/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 261 static bool verifyOperationInputs(const std::vector<hexagon_nn_input>& inputs) { in verifyOperationInputs() argument 262 for (const hexagon_nn_input& input : inputs) { in verifyOperationInputs() 280 const std::vector<hexagon_nn_input>& inputs, in addOperationInternal() argument 282 HEXAGON_SOFT_ASSERT(verifyOperationInputs(inputs), in addOperationInternal() 287 return hexagon::Controller::getInstance().append_node(mGraphId, node, op, pad, inputs.data(), in addOperationInternal() 288 inputs.size(), outputs.data(), in addOperationInternal() 323 const std::vector<hexagon_nn_input>& inputs, in addBasicOperation() argument 326 uint32_t node = addOperationInternal(op, pad, inputs, outs); in addBasicOperation() 354 const std::vector<hexagon_nn_input>& inputs, in addFloatOperationWithActivation() argument 359 uint32_t node = addOperationInternal(op, pad, inputs, outs); in addFloatOperationWithActivation() [all …]
|
D | HexagonModel.h | 114 const std::vector<hexagon_nn_input>& inputs, 118 const std::vector<hexagon_nn_input>& inputs, 122 const std::vector<hexagon_nn_input>& inputs, 126 const std::vector<hexagon_nn_input>& inputs, 130 const std::vector<hexagon_nn_input>& inputs, 140 const std::vector<hexagon_nn_input>& inputs,
|
D | HexagonController.cpp | 127 hexagon_nn_padding_type padding, const hexagon_nn_input* inputs, in append_node() argument 130 CONTROLLER_CHECK(append_node, id, node_id, operation, padding, inputs, num_inputs, outputs, in append_node() 140 int Controller::execute_new(hexagon_nn_nn_id id, const hexagon_nn_tensordef* inputs, in execute_new() argument 142 CONTROLLER_CHECK(execute_new, id, inputs, n_inputs, outputs, n_outputs); in execute_new()
|
D | HexagonController.h | 70 hexagon_nn_padding_type padding, const hexagon_nn_input* inputs, 76 int execute_new(hexagon_nn_nn_id id, const hexagon_nn_tensordef* inputs, uint32_t n_inputs,
|
D | HexagonOperationsPrepare.cpp | 108 std::vector<hexagon_nn_input> inputs(numInputTensors + 1); in concatenation() local 110 inputs[i + 1] = model->getTensor(ins[i]); in concatenation() 116 inputs[0] = model->createScalar<int32_t>(axis + (4 - dims)); in concatenation() 119 return model->addBasicOperation(OP_Concat_f, NN_PAD_NA, inputs, outs); in concatenation() 565 std::vector<hexagon_nn_input> inputs(numInputTensors * 3 + 1); in concatenation() local 567 inputs[i + 1 + numInputTensors * 0] = model->getTensor(ins[i]); in concatenation() 568 inputs[i + 1 + numInputTensors * 1] = model->getQuantizationMin(ins[i]); in concatenation() 569 inputs[i + 1 + numInputTensors * 2] = model->getQuantizationMax(ins[i]); in concatenation() 575 inputs[0] = model->createScalar<int32_t>(axis + (4 - dims)); in concatenation() 578 return model->addBasicOperation(OP_QuantizedConcat_8, NN_PAD_NA, inputs, outs); in concatenation()
|
/hardware/libhardware_legacy/audio/ |
D | audio_policy.conf | 37 inputs { 55 inputs {
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | ValidateRequest.cpp | 136 for (size_t input = 0; input < request.inputs.size(); ++input) { in removeInputTest() 139 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); }); in removeInputTest() 162 const MixedTyped& inputs = example.first; in createRequests() local 170 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) { in createRequests() 227 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) { in createRequests() 235 requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools}); in createRequests()
|
D | ValidateModel.cpp | 290 if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) { in mutateOperationOperandTypeSkip() 348 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in mutateOperationInputOperandIndexTest() 353 model->operations[operation].inputs[input] = invalidOperand; in mutateOperationInputOperandIndexTest() 393 removeValueAndDecrementGreaterValues(&operation.inputs, index); in removeOperand() 411 for (uint32_t operand : model->operations[index].inputs) { in removeOperation() 429 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in removeOperationInputTest() 434 if (op.type == V1_1::OperationType::CONCATENATION && op.inputs.size() > 2 && in removeOperationInputTest() 435 input != op.inputs.size() - 1) { in removeOperationInputTest() 442 uint32_t operand = model->operations[operation].inputs[input]; in removeOperationInputTest() 444 hidl_vec_removeAt(&model->operations[operation].inputs, input); in removeOperationInputTest() [all …]
|
/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | ValidateRequest.cpp | 135 for (size_t input = 0; input < request.inputs.size(); ++input) { in removeInputTest() 138 [input](Request* request) { hidl_vec_removeAt(&request->inputs, input); }); in removeInputTest() 161 const MixedTyped& inputs = example.first; in createRequests() local 169 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) { in createRequests() 226 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) { in createRequests() 234 requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools}); in createRequests()
|
D | ValidateModel.cpp | 274 if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) { in mutateOperationOperandTypeSkip() 332 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in mutateOperationInputOperandIndexTest() 337 model->operations[operation].inputs[input] = invalidOperand; in mutateOperationInputOperandIndexTest() 377 removeValueAndDecrementGreaterValues(&operation.inputs, index); in removeOperand() 395 for (uint32_t operand : model->operations[index].inputs) { in removeOperation() 413 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) { in removeOperationInputTest() 418 if (op.type == V1_0::OperationType::CONCATENATION && op.inputs.size() > 2 && in removeOperationInputTest() 419 input != op.inputs.size() - 1) { in removeOperationInputTest() 426 uint32_t operand = model->operations[operation].inputs[input]; in removeOperationInputTest() 428 hidl_vec_removeAt(&model->operations[operation].inputs, input); in removeOperationInputTest() [all …]
|
D | GeneratedTestHarness.cpp | 78 const MixedTyped& inputs = example.first; in EvaluatePreparedModel() local 86 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) { in EvaluatePreparedModel() 146 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) { in EvaluatePreparedModel() 160 {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}, executionCallback); in EvaluatePreparedModel()
|
/hardware/qcom/neuralnetworks/hvxservice/1.0/hexagon_nn_controller/ |
D | hexagon_nn_controller.h | 88 const hexagon_nn_input* inputs, unsigned int num_inputs, const hexagon_nn_output* outputs, 98 const hexagon_nn_tensordef* inputs,
|
/hardware/interfaces/neuralnetworks/1.1/ |
D | IDevice.hal | 75 * prepareModel function must verify the inputs to the prepareModel function 78 * IPreparedModel, then return with the same ErrorStatus. If the inputs to 98 * inputs to the model. Note that the same prepared model object can be 99 * used with different shapes of inputs on different (possibly concurrent)
|
D | types.hal | 352 * Describes the table that contains the indexes of the inputs of the 355 vec<uint32_t> inputs;
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | IDevice.hal | 70 * prepareModel function must verify the inputs to the prepareModel function 73 * IPreparedModel, then return with the same ErrorStatus. If the inputs to 93 * inputs to the model. Note that the same prepared model object can be 94 * used with different shapes of inputs on different (possibly concurrent)
|
D | IPreparedModel.hal | 30 * execute must verify the inputs to the function are correct. If there is 33 * the inputs to the function are valid and there is no error, execute must
|
D | types.hal | 192 * [D0, D1, ..., Daxis(i), ..., Dm]. For inputs of 492 * outputs = activation(inputs * weights’ + bias) 505 * number of inputs to the layer, matching the second dimension of 676 * inputs within depth_radius. 816 * The operation has the following independently optional inputs: 1177 * outputs = state = activation(inputs * input_weights + 1181 * * “input_weights” is a weight matrix that multiplies the inputs; 1310 * memory = push(conv1d(inputs, weights_feature, feature_dim, 1315 * * “weights_feature” is a weights matrix that processes the inputs (by 1616 * Describes the table that contains the indexes of the inputs of the [all …]
|
/hardware/libhardware/modules/usbcamera/ |
D | Camera.cpp | 289 int inputs = 0; in isValidStreamSetLocked() local 300 inputs++; in isValidStreamSetLocked() 305 __func__, mId, outputs, inputs); in isValidStreamSetLocked() 310 if (inputs > 1) { in isValidStreamSetLocked()
|
/hardware/libhardware/modules/camera/3_0/ |
D | Camera.cpp | 239 int inputs = 0; in isValidStreamSet() local 254 inputs++; in isValidStreamSet() 259 __func__, mId, outputs, inputs); in isValidStreamSet() 264 if (inputs > 1) { in isValidStreamSet()
|
/hardware/libhardware_legacy/include/hardware_legacy/ |
D | AudioPolicyManagerBase.h | 428 SortedVector<audio_io_handle_t>& inputs,
|
/hardware/interfaces/broadcastradio/2.0/ |
D | ITunerSession.hal | 151 * return a status for a subset of the provided inputs, at its discretion.
|
/hardware/libhardware/modules/camera/3_4/ |
D | README.md | 83 which provides simpler inputs and outputs around the V4L2 ioctls
|
/hardware/interfaces/keymaster/4.0/ |
D | IKeymasterDevice.hal | 372 * secure in the sense that if any one of the mixing function inputs is provided with any data
|