/frameworks/ml/nn/tools/test_generator/tests/P_quantized_avgpool/ |
D | averpoolfloat.mod.py | 4 cons1 = Int32Scalar("cons1", 1) variable 7 model = model.Operation("AVERAGE_POOL", i1, cons1, cons1, cons1, cons1, cons1, act).To(o)
|
D | stdout.txt.expect | 7 auto cons1 = model->addOperand(&type1); 12 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); 15 …model->addOperation(ANEURALNETWORKS_AVERAGE_POOL, {op1, cons1, cons1, cons1, cons1, cons1, act}, {…
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | avg_pool_float_1.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
|
D | max_pool_quant8_1.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act)…
|
D | avg_pool_quant8_4.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
|
D | l2_pool_float.mod.py | 19 cons1 = Int32Scalar("cons1", 1) variable 23 model = model.Operation("L2_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).…
|
D | max_pool_float_1.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act)…
|
D | avg_pool_quant8_1.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
|
/frameworks/ml/nn/runtime/test/generated/models/ |
D | max_pool_float_1.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ion(ANEURALNETWORKS_MAX_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | l2_pool_float.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …tion(ANEURALNETWORKS_L2_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | avg_pool_float_1.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | avg_pool_quant8_1.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | avg_pool_quant8_4.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, relu1_a… in CreateModel()
|
D | max_pool_quant8_1.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ion(ANEURALNETWORKS_MAX_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | l2_pool_float_relaxed.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …tion(ANEURALNETWORKS_L2_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | max_pool_float_1_relaxed.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ion(ANEURALNETWORKS_MAX_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
D | avg_pool_float_1_relaxed.model.cpp | 7 auto cons1 = model->addOperand(&type1); in CreateModel() local 13 model->setOperandValue(cons1, cons1_init, sizeof(int32_t) * 1); in CreateModel() 18 …ANEURALNETWORKS_AVERAGE_POOL_2D, {op1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act}, {… in CreateModel()
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | avg_pool_float_1_relaxed.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, …
|
D | max_pool_float_1_relaxed.mod.py | 20 cons1 = Int32Scalar("cons1", 1) variable 24 model = model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act)…
|
D | l2_pool_float_relaxed.mod.py | 19 cons1 = Int32Scalar("cons1", 1) variable 23 model = model.Operation("L2_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).…
|