUseL32R",
454 "LITERAL %label; l32r a8,%LITERAL; callx8 a8,%ar8"},
455 {"call12 %label,%ar12 ? IsaUseL32R",
456 "LITERAL %label; l32r a12,%LITERAL; callx12 a12,%ar12"},
457
458 /* Expanding calls with const16. */
459 {"call0 %label,%ar0 ? IsaUseConst16",
460 "const16 a0,HI16U(%label); const16 a0,LOW16U(%label); callx0 a0,%ar0"},
461 {"call4 %label,%ar4 ? IsaUseConst16",
462 "const16 a4,HI16U(%label); const16 a4,LOW16U(%label); callx4 a4,%ar4"},
463 {"call8 %label,%ar8 ? IsaUseConst16",
464 "const16 a8,HI16U(%label); const16 a8,LOW16U(%label); callx8 a8,%ar8"},
465 {"call12 %label,%ar12 ? IsaUseConst16",
466 "const16 a12,HI16U(%label); const16 a12,LOW16U(%label); callx12 a12,%ar12"},
467
468 /* Expanding j.l with literals. */
469 {"j %label ? FREEREG ? IsaUseL32R",
470 "LITERAL %label; l32r FREEREG,%LITERAL; jx FREEREG"},
471 /* Expanding j.l with const16. */
472 {"j %label ? FREEREG ? IsaUseConst16",
473 "const16 FREEREG,HI16U(%label); const16 FREEREG,LOW16U(%label); jx FREEREG"},
474 };
475
476 #define WIDEN_COUNT (sizeof (widen_spec_list) / sizeof (string_pattern_pair))
477
478
479 /* The simplify_spec_list specifies simplifying transformations that
480 will reduce the instruction width or otherwise simplify an
481 instruction. These are usually applied before relaxation in the
482 assembler. It is always legal to simplify. Even for "addi as, 0",
483 the "addi.n as, 0" will eventually be widened back to an "addi 0"
484 after the widening table is applied. Note: The usage of this table
485 has changed somewhat so that it is entirely specific to "narrowing"
486 instructions to use the density option. This table is not used at
487 all when the density option is not available. */
488
489 string_pattern_pair simplify_spec_list[] =
490 {
491 {"add %ar,%as,%at ? IsaUseDensityInstruction", "add.n %ar,%as,%at"},
492 {"addi.n %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
493 {"addi %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
494 {"addi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
495 {"addmi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
496 {"beqz %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%label"},
497 {"bnez %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%label"},
498 {"l32i %at,%as,%imm ? IsaUseDensityInstruction", "l32i.n %at,%as,%imm"},
499 {"movi %as,%imm ? IsaUseDensityInstruction", "movi.n %as,%imm"},
500 {"nop ? realnop ? IsaUseDensityInstruction", "nop.n"},
501 {"or %ar,%as,%at | %ar==%as | %as==%at ? IsaUseDensityInstruction", "nop.n"},
502 {"or %ar,%as,%at | %ar!=%as | %as==%at ? IsaUseDensityInstruction", "mov.n %ar,%as"},
503 {"ret %as ? IsaUseDensityInstruction", "ret.n %as"},
504 {"retw %as ? IsaUseDensityInstruction", "retw.n %as"},
505 {"s32i %at,%as,%imm ? IsaUseDensityInstruction", "s32i.n %at,%as,%imm"},
506 {"slli %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"}
507 };
508
509 #define SIMPLIFY_COUNT \
510 (sizeof (simplify_spec_list) / sizeof (string_pattern_pair))
511
512
513 /* Externally visible functions. */
514
515 extern bfd_boolean xg_has_userdef_op_fn (OpType);
516 extern long xg_apply_userdef_op_fn (OpType, long);
517
518
519 static void
append_transition(TransitionTable * tt,xtensa_opcode opcode,TransitionRule * t,transition_cmp_fn cmp)520 append_transition (TransitionTable *tt,
521 xtensa_opcode opcode,
522 TransitionRule *t,
523 transition_cmp_fn cmp)
524 {
525 TransitionList *tl = XNEW (TransitionList);
526 TransitionList *prev;
527 TransitionList **t_p;
528 gas_assert (tt != NULL);
529 gas_assert (opcode < tt->num_opcodes);
530
531 prev = tt->table[opcode];
532 tl->rule = t;
533 tl->next = NULL;
534 if (prev == NULL)
535 {
536 tt->table[opcode] = tl;
537 return;
538 }
539
540 for (t_p = &tt->table[opcode]; (*t_p) != NULL; t_p = &(*t_p)->next)
541 {
542 if (cmp && cmp (t, (*t_p)->rule) < 0)
543 {
544 /* Insert it here. */
545 tl->next = *t_p;
546 *t_p = tl;
547 return;
548 }
549 }
550 (*t_p) = tl;
551 }
552
553
554 static void
append_condition(TransitionRule * tr,Precondition * cond)555 append_condition (TransitionRule *tr, Precondition *cond)
556 {
557 PreconditionList *pl = XNEW (PreconditionList);
558 PreconditionList *prev = tr->conditions;
559 PreconditionList *nxt;
560
561 pl->precond = cond;
562 pl->next = NULL;
563 if (prev == NULL)
564 {
565 tr->conditions = pl;
566 return;
567 }
568 nxt = prev->next;
569 while (nxt != NULL)
570 {
571 prev = nxt;
572 nxt = nxt->next;
573 }
574 prev->next = pl;
575 }
576
577
578 static void
append_value_condition(TransitionRule * tr,CmpOp cmp,unsigned op1,unsigned op2)579 append_value_condition (TransitionRule *tr,
580 CmpOp cmp,
581 unsigned op1,
582 unsigned op2)
583 {
584 Precondition *cond = XNEW (Precondition);
585
586 cond->cmp = cmp;
587 cond->op_num = op1;
588 cond->typ = OP_OPERAND;
589 cond->op_data = op2;
590 append_condition (tr, cond);
591 }
592
593
594 static void
append_constant_value_condition(TransitionRule * tr,CmpOp cmp,unsigned op1,unsigned cnst)595 append_constant_value_condition (TransitionRule *tr,
596 CmpOp cmp,
597 unsigned op1,
598 unsigned cnst)
599 {
600 Precondition *cond = XNEW (Precondition);
601
602 cond->cmp = cmp;
603 cond->op_num = op1;
604 cond->typ = OP_CONSTANT;
605 cond->op_data = cnst;
606 append_condition (tr, cond);
607 }
608
609
610 static void
append_build_insn(TransitionRule * tr,BuildInstr * bi)611 append_build_insn (TransitionRule *tr, BuildInstr *bi)
612 {
613 BuildInstr *prev = tr->to_instr;
614 BuildInstr *nxt;
615
616 bi->next = NULL;
617 if (prev == NULL)
618 {
619 tr->to_instr = bi;
620 return;
621 }
622 nxt = prev->next;
623 while (nxt != 0)
624 {
625 prev = nxt;
626 nxt = prev->next;
627 }
628 prev->next = bi;
629 }
630
631
632 static void
append_op(BuildInstr * bi,BuildOp * b_op)633 append_op (BuildInstr *bi, BuildOp *b_op)
634 {
635 BuildOp *prev = bi->ops;
636 BuildOp *nxt;
637
638 if (prev == NULL)
639 {
640 bi->ops = b_op;
641 return;
642 }
643 nxt = prev->next;
644 while (nxt != NULL)
645 {
646 prev = nxt;
647 nxt = nxt->next;
648 }
649 prev->next = b_op;
650 }
651
652
653 static void
append_literal_op(BuildInstr * bi,unsigned op1,unsigned src_op)654 append_literal_op (BuildInstr *bi, unsigned op1, unsigned src_op)
655 {
656 BuildOp *b_op = XNEW (BuildOp);
657
658 b_op->op_num = op1;
659 b_op->typ = OP_LITERAL;
660 b_op->op_data = src_op;
661 b_op->next = NULL;
662 append_op (bi, b_op);
663 }
664
665
666 static void
append_label_op(BuildInstr * bi,unsigned op1)667 append_label_op (BuildInstr *bi, unsigned op1)
668 {
669 BuildOp *b_op = XNEW (BuildOp);
670
671 b_op->op_num = op1;
672 b_op->typ = OP_LABEL;
673 b_op->op_data = 0;
674 b_op->next = NULL;
675 append_op (bi, b_op);
676 }
677
678
679 static void
append_constant_op(BuildInstr * bi,unsigned op1,unsigned cnst)680 append_constant_op (BuildInstr *bi, unsigned op1, unsigned cnst)
681 {
682 BuildOp *b_op = XNEW (BuildOp);
683
684 b_op->op_num = op1;
685 b_op->typ = OP_CONSTANT;
686 b_op->op_data = cnst;
687 b_op->next = NULL;
688 append_op (bi, b_op);
689 }
690
691
692 static void
append_field_op(BuildInstr * bi,unsigned op1,unsigned src_op)693 append_field_op (BuildInstr *bi, unsigned op1, unsigned src_op)
694 {
695 BuildOp *b_op = XNEW (BuildOp);
696
697 b_op->op_num = op1;
698 b_op->typ = OP_OPERAND;
699 b_op->op_data = src_op;
700 b_op->next = NULL;
701 append_op (bi, b_op);
702 }
703
704
705 /* These could be generated but are not currently. */
706
707 static void
append_user_fn_field_op(BuildInstr * bi,unsigned op1,OpType typ,unsigned src_op)708 append_user_fn_field_op (BuildInstr *bi,
709 unsigned op1,
710 OpType typ,
711 unsigned src_op)
712 {
713 BuildOp *b_op = XNEW (BuildOp);
714
715 b_op->op_num = op1;
716 b_op->typ = typ;
717 b_op->op_data = src_op;
718 b_op->next = NULL;
719 append_op (bi, b_op);
720 }
721
722
723 /* These operand functions are the semantics of user-defined
724 operand functions. */
725
726 static long
operand_function_HI24S(long a)727 operand_function_HI24S (long a)
728 {
729 if (a & 0x80)
730 return (a & (~0xff)) + 0x100;
731 else
732 return (a & (~0xff));
733 }
734
735
736 static long
operand_function_F32MINUS(long a)737 operand_function_F32MINUS (long a)
738 {
739 return (32 - a);
740 }
741
742
743 static long
operand_function_LOW8(long a)744 operand_function_LOW8 (long a)
745 {
746 if (a & 0x80)
747 return (a & 0xff) | ~0xff;
748 else
749 return (a & 0xff);
750 }
751
752
753 static long
operand_function_LOW16U(long a)754 operand_function_LOW16U (long a)
755 {
756 return (a & 0xffff);
757 }
758
759
760 static long
operand_function_HI16U(long a)761 operand_function_HI16U (long a)
762 {
763 unsigned long b = a & 0xffff0000;
764 return (long) (b >> 16);
765 }
766
767
768 bfd_boolean
xg_has_userdef_op_fn(OpType op)769 xg_has_userdef_op_fn (OpType op)
770 {
771 switch (op)
772 {
773 case OP_OPERAND_F32MINUS:
774 case OP_OPERAND_LOW8:
775 case OP_OPERAND_HI24S:
776 case OP_OPERAND_LOW16U:
777 case OP_OPERAND_HI16U:
778 return TRUE;
779 default:
780 break;
781 }
782 return FALSE;
783 }
784
785
786 long
xg_apply_userdef_op_fn(OpType op,long a)787 xg_apply_userdef_op_fn (OpType op, long a)
788 {
789 switch (op)
790 {
791 case OP_OPERAND_F32MINUS:
792 return operand_function_F32MINUS (a);
793 case OP_OPERAND_LOW8:
794 return operand_function_LOW8 (a);
795 case OP_OPERAND_HI24S:
796 return operand_function_HI24S (a);
797 case OP_OPERAND_LOW16U:
798 return operand_function_LOW16U (a);
799 case OP_OPERAND_HI16U:
800 return operand_function_HI16U (a);
801 default:
802 break;
803 }
804 return FALSE;
805 }
806
807
808 /* Generate a transition table. */
809
810 static const char *
enter_opname_n(const char * name,int len)811 enter_opname_n (const char *name, int len)
812 {
813 opname_e *op;
814
815 for (op = local_opnames; op != NULL; op = op->next)
816 {
817 if (strlen (op->opname) == (unsigned) len
818 && strncmp (op->opname, name, len) == 0)
819 return op->opname;
820 }
821 op = XNEW (opname_e);
822 op->opname = xmemdup0 (name, len);
823 return op->opname;
824 }
825
826
827 static const char *
enter_opname(const char * name)828 enter_opname (const char *name)
829 {
830 opname_e *op;
831
832 for (op = local_opnames; op != NULL; op = op->next)
833 {
834 if (strcmp (op->opname, name) == 0)
835 return op->opname;
836 }
837 op = XNEW (opname_e);
838 op->opname = xstrdup (name);
839 return op->opname;
840 }
841
842
843 static void
init_opname_map(opname_map * m)844 init_opname_map (opname_map *m)
845 {
846 m->head = NULL;
847 m->tail = &m->head;
848 }
849
850
851 static void
clear_opname_map(opname_map * m)852 clear_opname_map (opname_map *m)
853 {
854 opname_map_e *e;
855
856 while (m->head != NULL)
857 {
858 e = m->head;
859 m->head = e->next;
860 free (e);
861 }
862 m->tail = &m->head;
863 }
864
865
866 static bfd_boolean
same_operand_name(const opname_map_e * m1,const opname_map_e * m2)867 same_operand_name (const opname_map_e *m1, const opname_map_e *m2)
868 {
869 if (m1->operand_name == NULL || m2->operand_name == NULL)
870 return FALSE;
871 return (m1->operand_name == m2->operand_name);
872 }
873
874
875 static opname_map_e *
get_opmatch(opname_map * map,const char * operand_name)876 get_opmatch (opname_map *map, const char *operand_name)
877 {
878 opname_map_e *m;
879
880 for (m = map->head; m != NULL; m = m->next)
881 {
882 if (strcmp (m->operand_name, operand_name) == 0)
883 return m;
884 }
885 return NULL;
886 }
887
888
889 static bfd_boolean
op_is_constant(const opname_map_e * m1)890 op_is_constant (const opname_map_e *m1)
891 {
892 return (m1->operand_name == NULL);
893 }
894
895
896 static unsigned
op_get_constant(const opname_map_e * m1)897 op_get_constant (const opname_map_e *m1)
898 {
899 gas_assert (m1->operand_name == NULL);
900 return m1->constant_value;
901 }
902
903
904 static void
init_precond_list(precond_list * l)905 init_precond_list (precond_list *l)
906 {
907 l->head = NULL;
908 l->tail = &l->head;
909 }
910
911
912 static void
clear_precond_list(precond_list * l)913 clear_precond_list (precond_list *l)
914 {
915 precond_e *e;
916
917 while (l->head != NULL)
918 {
919 e = l->head;
920 l->head = e->next;
921 free (e);
922 }
923 l->tail = &l->head;
924 }
925
926
927 static void
init_insn_templ(insn_templ * t)928 init_insn_templ (insn_templ *t)
929 {
930 t->opcode_name = NULL;
931 init_opname_map (&t->operand_map);
932 }
933
934
935 static void
clear_insn_templ(insn_templ * t)936 clear_insn_templ (insn_templ *t)
937 {
938 clear_opname_map (&t->operand_map);
939 }
940
941
942 static void
init_insn_pattern(insn_pattern * p)943 init_insn_pattern (insn_pattern *p)
944 {
945 init_insn_templ (&p->t);
946 init_precond_list (&p->preconds);
947 p->options = NULL;
948 }
949
950
951 static void
clear_insn_pattern(insn_pattern * p)952 clear_insn_pattern (insn_pattern *p)
953 {
954 clear_insn_templ (&p->t);
955 clear_precond_list (&p->preconds);
956 }
957
958
959 static void
init_insn_repl(insn_repl * r)960 init_insn_repl (insn_repl *r)
961 {
962 r->head = NULL;
963 r->tail = &r->head;
964 }
965
966
967 static void
clear_insn_repl(insn_repl * r)968 clear_insn_repl (insn_repl *r)
969 {
970 insn_repl_e *e;
971
972 while (r->head != NULL)
973 {
974 e = r->head;
975 r->head = e->next;
976 clear_insn_templ (&e->t);
977 }
978 r->tail = &r->head;
979 }
980
981
982 static int
insn_templ_operand_count(const insn_templ * t)983 insn_templ_operand_count (const insn_templ *t)
984 {
985 int i = 0;
986 const opname_map_e *op;
987
988 for (op = t->operand_map.head; op != NULL; op = op->next, i++)
989 ;
990 return i;
991 }
992
993
994 /* Convert a string to a number. E.G.: parse_constant("10", &num) */
995
996 static bfd_boolean
parse_constant(const char * in,unsigned * val_p)997 parse_constant (const char *in, unsigned *val_p)
998 {
999 unsigned val = 0;
1000 const char *p;
1001
1002 if (in == NULL)
1003 return FALSE;
1004 p = in;
1005
1006 while (*p != '\0')
1007 {
1008 if (*p >= '0' && *p <= '9')
1009 val = val * 10 + (*p - '0');
1010 else
1011 return FALSE;
1012 ++p;
1013 }
1014 *val_p = val;
1015 return TRUE;
1016 }
1017
1018
1019 static bfd_boolean
parse_special_fn(const char * name,const char ** fn_name_p,const char ** arg_name_p)1020 parse_special_fn (const char *name,
1021 const char **fn_name_p,
1022 const char **arg_name_p)
1023 {
1024 const char *p_start;
1025 const char *p_end;
1026
1027 p_start = strchr (name, '(');
1028 if (p_start == NULL)
1029 return FALSE;
1030
1031 p_end = strchr (p_start, ')');
1032
1033 if (p_end == NULL)
1034 return FALSE;
1035
1036 if (p_end[1] != '\0')
1037 return FALSE;
1038
1039 *fn_name_p = enter_opname_n (name, p_start - name);
1040 *arg_name_p = enter_opname_n (p_start + 1, p_end - p_start - 1);
1041 return TRUE;
1042 }
1043
1044
1045 static const char *
skip_white(const char * p)1046 skip_white (const char *p)
1047 {
1048 if (p == NULL)
1049 return p;
1050 while (*p == ' ')
1051 ++p;
1052 return p;
1053 }
1054
1055
1056 static void
trim_whitespace(char * in)1057 trim_whitespace (char *in)
1058 {
1059 char *last_white = NULL;
1060 char *p = in;
1061
1062 while (p && *p != '\0')
1063 {
1064 while (*p == ' ')
1065 {
1066 if (last_white == NULL)
1067 last_white = p;
1068 p++;
1069 }
1070 if (*p != '\0')
1071 {
1072 last_white = NULL;
1073 p++;
1074 }
1075 }
1076 if (last_white)
1077 *last_white = '\0';
1078 }
1079
1080
1081 /* Split a string into component strings where "c" is the
1082 delimiter. Place the result in the split_rec. */
1083
1084 static void
split_string(split_rec * rec,const char * in,char c,bfd_boolean elide_whitespace)1085 split_string (split_rec *rec,
1086 const char *in,
1087 char c,
1088 bfd_boolean elide_whitespace)
1089 {
1090 int cnt = 0;
1091 int i;
1092 const char *p = in;
1093
1094 while (p != NULL && *p != '\0')
1095 {
1096 cnt++;
1097 p = strchr (p, c);
1098 if (p)
1099 p++;
1100 }
1101 rec->count = cnt;
1102 rec->vec = NULL;
1103
1104 if (rec->count == 0)
1105 return;
1106
1107 rec->vec = XNEWVEC (char *, cnt);
1108 for (i = 0; i < cnt; i++)
1109 rec->vec[i] = 0;
1110
1111 p = in;
1112 for (i = 0; i < cnt; i++)
1113 {
1114 const char *q;
1115 int len;
1116
1117 q = p;
1118 if (elide_whitespace)
1119 q = skip_white (q);
1120
1121 p = strchr (q, c);
1122 if (p == NULL)
1123 rec->vec[i] = xstrdup (q);
1124 else
1125 {
1126 len = p - q;
1127 rec->vec[i] = xmemdup0 (q, len);
1128 p++;
1129 }
1130
1131 if (elide_whitespace)
1132 trim_whitespace (rec->vec[i]);
1133 }
1134 }
1135
1136
1137 static void
clear_split_rec(split_rec * rec)1138 clear_split_rec (split_rec *rec)
1139 {
1140 int i;
1141
1142 for (i = 0; i < rec->count; i++)
1143 free (rec->vec[i]);
1144
1145 if (rec->count > 0)
1146 free (rec->vec);
1147 }
1148
1149
1150 /* Initialize a split record. The split record must be initialized
1151 before split_string is called. */
1152
1153 static void
init_split_rec(split_rec * rec)1154 init_split_rec (split_rec *rec)
1155 {
1156 rec->vec = NULL;
1157 rec->count = 0;
1158 }
1159
1160
1161 /* Parse an instruction template like "insn op1, op2, op3". */
1162
1163 static bfd_boolean
parse_insn_templ(const char * s,insn_templ * t)1164 parse_insn_templ (const char *s, insn_templ *t)
1165 {
1166 const char *p = s;
1167 int insn_name_len;
1168 split_rec oprec;
1169 int i;
1170
1171 /* First find the first whitespace. */
1172
1173 init_split_rec (&oprec);
1174
1175 p = skip_white (p);
1176 insn_name_len = strcspn (s, " ");
1177 if (insn_name_len == 0)
1178 return FALSE;
1179
1180 init_insn_templ (t);
1181 t->opcode_name = enter_opname_n (p, insn_name_len);
1182
1183 p = p + insn_name_len;
1184
1185 /* Split by ',' and skip beginning and trailing whitespace. */
1186 split_string (&oprec, p, ',', TRUE);
1187
1188 for (i = 0; i < oprec.count; i++)
1189 {
1190 const char *opname = oprec.vec[i];
1191 opname_map_e *e = XNEW (opname_map_e);
1192 e->next = NULL;
1193 e->operand_name = NULL;
1194 e->constant_value = 0;
1195 e->operand_num = i;
1196
1197 /* If it begins with a number, assume that it is a number. */
1198 if (opname && opname[0] >= '0' && opname[0] <= '9')
1199 {
1200 unsigned val;
1201
1202 if (parse_constant (opname, &val))
1203 e->constant_value = val;
1204 else
1205 {
1206 free (e);
1207 clear_split_rec (&oprec);
1208 clear_insn_templ (t);
1209 return FALSE;
1210 }
1211 }
1212 else
1213 e->operand_name = enter_opname (oprec.vec[i]);
1214
1215 *t->operand_map.tail = e;
1216 t->operand_map.tail = &e->next;
1217 }
1218 clear_split_rec (&oprec);
1219 return TRUE;
1220 }
1221
1222
1223 static bfd_boolean
parse_precond(const char * s,precond_e * precond)1224 parse_precond (const char *s, precond_e *precond)
1225 {
1226 /* All preconditions are currently of the form:
1227 a == b or a != b or a == k (where k is a constant).
1228 Later we may use some special functions like DENSITY == 1
1229 to identify when density is available. */
1230
1231 const char *p = s;
1232 int len;
1233 precond->opname1 = NULL;
1234 precond->opval1 = 0;
1235 precond->cmpop = OP_EQUAL;
1236 precond->opname2 = NULL;
1237 precond->opval2 = 0;
1238 precond->next = NULL;
1239
1240 p = skip_white (p);
1241
1242 len = strcspn (p, " !=");
1243
1244 if (len == 0)
1245 return FALSE;
1246
1247 precond->opname1 = enter_opname_n (p, len);
1248 p = p + len;
1249 p = skip_white (p);
1250
1251 /* Check for "==" and "!=". */
1252 if (strncmp (p, "==", 2) == 0)
1253 precond->cmpop = OP_EQUAL;
1254 else if (strncmp (p, "!=", 2) == 0)
1255 precond->cmpop = OP_NOTEQUAL;
1256 else
1257 return FALSE;
1258
1259 p = p + 2;
1260 p = skip_white (p);
1261
1262 /* No trailing whitespace from earlier parsing. */
1263 if (p[0] >= '0' && p[0] <= '9')
1264 {
1265 unsigned val;
1266 if (parse_constant (p, &val))
1267 precond->opval2 = val;
1268 else
1269 return FALSE;
1270 }
1271 else
1272 precond->opname2 = enter_opname (p);
1273 return TRUE;
1274 }
1275
1276
1277 static void
clear_req_or_option_list(ReqOrOption ** r_p)1278 clear_req_or_option_list (ReqOrOption **r_p)
1279 {
1280 if (*r_p == NULL)
1281 return;
1282
1283 free ((*r_p)->option_name);
1284 clear_req_or_option_list (&(*r_p)->next);
1285 *r_p = NULL;
1286 }
1287
1288
1289 static void
clear_req_option_list(ReqOption ** r_p)1290 clear_req_option_list (ReqOption **r_p)
1291 {
1292 if (*r_p == NULL)
1293 return;
1294
1295 clear_req_or_option_list (&(*r_p)->or_option_terms);
1296 clear_req_option_list (&(*r_p)->next);
1297 *r_p = NULL;
1298 }
1299
1300
1301 static ReqOrOption *
clone_req_or_option_list(ReqOrOption * req_or_option)1302 clone_req_or_option_list (ReqOrOption *req_or_option)
1303 {
1304 ReqOrOption *new_req_or_option;
1305
1306 if (req_or_option == NULL)
1307 return NULL;
1308
1309 new_req_or_option = XNEW (ReqOrOption);
1310 new_req_or_option->option_name = xstrdup (req_or_option->option_name);
1311 new_req_or_option->is_true = req_or_option->is_true;
1312 new_req_or_option->next = NULL;
1313 new_req_or_option->next = clone_req_or_option_list (req_or_option->next);
1314 return new_req_or_option;
1315 }
1316
1317
1318 static ReqOption *
clone_req_option_list(ReqOption * req_option)1319 clone_req_option_list (ReqOption *req_option)
1320 {
1321 ReqOption *new_req_option;
1322
1323 if (req_option == NULL)
1324 return NULL;
1325
1326 new_req_option = XNEW (ReqOption);
1327 new_req_option->or_option_terms = NULL;
1328 new_req_option->next = NULL;
1329 new_req_option->or_option_terms =
1330 clone_req_or_option_list (req_option->or_option_terms);
1331 new_req_option->next = clone_req_option_list (req_option->next);
1332 return new_req_option;
1333 }
1334
1335
1336 static bfd_boolean
parse_option_cond(const char * s,ReqOption * option)1337 parse_option_cond (const char *s, ReqOption *option)
1338 {
1339 int i;
1340 split_rec option_term_rec;
1341
1342 /* All option or conditions are of the form:
1343 optionA + no-optionB + ...
1344 "Ands" are divided by "?". */
1345
1346 init_split_rec (&option_term_rec);
1347 split_string (&option_term_rec, s, '+', TRUE);
1348
1349 if (option_term_rec.count == 0)
1350 {
1351 clear_split_rec (&option_term_rec);
1352 return FALSE;
1353 }
1354
1355 for (i = 0; i < option_term_rec.count; i++)
1356 {
1357 char *option_name = option_term_rec.vec[i];
1358 bfd_boolean is_true = TRUE;
1359 ReqOrOption *req;
1360 ReqOrOption **r_p;
1361
1362 if (strncmp (option_name, "no-", 3) == 0)
1363 {
1364 option_name = xstrdup (&option_name[3]);
1365 is_true = FALSE;
1366 }
1367 else
1368 option_name = xstrdup (option_name);
1369
1370 req = XNEW (ReqOrOption);
1371 req->option_name = option_name;
1372 req->is_true = is_true;
1373 req->next = NULL;
1374
1375 /* Append to list. */
1376 for (r_p = &option->or_option_terms; (*r_p) != NULL;
1377 r_p = &(*r_p)->next)
1378 ;
1379 (*r_p) = req;
1380 }
1381 return TRUE;
1382 }
1383
1384
1385 /* Parse a string like:
1386 "insn op1, op2, op3, op4 | op1 != op2 | op2 == op3 | op4 == 1".
1387 I.E., instruction "insn" with 4 operands where operand 1 and 2 are not
1388 the same and operand 2 and 3 are the same and operand 4 is 1.
1389
1390 or:
1391
1392 "insn op1 | op1 == 1 / density + boolean / no-useroption".
1393 i.e. instruction "insn" with 1 operands where operand 1 is 1
1394 when "density" or "boolean" options are available and
1395 "useroption" is not available.
1396
1397 Because the current implementation of this parsing scheme uses
1398 split_string, it requires that '|' and '?' are only used as
1399 delimiters for predicates and required options. */
1400
1401 static bfd_boolean
parse_insn_pattern(const char * in,insn_pattern * insn)1402 parse_insn_pattern (const char *in, insn_pattern *insn)
1403 {
1404 split_rec rec;
1405 split_rec optionrec;
1406 int i;
1407
1408 init_insn_pattern (insn);
1409
1410 init_split_rec (&optionrec);
1411 split_string (&optionrec, in, '?', TRUE);
1412 if (optionrec.count == 0)
1413 {
1414 clear_split_rec (&optionrec);
1415 return FALSE;
1416 }
1417
1418 init_split_rec (&rec);
1419
1420 split_string (&rec, optionrec.vec[0], '|', TRUE);
1421
1422 if (rec.count == 0)
1423 {
1424 clear_split_rec (&rec);
1425 clear_split_rec (&optionrec);
1426 return FALSE;
1427 }
1428
1429 if (!parse_insn_templ (rec.vec[0], &insn->t))
1430 {
1431 clear_split_rec (&rec);
1432 clear_split_rec (&optionrec);
1433 return FALSE;
1434 }
1435
1436 for (i = 1; i < rec.count; i++)
1437 {
1438 precond_e *cond = XNEW (precond_e);
1439
1440 if (!parse_precond (rec.vec[i], cond))
1441 {
1442 clear_split_rec (&rec);
1443 clear_split_rec (&optionrec);
1444 clear_insn_pattern (insn);
1445 return FALSE;
1446 }
1447
1448 /* Append the condition. */
1449 *insn->preconds.tail = cond;
1450 insn->preconds.tail = &cond->next;
1451 }
1452
1453 for (i = 1; i < optionrec.count; i++)
1454 {
1455 /* Handle the option conditions. */
1456 ReqOption **r_p;
1457 ReqOption *req_option = XNEW (ReqOption);
1458 req_option->or_option_terms = NULL;
1459 req_option->next = NULL;
1460
1461 if (!parse_option_cond (optionrec.vec[i], req_option))
1462 {
1463 clear_split_rec (&rec);
1464 clear_split_rec (&optionrec);
1465 clear_insn_pattern (insn);
1466 clear_req_option_list (&req_option);
1467 return FALSE;
1468 }
1469
1470 /* Append the condition. */
1471 for (r_p = &insn->options; (*r_p) != NULL; r_p = &(*r_p)->next)
1472 ;
1473
1474 (*r_p) = req_option;
1475 }
1476
1477 clear_split_rec (&rec);
1478 clear_split_rec (&optionrec);
1479 return TRUE;
1480 }
1481
1482
1483 static bfd_boolean
parse_insn_repl(const char * in,insn_repl * r_p)1484 parse_insn_repl (const char *in, insn_repl *r_p)
1485 {
1486 /* This is a list of instruction templates separated by ';'. */
1487 split_rec rec;
1488 int i;
1489
1490 split_string (&rec, in, ';', TRUE);
1491
1492 for (i = 0; i < rec.count; i++)
1493 {
1494 insn_repl_e *e = XNEW (insn_repl_e);
1495
1496 e->next = NULL;
1497
1498 if (!parse_insn_templ (rec.vec[i], &e->t))
1499 {
1500 free (e);
1501 clear_insn_repl (r_p);
1502 return FALSE;
1503 }
1504 *r_p->tail = e;
1505 r_p->tail = &e->next;
1506 }
1507 return TRUE;
1508 }
1509
1510
1511 static bfd_boolean
transition_applies(insn_pattern * initial_insn,const char * from_string ATTRIBUTE_UNUSED,const char * to_string ATTRIBUTE_UNUSED)1512 transition_applies (insn_pattern *initial_insn,
1513 const char *from_string ATTRIBUTE_UNUSED,
1514 const char *to_string ATTRIBUTE_UNUSED)
1515 {
1516 ReqOption *req_option;
1517
1518 for (req_option = initial_insn->options;
1519 req_option != NULL;
1520 req_option = req_option->next)
1521 {
1522 ReqOrOption *req_or_option = req_option->or_option_terms;
1523
1524 if (req_or_option == NULL
1525 || req_or_option->next != NULL)
1526 continue;
1527
1528 if (strncmp (req_or_option->option_name, "IsaUse", 6) == 0)
1529 {
1530 bfd_boolean option_available = FALSE;
1531 char *option_name = req_or_option->option_name + 6;
1532 if (!strcmp (option_name, "DensityInstruction"))
1533 option_available = (XCHAL_HAVE_DENSITY == 1);
1534 else if (!strcmp (option_name, "L32R"))
1535 option_available = (XCHAL_HAVE_L32R == 1);
1536 else if (!strcmp (option_name, "Const16"))
1537 option_available = (XCHAL_HAVE_CONST16 == 1);
1538 else if (!strcmp (option_name, "Loops"))
1539 option_available = (XCHAL_HAVE_LOOPS == 1);
1540 else if (!strcmp (option_name, "WideBranches"))
1541 option_available
1542 = (XCHAL_HAVE_WIDE_BRANCHES == 1 && produce_flix == FLIX_ALL);
1543 else if (!strcmp (option_name, "PredictedBranches"))
1544 option_available
1545 = (XCHAL_HAVE_PREDICTED_BRANCHES == 1
1546 && produce_flix == FLIX_ALL);
1547 else if (!strcmp (option_name, "Booleans"))
1548 option_available = (XCHAL_HAVE_BOOLEANS == 1);
1549 else
1550 as_warn (_("invalid configuration option '%s' in transition rule '%s'"),
1551 req_or_option->option_name, from_string);
1552 if ((option_available ^ req_or_option->is_true) != 0)
1553 return FALSE;
1554 }
1555 else if (strcmp (req_or_option->option_name, "realnop") == 0)
1556 {
1557 bfd_boolean nop_available =
1558 (xtensa_opcode_lookup (xtensa_default_isa, "nop")
1559 != XTENSA_UNDEFINED);
1560 if ((nop_available ^ req_or_option->is_true) != 0)
1561 return FALSE;
1562 }
1563 }
1564 return TRUE;
1565 }
1566
1567
1568 static bfd_boolean
wide_branch_opcode(const char * opcode_name,const char * suffix,xtensa_opcode * popcode)1569 wide_branch_opcode (const char *opcode_name,
1570 const char *suffix,
1571 xtensa_opcode *popcode)
1572 {
1573 xtensa_isa isa = xtensa_default_isa;
1574 xtensa_opcode opcode;
1575 static char wbr_name_buf[20];
1576
1577 if (strncmp (opcode_name, "WIDE.", 5) != 0)
1578 return FALSE;
1579
1580 strcpy (wbr_name_buf, opcode_name + 5);
1581 strcat (wbr_name_buf, suffix);
1582 opcode = xtensa_opcode_lookup (isa, wbr_name_buf);
1583 if (opcode != XTENSA_UNDEFINED)
1584 {
1585 *popcode = opcode;
1586 return TRUE;
1587 }
1588
1589 return FALSE;
1590 }
1591
1592
1593 static TransitionRule *
build_transition(insn_pattern * initial_insn,insn_repl * replace_insns,const char * from_string,const char * to_string)1594 build_transition (insn_pattern *initial_insn,
1595 insn_repl *replace_insns,
1596 const char *from_string,
1597 const char *to_string)
1598 {
1599 TransitionRule *tr = NULL;
1600 xtensa_opcode opcode;
1601 xtensa_isa isa = xtensa_default_isa;
1602 BuildInstr *literal_bi;
1603
1604 opname_map_e *op1;
1605 opname_map_e *op2;
1606
1607 precond_e *precond;
1608 insn_repl_e *r;
1609
1610 if (!wide_branch_opcode (initial_insn->t.opcode_name, ".w18", &opcode)
1611 && !wide_branch_opcode (initial_insn->t.opcode_name, ".w15", &opcode))
1612 opcode = xtensa_opcode_lookup (isa, initial_insn->t.opcode_name);
1613
1614 if (opcode == XTENSA_UNDEFINED)
1615 {
1616 /* It is OK to not be able to translate some of these opcodes. */
1617 return NULL;
1618 }
1619
1620
1621 if (xtensa_opcode_num_operands (isa, opcode)
1622 != insn_templ_operand_count (&initial_insn->t))
1623 {
1624 /* This is also OK because there are opcodes that
1625 have different numbers of operands on different
1626 architecture variations. */
1627 return NULL;
1628 }
1629
1630 tr = XNEW (TransitionRule);
1631 tr->opcode = opcode;
1632 tr->conditions = NULL;
1633 tr->to_instr = NULL;
1634
1635 /* Build the conditions. First, equivalent operand condition.... */
1636 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1637 {
1638 for (op2 = op1->next; op2 != NULL; op2 = op2->next)
1639 {
1640 if (same_operand_name (op1, op2))
1641 {
1642 append_value_condition (tr, OP_EQUAL,
1643 op1->operand_num, op2->operand_num);
1644 }
1645 }
1646 }
1647
1648 /* Now the condition that an operand value must be a constant.... */
1649 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1650 {
1651 if (op_is_constant (op1))
1652 {
1653 append_constant_value_condition (tr,
1654 OP_EQUAL,
1655 op1->operand_num,
1656 op_get_constant (op1));
1657 }
1658 }
1659
1660
1661 /* Now add the explicit preconditions listed after the "|" in the spec.
1662 These are currently very limited, so we do a special case
1663 parse for them. We expect spaces, opname != opname. */
1664 for (precond = initial_insn->preconds.head;
1665 precond != NULL;
1666 precond = precond->next)
1667 {
1668 op1 = NULL;
1669 op2 = NULL;
1670
1671 if (precond->opname1)
1672 {
1673 op1 = get_opmatch (&initial_insn->t.operand_map, precond->opname1);
1674 if (op1 == NULL)
1675 as_fatal (_("opcode '%s': no bound opname '%s' "
1676 "for precondition in '%s'"),
1677 xtensa_opcode_name (isa, opcode),
1678 precond->opname1, from_string);
1679 }
1680
1681 if (precond->opname2)
1682 {
1683 op2 = get_opmatch (&initial_insn->t.operand_map, precond->opname2);
1684 if (op2 == NULL)
1685 as_fatal (_("opcode '%s': no bound opname '%s' "
1686 "for precondition in %s"),
1687 xtensa_opcode_name (isa, opcode),
1688 precond->opname2, from_string);
1689 }
1690
1691 if (op1 == NULL && op2 == NULL)
1692 as_fatal (_("opcode '%s': precondition only contains "
1693 "constants in '%s'"),
1694 xtensa_opcode_name (isa, opcode), from_string);
1695 else if (op1 != NULL && op2 != NULL)
1696 append_value_condition (tr, precond->cmpop,
1697 op1->operand_num, op2->operand_num);
1698 else if (op2 == NULL)
1699 append_constant_value_condition (tr, precond->cmpop,
1700 op1->operand_num, precond->opval2);
1701 else
1702 append_constant_value_condition (tr, precond->cmpop,
1703 op2->operand_num, precond->opval1);
1704 }
1705
1706 tr->options = clone_req_option_list (initial_insn->options);
1707
1708 /* Generate the replacement instructions. Some of these
1709 "instructions" are actually labels and literals. There can be at
1710 most one literal and at most one label. A literal must be defined
1711 (e.g., "LITERAL %imm") before use (e.g., "%LITERAL"). The labels
1712 can be used before they are defined. Also there are a number of
1713 special operands (e.g., HI24S). */
1714
1715 literal_bi = NULL;
1716 for (r = replace_insns->head; r != NULL; r = r->next)
1717 {
1718 BuildInstr *bi;
1719 const char *opcode_name;
1720 int operand_count;
1721 opname_map_e *op;
1722 const char *fn_name;
1723 const char *operand_arg_name;
1724
1725 bi = XNEW (BuildInstr);
1726 append_build_insn (tr, bi);
1727
1728 bi->opcode = XTENSA_UNDEFINED;
1729 bi->ops = NULL;
1730 bi->next = NULL;
1731
1732 opcode_name = r->t.opcode_name;
1733 operand_count = insn_templ_operand_count (&r->t);
1734
1735 if (strcmp (opcode_name, "LITERAL") == 0)
1736 {
1737 bi->typ = INSTR_LITERAL_DEF;
1738 if (operand_count != 1)
1739 as_fatal (_("expected one operand for generated literal"));
1740 literal_bi = bi;
1741 }
1742 else if (strcmp (opcode_name, "LABEL") == 0)
1743 {
1744 bi->typ = INSTR_LABEL_DEF;
1745 if (operand_count != 0)
1746 as_fatal (_("expected 0 operands for generated label"));
1747 }
1748 else
1749 {
1750 bi->typ = INSTR_INSTR;
1751 if (wide_branch_opcode (opcode_name, ".w18", &bi->opcode)
1752 || wide_branch_opcode (opcode_name, ".w15", &bi->opcode))
1753 opcode_name = xtensa_opcode_name (isa, bi->opcode);
1754 else
1755 bi->opcode = xtensa_opcode_lookup (isa, opcode_name);
1756
1757 if (bi->opcode == XTENSA_UNDEFINED)
1758 {
1759 as_warn (_("invalid opcode '%s' in transition rule '%s'"),
1760 opcode_name, to_string);
1761 return NULL;
1762 }
1763
1764 /* Check for the right number of ops. */
1765 if (xtensa_opcode_num_operands (isa, bi->opcode)
1766 != (int) operand_count)
1767 as_fatal (_("opcode '%s': replacement does not have %d ops"),
1768 opcode_name,
1769 xtensa_opcode_num_operands (isa, bi->opcode));
1770 }
1771
1772 for (op = r->t.operand_map.head; op != NULL; op = op->next)
1773 {
1774 unsigned idnum;
1775
1776 if (op_is_constant (op))
1777 append_constant_op (bi, op->operand_num, op_get_constant (op));
1778 else if (strcmp (op->operand_name, "%LITERAL") == 0)
1779 {
1780 if (! literal_bi || ! literal_bi->ops || literal_bi->ops->next)
1781 as_fatal (_("opcode '%s': cannot find literal definition"),
1782 opcode_name);
1783 append_literal_op (bi, op->operand_num,
1784 literal_bi->ops->op_data);
1785 }
1786 else if (strcmp (op->operand_name, "%LABEL") == 0)
1787 append_label_op (bi, op->operand_num);
1788 else if (op->operand_name[0] == 'a'
1789 && parse_constant (op->operand_name + 1, &idnum))
1790 append_constant_op (bi, op->operand_num, idnum);
1791 else if (op->operand_name[0] == '%')
1792 {
1793 opname_map_e *orig_op;
1794 orig_op = get_opmatch (&initial_insn->t.operand_map,
1795 op->operand_name);
1796 if (orig_op == NULL)
1797 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1798 opcode_name, op->operand_name, to_string);
1799 append_field_op (bi, op->operand_num, orig_op->operand_num);
1800 }
1801 else if (strcmp (op->operand_name, "FREEREG") == 0)
1802 {
1803 append_user_fn_field_op (bi, op->operand_num, OP_FREEREG, 0);
1804 }
1805 else if (parse_special_fn (op->operand_name,
1806 &fn_name, &operand_arg_name))
1807 {
1808 opname_map_e *orig_op;
1809 OpType typ = OP_CONSTANT;
1810
1811 if (strcmp (fn_name, "LOW8") == 0)
1812 typ = OP_OPERAND_LOW8;
1813 else if (strcmp (fn_name, "HI24S") == 0)
1814 typ = OP_OPERAND_HI24S;
1815 else if (strcmp (fn_name, "F32MINUS") == 0)
1816 typ = OP_OPERAND_F32MINUS;
1817 else if (strcmp (fn_name, "LOW16U") == 0)
1818 typ = OP_OPERAND_LOW16U;
1819 else if (strcmp (fn_name, "HI16U") == 0)
1820 typ = OP_OPERAND_HI16U;
1821 else
1822 as_fatal (_("unknown user-defined function %s"), fn_name);
1823
1824 orig_op = get_opmatch (&initial_insn->t.operand_map,
1825 operand_arg_name);
1826 if (orig_op == NULL)
1827 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1828 opcode_name, op->operand_name, to_string);
1829 append_user_fn_field_op (bi, op->operand_num,
1830 typ, orig_op->operand_num);
1831 }
1832 else
1833 as_fatal (_("opcode %s: could not parse operand '%s' in '%s'"),
1834 opcode_name, op->operand_name, to_string);
1835 }
1836 }
1837
1838 return tr;
1839 }
1840
1841
1842 static TransitionTable *
build_transition_table(const string_pattern_pair * transitions,int transition_count,transition_cmp_fn cmp)1843 build_transition_table (const string_pattern_pair *transitions,
1844 int transition_count,
1845 transition_cmp_fn cmp)
1846 {
1847 TransitionTable *table = NULL;
1848 int num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
1849 int i, tnum;
1850
1851 if (table != NULL)
1852 return table;
1853
1854 /* Otherwise, build it now. */
1855 table = XNEW (TransitionTable);
1856 table->num_opcodes = num_opcodes;
1857 table->table = XNEWVEC (TransitionList *, num_opcodes);
1858
1859 for (i = 0; i < num_opcodes; i++)
1860 table->table[i] = NULL;
1861
1862 for (tnum = 0; tnum < transition_count; tnum++)
1863 {
1864 const char *from_string = transitions[tnum].pattern;
1865 const char *to_string = transitions[tnum].replacement;
1866
1867 insn_pattern initial_insn;
1868 insn_repl replace_insns;
1869 TransitionRule *tr;
1870
1871 init_insn_pattern (&initial_insn);
1872 if (!parse_insn_pattern (from_string, &initial_insn))
1873 as_fatal (_("could not parse INSN_PATTERN '%s'"), from_string);
1874
1875 init_insn_repl (&replace_insns);
1876 if (!parse_insn_repl (to_string, &replace_insns))
1877 as_fatal (_("could not parse INSN_REPL '%s'"), to_string);
1878
1879 if (transition_applies (&initial_insn, from_string, to_string))
1880 {
1881 tr = build_transition (&initial_insn, &replace_insns,
1882 from_string, to_string);
1883 if (tr)
1884 append_transition (table, tr->opcode, tr, cmp);
1885 else
1886 {
1887 #if TENSILICA_DEBUG
1888 as_warn (_("could not build transition for %s => %s"),
1889 from_string, to_string);
1890 #endif
1891 }
1892 }
1893
1894 clear_insn_repl (&replace_insns);
1895 clear_insn_pattern (&initial_insn);
1896 }
1897 return table;
1898 }
1899
1900
1901 extern TransitionTable *
xg_build_widen_table(transition_cmp_fn cmp)1902 xg_build_widen_table (transition_cmp_fn cmp)
1903 {
1904 static TransitionTable *table = NULL;
1905 if (table == NULL)
1906 table = build_transition_table (widen_spec_list, WIDEN_COUNT, cmp);
1907 return table;
1908 }
1909
1910
1911 extern TransitionTable *
xg_build_simplify_table(transition_cmp_fn cmp)1912 xg_build_simplify_table (transition_cmp_fn cmp)
1913 {
1914 static TransitionTable *table = NULL;
1915 if (table == NULL)
1916 table = build_transition_table (simplify_spec_list, SIMPLIFY_COUNT, cmp);
1917 return table;
1918 }
1919