Home
last modified time | relevance | path

Searched refs:cons1 (Results 1 – 20 of 20) sorted by relevance

/frameworks/ml/nn/tools/test_generator/tests/P_quantized_avgpool/
Daverpoolfloat.mod.py4 cons1 = Int32Scalar("cons1", 1) variable
7 model = model.Operation("AVERAGE_POOL", i1, cons1, cons1, cons1, cons1, cons1, act).To(o)
Dstdout.txt.expect7 auto cons1 = model->addOperand(&type1);
12 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1);
15 …model->addOperation(ANEURALNETWORKS_AVERAGE_POOL, {op1, cons1, cons1, cons1, cons1, cons1, act}, {…
/frameworks/ml/nn/runtime/test/specs/V1_0/
Davg_pool_float_1.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
Dmax_pool_quant8_1.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act)…
Davg_pool_quant8_4.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
Dl2_pool_float.mod.py19 cons1 = Int32Scalar("cons1", 1) variable
23 model = model.Operation("L2_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).…
Dmax_pool_float_1.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act)…
Davg_pool_quant8_1.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
/frameworks/ml/nn/runtime/test/generated/models/
Dmax_pool_float_1.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ion(ANEURALNETWORKS_MAX_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Dl2_pool_float.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …tion(ANEURALNETWORKS_L2_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Davg_pool_float_1.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Davg_pool_quant8_1.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Davg_pool_quant8_4.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, relu1_a… in CreateModel()
Dmax_pool_quant8_1.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ion(ANEURALNETWORKS_MAX_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Dl2_pool_float_relaxed.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …tion(ANEURALNETWORKS_L2_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Dmax_pool_float_1_relaxed.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ion(ANEURALNETWORKS_MAX_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
Davg_pool_float_1_relaxed.model.cpp7 auto cons1 = model->addOperand(&type1); in CreateModel() local
13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel()
18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
/frameworks/ml/nn/runtime/test/specs/V1_1/
Davg_pool_float_1_relaxed.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
Dmax_pool_float_1_relaxed.mod.py20 cons1 = Int32Scalar("cons1", 1) variable
24 model = model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act)…
Dl2_pool_float_relaxed.mod.py19 cons1 = Int32Scalar("cons1", 1) variable
23 model = model.Operation("L2_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).…