1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef C2BUFFER_H_
18 #define C2BUFFER_H_
19 
20 #include <C2.h>
21 #include <C2BufferBase.h>
22 #include <C2Param.h> // for C2Info
23 
24 #include <memory>
25 #include <vector>
26 
27 #ifdef __ANDROID__
28 #include <android-C2Buffer.h>
29 #else
30 
31 typedef void* C2Handle;
32 
33 #endif
34 
35 /// \defgroup buffer Buffers
36 /// @{
37 
38 /// \defgroup buffer_sync Synchronization
39 /// @{
40 
41 /**
42  * Synchronization is accomplished using event and fence objects.
43  *
44  * These are cross-process extensions of promise/future infrastructure.
45  * Events are analogous to std::promise<void>, whereas fences are to std::shared_future<void>.
46  *
47  * Fences and events are shareable/copyable.
48  *
49  * Fences are used in two scenarios, and all copied instances refer to the same event.
50  * \todo do events need to be copyable or should they be unique?
51  *
52  * acquire sync fence object: signaled when it is safe for the component or client to access
53  * (the contents of) an object.
54  *
55  * release sync fence object: \todo
56  *
57  * Fences can be backed by hardware. Hardware fences are guaranteed to signal NO MATTER WHAT within
58  * a short (platform specific) amount of time; this guarantee is usually less than 15 msecs.
59  */
60 
61 /**
62  * Fence object used by components and the framework.
63  *
64  * Implements the waiting for an event, analogous to a 'future'.
65  *
66  * To be implemented by vendors if using HW fences.
67  */
68 class C2Fence {
69 public:
70     /**
71      * Waits for a fence to be signaled with a timeout.
72      *
73      * \todo a mechanism to cancel a wait - for now the only way to do this is to abandon the
74      * event, but fences are shared so canceling a wait will cancel all waits.
75      *
76      * \param timeoutNs           the maximum time to wait in nsecs
77      *
78      * \retval C2_OK            the fence has been signaled
79      * \retval C2_TIMED_OUT     the fence has not been signaled within the timeout
80      * \retval C2_BAD_STATE     the fence has been abandoned without being signaled (it will never
81      *                          be signaled)
82      * \retval C2_REFUSED       no permission to wait for the fence (unexpected - system)
83      * \retval C2_CORRUPTED     some unknown error prevented waiting for the fence (unexpected)
84      */
85     c2_status_t wait(c2_nsecs_t timeoutNs);
86 
87     /**
88      * Used to check if this fence is valid (if there is a chance for it to be signaled.)
89      * A fence becomes invalid if the controling event is destroyed without it signaling the fence.
90      *
91      * \return whether this fence is valid
92      */
93     bool valid() const;
94 
95     /**
96      * Used to check if this fence has been signaled (is ready).
97      *
98      * \return whether this fence has been signaled
99      */
100     bool ready() const;
101 
102     /**
103      * Returns a file descriptor that can be used to wait for this fence in a select system call.
104      * \note The returned file descriptor, if valid, must be closed by the caller.
105      *
106      * This can be used in e.g. poll() system calls. This file becomes readable (POLLIN) when the
107      * fence is signaled, and bad (POLLERR) if the fence is abandoned.
108      *
109      * \return a file descriptor representing this fence (with ownership), or -1 if the fence
110      * has already been signaled (\todo or abandoned).
111      *
112      * \todo this must be compatible with fences used by gralloc
113      */
114     int fd() const;
115 
116     /**
117      * Returns whether this fence is a hardware-backed fence.
118      * \return whether this is a hardware fence
119      */
120     bool isHW() const;
121 
122     /**
123      * Null-fence. A fence that has fired.
124      */
C2Fence()125     constexpr C2Fence() : mImpl(nullptr) { }
126 
127 private:
128     class Impl;
129     std::shared_ptr<Impl> mImpl;
130     C2Fence(std::shared_ptr<Impl> impl);
131     friend struct _C2FenceFactory;
132 };
133 
134 /**
135  * Event object used by components and the framework.
136  *
137  * Implements the signaling of an event, analogous to a 'promise'.
138  *
139  * Hardware backed events do not go through this object, and must be exposed directly as fences
140  * by vendors.
141  */
142 class C2Event {
143 public:
144     /**
145      * Returns a fence for this event.
146      */
147     C2Fence fence() const;
148 
149     /**
150      * Signals (all) associated fence(s).
151      * This has no effect no effect if the event was already signaled or abandoned.
152      *
153      * \retval C2_OK            the fence(s) were successfully signaled
154      * \retval C2_BAD_STATE     the fence(s) have already been abandoned or merged (caller error)
155      * \retval C2_DUPLICATE     the fence(s) have already been signaled (caller error)
156      * \retval C2_REFUSED       no permission to signal the fence (unexpected - system)
157      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
158      */
159     c2_status_t fire();
160 
161     /**
162      * Trigger this event from the merging of the supplied fences. This means that it will be
163      * abandoned if any of these fences have been abandoned, and it will be fired if all of these
164      * fences have been signaled.
165      *
166      * \retval C2_OK            the merging was successfully done
167      * \retval C2_NO_MEMORY     not enough memory to perform the merging
168      * \retval C2_DUPLICATE     the fence have already been merged (caller error)
169      * \retval C2_BAD_STATE     the fence have already been signaled or abandoned (caller error)
170      * \retval C2_REFUSED       no permission to merge the fence (unexpected - system)
171      * \retval C2_CORRUPTED     some unknown error prevented merging the fence(s) (unexpected)
172      */
173     c2_status_t merge(std::vector<C2Fence> fences);
174 
175     /**
176      * Abandons the event and any associated fence(s).
177      * \note Call this to explicitly abandon an event before it is destructed to avoid a warning.
178      *
179      * This has no effect no effect if the event was already signaled or abandoned.
180      *
181      * \retval C2_OK            the fence(s) were successfully signaled
182      * \retval C2_BAD_STATE     the fence(s) have already been signaled or merged (caller error)
183      * \retval C2_DUPLICATE     the fence(s) have already been abandoned (caller error)
184      * \retval C2_REFUSED       no permission to abandon the fence (unexpected - system)
185      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
186      */
187     c2_status_t abandon();
188 
189 private:
190     class Impl;
191     std::shared_ptr<Impl> mImpl;
192 };
193 
194 /// \addtogroup buf_internal Internal
195 /// @{
196 
197 /**
198  * Interface for objects that encapsulate an updatable status value.
199  */
200 struct _C2InnateStatus {
status_C2InnateStatus201     inline c2_status_t status() const { return mStatus; }
202 
203 protected:
_C2InnateStatus_C2InnateStatus204     _C2InnateStatus(c2_status_t status) : mStatus(status) { }
205 
206     c2_status_t mStatus; // this status is updatable by the object
207 };
208 
209 /// @}
210 
211 /**
212  * This is a utility template for objects protected by an acquire fence, so that errors during
213  * acquiring the object are propagated to the object itself.
214  */
215 template<typename T>
216 class C2Acquirable : public C2Fence {
217 public:
218     /**
219      * Acquires the object protected by an acquire fence. Any errors during the mapping will be
220      * passed to the object.
221      *
222      * \return acquired object potentially invalidated if waiting for the fence failed.
223      */
get()224     T get() {
225         // TODO:
226         // wait();
227         return mT;
228     }
229 
230 protected:
C2Acquirable(c2_status_t error,C2Fence fence,T t)231     C2Acquirable(c2_status_t error, C2Fence fence, T t) : C2Fence(fence), mInitialError(error), mT(t) { }
232 
233 private:
234     c2_status_t mInitialError;
235     T mT; // TODO: move instead of copy
236 };
237 
238 /// @}
239 
240 /// \defgroup linear Linear Data Blocks
241 /// @{
242 
243 /**************************************************************************************************
244   LINEAR ASPECTS, BLOCKS AND VIEWS
245 **************************************************************************************************/
246 
247 /**
248  * Basic segment math support.
249  */
250 struct C2Segment {
251     uint32_t offset;
252     uint32_t size;
253 
C2SegmentC2Segment254     inline constexpr C2Segment(uint32_t offset_, uint32_t size_)
255         : offset(offset_),
256           size(size_) {
257     }
258 
isEmptyC2Segment259     inline constexpr bool isEmpty() const {
260         return size == 0;
261     }
262 
isValidC2Segment263     inline constexpr bool isValid() const {
264         return offset <= ~size;
265     }
266 
267     inline constexpr operator bool() const {
268         return isValid() && !isEmpty();
269     }
270 
271     inline constexpr bool operator!() const {
272         return !bool(*this);
273     }
274 
275     C2_ALLOW_OVERFLOW
containsC2Segment276     inline constexpr bool contains(const C2Segment &other) const {
277         if (!isValid() || !other.isValid()) {
278             return false;
279         } else {
280             return offset <= other.offset
281                     && offset + size >= other.offset + other.size;
282         }
283     }
284 
285     inline constexpr bool operator==(const C2Segment &other) const {
286         if (!isValid()) {
287             return !other.isValid();
288         } else {
289             return offset == other.offset && size == other.size;
290         }
291     }
292 
293     inline constexpr bool operator!=(const C2Segment &other) const {
294         return !operator==(other);
295     }
296 
297     inline constexpr bool operator>=(const C2Segment &other) const {
298         return contains(other);
299     }
300 
301     inline constexpr bool operator>(const C2Segment &other) const {
302         return contains(other) && !operator==(other);
303     }
304 
305     inline constexpr bool operator<=(const C2Segment &other) const {
306         return other.contains(*this);
307     }
308 
309     inline constexpr bool operator<(const C2Segment &other) const {
310         return other.contains(*this) && !operator==(other);
311     }
312 
313     C2_ALLOW_OVERFLOW
endC2Segment314     inline constexpr uint32_t end() const {
315         return offset + size;
316     }
317 
318     C2_ALLOW_OVERFLOW
intersectC2Segment319     inline constexpr C2Segment intersect(const C2Segment &other) const {
320         return C2Segment(c2_max(offset, other.offset),
321                          c2_min(end(), other.end()) - c2_max(offset, other.offset));
322     }
323 
324     /** clamps end to offset if it overflows */
normalizeC2Segment325     inline constexpr C2Segment normalize() const {
326         return C2Segment(offset, c2_max(offset, end()) - offset);
327     }
328 
329     /** clamps end to max if it overflows */
saturateC2Segment330     inline constexpr C2Segment saturate() const {
331         return C2Segment(offset, c2_min(size, ~offset));
332     }
333 
334 };
335 
336 /**
337  * Common aspect for all objects that have a linear capacity.
338  */
339 class _C2LinearCapacityAspect {
340 /// \name Linear capacity interface
341 /// @{
342 public:
capacity()343     inline constexpr uint32_t capacity() const { return mCapacity; }
344 
C2Segment()345     inline constexpr operator C2Segment() const {
346         return C2Segment(0, mCapacity);
347     }
348 
349 protected:
350 
351 #if UINTPTR_MAX == 0xffffffff
352     static_assert(sizeof(size_t) == sizeof(uint32_t), "size_t is too big");
353 #else
354     static_assert(sizeof(size_t) > sizeof(uint32_t), "size_t is too small");
355     // explicitly disable construction from size_t
356     inline explicit _C2LinearCapacityAspect(size_t capacity) = delete;
357 #endif
358 
_C2LinearCapacityAspect(uint32_t capacity)359     inline explicit constexpr _C2LinearCapacityAspect(uint32_t capacity)
360       : mCapacity(capacity) { }
361 
_C2LinearCapacityAspect(const _C2LinearCapacityAspect * parent)362     inline explicit constexpr _C2LinearCapacityAspect(const _C2LinearCapacityAspect *parent)
363         : mCapacity(parent == nullptr ? 0 : parent->capacity()) { }
364 
365 private:
366     uint32_t mCapacity;
367 /// @}
368 };
369 
370 /**
371  * Aspect for objects that have a linear range inside a linear capacity.
372  *
373  * This class is copiable.
374  */
375 class _C2LinearRangeAspect : public _C2LinearCapacityAspect {
376 /// \name Linear range interface
377 /// @{
378 public:
offset()379     inline constexpr uint32_t offset() const { return mOffset; }
endOffset()380     inline constexpr uint32_t endOffset() const { return mOffset + mSize; }
size()381     inline constexpr uint32_t size() const { return mSize; }
382 
C2Segment()383     inline constexpr operator C2Segment() const {
384         return C2Segment(mOffset, mSize);
385     }
386 
387 private:
388     // subrange of capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(uint32_t capacity_,size_t offset,size_t size)389     inline constexpr _C2LinearRangeAspect(uint32_t capacity_, size_t offset, size_t size)
390         : _C2LinearCapacityAspect(capacity_),
391           mOffset(c2_min(offset, capacity())),
392           mSize(c2_min(size, capacity() - mOffset)) {
393     }
394 
395 protected:
396     // copy constructor (no error check)
_C2LinearRangeAspect(const _C2LinearRangeAspect & other)397     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect &other)
398         : _C2LinearCapacityAspect(other.capacity()),
399           mOffset(other.offset()),
400           mSize(other.size()) {
401     }
402 
403     // parent capacity range [0, capacity]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent)404     inline constexpr explicit _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent)
405         : _C2LinearCapacityAspect(parent),
406           mOffset(0),
407           mSize(capacity()) {
408     }
409 
410     // subrange of parent capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent,size_t offset,size_t size)411     inline constexpr _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent, size_t offset, size_t size)
412         : _C2LinearCapacityAspect(parent),
413           mOffset(c2_min(offset, capacity())),
414           mSize(c2_min(size, capacity() - mOffset)) {
415     }
416 
417     // subsection of the parent's and [offset, offset + size] ranges
_C2LinearRangeAspect(const _C2LinearRangeAspect * parent,size_t offset,size_t size)418     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect *parent, size_t offset, size_t size)
419         : _C2LinearCapacityAspect(parent),
420           mOffset(c2_min(c2_max(offset, parent == nullptr ? 0 : parent->offset()), capacity())),
421           mSize(std::min(c2_min(size, parent == nullptr ? 0 : parent->size()), capacity() - mOffset)) {
422     }
423 
424 public:
childRange(size_t offset,size_t size)425     inline constexpr _C2LinearRangeAspect childRange(size_t offset, size_t size) const {
426         return _C2LinearRangeAspect(
427             mSize,
428             c2_min(c2_max(offset, mOffset), capacity()) - mOffset,
429             c2_min(c2_min(size, mSize), capacity() - c2_min(c2_max(offset, mOffset), capacity())));
430     }
431 
432     friend class _C2EditableLinearRangeAspect;
433     // invariants 0 <= mOffset <= mOffset + mSize <= capacity()
434     uint32_t mOffset;
435     uint32_t mSize;
436 /// @}
437 };
438 
439 /**
440  * Utility class for safe range calculations using size_t-s.
441  */
442 class C2LinearRange : public _C2LinearRangeAspect {
443 public:
C2LinearRange(const _C2LinearCapacityAspect & parent,size_t offset,size_t size)444     inline constexpr C2LinearRange(const _C2LinearCapacityAspect &parent, size_t offset, size_t size)
445         : _C2LinearRangeAspect(&parent, offset, size) { }
446 
C2LinearRange(const _C2LinearRangeAspect & parent,size_t offset,size_t size)447     inline constexpr C2LinearRange(const _C2LinearRangeAspect &parent, size_t offset, size_t size)
448         : _C2LinearRangeAspect(&parent, offset, size) { }
449 
intersect(size_t offset,size_t size)450     inline constexpr C2LinearRange intersect(size_t offset, size_t size) const {
451         return C2LinearRange(*this, offset, size);
452     }
453 };
454 
455 /**
456  * Utility class for simple and safe capacity and range construction.
457  */
458 class C2LinearCapacity : public _C2LinearCapacityAspect {
459 public:
C2LinearCapacity(size_t capacity)460     inline constexpr explicit C2LinearCapacity(size_t capacity)
461         : _C2LinearCapacityAspect(c2_min(capacity, std::numeric_limits<uint32_t>::max())) { }
462 
range(size_t offset,size_t size)463     inline constexpr C2LinearRange range(size_t offset, size_t size) const {
464         return C2LinearRange(*this, offset, size);
465     }
466 };
467 
468 /**
469  * Aspect for objects that have an editable linear range.
470  *
471  * This class is copiable.
472  */
473 class _C2EditableLinearRangeAspect : public _C2LinearRangeAspect {
474     using _C2LinearRangeAspect::_C2LinearRangeAspect;
475 
476 public:
477 /// \name Editable linear range interface
478 /// @{
479 
480     /**
481      * Sets the offset to |offset|, while trying to keep the end of the buffer unchanged (e.g.
482      * size will grow if offset is decreased, and may shrink if offset is increased.) Returns
483      * true if successful, which is equivalent to if 0 <= |offset| <= capacity().
484      *
485      * Note: setting offset and size will yield different result depending on the order of the
486      * operations. Always set offset first to ensure proper size.
487      */
setOffset(uint32_t offset)488     inline bool setOffset(uint32_t offset) {
489         if (offset > capacity()) {
490             return false;
491         }
492 
493         if (offset > mOffset + mSize) {
494             mSize = 0;
495         } else {
496             mSize = mOffset + mSize - offset;
497         }
498         mOffset = offset;
499         return true;
500     }
501 
502     /**
503      * Sets the size to |size|. Returns true if successful, which is equivalent to
504      * if 0 <= |size| <= capacity() - offset().
505      *
506      * Note: setting offset and size will yield different result depending on the order of the
507      * operations. Always set offset first to ensure proper size.
508      */
setSize(uint32_t size)509     inline bool setSize(uint32_t size) {
510         if (size > capacity() - mOffset) {
511             return false;
512         } else {
513             mSize = size;
514             return true;
515         }
516     }
517 
518     /**
519      * Sets the offset to |offset| with best effort. Same as setOffset() except that offset will
520      * be clamped to the buffer capacity.
521      *
522      * Note: setting offset and size (even using best effort) will yield different result depending
523      * on the order of the operations. Always set offset first to ensure proper size.
524      */
setOffset_be(uint32_t offset)525     inline void setOffset_be(uint32_t offset) {
526         (void)setOffset(c2_min(offset, capacity()));
527     }
528 
529     /**
530      * Sets the size to |size| with best effort. Same as setSize() except that the selected region
531      * will be clamped to the buffer capacity (e.g. size is clamped to [0, capacity() - offset()]).
532      *
533      * Note: setting offset and size (even using best effort) will yield different result depending
534      * on the order of the operations. Always set offset first to ensure proper size.
535      */
setSize_be(uint32_t size)536     inline void setSize_be(uint32_t size) {
537         mSize = c2_min(size, capacity() - mOffset);
538     }
539 /// @}
540 };
541 
542 /**************************************************************************************************
543   ALLOCATIONS
544 **************************************************************************************************/
545 
546 /// \ingroup allocator Allocation and memory placement
547 /// @{
548 
549 class C2LinearAllocation;
550 class C2GraphicAllocation;
551 
552 /**
553  *  Allocators are used by the framework to allocate memory (allocations) for buffers. They can
554  *  support either 1D or 2D allocations.
555  *
556  *  \note In theory they could support both, but in practice, we will use only one or the other.
557  *
558  *  Never constructed on stack.
559  *
560  *  Allocators are provided by vendors.
561  */
562 class C2Allocator {
563 public:
564     /**
565      * Allocator ID type.
566      */
567     typedef uint32_t id_t;
568     enum : id_t {
569         BAD_ID = 0xBADD, // invalid allocator ID
570     };
571 
572     /**
573      * Allocation types. This is a bitmask and is used in C2Allocator::Info
574      * to list the supported allocation types of an allocator.
575      */
576     enum type_t : uint32_t {
577         LINEAR  = 1 << 0, //
578         GRAPHIC = 1 << 1,
579     };
580 
581     /**
582      * Information about an allocator.
583      *
584      * Allocators don't have a query API so all queriable information is stored here.
585      */
586     struct Traits {
587         C2String name;              ///< allocator name
588         id_t id;                    ///< allocator ID
589         type_t supportedTypes;      ///< supported allocation types
590         C2MemoryUsage minimumUsage; ///< usage that is minimally required for allocations
591         C2MemoryUsage maximumUsage; ///< usage that is maximally allowed for allocations
592     };
593 
594     /**
595      * Returns the unique name of this allocator.
596      *
597      * This method MUST be "non-blocking" and return within 1ms.
598      *
599      * \return the name of this allocator.
600      * \retval an empty string if there was not enough memory to allocate the actual name.
601      */
602     virtual C2String getName() const = 0;
603 
604     /**
605      * Returns a unique ID for this allocator. This ID is used to get this allocator from the
606      * allocator store, and to identify this allocator across all processes.
607      *
608      * This method MUST be "non-blocking" and return within 1ms.
609      *
610      * \return a unique ID for this allocator.
611      */
612     virtual id_t getId() const = 0;
613 
614     /**
615      * Returns the allocator traits.
616      *
617      * This method MUST be "non-blocking" and return within 1ms.
618      *
619      * Allocators don't have a full-fledged query API, only this method.
620      *
621      * \return allocator information
622      */
623     virtual std::shared_ptr<const Traits> getTraits() const = 0;
624 
625     /**
626      * Allocates a 1D allocation of given |capacity| and |usage|. If successful, the allocation is
627      * stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
628      *
629      * \param capacity      the size of requested allocation (the allocation could be slightly
630      *                      larger, e.g. to account for any system-required alignment)
631      * \param usage         the memory usage info for the requested allocation. \note that the
632      *                      returned allocation may be later used/mapped with different usage.
633      *                      The allocator should layout the buffer to be optimized for this usage,
634      *                      but must support any usage. One exception: protected buffers can
635      *                      only be used in a protected scenario.
636      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
637      *                      will be stored here on failure
638      *
639      * \retval C2_OK        the allocation was successful
640      * \retval C2_NO_MEMORY not enough memory to complete the allocation
641      * \retval C2_TIMED_OUT the allocation timed out
642      * \retval C2_REFUSED   no permission to complete the allocation
643      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
644      * \retval C2_OMITTED   this allocator does not support 1D allocations
645      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
646      */
newLinearAllocation(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearAllocation> * allocation)647     virtual c2_status_t newLinearAllocation(
648             uint32_t capacity __unused, C2MemoryUsage usage __unused,
649             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
650         *allocation = nullptr;
651         return C2_OMITTED;
652     }
653 
654     /**
655      * (Re)creates a 1D allocation from a native |handle|. If successful, the allocation is stored
656      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
657      *
658      * \param handle      the handle for the existing allocation. On success, the allocation will
659      *                    take ownership of |handle|.
660      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
661      *                    will be stored here on failure
662      *
663      * \retval C2_OK        the allocation was recreated successfully
664      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
665      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
666      * \retval C2_REFUSED   no permission to recreate the allocation
667      * \retval C2_BAD_VALUE invalid handle (caller error)
668      * \retval C2_OMITTED   this allocator does not support 1D allocations
669      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
670      */
priorLinearAllocation(const C2Handle * handle __unused,std::shared_ptr<C2LinearAllocation> * allocation)671     virtual c2_status_t priorLinearAllocation(
672             const C2Handle *handle __unused,
673             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
674         *allocation = nullptr;
675         return C2_OMITTED;
676     }
677 
678     /**
679      * Allocates a 2D allocation of given |width|, |height|, |format| and |usage|. If successful,
680      * the allocation is stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
681      *
682      * \param width         the width of requested allocation (the allocation could be slightly
683      *                      larger, e.g. to account for any system-required alignment)
684      * \param height        the height of requested allocation (the allocation could be slightly
685      *                      larger, e.g. to account for any system-required alignment)
686      * \param format        the pixel format of requested allocation. This could be a vendor
687      *                      specific format.
688      * \param usage         the memory usage info for the requested allocation. \note that the
689      *                      returned allocation may be later used/mapped with different usage.
690      *                      The allocator should layout the buffer to be optimized for this usage,
691      *                      but must support any usage. One exception: protected buffers can
692      *                      only be used in a protected scenario.
693      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
694      *                      will be stored here on failure
695      *
696      * \retval C2_OK        the allocation was successful
697      * \retval C2_NO_MEMORY not enough memory to complete the allocation
698      * \retval C2_TIMED_OUT the allocation timed out
699      * \retval C2_REFUSED   no permission to complete the allocation
700      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller error)
701      * \retval C2_OMITTED   this allocator does not support 2D allocations
702      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
703      */
newGraphicAllocation(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicAllocation> * allocation)704     virtual c2_status_t newGraphicAllocation(
705             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
706             C2MemoryUsage usage __unused,
707             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
708         *allocation = nullptr;
709         return C2_OMITTED;
710     }
711 
712     /**
713      * (Re)creates a 2D allocation from a native handle.  If successful, the allocation is stored
714      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
715      *
716      * \param handle      the handle for the existing allocation. On success, the allocation will
717      *                    take ownership of |handle|.
718      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
719      *                    will be stored here on failure
720      *
721      * \retval C2_OK        the allocation was recreated successfully
722      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
723      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
724      * \retval C2_REFUSED   no permission to recreate the allocation
725      * \retval C2_BAD_VALUE invalid handle (caller error)
726      * \retval C2_OMITTED   this allocator does not support 2D allocations
727      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during recreation (unexpected)
728      */
priorGraphicAllocation(const C2Handle * handle __unused,std::shared_ptr<C2GraphicAllocation> * allocation)729     virtual c2_status_t priorGraphicAllocation(
730             const C2Handle *handle __unused,
731             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
732         *allocation = nullptr;
733         return C2_OMITTED;
734     }
735 
736 protected:
737     C2Allocator() = default;
738 
739     virtual ~C2Allocator() = default;
740 };
741 
742 /**
743  * \ingroup linear allocator
744  * 1D allocation interface.
745  */
746 class C2LinearAllocation : public _C2LinearCapacityAspect {
747 public:
748     /**
749      * Maps a portion of an allocation starting from |offset| with |size| into local process memory.
750      * Stores the starting address into |addr|, or NULL if the operation was unsuccessful.
751      * |fence| will contain an acquire sync fence object. If it is already
752      * safe to access the buffer contents, then it will contain an empty (already fired) fence.
753      *
754      * \param offset        starting position of the portion to be mapped (this does not have to
755      *                      be page aligned)
756      * \param size          size of the portion to be mapped (this does not have to be page
757      *                      aligned)
758      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
759      *                      kSoftwareWrite.
760      * \param fence         a pointer to a fence object if an async mapping is requested. If
761      *                      not-null, and acquire fence will be stored here on success, or empty
762      *                      fence on failure. If null, the mapping will be synchronous.
763      * \param addr          a pointer to where the starting address of the mapped portion will be
764      *                      stored. On failure, nullptr will be stored here.
765      *
766      * \todo Only one portion can be mapped at the same time - this is true for gralloc, but there
767      *       is no need for this for 1D buffers.
768      * \todo Do we need to support sync operation as we could just wait for the fence?
769      *
770      * \retval C2_OK        the operation was successful
771      * \retval C2_REFUSED   no permission to map the portion
772      * \retval C2_TIMED_OUT the operation timed out
773      * \retval C2_DUPLICATE if the allocation is already mapped.
774      * \retval C2_NO_MEMORY not enough memory to complete the operation
775      * \retval C2_BAD_VALUE the parameters (offset/size) are invalid or outside the allocation, or
776      *                      the usage flags are invalid (caller error)
777      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
778      */
779     virtual c2_status_t map(
780             size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence /* nullable */,
781             void **addr /* nonnull */) = 0;
782 
783     /**
784      * Unmaps a portion of an allocation at |addr| with |size|. These must be parameters previously
785      * passed to and returned by |map|; otherwise, this operation is a no-op.
786      *
787      * \param addr          starting address of the mapped region
788      * \param size          size of the mapped region
789      * \param fence         a pointer to a fence object if an async unmapping is requested. If
790      *                      not-null, a release fence will be stored here on success, or empty fence
791      *                      on failure. This fence signals when the original allocation contains
792      *                      all changes that happened to the mapped region. If null, the unmapping
793      *                      will be synchronous.
794      *
795      * \retval C2_OK        the operation was successful
796      * \retval C2_TIMED_OUT the operation timed out
797      * \retval C2_NOT_FOUND if the allocation was not mapped previously.
798      * \retval C2_BAD_VALUE the parameters (addr/size) do not correspond to previously mapped
799      *                      regions (caller error)
800      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
801      * \retval C2_REFUSED   no permission to unmap the portion (unexpected - system)
802      */
803     virtual c2_status_t unmap(void *addr, size_t size, C2Fence *fence /* nullable */) = 0;
804 
805     /**
806      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
807      */
808     virtual C2Allocator::id_t getAllocatorId() const = 0;
809 
810     /**
811      * Returns a pointer to the allocation handle.
812      */
813     virtual const C2Handle *handle() const = 0;
814 
815     /**
816      * Returns true if this is the same allocation as |other|.
817      */
818     virtual bool equals(const std::shared_ptr<C2LinearAllocation> &other) const = 0;
819 
820 protected:
821     // \todo should we limit allocation directly?
C2LinearAllocation(size_t capacity)822     C2LinearAllocation(size_t capacity) : _C2LinearCapacityAspect(c2_min(capacity, UINT32_MAX)) {}
823     virtual ~C2LinearAllocation() = default;
824 };
825 
826 class C2CircularBlock;
827 class C2LinearBlock;
828 class C2GraphicBlock;
829 
830 /**
831  *  Block pools are used by components to obtain output buffers in an efficient way. They can
832  *  support either linear (1D), circular (1D) or graphic (2D) blocks.
833  *
834  *  Block pools decouple the recycling of memory/allocations from the components. They are meant to
835  *  be an opaque service (there are no public APIs other than obtaining blocks) provided by the
836  *  platform. Block pools are also meant to decouple allocations from memory used by buffers. This
837  *  is accomplished by allowing pools to allot multiple memory 'blocks' on a single allocation. As
838  *  their name suggest, block pools maintain a pool of memory blocks. When a component asks for
839  *  a memory block, pools will try to return a free memory block already in the pool. If no such
840  *  block exists, they will allocate memory using the backing allocator and allot a block on that
841  *  allocation. When blocks are no longer used in the system, they are recycled back to the block
842  *  pool and are available as free blocks.
843  *
844  *  Never constructed on stack.
845  */
846 class C2BlockPool {
847 public:
848     /**
849      * Block pool ID type.
850      */
851     typedef uint64_t local_id_t;
852 
853     enum : local_id_t {
854         BASIC_LINEAR = 0,  ///< ID of basic (unoptimized) block pool for fetching 1D blocks
855         BASIC_GRAPHIC = 1, ///< ID of basic (unoptimized) block pool for fetching 2D blocks
856         PLATFORM_START = 0x10,
857     };
858 
859     /**
860      * Returns the ID for this block pool. This ID is used to get this block pool from the platform.
861      * It is only valid in the current process.
862      *
863      * This method MUST be "non-blocking" and return within 1ms.
864      *
865      * \return a local ID for this block pool.
866      */
867     virtual local_id_t getLocalId() const = 0;
868 
869     /**
870      * Returns the ID of the backing allocator of this block pool.
871      *
872      * This method MUST be "non-blocking" and return within 1ms.
873      *
874      * \return the ID of the backing allocator of this block pool.
875      */
876     virtual C2Allocator::id_t getAllocatorId() const = 0;
877 
878     /**
879      * Obtains a linear writeable block of given |capacity| and |usage|. If successful, the
880      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
881      *
882      * \param capacity the size of requested block.
883      * \param usage    the memory usage info for the requested block. Returned blocks will be
884      *                 optimized for this usage, but may be used with any usage. One exception:
885      *                 protected blocks/buffers can only be used in a protected scenario.
886      * \param block    pointer to where the obtained block shall be stored on success. nullptr will
887      *                 be stored here on failure
888      *
889      * \retval C2_OK        the operation was successful
890      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
891      * \retval C2_TIMED_OUT the operation timed out
892      * \retval C2_REFUSED   no permission to complete any required allocation
893      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
894      * \retval C2_OMITTED   this pool does not support linear blocks
895      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
896      */
fetchLinearBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearBlock> * block)897     virtual c2_status_t fetchLinearBlock(
898             uint32_t capacity __unused, C2MemoryUsage usage __unused,
899             std::shared_ptr<C2LinearBlock> *block /* nonnull */) {
900         *block = nullptr;
901         return C2_OMITTED;
902     }
903 
904     /**
905      * Obtains a circular writeable block of given |capacity| and |usage|. If successful, the
906      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
907      *
908      * \param capacity the size of requested circular block. (note: the size of the obtained
909      *                 block could be slightly larger, e.g. to accommodate any system-required
910      *                 alignment)
911      * \param usage    the memory usage info for the requested block. Returned blocks will be
912      *                 optimized for this usage, but may be used with any usage. One exception:
913      *                 protected blocks/buffers can only be used in a protected scenario.
914      * \param block    pointer to where the obtained block shall be stored on success. nullptr
915      *                 will be stored here on failure
916      *
917      * \retval C2_OK        the operation was successful
918      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
919      * \retval C2_TIMED_OUT the operation timed out
920      * \retval C2_REFUSED   no permission to complete any required allocation
921      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
922      * \retval C2_OMITTED   this pool does not support circular blocks
923      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
924      */
fetchCircularBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2CircularBlock> * block)925     virtual c2_status_t fetchCircularBlock(
926             uint32_t capacity __unused, C2MemoryUsage usage __unused,
927             std::shared_ptr<C2CircularBlock> *block /* nonnull */) {
928         *block = nullptr;
929         return C2_OMITTED;
930     }
931 
932     /**
933      * Obtains a 2D graphic block of given |width|, |height|, |format| and |usage|. If successful,
934      * the block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
935      *
936      * \param width  the width of requested block (the obtained block could be slightly larger, e.g.
937      *               to accommodate any system-required alignment)
938      * \param height the height of requested block (the obtained block could be slightly larger,
939      *               e.g. to accommodate any system-required alignment)
940      * \param format the pixel format of requested block. This could be a vendor specific format.
941      * \param usage  the memory usage info for the requested block. Returned blocks will be
942      *               optimized for this usage, but may be used with any usage. One exception:
943      *               protected blocks/buffers can only be used in a protected scenario.
944      * \param block  pointer to where the obtained block shall be stored on success. nullptr
945      *               will be stored here on failure
946      *
947      * \retval C2_OK        the operation was successful
948      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
949      * \retval C2_TIMED_OUT the operation timed out
950      * \retval C2_REFUSED   no permission to complete any required allocation
951      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller
952      *                      error)
953      * \retval C2_OMITTED   this pool does not support 2D blocks
954      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
955      */
fetchGraphicBlock(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicBlock> * block)956     virtual c2_status_t fetchGraphicBlock(
957             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
958             C2MemoryUsage usage __unused,
959             std::shared_ptr<C2GraphicBlock> *block /* nonnull */) {
960         *block = nullptr;
961         return C2_OMITTED;
962     }
963 
964     virtual ~C2BlockPool() = default;
965 protected:
966     C2BlockPool() = default;
967 };
968 
969 /// @}
970 
971 // ================================================================================================
972 //  BLOCKS
973 // ================================================================================================
974 
975 /**
976  * Blocks are sections of allocations. They can be either 1D or 2D.
977  */
978 
979 class C2LinearAllocation;
980 
981 /**
982  * A 1D block.
983  *
984  * \note capacity() is not meaningful for users of blocks; instead size() is the capacity of the
985  * usable portion. Use and offset() and size() if accessing the block directly through its handle
986  * to represent the allotted range of the underlying allocation to this block.
987  */
988 class C2Block1D : public _C2LinearRangeAspect {
989 public:
990     /**
991      * Returns the underlying handle for this allocation.
992      *
993      * \note that the block and its block pool has shared ownership of the handle
994      *       and if all references to the block are released, the underlying block
995      *       allocation may get reused even if a client keeps a clone of this handle.
996      */
997     const C2Handle *handle() const;
998 
999     /**
1000      * Returns the allocator's ID that created the underlying allocation for this block. This
1001      * provides the context for understanding the handle.
1002      */
1003     C2Allocator::id_t getAllocatorId() const;
1004 
1005 protected:
1006     class Impl;
1007     /** construct a block. */
1008     C2Block1D(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1009 
1010     friend struct _C2BlockFactory;
1011     std::shared_ptr<Impl> mImpl;
1012 };
1013 
1014 /**
1015  * Read view provides read-only access for a linear memory segment.
1016  *
1017  * This class is copiable.
1018  */
1019 class C2ReadView : public _C2LinearCapacityAspect {
1020 public:
1021     /**
1022      * \return pointer to the start of the block or nullptr on error.
1023      *         This pointer is only valid during the lifetime of this view or until it is released.
1024      */
1025     const uint8_t *data() const;
1026 
1027     /**
1028      * Returns a portion of this view.
1029      *
1030      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1031      *              view.
1032      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1033      *
1034      * \return a read view containing a portion of this view
1035      */
1036     C2ReadView subView(size_t offset, size_t size) const;
1037 
1038     /**
1039      * \return error during the creation/mapping of this view.
1040      */
1041     c2_status_t error() const;
1042 
1043     /**
1044      * Releases this view. This sets error to C2_NO_INIT.
1045      */
1046     //void release();
1047 
1048 protected:
1049     class Impl;
1050     C2ReadView(std::shared_ptr<Impl> impl, uint32_t offset, uint32_t size);
1051     explicit C2ReadView(c2_status_t error);
1052 
1053 private:
1054     friend struct _C2BlockFactory;
1055     std::shared_ptr<Impl> mImpl;
1056     uint32_t mOffset; /**< offset into the linear block backing this read view */
1057 };
1058 
1059 /**
1060  * Write view provides read/write access for a linear memory segment.
1061  *
1062  * This class is copiable. \todo movable only?
1063  */
1064 class C2WriteView : public _C2EditableLinearRangeAspect {
1065 public:
1066     /**
1067      * Start of the block.
1068      *
1069      * \return pointer to the start of the block or nullptr on error.
1070      *         This pointer is only valid during the lifetime of this view or until it is released.
1071      */
1072     uint8_t *base();
1073 
1074     /**
1075      * \return pointer to the block at the current offset or nullptr on error.
1076      *         This pointer is only valid during the lifetime of this view or until it is released.
1077      */
1078     uint8_t *data();
1079 
1080     /**
1081      * \return error during the creation/mapping of this view.
1082      */
1083     c2_status_t error() const;
1084 
1085     /**
1086      * Releases this view. This sets error to C2_NO_INIT.
1087      */
1088     //void release();
1089 
1090 protected:
1091     class Impl;
1092     C2WriteView(std::shared_ptr<Impl> impl);
1093     explicit C2WriteView(c2_status_t error);
1094 
1095 private:
1096     friend struct _C2BlockFactory;
1097     std::shared_ptr<Impl> mImpl;
1098 };
1099 
1100 /**
1101  * A constant (read-only) linear block (portion of an allocation) with an acquire fence.
1102  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1103  *
1104  * This class is copiable and contains a reference to the allocation that it is based on.
1105  */
1106 class C2ConstLinearBlock : public C2Block1D {
1107 public:
1108     /**
1109      * Maps this block into memory and returns a read view for it.
1110      *
1111      * \return a read view for this block.
1112      */
1113     C2Acquirable<C2ReadView> map() const;
1114 
1115     /**
1116      * Returns a portion of this block.
1117      *
1118      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1119      *              block.
1120      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1121      *
1122      * \return a constant linear block containing a portion of this block
1123      */
1124     C2ConstLinearBlock subBlock(size_t offset, size_t size) const;
1125 
1126     /**
1127      * Returns the acquire fence for this block.
1128      *
1129      * \return a fence that must be waited on before reading the block.
1130      */
fence()1131     C2Fence fence() const { return mFence; }
1132 
1133 protected:
1134     C2ConstLinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range, C2Fence mFence);
1135 
1136 private:
1137     friend struct _C2BlockFactory;
1138     C2Fence mFence;
1139 };
1140 
1141 /**
1142  * Linear block is a writeable 1D block. Once written, it can be shared in whole or in parts with
1143  * consumers/readers as read-only const linear block(s).
1144  */
1145 class C2LinearBlock : public C2Block1D {
1146 public:
1147     /**
1148      * Maps this block into memory and returns a write view for it.
1149      *
1150      * \return a write view for this block.
1151      */
1152     C2Acquirable<C2WriteView> map();
1153 
1154     /**
1155      * Creates a read-only const linear block for a portion of this block; optionally protected
1156      * by an acquire fence. There are two ways to use this:
1157      *
1158      * 1) share ready block after writing data into the block. In this case no fence shall be
1159      *    supplied, and the block shall not be modified after calling this method.
1160      * 2) share block metadata before actually (finishing) writing the data into the block. In
1161      *    this case a fence must be supplied that will be triggered when the data is written.
1162      *    The block shall be modified only until firing the event for the fence.
1163      */
1164     C2ConstLinearBlock share(size_t offset, size_t size, C2Fence fence);
1165 
1166 protected:
1167     C2LinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1168 
1169     friend struct _C2BlockFactory;
1170 };
1171 
1172 /// @}
1173 
1174 /**************************************************************************************************
1175   CIRCULAR BLOCKS AND VIEWS
1176 **************************************************************************************************/
1177 
1178 /// \defgroup circular Circular buffer support
1179 /// @{
1180 
1181 /**
1182  * Circular blocks can be used to share data between a writer and a reader (and/or other consumers)-
1183  * in a memory-efficient way by reusing a section of memory. Circular blocks are a bit more complex
1184  * than single reader/single writer schemes to facilitate block-based consuming of data.
1185  *
1186  * They can operate in two modes:
1187  *
1188  * 1) one writer that creates blocks to be consumed (this model can be used by components)
1189  *
1190  * 2) one writer that writes continuously, and one reader that can creates blocks to be consumed
1191  *    by further recipients (this model is used by the framework, and cannot be used by components.)
1192  *
1193  * Circular blocks have four segments with running pointers:
1194  *  - reserved: data reserved and available for the writer
1195  *  - committed: data committed by the writer and available to the reader (if present)
1196  *  - used: data used by consumers (if present)
1197  *  - available: unused data available to be reserved
1198  */
1199 class C2CircularBlock : public C2Block1D {
1200     // TODO: add methods
1201 
1202 private:
1203     size_t mReserved __unused;   // end of reserved section
1204     size_t mCommitted __unused;  // end of committed section
1205     size_t mUsed __unused;       // end of used section
1206     size_t mFree __unused;       // end of free section
1207 };
1208 
1209 class _C2CircularBlockSegment : public _C2LinearCapacityAspect {
1210 public:
1211     /**
1212      * Returns the available size for this segment.
1213      *
1214      * \return currently available size for this segment
1215      */
1216     size_t available() const;
1217 
1218     /**
1219      * Reserve some space for this segment from its current start.
1220      *
1221      * \param size    desired space in bytes
1222      * \param fence   a pointer to an acquire fence. If non-null, the reservation is asynchronous and
1223      *              a fence will be stored here that will be signaled when the reservation is
1224      *              complete. If null, the reservation is synchronous.
1225      *
1226      * \retval C2_OK            the space was successfully reserved
1227      * \retval C2_NO_MEMORY     the space requested cannot be reserved
1228      * \retval C2_TIMED_OUT     the reservation timed out \todo when?
1229      * \retval C2_CORRUPTED     some unknown error prevented reserving space. (unexpected)
1230      */
1231     c2_status_t reserve(size_t size, C2Fence *fence /* nullable */);
1232 
1233     /**
1234      * Abandons a portion of this segment. This will move to the beginning of this segment.
1235      *
1236      * \note This methods is only allowed if this segment is producing blocks.
1237      *
1238      * \param size    number of bytes to abandon
1239      *
1240      * \retval C2_OK            the data was successfully abandoned
1241      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1242      * \retval C2_CORRUPTED     some unknown error prevented abandoning the data (unexpected)
1243      */
1244     c2_status_t abandon(size_t size);
1245 
1246     /**
1247      * Share a portion as block(s) with consumers (these are moved to the used section).
1248      *
1249      * \note This methods is only allowed if this segment is producing blocks.
1250      * \note Share does not move the beginning of the segment. (\todo add abandon/offset?)
1251      *
1252      * \param size    number of bytes to share
1253      * \param fence   fence to be used for the section
1254      * \param blocks  vector where the blocks of the section are appended to
1255      *
1256      * \retval C2_OK            the portion was successfully shared
1257      * \retval C2_NO_MEMORY     not enough memory to share the portion
1258      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1259      * \retval C2_CORRUPTED     some unknown error prevented sharing the data (unexpected)
1260      */
1261     c2_status_t share(size_t size, C2Fence fence, std::vector<C2ConstLinearBlock> &blocks);
1262 
1263     /**
1264      * Returns the beginning offset of this segment from the start of this circular block.
1265      *
1266      * @return beginning offset
1267      */
1268     size_t begin();
1269 
1270     /**
1271      * Returns the end offset of this segment from the start of this circular block.
1272      *
1273      * @return end offset
1274      */
1275     size_t end();
1276 };
1277 
1278 /**
1279  * A circular write-view is a dynamic mapped view for a segment of a circular block. Care must be
1280  * taken when using this view so that only the section owned by the segment is modified.
1281  */
1282 class C2CircularWriteView : public _C2LinearCapacityAspect {
1283 public:
1284     /**
1285      * Start of the circular block.
1286      * \note the segment does not own this pointer.
1287      *
1288      * \return pointer to the start of the circular block or nullptr on error.
1289      */
1290     uint8_t *base();
1291 
1292     /**
1293      * \return error during the creation/mapping of this view.
1294      */
1295     c2_status_t error() const;
1296 };
1297 
1298 /**
1299  * The writer of a circular buffer.
1300  *
1301  * Can commit data to a reader (not supported for components) OR share data blocks directly with a
1302  * consumer.
1303  *
1304  * If a component supports outputting data into circular buffers, it must allocate a circular
1305  * block and use a circular writer.
1306  */
1307 class C2CircularWriter : public _C2CircularBlockSegment {
1308 public:
1309     /**
1310      * Commits a portion of this segment to the next segment. This moves the beginning of the
1311      * segment.
1312      *
1313      * \param size    number of bytes to commit to the next segment
1314      * \param fence   fence used for the commit (the fence must signal before the data is committed)
1315      */
1316     c2_status_t commit(size_t size, C2Fence fence);
1317 
1318     /**
1319      * Maps this block into memory and returns a write view for it.
1320      *
1321      * \return a write view for this block.
1322      */
1323     C2Acquirable<C2CircularWriteView> map();
1324 };
1325 
1326 /// @}
1327 
1328 /// \defgroup graphic Graphic Data Blocks
1329 /// @{
1330 
1331 /**
1332  * C2Rect: rectangle type with non-negative coordinates.
1333  *
1334  * \note This struct has public fields without getters/setters. All methods are inline.
1335  */
1336 struct C2Rect {
1337 // public:
1338     uint32_t width;
1339     uint32_t height;
1340     uint32_t left;
1341     uint32_t top;
1342 
C2RectC2Rect1343     constexpr inline C2Rect()
1344         : C2Rect(0, 0, 0, 0) { }
1345 
C2RectC2Rect1346     constexpr inline C2Rect(uint32_t width_, uint32_t height_)
1347         : C2Rect(width_, height_, 0, 0) { }
1348 
atC2Rect1349     constexpr C2Rect inline at(uint32_t left_, uint32_t top_) const {
1350         return C2Rect(width, height, left_, top_);
1351     }
1352 
1353     // utility methods
1354 
isEmptyC2Rect1355     inline constexpr bool isEmpty() const {
1356         return width == 0 || height == 0;
1357     }
1358 
isValidC2Rect1359     inline constexpr bool isValid() const {
1360         return left <= ~width && top <= ~height;
1361     }
1362 
1363     inline constexpr operator bool() const {
1364         return isValid() && !isEmpty();
1365     }
1366 
1367     inline constexpr bool operator!() const {
1368         return !bool(*this);
1369     }
1370 
1371     C2_ALLOW_OVERFLOW
containsC2Rect1372     inline constexpr bool contains(const C2Rect &other) const {
1373         if (!isValid() || !other.isValid()) {
1374             return false;
1375         } else {
1376             return left <= other.left && top <= other.top
1377                     && left + width >= other.left + other.width
1378                     && top + height >= other.top + other.height;
1379         }
1380     }
1381 
1382     inline constexpr bool operator==(const C2Rect &other) const {
1383         if (!isValid()) {
1384             return !other.isValid();
1385         } else {
1386             return left == other.left && top == other.top
1387                     && width == other.width && height == other.height;
1388         }
1389     }
1390 
1391     inline constexpr bool operator!=(const C2Rect &other) const {
1392         return !operator==(other);
1393     }
1394 
1395     inline constexpr bool operator>=(const C2Rect &other) const {
1396         return contains(other);
1397     }
1398 
1399     inline constexpr bool operator>(const C2Rect &other) const {
1400         return contains(other) && !operator==(other);
1401     }
1402 
1403     inline constexpr bool operator<=(const C2Rect &other) const {
1404         return other.contains(*this);
1405     }
1406 
1407     inline constexpr bool operator<(const C2Rect &other) const {
1408         return other.contains(*this) && !operator==(other);
1409     }
1410 
1411     C2_ALLOW_OVERFLOW
rightC2Rect1412     inline constexpr uint32_t right() const {
1413         return left + width;
1414     }
1415 
1416     C2_ALLOW_OVERFLOW
bottomC2Rect1417     inline constexpr uint32_t bottom() const {
1418         return top + height;
1419     }
1420 
1421     C2_ALLOW_OVERFLOW
intersectC2Rect1422     inline constexpr C2Rect intersect(const C2Rect &other) const {
1423         return C2Rect(c2_min(right(), other.right()) - c2_max(left, other.left),
1424                       c2_min(bottom(), other.bottom()) - c2_max(top, other.top),
1425                       c2_max(left, other.left),
1426                       c2_max(top, other.top));
1427     }
1428 
1429     /** clamps right and bottom to top, left if they overflow */
normalizeC2Rect1430     inline constexpr C2Rect normalize() const {
1431         return C2Rect(c2_max(left, right()) - left, c2_max(top, bottom()) - top, left, top);
1432     }
1433 
1434 private:
1435     /// note: potentially unusual argument order
C2RectC2Rect1436     constexpr inline C2Rect(uint32_t width_, uint32_t height_, uint32_t left_, uint32_t top_)
1437         : width(width_),
1438           height(height_),
1439           left(left_),
1440           top(top_) { }
1441 };
1442 
1443 /**
1444  * Interface for objects that have a width and height (planar capacity).
1445  */
1446 class _C2PlanarCapacityAspect {
1447 /// \name Planar capacity interface
1448 /// @{
1449 public:
width()1450     inline constexpr uint32_t width() const { return _mWidth; }
height()1451     inline constexpr uint32_t height() const { return _mHeight; }
1452 
C2Rect()1453     inline constexpr operator C2Rect() const {
1454         return C2Rect(_mWidth, _mHeight);
1455     }
1456 
1457 protected:
_C2PlanarCapacityAspect(uint32_t width,uint32_t height)1458     inline constexpr _C2PlanarCapacityAspect(uint32_t width, uint32_t height)
1459       : _mWidth(width), _mHeight(height) { }
1460 
_C2PlanarCapacityAspect(const _C2PlanarCapacityAspect * parent)1461     inline explicit constexpr _C2PlanarCapacityAspect(const _C2PlanarCapacityAspect *parent)
1462         : _mWidth(parent == nullptr ? 0 : parent->width()),
1463           _mHeight(parent == nullptr ? 0 : parent->height()) { }
1464 
1465 private:
1466     uint32_t _mWidth;
1467     uint32_t _mHeight;
1468 /// @}
1469 };
1470 
1471 /**
1472  * C2PlaneInfo: information on the layout of a singe flexible plane.
1473  *
1474  * Public fields without getters/setters.
1475  */
1476 struct C2PlaneInfo {
1477 //public:
1478     enum channel_t : uint32_t {
1479         CHANNEL_Y,  ///< luma
1480         CHANNEL_R,  ///< red
1481         CHANNEL_G,  ///< green
1482         CHANNEL_B,  ///< blue
1483         CHANNEL_A,  ///< alpha
1484         CHANNEL_CR, ///< Cr
1485         CHANNEL_CB, ///< Cb
1486     } channel;
1487 
1488     int32_t colInc;       ///< column increment in bytes. may be negative
1489     int32_t rowInc;       ///< row increment in bytes. may be negative
1490 
1491     uint32_t colSampling; ///< subsampling compared to width (must be a power of 2)
1492     uint32_t rowSampling; ///< subsampling compared to height (must be a power of 2)
1493 
1494     uint32_t allocatedDepth; ///< size of each sample (must be a multiple of 8)
1495     uint32_t bitDepth;       ///< significant bits per sample
1496     /**
1497      * the right shift of the significant bits in the sample. E.g. if a 10-bit significant
1498      * value is laid out in a 16-bit allocation aligned to LSB (values 0-1023), rightShift
1499      * would be 0 as the 16-bit value read from the sample does not need to be right shifted
1500      * and can be used as is (after applying a 10-bit mask of 0x3FF).
1501      *
1502      * +--------+--------+
1503      * |      VV|VVVVVVVV|
1504      * +--------+--------+
1505      *  15     8 7      0
1506      *
1507      * If the value is laid out aligned to MSB, rightShift would be 6, as the value read
1508      * from the allocated sample must be right-shifted by 6 to get the actual sample value.
1509      *
1510      * +--------+--------+
1511      * |VVVVVVVV|VV      |
1512      * +--------+--------+
1513      *  15     8 7      0
1514      */
1515     uint32_t rightShift;
1516 
1517     enum endianness_t : uint32_t {
1518         NATIVE,
1519         LITTLE_END, // LITTLE_ENDIAN is reserved macro
1520         BIG_END,    // BIG_ENDIAN is a reserved macro
1521     } endianness; ///< endianness of the samples
1522 
1523     /**
1524      * The following two fields define the relation between multiple planes. If multiple planes are
1525      * interleaved, they share a root plane (whichever plane's start address is the lowest), and
1526      * |offset| is the offset of this plane inside the root plane (in bytes). |rootIx| is the index
1527      * of the root plane. If a plane is independent, rootIx is its index and offset is 0.
1528      */
1529     uint32_t rootIx; ///< index of the root plane
1530     uint32_t offset; ///< offset of this plane inside of the root plane
1531 
minOffsetC2PlaneInfo1532     inline constexpr ssize_t minOffset(uint32_t width, uint32_t height) const {
1533         ssize_t offs = 0;
1534         if (width > 0 && colInc < 0) {
1535             offs += colInc * (ssize_t)(width - 1);
1536         }
1537         if (height > 0 && rowInc < 0) {
1538             offs += rowInc * (ssize_t)(height - 1);
1539         }
1540         return offs;
1541     }
1542 
maxOffsetC2PlaneInfo1543     inline constexpr ssize_t maxOffset(uint32_t width, uint32_t height) const {
1544         ssize_t offs = (allocatedDepth + 7) >> 3;
1545         if (width > 0 && colInc > 0) {
1546             offs += colInc * (ssize_t)(width - 1);
1547         }
1548         if (height > 0 && rowInc > 0) {
1549             offs += rowInc * (ssize_t)(height - 1);
1550         }
1551         return offs;
1552     }
1553 } C2_PACK;
1554 
1555 struct C2PlanarLayout {
1556 //public:
1557     enum type_t : uint32_t {
1558         TYPE_UNKNOWN = 0,
1559         TYPE_YUV = 0x100,   ///< YUV image with 3 planes
1560         TYPE_YUVA,          ///< YUVA image with 4 planes
1561         TYPE_RGB,           ///< RGB image with 3 planes
1562         TYPE_RGBA,          ///< RBGA image with 4 planes
1563     };
1564 
1565     type_t type;                    // image type
1566     uint32_t numPlanes;             // number of component planes
1567     uint32_t rootPlanes;            // number of layout planes (root planes)
1568 
1569     enum plane_index_t : uint32_t {
1570         PLANE_Y = 0,
1571         PLANE_U = 1,
1572         PLANE_V = 2,
1573         PLANE_R = 0,
1574         PLANE_G = 1,
1575         PLANE_B = 2,
1576         PLANE_A = 3,
1577         MAX_NUM_PLANES = 4,
1578     };
1579 
1580     C2PlaneInfo planes[MAX_NUM_PLANES];
1581 };
1582 
1583 /**
1584  * Aspect for objects that have a planar section (crop rectangle).
1585  *
1586  * This class is copiable.
1587  */
1588 class _C2PlanarSectionAspect : public _C2PlanarCapacityAspect {
1589 /// \name Planar section interface
1590 /// @{
1591 private:
_C2PlanarSectionAspect(uint32_t width,uint32_t height,const C2Rect & crop)1592     inline constexpr _C2PlanarSectionAspect(uint32_t width, uint32_t height, const C2Rect &crop)
1593         : _C2PlanarCapacityAspect(width, height),
1594           mCrop(C2Rect(std::min(width - std::min(crop.left, width), crop.width),
1595                        std::min(height - std::min(crop.top, height), crop.height)).at(
1596                                std::min(crop.left, width),
1597                                std::min(crop.height, height))) {
1598     }
1599 
1600 public:
1601     // crop can be an empty rect, does not have to line up with subsampling
1602     // NOTE: we do not support floating-point crop
crop()1603     inline constexpr C2Rect crop() const { return mCrop; }
1604 
1605     /**
1606      * Returns a child planar section for |crop|, where the capacity represents this section.
1607      */
childSection(const C2Rect & crop)1608     inline constexpr _C2PlanarSectionAspect childSection(const C2Rect &crop) const {
1609         return _C2PlanarSectionAspect(
1610                 mCrop.width, mCrop.height,
1611                 // crop and translate |crop| rect
1612                 C2Rect(c2_min(mCrop.right() - c2_clamp(mCrop.left, crop.left, mCrop.right()),
1613                               crop.width),
1614                        c2_min(mCrop.bottom() - c2_clamp(mCrop.top, crop.top, mCrop.bottom()),
1615                               crop.height))
1616                 .at(c2_clamp(mCrop.left, crop.left, mCrop.right()) - mCrop.left,
1617                     c2_clamp(mCrop.top, crop.top, mCrop.bottom()) - mCrop.top));
1618     }
1619 
1620 protected:
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent)1621     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent)
1622         : _C2PlanarCapacityAspect(parent), mCrop(width(), height()) {}
1623 
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent,const C2Rect & crop)1624     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent, const C2Rect &crop)
1625         : _C2PlanarCapacityAspect(parent),
1626           mCrop(parent == nullptr ? C2Rect() : ((C2Rect)*parent).intersect(crop).normalize()) { }
1627 
_C2PlanarSectionAspect(const _C2PlanarSectionAspect * parent,const C2Rect & crop)1628     inline constexpr _C2PlanarSectionAspect(const _C2PlanarSectionAspect *parent, const C2Rect &crop)
1629         : _C2PlanarCapacityAspect(parent),
1630           mCrop(parent == nullptr ? C2Rect() : parent->crop().intersect(crop).normalize()) { }
1631 
1632 private:
1633     friend class _C2EditablePlanarSectionAspect;
1634     C2Rect mCrop;
1635 /// @}
1636 };
1637 
1638 /**
1639  * Aspect for objects that have an editable planar section (crop rectangle).
1640  *
1641  * This class is copiable.
1642  */
1643 class _C2EditablePlanarSectionAspect : public _C2PlanarSectionAspect {
1644 /// \name Planar section interface
1645 /// @{
1646     using _C2PlanarSectionAspect::_C2PlanarSectionAspect;
1647 
1648 public:
1649     // crop can be an empty rect, does not have to line up with subsampling
1650     // NOTE: we do not support floating-point crop
crop()1651     inline constexpr C2Rect crop() const { return mCrop; }
1652 
1653     /**
1654      *  Sets crop to crop intersected with [(0,0) .. (width, height)]
1655      */
setCrop_be(const C2Rect & crop)1656     inline void setCrop_be(const C2Rect &crop) {
1657         mCrop.left = std::min(width(), crop.left);
1658         mCrop.top = std::min(height(), crop.top);
1659         // It's guaranteed that mCrop.left <= width() && mCrop.top <= height()
1660         mCrop.width = std::min(width() - mCrop.left, crop.width);
1661         mCrop.height = std::min(height() - mCrop.top, crop.height);
1662     }
1663 
1664     /**
1665      * If crop is within the dimensions of this object, it sets crop to it.
1666      *
1667      * \return true iff crop is within the dimensions of this object
1668      */
setCrop(const C2Rect & crop)1669     inline bool setCrop(const C2Rect &crop) {
1670         if (width() < crop.width || height() < crop.height
1671                 || width() - crop.width < crop.left || height() - crop.height < crop.top) {
1672             return false;
1673         }
1674         mCrop = crop;
1675         return true;
1676     }
1677 /// @}
1678 };
1679 
1680 /**
1681  * Utility class for safe range calculations using size_t-s.
1682  */
1683 class C2PlanarSection : public _C2PlanarSectionAspect {
1684 public:
C2PlanarSection(const _C2PlanarCapacityAspect & parent,const C2Rect & crop)1685     inline constexpr C2PlanarSection(const _C2PlanarCapacityAspect &parent, const C2Rect &crop)
1686         : _C2PlanarSectionAspect(&parent, crop) { }
1687 
C2PlanarSection(const _C2PlanarSectionAspect & parent,const C2Rect & crop)1688     inline constexpr C2PlanarSection(const _C2PlanarSectionAspect &parent, const C2Rect &crop)
1689         : _C2PlanarSectionAspect(&parent, crop) { }
1690 
intersect(const C2Rect & crop)1691     inline constexpr C2PlanarSection intersect(const C2Rect &crop) const {
1692         return C2PlanarSection(*this, crop);
1693     }
1694 };
1695 
1696 /**
1697  * Utility class for simple and safe planar capacity and section construction.
1698  */
1699 class C2PlanarCapacity : public _C2PlanarCapacityAspect {
1700 public:
C2PlanarCapacity(size_t width,size_t height)1701     inline constexpr explicit C2PlanarCapacity(size_t width, size_t height)
1702         : _C2PlanarCapacityAspect(c2_min(width, std::numeric_limits<uint32_t>::max()),
1703                                   c2_min(height, std::numeric_limits<uint32_t>::max())) { }
1704 
section(const C2Rect & crop)1705     inline constexpr C2PlanarSection section(const C2Rect &crop) const {
1706         return C2PlanarSection(*this, crop);
1707     }
1708 };
1709 
1710 
1711 /**
1712  * \ingroup graphic allocator
1713  * 2D allocation interface.
1714  */
1715 class C2GraphicAllocation : public _C2PlanarCapacityAspect {
1716 public:
1717     /**
1718      * Maps a rectangular section (as defined by |rect|) of a 2D allocation into local process
1719      * memory for flexible access. On success, it fills out |layout| with the plane specifications
1720      * and fills the |addr| array with pointers to the first byte of the top-left pixel of each
1721      * plane used. Otherwise, it leaves |layout| and |addr| untouched. |fence| will contain
1722      * an acquire sync fence object. If it is already safe to access the
1723      * buffer contents, then it will be an empty (already fired) fence.
1724      *
1725      * Safe regions for the pointer addresses returned can be gotten via C2LayoutInfo.minOffset()/
1726      * maxOffset().
1727      *
1728      * \param rect          section to be mapped (this does not have to be aligned)
1729      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
1730      *                      kSoftwareWrite.
1731      * \param fence         a pointer to a fence object if an async mapping is requested. If
1732      *                      not-null, and acquire fence will be stored here on success, or empty
1733      *                      fence on failure. If null, the mapping will be synchronous.
1734      * \param layout        a pointer to where the mapped planes' descriptors will be
1735      *                      stored. On failure, nullptr will be stored here.
1736      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1737      *                      elements. Only layout.numPlanes elements will be modified on success.
1738      *
1739      * \retval C2_OK        the operation was successful
1740      * \retval C2_REFUSED   no permission to map the section
1741      * \retval C2_DUPLICATE there is already a mapped region and this allocation cannot support
1742      *                      multi-mapping (caller error)
1743      * \retval C2_TIMED_OUT the operation timed out
1744      * \retval C2_NO_MEMORY not enough memory to complete the operation
1745      * \retval C2_BAD_VALUE the parameters (rect) are invalid or outside the allocation, or the
1746      *                      usage flags are invalid (caller error)
1747      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1748 
1749      */
1750     virtual c2_status_t map(
1751             C2Rect rect, C2MemoryUsage usage, C2Fence *fence,
1752             C2PlanarLayout *layout /* nonnull */, uint8_t **addr /* nonnull */) = 0;
1753 
1754     /**
1755      * Unmaps a section of an allocation at |addr| with |rect|. These must be parameters previously
1756      * passed to and returned by |map|; otherwise, this operation is a no-op.
1757      *
1758      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1759      *                      elements containing the starting addresses of the mapped layers
1760      * \param rect          boundaries of the mapped section
1761      * \param fence         a pointer to a fence object if an async unmapping is requested. If
1762      *                      not-null, a release fence will be stored here on success, or empty fence
1763      *                      on failure. This fence signals when the original allocation contains
1764      *                      all changes that happened to the mapped section. If null, the unmapping
1765      *                      will be synchronous.
1766      *
1767      * \retval C2_OK        the operation was successful
1768      * \retval C2_TIMED_OUT the operation timed out
1769      * \retval C2_NOT_FOUND there is no such mapped region (caller error)
1770      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1771      * \retval C2_REFUSED   no permission to unmap the section (unexpected - system)
1772      */
1773     virtual c2_status_t unmap(
1774             uint8_t **addr /* nonnull */, C2Rect rect, C2Fence *fence /* nullable */) = 0;
1775 
1776     /**
1777      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
1778      */
1779     virtual C2Allocator::id_t getAllocatorId() const = 0;
1780 
1781     /**
1782      * Returns a pointer to the allocation handle.
1783      */
1784     virtual const C2Handle *handle() const = 0;
1785 
1786     /**
1787      * Returns true if this is the same allocation as |other|.
1788      */
1789     virtual bool equals(const std::shared_ptr<const C2GraphicAllocation> &other) const = 0;
1790 
1791 protected:
1792     using _C2PlanarCapacityAspect::_C2PlanarCapacityAspect;
1793     virtual ~C2GraphicAllocation() = default;
1794 };
1795 
1796 class C2GraphicAllocation;
1797 
1798 /**
1799  * A 2D block.
1800  *
1801  * \note width()/height() is not meaningful for users of blocks; instead, crop().width() and
1802  * crop().height() is the capacity of the usable portion. Use and crop() if accessing the block
1803  * directly through its handle to represent the allotted region of the underlying allocation to this
1804  * block.
1805  */
1806 class C2Block2D : public _C2PlanarSectionAspect {
1807 public:
1808     /**
1809      * Returns the underlying handle for this allocation.
1810      *
1811      * \note that the block and its block pool has shared ownership of the handle
1812      *       and if all references to the block are released, the underlying block
1813      *       allocation may get reused even if a client keeps a clone of this handle.
1814      */
1815     const C2Handle *handle() const;
1816 
1817     /**
1818      * Returns the allocator's ID that created the underlying allocation for this block. This
1819      * provides the context for understanding the handle.
1820      */
1821     C2Allocator::id_t getAllocatorId() const;
1822 
1823 protected:
1824     class Impl;
1825     C2Block2D(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1826 
1827     friend struct _C2BlockFactory;
1828     std::shared_ptr<Impl> mImpl;
1829 };
1830 
1831 /**
1832  * Graphic view provides read or read-write access for a graphic block.
1833  *
1834  * This class is copiable.
1835  *
1836  * \note Due to the subsampling of graphic buffers, a read view must still contain a crop rectangle
1837  * to ensure subsampling is followed. This results in nearly identical interface between read and
1838  * write views, so C2GraphicView can encompass both of them.
1839  */
1840 class C2GraphicView : public _C2EditablePlanarSectionAspect {
1841 public:
1842     /**
1843      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1844      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1845      * plane. Access outside of the crop rect results in an undefined behavior.
1846      */
1847     const uint8_t *const *data() const;
1848 
1849     /**
1850      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1851      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1852      * plane. Access outside of the crop rect results in an undefined behavior.
1853      */
1854     uint8_t *const *data();
1855 
1856     /**
1857      * \return layout of the graphic block to interpret the returned data.
1858      */
1859     const C2PlanarLayout layout() const;
1860 
1861     /**
1862      * Returns a section of this view.
1863      *
1864      * \param rect    the dimension of the section. \note This is clamped to the crop of this view.
1865      *
1866      * \return a read view containing the requested section of this view
1867      */
1868     const C2GraphicView subView(const C2Rect &rect) const;
1869     C2GraphicView subView(const C2Rect &rect);
1870 
1871     /**
1872      * \return error during the creation/mapping of this view.
1873      */
1874     c2_status_t error() const;
1875 
1876 protected:
1877     class Impl;
1878     C2GraphicView(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1879     explicit C2GraphicView(c2_status_t error);
1880 
1881 private:
1882     friend struct _C2BlockFactory;
1883     std::shared_ptr<Impl> mImpl;
1884 };
1885 
1886 /**
1887  * A constant (read-only) graphic block (portion of an allocation) with an acquire fence.
1888  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1889  *
1890  * This class is copiable and contains a reference to the allocation that it is based on.
1891  */
1892 class C2ConstGraphicBlock : public C2Block2D {
1893 public:
1894     /**
1895      * Maps this block into memory and returns a read view for it.
1896      *
1897      * \return a read view for this block.
1898      */
1899     C2Acquirable<const C2GraphicView> map() const;
1900 
1901     /**
1902      * Returns a section of this block.
1903      *
1904      * \param rect    the coordinates of the section. \note This is clamped to the crop rectangle of
1905      *              this block.
1906      *
1907      * \return a constant graphic block containing a portion of this block
1908      */
1909     C2ConstGraphicBlock subBlock(const C2Rect &rect) const;
1910 
1911     /**
1912      * Returns the acquire fence for this block.
1913      *
1914      * \return a fence that must be waited on before reading the block.
1915      */
fence()1916     C2Fence fence() const { return mFence; }
1917 
1918 protected:
1919     C2ConstGraphicBlock(
1920             std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section, C2Fence fence);
1921 
1922 private:
1923     friend struct _C2BlockFactory;
1924     C2Fence mFence;
1925 };
1926 
1927 /**
1928  * Graphic block is a writeable 2D block. Once written, it can be shared in whole or in part with
1929  * consumers/readers as read-only const graphic block.
1930  */
1931 class C2GraphicBlock : public C2Block2D {
1932 public:
1933     /**
1934      * Maps this block into memory and returns a write view for it.
1935      *
1936      * \return a write view for this block.
1937      */
1938     C2Acquirable<C2GraphicView> map();
1939 
1940     /**
1941      * Creates a read-only const linear block for a portion of this block; optionally protected
1942      * by an acquire fence. There are two ways to use this:
1943      *
1944      * 1) share ready block after writing data into the block. In this case no fence shall be
1945      *    supplied, and the block shall not be modified after calling this method.
1946      * 2) share block metadata before actually (finishing) writing the data into the block. In
1947      *    this case a fence must be supplied that will be triggered when the data is written.
1948      *    The block shall be modified only until firing the event for the fence.
1949      */
1950     C2ConstGraphicBlock share(const C2Rect &crop, C2Fence fence);
1951 
1952 protected:
1953     C2GraphicBlock(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1954 
1955     friend struct _C2BlockFactory;
1956 };
1957 
1958 /// @}
1959 
1960 /// \defgroup buffer_onj Buffer objects
1961 /// @{
1962 
1963 // ================================================================================================
1964 //  BUFFERS
1965 // ================================================================================================
1966 
1967 /// \todo: Do we still need this?
1968 ///
1969 // There are 2 kinds of buffers: linear or graphic. Linear buffers can contain a single block, or
1970 // a list of blocks (LINEAR_CHUNKS). Support for list of blocks is optional, and can allow consuming
1971 // data from circular buffers or scattered data sources without extra memcpy. Currently, list of
1972 // graphic blocks is not supported.
1973 
1974 class C2LinearBuffer;   // read-write buffer
1975 class C2GraphicBuffer;  // read-write buffer
1976 class C2LinearChunksBuffer;
1977 
1978 /**
1979  * C2BufferData: the main, non-meta data of a buffer. A buffer can contain either linear blocks
1980  * or graphic blocks, and can contain either a single block or multiple blocks. This is determined
1981  * by its type.
1982  */
1983 class C2BufferData {
1984 public:
1985     /**
1986      *  The type of buffer data.
1987      */
1988     enum type_t : uint32_t {
1989         INVALID,            ///< invalid buffer type. Do not use.
1990         LINEAR,             ///< the buffer contains a single linear block
1991         LINEAR_CHUNKS,      ///< the buffer contains one or more linear blocks
1992         GRAPHIC,            ///< the buffer contains a single graphic block
1993         GRAPHIC_CHUNKS,     ///< the buffer contains one of more graphic blocks
1994     };
1995     typedef type_t Type; // deprecated
1996 
1997     /**
1998      * Gets the type of this buffer (data).
1999      * \return the type of this buffer data.
2000      */
2001     type_t type() const;
2002 
2003     /**
2004      * Gets the linear blocks of this buffer.
2005      * \return a constant list of const linear blocks of this buffer.
2006      * \retval empty list if this buffer does not contain linear block(s).
2007      */
2008     const std::vector<C2ConstLinearBlock> linearBlocks() const;
2009 
2010     /**
2011      * Gets the graphic blocks of this buffer.
2012      * \return a constant list of const graphic blocks of this buffer.
2013      * \retval empty list if this buffer does not contain graphic block(s).
2014      */
2015     const std::vector<C2ConstGraphicBlock> graphicBlocks() const;
2016 
2017 private:
2018     class Impl;
2019     std::shared_ptr<Impl> mImpl;
2020 
2021 protected:
2022     // no public constructor
2023     explicit C2BufferData(const std::vector<C2ConstLinearBlock> &blocks);
2024     explicit C2BufferData(const std::vector<C2ConstGraphicBlock> &blocks);
2025 };
2026 
2027 /**
2028  * C2Buffer: buffer base class. These are always used as shared_ptrs. Though the underlying buffer
2029  * objects (native buffers, ion buffers, or dmabufs) are reference-counted by the system,
2030  * C2Buffers hold only a single reference.
2031  *
2032  * These objects cannot be used on the stack.
2033  */
2034 class C2Buffer {
2035 public:
2036     /**
2037      * Gets the buffer's data.
2038      *
2039      * \return the buffer's data.
2040      */
2041     const C2BufferData data() const;
2042 
2043     /**
2044      * These will still work if used in onDeathNotify.
2045      */
2046 #if 0
2047     inline std::shared_ptr<C2LinearBuffer> asLinearBuffer() const {
2048         return mType == LINEAR ? std::shared_ptr::reinterpret_cast<C2LinearBuffer>(this) : nullptr;
2049     }
2050 
2051     inline std::shared_ptr<C2GraphicBuffer> asGraphicBuffer() const {
2052         return mType == GRAPHIC ? std::shared_ptr::reinterpret_cast<C2GraphicBuffer>(this) : nullptr;
2053     }
2054 
2055     inline std::shared_ptr<C2CircularBuffer> asCircularBuffer() const {
2056         return mType == CIRCULAR ? std::shared_ptr::reinterpret_cast<C2CircularBuffer>(this) : nullptr;
2057     }
2058 #endif
2059 
2060     ///@name Pre-destroy notification handling
2061     ///@{
2062 
2063     /**
2064      * Register for notification just prior to the destruction of this object.
2065      */
2066     typedef void (*OnDestroyNotify) (const C2Buffer *buf, void *arg);
2067 
2068     /**
2069      * Registers for a pre-destroy notification. This is called just prior to the destruction of
2070      * this buffer (when this buffer is no longer valid.)
2071      *
2072      * \param onDestroyNotify   the notification callback
2073      * \param arg               an arbitrary parameter passed to the callback
2074      *
2075      * \retval C2_OK        the registration was successful.
2076      * \retval C2_DUPLICATE a notification was already registered for this callback and argument
2077      * \retval C2_NO_MEMORY not enough memory to register for this callback
2078      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2079      */
2080     c2_status_t registerOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2081 
2082     /**
2083      * Unregisters a previously registered pre-destroy notification.
2084      *
2085      * \param onDestroyNotify   the notification callback
2086      * \param arg               an arbitrary parameter passed to the callback
2087      *
2088      * \retval C2_OK        the unregistration was successful.
2089      * \retval C2_NOT_FOUND the notification was not found
2090      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2091      */
2092     c2_status_t unregisterOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2093 
2094     ///@}
2095 
2096     virtual ~C2Buffer() = default;
2097 
2098     ///@name Buffer-specific arbitrary metadata handling
2099     ///@{
2100 
2101     /**
2102      * Gets the list of metadata associated with this buffer.
2103      *
2104      * \return a constant list of info objects associated with this buffer.
2105      */
2106     const std::vector<std::shared_ptr<const C2Info>> info() const;
2107 
2108     /**
2109      * Attaches (or updates) an (existing) metadata for this buffer.
2110      * If the metadata is stream specific, the stream information will be reset.
2111      *
2112      * \param info Metadata to update
2113      *
2114      * \retval C2_OK        the metadata was successfully attached/updated.
2115      * \retval C2_NO_MEMORY not enough memory to attach the metadata (this return value is not
2116      *                      used if the same kind of metadata is already attached to the buffer).
2117      */
2118     c2_status_t setInfo(const std::shared_ptr<C2Info> &info);
2119 
2120     /**
2121      * Checks if there is a certain type of metadata attached to this buffer.
2122      *
2123      * \param index the parameter type of the metadata
2124      *
2125      * \return true iff there is a metadata with the parameter type attached to this buffer.
2126      */
2127     bool hasInfo(C2Param::Type index) const;
2128 
2129     /**
2130      * Checks if there is a certain type of metadata attached to this buffer, and returns a
2131      * shared pointer to it if there is. Returns an empty shared pointer object (nullptr) if there
2132      * is not.
2133      *
2134      * \param index the parameter type of the metadata
2135      *
2136      * \return shared pointer to the metadata.
2137      */
2138     std::shared_ptr<const C2Info> getInfo(C2Param::Type index) const;
2139 
2140     /**
2141      * Removes a metadata from the buffer.
2142      */
2143     std::shared_ptr<C2Info> removeInfo(C2Param::Type index);
2144     ///@}
2145 
2146     /**
2147      * Creates a buffer containing a single linear block.
2148      *
2149      * \param block the content of the buffer.
2150      *
2151      * \return shared pointer to the created buffer.
2152      */
2153     static std::shared_ptr<C2Buffer> CreateLinearBuffer(const C2ConstLinearBlock &block);
2154 
2155     /**
2156      * Creates a buffer containing a single graphic block.
2157      *
2158      * \param block the content of the buffer.
2159      *
2160      * \return shared pointer to the created buffer.
2161      */
2162     static std::shared_ptr<C2Buffer> CreateGraphicBuffer(const C2ConstGraphicBlock &block);
2163 
2164 
2165 
2166 protected:
2167     // no public constructor
2168     explicit C2Buffer(const std::vector<C2ConstLinearBlock> &blocks);
2169     explicit C2Buffer(const std::vector<C2ConstGraphicBlock> &blocks);
2170 
2171 private:
2172     class Impl;
2173     std::shared_ptr<Impl> mImpl;
2174 //    Type _mType;
2175 };
2176 
2177 /**
2178  * An extension of C2Info objects that can contain arbitrary buffer data.
2179  *
2180  * \note This object is not describable and contains opaque data.
2181  */
2182 class C2InfoBuffer {
2183 public:
2184     /**
2185      * Gets the index of this info object.
2186      *
2187      * \return the parameter index.
2188      */
2189     const C2Param::Index index() const;
2190 
2191     /**
2192      * Gets the buffer's data.
2193      *
2194      * \return the buffer's data.
2195      */
2196     const C2BufferData data() const;
2197 };
2198 
2199 /// @}
2200 
2201 /// \cond INTERNAL
2202 
2203 /// \todo These are no longer used
2204 
2205 /// \addtogroup linear
2206 /// @{
2207 
2208 /** \deprecated */
2209 class C2LinearBuffer
2210     : public C2Buffer, public _C2LinearRangeAspect,
2211       public std::enable_shared_from_this<C2LinearBuffer> {
2212 public:
2213     /** \todo what is this? */
2214     const C2Handle *handle() const;
2215 
2216 protected:
2217     inline C2LinearBuffer(const C2ConstLinearBlock &block);
2218 
2219 private:
2220     class Impl;
2221     Impl *mImpl;
2222 };
2223 
2224 class C2ReadCursor;
2225 
2226 class C2WriteCursor {
2227 public:
2228     uint32_t remaining() const; // remaining data to be read
2229     void commit(); // commits the current position. discard data before current position
2230     void reset() const;  // resets position to the last committed position
2231     // slices off at most |size| bytes, and moves cursor ahead by the number of bytes
2232     // sliced off.
2233     C2ReadCursor slice(uint32_t size) const;
2234     // slices off at most |size| bytes, and moves cursor ahead by the number of bytes
2235     // sliced off.
2236     C2WriteCursor reserve(uint32_t size);
2237     // bool read(T&);
2238     // bool write(T&);
2239     C2Fence waitForSpace(uint32_t size);
2240 };
2241 
2242 /// @}
2243 
2244 /// \addtogroup graphic
2245 /// @{
2246 
2247 struct C2ColorSpace {
2248 //public:
2249     enum Standard {
2250         BT601,
2251         BT709,
2252         BT2020,
2253         // TODO
2254     };
2255 
2256     enum Range {
2257         LIMITED,
2258         FULL,
2259         // TODO
2260     };
2261 
2262     enum TransferFunction {
2263         BT709Transfer,
2264         BT2020Transfer,
2265         HybridLogGamma2,
2266         HybridLogGamma4,
2267         // TODO
2268     };
2269 };
2270 
2271 /** \deprecated */
2272 class C2GraphicBuffer : public C2Buffer {
2273 public:
2274     // constant attributes
width()2275     inline uint32_t width() const  { return mWidth; }
height()2276     inline uint32_t height() const { return mHeight; }
format()2277     inline uint32_t format() const { return mFormat; }
usage()2278     inline const C2MemoryUsage usage() const { return mUsage; }
2279 
2280     // modifiable attributes
2281 
2282 
2283     virtual const C2ColorSpace colorSpace() const = 0;
2284     // best effort
2285     virtual void setColorSpace_be(const C2ColorSpace &colorSpace) = 0;
2286     virtual bool setColorSpace(const C2ColorSpace &colorSpace) = 0;
2287 
2288     const C2Handle *handle() const;
2289 
2290 protected:
2291     uint32_t mWidth;
2292     uint32_t mHeight;
2293     uint32_t mFormat;
2294     C2MemoryUsage mUsage;
2295 
2296     class Impl;
2297     Impl *mImpl;
2298 };
2299 
2300 /// @}
2301 
2302 /// \endcond
2303 
2304 /// @}
2305 
2306 #endif  // C2BUFFER_H_
2307