1 /* rx-parse.y  Renesas RX parser
2    Copyright (C) 2008-2016 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 %{
21 
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "rx-defs.h"
25 
26 static int rx_lex (void);
27 
28 #define COND_EQ	0
29 #define COND_NE	1
30 
31 #define MEMEX 0x06
32 
33 #define BSIZE 0
34 #define WSIZE 1
35 #define LSIZE 2
36 
37 /*                       .sb    .sw    .l     .uw   */
38 static int sizemap[] = { BSIZE, WSIZE, LSIZE, WSIZE };
39 
40 /* Ok, here are the rules for using these macros...
41 
42    B*() is used to specify the base opcode bytes.  Fields to be filled
43         in later, leave zero.  Call this first.
44 
45    F() and FE() are used to fill in fields within the base opcode bytes.  You MUST
46         call B*() before any F() or FE().
47 
48    [UN]*O*(), PC*() appends operands to the end of the opcode.  You
49         must call P() and B*() before any of these, so that the fixups
50         have the right byte location.
51         O = signed, UO = unsigned, NO = negated, PC = pcrel
52 
53    IMM() adds an immediate and fills in the field for it.
54    NIMM() same, but negates the immediate.
55    NBIMM() same, but negates the immediate, for sbb.
56    DSP() adds a displacement, and fills in the field for it.
57 
58    Note that order is significant for the O, IMM, and DSP macros, as
59    they append their data to the operand buffer in the order that you
60    call them.
61 
62    Use "disp" for displacements whenever possible; this handles the
63    "0" case properly.  */
64 
65 #define B1(b1)             rx_base1 (b1)
66 #define B2(b1, b2)         rx_base2 (b1, b2)
67 #define B3(b1, b2, b3)     rx_base3 (b1, b2, b3)
68 #define B4(b1, b2, b3, b4) rx_base4 (b1, b2, b3, b4)
69 
70 /* POS is bits from the MSB of the first byte to the LSB of the last byte.  */
71 #define F(val,pos,sz)      rx_field (val, pos, sz)
72 #define FE(exp,pos,sz)	   rx_field (exp_val (exp), pos, sz);
73 
74 #define O1(v)              rx_op (v, 1, RXREL_SIGNED); rx_range (v, -128, 255)
75 #define O2(v)              rx_op (v, 2, RXREL_SIGNED); rx_range (v, -32768, 65536)
76 #define O3(v)              rx_op (v, 3, RXREL_SIGNED); rx_range (v, -8388608, 16777216)
77 #define O4(v)              rx_op (v, 4, RXREL_SIGNED)
78 
79 #define UO1(v)             rx_op (v, 1, RXREL_UNSIGNED); rx_range (v, 0, 255)
80 #define UO2(v)             rx_op (v, 2, RXREL_UNSIGNED); rx_range (v, 0, 65536)
81 #define UO3(v)             rx_op (v, 3, RXREL_UNSIGNED); rx_range (v, 0, 16777216)
82 #define UO4(v)             rx_op (v, 4, RXREL_UNSIGNED)
83 
84 #define NO1(v)             rx_op (v, 1, RXREL_NEGATIVE)
85 #define NO2(v)             rx_op (v, 2, RXREL_NEGATIVE)
86 #define NO3(v)             rx_op (v, 3, RXREL_NEGATIVE)
87 #define NO4(v)             rx_op (v, 4, RXREL_NEGATIVE)
88 
89 #define PC1(v)             rx_op (v, 1, RXREL_PCREL)
90 #define PC2(v)             rx_op (v, 2, RXREL_PCREL)
91 #define PC3(v)             rx_op (v, 3, RXREL_PCREL)
92 
93 #define IMM_(v,pos,size)   F (immediate (v, RXREL_SIGNED, pos, size), pos, 2); \
94 			   if (v.X_op != O_constant && v.X_op != O_big) rx_linkrelax_imm (pos)
95 #define IMM(v,pos)	   IMM_ (v, pos, 32)
96 #define IMMW(v,pos)	   IMM_ (v, pos, 16); rx_range (v, -32768, 65536)
97 #define IMMB(v,pos)	   IMM_ (v, pos, 8); rx_range (v, -128, 255)
98 #define NIMM(v,pos)	   F (immediate (v, RXREL_NEGATIVE, pos, 32), pos, 2)
99 #define NBIMM(v,pos)	   F (immediate (v, RXREL_NEGATIVE_BORROW, pos, 32), pos, 2)
100 #define DSP(v,pos,msz)	   if (!v.X_md) rx_relax (RX_RELAX_DISP, pos); \
101 			   else rx_linkrelax_dsp (pos); \
102 			   F (displacement (v, msz), pos, 2)
103 
104 #define id24(a,b2,b3)	   B3 (0xfb + a, b2, b3)
105 
106 static void	   rx_check_float_support (void);
107 static int         rx_intop (expressionS, int, int);
108 static int         rx_uintop (expressionS, int);
109 static int         rx_disp3op (expressionS);
110 static int         rx_disp5op (expressionS *, int);
111 static int         rx_disp5op0 (expressionS *, int);
112 static int         exp_val (expressionS exp);
113 static expressionS zero_expr (void);
114 static int         immediate (expressionS, int, int, int);
115 static int         displacement (expressionS, int);
116 static void        rtsd_immediate (expressionS);
117 static void	   rx_range (expressionS, int, int);
118 static void        rx_check_v2 (void);
119 
120 static int    need_flag = 0;
121 static int    rx_in_brackets = 0;
122 static int    rx_last_token = 0;
123 static char * rx_init_start;
124 static char * rx_last_exp_start = 0;
125 static int    sub_op;
126 static int    sub_op2;
127 
128 #define YYDEBUG 1
129 #define YYERROR_VERBOSE 1
130 
131 %}
132 
133 %name-prefix="rx_"
134 
135 %union {
136   int regno;
137   expressionS exp;
138 }
139 
140 %type <regno> REG FLAG CREG BCND BMCND SCCND ACC
141 %type <regno> flag bwl bw memex
142 %type <exp> EXPR disp
143 
144 %token REG FLAG CREG ACC
145 
146 %token EXPR UNKNOWN_OPCODE IS_OPCODE
147 
148 %token DOT_S DOT_B DOT_W DOT_L DOT_A DOT_UB DOT_UW
149 
150 %token ABS ADC ADD AND_
151 %token BCLR BCND BMCND BNOT BRA BRK BSET BSR BTST
152 %token CLRPSW CMP
153 %token DBT DIV DIVU
154 %token EDIV EDIVU EMACA EMSBA EMUL EMULA EMULU
155 %token FADD FCMP FDIV FMUL FREIT FSUB FSQRT FTOI FTOU
156 %token INT ITOF
157 %token JMP JSR
158 %token MACHI MACLH MACLO MAX MIN MOV MOVCO MOVLI MOVU MSBHI MSBLH MSBLO MUL
159 %token   MULHI MULLH MULLO MULU MVFACHI MVFACGU MVFACMI MVFACLO MVFC MVTACGU
160 %token     MVTACHI MVTACLO MVTC MVTIPL
161 %token NEG NOP NOT
162 %token OR
163 %token POP POPC POPM PUSH PUSHA PUSHC PUSHM
164 %token RACL RACW RDACL RDACW REIT REVL REVW RMPA ROLC RORC ROTL ROTR ROUND
165 %token   RTE RTFI RTS RTSD
166 %token SAT SATR SBB SCCND SCMPU SETPSW SHAR SHLL SHLR SMOVB SMOVF
167 %token   SMOVU SSTR STNZ STOP STZ SUB SUNTIL SWHILE
168 %token TST
169 %token UTOF
170 %token WAIT
171 %token XCHG XOR
172 
173 %%
174 /* ====================================================================== */
175 
176 statement :
177 
178 	  UNKNOWN_OPCODE
179 	  { as_bad (_("Unknown opcode: %s"), rx_init_start); }
180 
181 /* ---------------------------------------------------------------------- */
182 
183 	| BRK
184 	  { B1 (0x00); }
185 
186 	| DBT
187 	  { B1 (0x01); }
188 
189 	| RTS
190 	  { B1 (0x02); }
191 
192 	| NOP
193 	  { B1 (0x03); }
194 
195 /* ---------------------------------------------------------------------- */
196 
197 	| BRA EXPR
198 	  { if (rx_disp3op ($2))
199 	      { B1 (0x08); rx_disp3 ($2, 5); }
200 	    else if (rx_intop ($2, 8, 8))
201 	      { B1 (0x2e); PC1 ($2); }
202 	    else if (rx_intop ($2, 16, 16))
203 	      { B1 (0x38); PC2 ($2); }
204 	    else if (rx_intop ($2, 24, 24))
205 	      { B1 (0x04); PC3 ($2); }
206 	    else
207 	      { rx_relax (RX_RELAX_BRANCH, 0);
208 		rx_linkrelax_branch ();
209 		/* We'll convert this to a longer one later if needed.  */
210 		B1 (0x08); rx_disp3 ($2, 5); } }
211 
212 	| BRA DOT_A EXPR
213 	  { B1 (0x04); PC3 ($3); }
214 
215 	| BRA DOT_S EXPR
216 	  { B1 (0x08); rx_disp3 ($3, 5); }
217 
218 /* ---------------------------------------------------------------------- */
219 
220 	| BSR EXPR
221 	  { if (rx_intop ($2, 16, 16))
222 	      { B1 (0x39); PC2 ($2); }
223 	    else if (rx_intop ($2, 24, 24))
224 	      { B1 (0x05); PC3 ($2); }
225 	    else
226 	      { rx_relax (RX_RELAX_BRANCH, 0);
227 		rx_linkrelax_branch ();
228 		B1 (0x39); PC2 ($2); } }
229 	| BSR DOT_A EXPR
230 	  { B1 (0x05), PC3 ($3); }
231 
232 /* ---------------------------------------------------------------------- */
233 
234 	| BCND DOT_S EXPR
235 	  { if ($1 == COND_EQ || $1 == COND_NE)
236 	      { B1 ($1 == COND_EQ ? 0x10 : 0x18); rx_disp3 ($3, 5); }
237 	    else
238 	      as_bad (_("Only BEQ and BNE may have .S")); }
239 
240 /* ---------------------------------------------------------------------- */
241 
242 	| BCND DOT_B EXPR
243 	  { B1 (0x20); F ($1, 4, 4); PC1 ($3); }
244 
245 	| BRA DOT_B EXPR
246 	  { B1 (0x2e), PC1 ($3); }
247 
248 /* ---------------------------------------------------------------------- */
249 
250 	| BRA DOT_W EXPR
251 	  { B1 (0x38), PC2 ($3); }
252 	| BSR DOT_W EXPR
253 	  { B1 (0x39), PC2 ($3); }
254 	| BCND DOT_W EXPR
255 	  { if ($1 == COND_EQ || $1 == COND_NE)
256 	      { B1 ($1 == COND_EQ ? 0x3a : 0x3b); PC2 ($3); }
257 	    else
258 	      as_bad (_("Only BEQ and BNE may have .W")); }
259 	| BCND EXPR
260 	  { if ($1 == COND_EQ || $1 == COND_NE)
261 	      {
262 		rx_relax (RX_RELAX_BRANCH, 0);
263 		rx_linkrelax_branch ();
264 		B1 ($1 == COND_EQ ? 0x10 : 0x18); rx_disp3 ($2, 5);
265 	      }
266 	    else
267 	      {
268 		rx_relax (RX_RELAX_BRANCH, 0);
269 		/* This is because we might turn it into a
270 		   jump-over-jump long branch.  */
271 		rx_linkrelax_branch ();
272 	        B1 (0x20); F ($1, 4, 4); PC1 ($2);
273 	      } }
274 
275 /* ---------------------------------------------------------------------- */
276 
277 	| MOV DOT_B '#' EXPR ',' '[' REG ']'
278 	  { B2 (0xf8, 0x04); F ($7, 8, 4); IMMB ($4, 12);}
279 
280 	| MOV DOT_W '#' EXPR ',' '[' REG ']'
281           { B2 (0xf8, 0x01); F ($7, 8, 4); IMMW ($4, 12);}
282 
283 	| MOV DOT_L '#' EXPR ',' '[' REG ']'
284 	  { B2 (0xf8, 0x02); F ($7, 8, 4); IMM ($4, 12);}
285 
286 	| MOV DOT_B '#' EXPR ',' disp '[' REG ']'
287 	  /* rx_disp5op changes the value if it succeeds, so keep it last.  */
288 	  { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, BSIZE))
289 	      { B2 (0x3c, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
290 	    else
291 	      { B2 (0xf8, 0x04); F ($8, 8, 4); DSP ($6, 6, BSIZE); O1 ($4);
292 	      if ($4.X_op != O_constant && $4.X_op != O_big) rx_linkrelax_imm (12); } }
293 
294 	| MOV DOT_W '#' EXPR ',' disp '[' REG ']'
295 	  { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, WSIZE))
296 	      { B2 (0x3d, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
297 	    else
298 	      { B2 (0xf8, 0x01); F ($8, 8, 4); DSP ($6, 6, WSIZE); IMMW ($4, 12); } }
299 
300 	| MOV DOT_L '#' EXPR ',' disp '[' REG ']'
301 	  { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, LSIZE))
302 	      { B2 (0x3e, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
303 	    else
304 	      { B2 (0xf8, 0x02); F ($8, 8, 4); DSP ($6, 6, LSIZE); IMM ($4, 12); } }
305 
306 /* ---------------------------------------------------------------------- */
307 
308 	| RTSD '#' EXPR ',' REG '-' REG
309 	  { B2 (0x3f, 0); F ($5, 8, 4); F ($7, 12, 4); rtsd_immediate ($3);
310 	    if ($5 == 0)
311 	      rx_error (_("RTSD cannot pop R0"));
312 	    if ($5 > $7)
313 	      rx_error (_("RTSD first reg must be <= second reg")); }
314 
315 /* ---------------------------------------------------------------------- */
316 
317 	| CMP REG ',' REG
318 	  { B2 (0x47, 0); F ($2, 8, 4); F ($4, 12, 4); }
319 
320 /* ---------------------------------------------------------------------- */
321 
322 	| CMP disp '[' REG ']' DOT_UB ',' REG
323 	  { B2 (0x44, 0); F ($4, 8, 4); F ($8, 12, 4); DSP ($2, 6, BSIZE); }
324 
325 	| CMP disp '[' REG ']' memex ',' REG
326 	  { B3 (MEMEX, 0x04, 0); F ($6, 8, 2);  F ($4, 16, 4); F ($8, 20, 4); DSP ($2, 14, sizemap[$6]); }
327 
328 /* ---------------------------------------------------------------------- */
329 
330 	| MOVU bw REG ',' REG
331 	  { B2 (0x5b, 0x00); F ($2, 5, 1); F ($3, 8, 4); F ($5, 12, 4); }
332 
333 /* ---------------------------------------------------------------------- */
334 
335 	| MOVU bw '[' REG ']' ',' REG
336 	  { B2 (0x58, 0x00); F ($2, 5, 1); F ($4, 8, 4); F ($7, 12, 4); }
337 
338 	| MOVU bw EXPR '[' REG ']' ',' REG
339 	  { if ($5 <= 7 && $8 <= 7 && rx_disp5op (&$3, $2))
340 	      { B2 (0xb0, 0); F ($2, 4, 1); F ($5, 9, 3); F ($8, 13, 3); rx_field5s ($3); }
341 	    else
342 	      { B2 (0x58, 0x00); F ($2, 5, 1); F ($5, 8, 4); F ($8, 12, 4); DSP ($3, 6, $2); } }
343 
344 /* ---------------------------------------------------------------------- */
345 
346 	| SUB '#' EXPR ',' REG
347 	  { if (rx_uintop ($3, 4))
348 	      { B2 (0x60, 0); FE ($3, 8, 4); F ($5, 12, 4); }
349 	    else
350 	      /* This is really an add, but we negate the immediate.  */
351 	      { B2 (0x70, 0); F ($5, 8, 4); F ($5, 12, 4); NIMM ($3, 6); } }
352 
353 	| CMP '#' EXPR ',' REG
354 	  { if (rx_uintop ($3, 4))
355 	      { B2 (0x61, 0); FE ($3, 8, 4); F ($5, 12, 4); }
356 	    else if (rx_uintop ($3, 8))
357 	      { B2 (0x75, 0x50); F ($5, 12, 4); UO1 ($3); }
358 	    else
359 	      { B2 (0x74, 0x00); F ($5, 12, 4); IMM ($3, 6); } }
360 
361 	| ADD '#' EXPR ',' REG
362 	  { if (rx_uintop ($3, 4))
363 	      { B2 (0x62, 0); FE ($3, 8, 4); F ($5, 12, 4); }
364 	    else
365 	      { B2 (0x70, 0); F ($5, 8, 4); F ($5, 12, 4); IMM ($3, 6); } }
366 
367 	| MUL '#' EXPR ',' REG
368 	  { if (rx_uintop ($3, 4))
369 	      { B2 (0x63, 0); FE ($3, 8, 4); F ($5, 12, 4); }
370 	    else
371 	      { B2 (0x74, 0x10); F ($5, 12, 4); IMM ($3, 6); } }
372 
373 	| AND_ '#' EXPR ',' REG
374 	  { if (rx_uintop ($3, 4))
375 	      { B2 (0x64, 0); FE ($3, 8, 4); F ($5, 12, 4); }
376 	    else
377 	      { B2 (0x74, 0x20); F ($5, 12, 4); IMM ($3, 6); } }
378 
379 	| OR '#' EXPR ',' REG
380 	  { if (rx_uintop ($3, 4))
381 	      { B2 (0x65, 0); FE ($3, 8, 4); F ($5, 12, 4); }
382 	    else
383 	      { B2 (0x74, 0x30); F ($5, 12, 4); IMM ($3, 6); } }
384 
385 	| MOV DOT_L '#' EXPR ',' REG
386 	  { if (rx_uintop ($4, 4))
387 	      { B2 (0x66, 0); FE ($4, 8, 4); F ($6, 12, 4); }
388 	    else if (rx_uintop ($4, 8))
389 	      { B2 (0x75, 0x40); F ($6, 12, 4); UO1 ($4); }
390 	    else
391 	      { B2 (0xfb, 0x02); F ($6, 8, 4); IMM ($4, 12); } }
392 
393 	| MOV '#' EXPR ',' REG
394 	  { if (rx_uintop ($3, 4))
395 	      { B2 (0x66, 0); FE ($3, 8, 4); F ($5, 12, 4); }
396 	    else if (rx_uintop ($3, 8))
397 	      { B2 (0x75, 0x40); F ($5, 12, 4); UO1 ($3); }
398 	    else
399 	      { B2 (0xfb, 0x02); F ($5, 8, 4); IMM ($3, 12); } }
400 
401 /* ---------------------------------------------------------------------- */
402 
403 	| RTSD '#' EXPR
404 	  { B1 (0x67); rtsd_immediate ($3); }
405 
406 /* ---------------------------------------------------------------------- */
407 
408 	| SHLR { sub_op = 0; } op_shift
409 	| SHAR { sub_op = 1; } op_shift
410 	| SHLL { sub_op = 2; } op_shift
411 
412 /* ---------------------------------------------------------------------- */
413 
414 	| PUSHM REG '-' REG
415 	  {
416 	    if ($2 == $4)
417 	      { B2 (0x7e, 0x80); F (LSIZE, 10, 2); F ($2, 12, 4); }
418 	    else
419 	     { B2 (0x6e, 0); F ($2, 8, 4); F ($4, 12, 4); }
420 	    if ($2 == 0)
421 	      rx_error (_("PUSHM cannot push R0"));
422 	    if ($2 > $4)
423 	      rx_error (_("PUSHM first reg must be <= second reg")); }
424 
425 /* ---------------------------------------------------------------------- */
426 
427 	| POPM REG '-' REG
428 	  {
429 	    if ($2 == $4)
430 	      { B2 (0x7e, 0xb0); F ($2, 12, 4); }
431 	    else
432 	      { B2 (0x6f, 0); F ($2, 8, 4); F ($4, 12, 4); }
433 	    if ($2 == 0)
434 	      rx_error (_("POPM cannot pop R0"));
435 	    if ($2 > $4)
436 	      rx_error (_("POPM first reg must be <= second reg")); }
437 
438 /* ---------------------------------------------------------------------- */
439 
440 	| ADD '#' EXPR ',' REG ',' REG
441 	  { B2 (0x70, 0x00); F ($5, 8, 4); F ($7, 12, 4); IMM ($3, 6); }
442 
443 /* ---------------------------------------------------------------------- */
444 
445 	| INT '#' EXPR
446 	  { B2(0x75, 0x60), UO1 ($3); }
447 
448 /* ---------------------------------------------------------------------- */
449 
450 	| BSET '#' EXPR ',' REG
451 	  { B2 (0x78, 0); FE ($3, 7, 5); F ($5, 12, 4); }
452 	| BCLR '#' EXPR ',' REG
453 	  { B2 (0x7a, 0); FE ($3, 7, 5); F ($5, 12, 4); }
454 
455 /* ---------------------------------------------------------------------- */
456 
457 	| BTST '#' EXPR ',' REG
458 	  { B2 (0x7c, 0x00); FE ($3, 7, 5); F ($5, 12, 4); }
459 
460 /* ---------------------------------------------------------------------- */
461 
462 	| SAT REG
463 	  { B2 (0x7e, 0x30); F ($2, 12, 4); }
464 	| RORC REG
465 	  { B2 (0x7e, 0x40); F ($2, 12, 4); }
466 	| ROLC REG
467 	  { B2 (0x7e, 0x50); F ($2, 12, 4); }
468 
469 /* ---------------------------------------------------------------------- */
470 
471 	| PUSH bwl REG
472 	  { B2 (0x7e, 0x80); F ($2, 10, 2); F ($3, 12, 4); }
473 
474 /* ---------------------------------------------------------------------- */
475 
476 	| POP REG
477 	  { B2 (0x7e, 0xb0); F ($2, 12, 4); }
478 
479 /* ---------------------------------------------------------------------- */
480 
481 	| PUSHC CREG
482 	  { if ($2 == 13)
483 	      { rx_check_v2 (); }
484 	    if ($2 < 16)
485 	      { B2 (0x7e, 0xc0); F ($2, 12, 4); }
486 	    else
487 	      as_bad (_("PUSHC can only push the first 16 control registers")); }
488 
489 /* ---------------------------------------------------------------------- */
490 
491 	| POPC CREG
492 	  { if ($2 == 13)
493 	    { rx_check_v2 (); }
494 	    if ($2 < 16)
495 	      { B2 (0x7e, 0xe0); F ($2, 12, 4); }
496 	    else
497 	      as_bad (_("POPC can only pop the first 16 control registers")); }
498 
499 /* ---------------------------------------------------------------------- */
500 
501 	| SETPSW flag
502 	  { B2 (0x7f, 0xa0); F ($2, 12, 4); }
503 	| CLRPSW flag
504 	  { B2 (0x7f, 0xb0); F ($2, 12, 4); }
505 
506 /* ---------------------------------------------------------------------- */
507 
508 	| JMP REG
509 	  { B2 (0x7f, 0x00); F ($2, 12, 4); }
510 	| JSR REG
511 	  { B2 (0x7f, 0x10); F ($2, 12, 4); }
512 	| BRA opt_l REG
513 	  { B2 (0x7f, 0x40); F ($3, 12, 4); }
514 	| BSR opt_l REG
515 	  { B2 (0x7f, 0x50); F ($3, 12, 4); }
516 
517 /* ---------------------------------------------------------------------- */
518 
519 	| SCMPU
520 	  { B2 (0x7f, 0x83); rx_note_string_insn_use (); }
521 	| SMOVU
522 	  { B2 (0x7f, 0x87); rx_note_string_insn_use (); }
523 	| SMOVB
524 	  { B2 (0x7f, 0x8b); rx_note_string_insn_use (); }
525 	| SMOVF
526 	  { B2 (0x7f, 0x8f); rx_note_string_insn_use (); }
527 
528 /* ---------------------------------------------------------------------- */
529 
530 	| SUNTIL bwl
531 	  { B2 (0x7f, 0x80); F ($2, 14, 2); rx_note_string_insn_use (); }
532 	| SWHILE bwl
533 	  { B2 (0x7f, 0x84); F ($2, 14, 2); rx_note_string_insn_use (); }
534 	| SSTR bwl
535 	  { B2 (0x7f, 0x88); F ($2, 14, 2); }
536 
537 /* ---------------------------------------------------------------------- */
538 
539 	| RMPA bwl
540 	  { B2 (0x7f, 0x8c); F ($2, 14, 2); rx_note_string_insn_use (); }
541 
542 /* ---------------------------------------------------------------------- */
543 
544 	| RTFI
545 	  { B2 (0x7f, 0x94); }
546 	| RTE
547 	  { B2 (0x7f, 0x95); }
548 	| WAIT
549 	  { B2 (0x7f, 0x96); }
550 	| SATR
551 	  { B2 (0x7f, 0x93); }
552 
553 /* ---------------------------------------------------------------------- */
554 
555 	| MVTIPL '#' EXPR
556 	  { B3 (0x75, 0x70, 0x00); FE ($3, 20, 4); }
557 
558 /* ---------------------------------------------------------------------- */
559 
560 	/* rx_disp5op changes the value if it succeeds, so keep it last.  */
561 	| MOV bwl REG ',' EXPR '[' REG ']'
562 	  { if ($3 <= 7 && $7 <= 7 && rx_disp5op (&$5, $2))
563 	      { B2 (0x80, 0); F ($2, 2, 2); F ($7, 9, 3); F ($3, 13, 3); rx_field5s ($5); }
564 	    else
565 	      { B2 (0xc3, 0x00); F ($2, 2, 2); F ($7, 8, 4); F ($3, 12, 4); DSP ($5, 4, $2); }}
566 
567 /* ---------------------------------------------------------------------- */
568 
569 	| MOV bwl EXPR '[' REG ']' ',' REG
570 	  { if ($5 <= 7 && $8 <= 7 && rx_disp5op (&$3, $2))
571 	      { B2 (0x88, 0); F ($2, 2, 2); F ($5, 9, 3); F ($8, 13, 3); rx_field5s ($3); }
572 	    else
573 	      { B2 (0xcc, 0x00); F ($2, 2, 2); F ($5, 8, 4); F ($8, 12, 4); DSP ($3, 6, $2); } }
574 
575 /* ---------------------------------------------------------------------- */
576 
577 	/* MOV a,b - if a is a reg and b is mem, src and dest are
578 	   swapped.  */
579 
580 	/* We don't use "disp" here because it causes a shift/reduce
581 	   conflict with the other displacement-less patterns.  */
582 
583 	| MOV bwl REG ',' '[' REG ']'
584 	  { B2 (0xc3, 0x00); F ($2, 2, 2); F ($6, 8, 4); F ($3, 12, 4); }
585 
586 /* ---------------------------------------------------------------------- */
587 
588 	| MOV bwl '[' REG ']' ',' disp '[' REG ']'
589 	  { B2 (0xc0, 0); F ($2, 2, 2); F ($4, 8, 4); F ($9, 12, 4); DSP ($7, 4, $2); }
590 
591 /* ---------------------------------------------------------------------- */
592 
593 	| MOV bwl EXPR '[' REG ']' ',' disp '[' REG ']'
594 	  { B2 (0xc0, 0x00); F ($2, 2, 2); F ($5, 8, 4); F ($10, 12, 4); DSP ($3, 6, $2); DSP ($8, 4, $2); }
595 
596 /* ---------------------------------------------------------------------- */
597 
598 	| MOV bwl REG ',' REG
599 	  { B2 (0xcf, 0x00); F ($2, 2, 2); F ($3, 8, 4); F ($5, 12, 4); }
600 
601 /* ---------------------------------------------------------------------- */
602 
603 	| MOV bwl '[' REG ']' ',' REG
604 	  { B2 (0xcc, 0x00); F ($2, 2, 2); F ($4, 8, 4); F ($7, 12, 4); }
605 
606 /* ---------------------------------------------------------------------- */
607 
608 	| BSET '#' EXPR ',' disp '[' REG ']' DOT_B
609 	  { B2 (0xf0, 0x00); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
610 	| BCLR '#' EXPR ',' disp '[' REG ']' DOT_B
611 	  { B2 (0xf0, 0x08); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
612 	| BTST '#' EXPR ',' disp '[' REG ']' DOT_B
613 	  { B2 (0xf4, 0x00); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
614 
615 /* ---------------------------------------------------------------------- */
616 
617 	| PUSH bwl disp '[' REG ']'
618 	  { B2 (0xf4, 0x08); F ($2, 14, 2); F ($5, 8, 4); DSP ($3, 6, $2); }
619 
620 /* ---------------------------------------------------------------------- */
621 
622 	| SBB   { sub_op = 0; } op_dp20_rm_l
623 	| NEG   { sub_op = 1; sub_op2 = 1; } op_dp20_rr
624 	| ADC   { sub_op = 2; } op_dp20_rim_l
625 	| ABS   { sub_op = 3; sub_op2 = 2; } op_dp20_rr
626 	| MAX   { sub_op = 4; } op_dp20_rim
627 	| MIN   { sub_op = 5; } op_dp20_rim
628 	| EMUL  { sub_op = 6; } op_dp20_i
629 	| EMULU { sub_op = 7; } op_dp20_i
630 	| DIV   { sub_op = 8; } op_dp20_rim
631 	| DIVU  { sub_op = 9; } op_dp20_rim
632 	| TST   { sub_op = 12; } op_dp20_rim
633 	| XOR   { sub_op = 13; } op_dp20_rim
634 	| NOT   { sub_op = 14; sub_op2 = 0; } op_dp20_rr
635 	| STZ   { sub_op = 14; sub_op2 = 0; } op_dp20_ri
636 	| STNZ  { sub_op = 15; sub_op2 = 1; } op_dp20_ri
637 
638 /* ---------------------------------------------------------------------- */
639 
640 	| EMUL  { sub_op = 6; } op_xchg
641 	| EMULU { sub_op = 7; } op_xchg
642 	| XCHG  { sub_op = 16; } op_xchg
643 	| ITOF  { sub_op = 17; } op_xchg
644 	| UTOF  { sub_op = 21; } op_xchg
645 
646 /* ---------------------------------------------------------------------- */
647 
648 	| BSET REG ',' REG
649 	  { id24 (1, 0x63, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
650 	| BCLR REG ',' REG
651 	  { id24 (1, 0x67, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
652 	| BTST REG ',' REG
653 	  { id24 (1, 0x6b, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
654 	| BNOT REG ',' REG
655 	  { id24 (1, 0x6f, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
656 
657 	| BSET REG ',' disp '[' REG ']' opt_b
658 	  { id24 (1, 0x60, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
659 	| BCLR REG ',' disp '[' REG ']' opt_b
660 	  { id24 (1, 0x64, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
661 	| BTST REG ',' disp '[' REG ']' opt_b
662 	  { id24 (1, 0x68, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
663 	| BNOT REG ',' disp '[' REG ']' opt_b
664 	  { id24 (1, 0x6c, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
665 
666 /* ---------------------------------------------------------------------- */
667 
668 	| FSUB  { sub_op = 0; } float3_op
669 	| FCMP  { sub_op = 1; } float2_op
670 	| FADD  { sub_op = 2; } float3_op
671 	| FMUL  { sub_op = 3; } float3_op
672 	| FDIV  { sub_op = 4; } float2_op
673 	| FSQRT { sub_op = 8; } float2_op_ni
674 	| FTOI  { sub_op = 5; } float2_op_ni
675 	| FTOU  { sub_op = 9; } float2_op_ni
676 	| ROUND { sub_op = 6; } float2_op_ni
677 
678 /* ---------------------------------------------------------------------- */
679 
680 
681 /* ---------------------------------------------------------------------- */
682 
683 	| SCCND DOT_L REG
684 	  { id24 (1, 0xdb, 0x00); F ($1, 20, 4); F ($3, 16, 4); }
685 	| SCCND bwl disp '[' REG ']'
686 	  { id24 (1, 0xd0, 0x00); F ($1, 20, 4); F ($2, 12, 2); F ($5, 16, 4); DSP ($3, 14, $2); }
687 
688 /* ---------------------------------------------------------------------- */
689 
690 	| BMCND '#' EXPR ',' disp '[' REG ']' opt_b
691 	  { id24 (1, 0xe0, 0x00); F ($1, 20, 4); FE ($3, 11, 3);
692 	      F ($7, 16, 4); DSP ($5, 14, BSIZE); }
693 
694 /* ---------------------------------------------------------------------- */
695 
696 	| BNOT '#' EXPR ',' disp '[' REG ']' opt_b
697 	  { id24 (1, 0xe0, 0x0f); FE ($3, 11, 3); F ($7, 16, 4);
698 	      DSP ($5, 14, BSIZE); }
699 
700 /* ---------------------------------------------------------------------- */
701 
702 	| MULHI REG ',' REG
703 	  { id24 (2, 0x00, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
704 	| MULHI REG ',' REG ',' ACC
705 	  { rx_check_v2 (); id24 (2, 0x00, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
706 	| MULLO REG ',' REG
707 	  { id24 (2, 0x01, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
708 	| MULLO REG ',' REG ',' ACC
709 	  { rx_check_v2 (); id24 (2, 0x01, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
710 	| MACHI REG ',' REG
711 	  { id24 (2, 0x04, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
712 	| MACHI REG ',' REG ',' ACC
713 	  { rx_check_v2 (); id24 (2, 0x04, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
714 	| MACLO REG ',' REG
715 	  { id24 (2, 0x05, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
716 	|  MACLO REG ',' REG ',' ACC
717 	  { rx_check_v2 (); id24 (2, 0x05, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
718 
719 /* ---------------------------------------------------------------------- */
720 
721 	/* We don't have syntax for these yet.  */
722 	| MVTACHI REG
723 	  { id24 (2, 0x17, 0x00); F ($2, 20, 4); }
724 	|  MVTACHI REG ',' ACC
725 	  { rx_check_v2 (); id24 (2, 0x17, 0x00); F ($2, 20, 4); F ($4, 16, 1); }
726 	| MVTACLO REG
727 	  { id24 (2, 0x17, 0x10); F ($2, 20, 4); }
728 	| MVTACLO REG ',' ACC
729 	  { rx_check_v2 (); id24 (2, 0x17, 0x10); F ($2, 20, 4); F ($4, 16, 1); }
730 	| MVFACHI REG
731 	  { id24 (2, 0x1f, 0x00); F ($2, 20, 4); }
732 	| MVFACHI { sub_op = 0; } mvfa_op
733 	| MVFACMI REG
734 	  { id24 (2, 0x1f, 0x20); F ($2, 20, 4); }
735 	| MVFACMI { sub_op = 2; } mvfa_op
736 	| MVFACLO REG
737 	  { id24 (2, 0x1f, 0x10); F ($2, 20, 4); }
738 	| MVFACLO { sub_op = 1; } mvfa_op
739 	| RACW '#' EXPR
740 	  { id24 (2, 0x18, 0x00);
741 	    if (rx_uintop ($3, 4) && $3.X_add_number == 1)
742 	      ;
743 	    else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
744 	      F (1, 19, 1);
745 	    else
746 	      as_bad (_("RACW expects #1 or #2"));}
747 	| RACW '#' EXPR ',' ACC
748 	    { rx_check_v2 (); id24 (2, 0x18, 0x00); F ($5, 16, 1);
749 	    if (rx_uintop ($3, 4) && $3.X_add_number == 1)
750 	      ;
751 	    else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
752 	      F (1, 19, 1);
753 	    else
754 	      as_bad (_("RACW expects #1 or #2"));}
755 
756 /* ---------------------------------------------------------------------- */
757 
758 	| MOV bwl REG ',' '[' REG '+' ']'
759 	  { id24 (2, 0x20, 0); F ($2, 14, 2); F ($6, 16, 4); F ($3, 20, 4); }
760 	| MOV bwl REG ',' '[' '-' REG ']'
761 	  { id24 (2, 0x24, 0); F ($2, 14, 2); F ($7, 16, 4); F ($3, 20, 4); }
762 
763 /* ---------------------------------------------------------------------- */
764 
765 	| MOV bwl '[' REG '+' ']' ',' REG
766 	  { id24 (2, 0x28, 0); F ($2, 14, 2); F ($4, 16, 4); F ($8, 20, 4); }
767 	| MOV bwl '[' '-' REG ']' ',' REG
768 	  { id24 (2, 0x2c, 0); F ($2, 14, 2); F ($5, 16, 4); F ($8, 20, 4); }
769 
770 /* ---------------------------------------------------------------------- */
771 
772 	| MOVU bw '[' REG '+' ']' ','  REG
773 	  { id24 (2, 0x38, 0); F ($2, 15, 1); F ($4, 16, 4); F ($8, 20, 4); }
774 	| MOVU bw '[' '-' REG ']' ',' REG
775 	  { id24 (2, 0x3c, 0); F ($2, 15, 1); F ($5, 16, 4); F ($8, 20, 4); }
776 
777 /* ---------------------------------------------------------------------- */
778 
779 	| ROTL { sub_op = 6; } op_shift_rot
780 	| ROTR { sub_op = 4; } op_shift_rot
781 	| REVW { sub_op = 5; } op_shift_rot
782 	| REVL { sub_op = 7; } op_shift_rot
783 
784 /* ---------------------------------------------------------------------- */
785 
786 	| MVTC REG ',' CREG
787 	  { if ($4 == 13)
788 	      rx_check_v2 ();
789 	  id24 (2, 0x68, 0x00); F ($4 % 16, 20, 4); F ($4 / 16, 15, 1);
790 	    F ($2, 16, 4); }
791 
792 /* ---------------------------------------------------------------------- */
793 
794 	| MVFC CREG ',' REG
795 	  { if ($2 == 13)
796 	    rx_check_v2 ();
797 	  id24 (2, 0x6a, 0); F ($2, 15, 5); F ($4, 20, 4); }
798 
799 /* ---------------------------------------------------------------------- */
800 
801 	| ROTL '#' EXPR ',' REG
802 	  { id24 (2, 0x6e, 0); FE ($3, 15, 5); F ($5, 20, 4); }
803 	| ROTR '#' EXPR ',' REG
804 	  { id24 (2, 0x6c, 0); FE ($3, 15, 5); F ($5, 20, 4); }
805 
806 /* ---------------------------------------------------------------------- */
807 
808 	| MVTC '#' EXPR ',' CREG
809 	  { if ($5 == 13)
810 	      rx_check_v2 ();
811 	    id24 (2, 0x73, 0x00); F ($5, 19, 5); IMM ($3, 12); }
812 
813 /* ---------------------------------------------------------------------- */
814 
815 	| BMCND '#' EXPR ',' REG
816 	  { id24 (2, 0xe0, 0x00); F ($1, 16, 4); FE ($3, 11, 5);
817 	      F ($5, 20, 4); }
818 
819 /* ---------------------------------------------------------------------- */
820 
821 	| BNOT '#' EXPR ',' REG
822 	  { id24 (2, 0xe0, 0xf0); FE ($3, 11, 5); F ($5, 20, 4); }
823 
824 /* ---------------------------------------------------------------------- */
825 
826 	| MOV bwl REG ',' '[' REG ',' REG ']'
827 	  { id24 (3, 0x00, 0); F ($2, 10, 2); F ($6, 12, 4); F ($8, 16, 4); F ($3, 20, 4); }
828 
829 	| MOV bwl '[' REG ',' REG ']' ',' REG
830 	  { id24 (3, 0x40, 0); F ($2, 10, 2); F ($4, 12, 4); F ($6, 16, 4); F ($9, 20, 4); }
831 
832 	| MOVU bw '[' REG ',' REG ']' ',' REG
833 	  { id24 (3, 0xc0, 0); F ($2, 10, 2); F ($4, 12, 4); F ($6, 16, 4); F ($9, 20, 4); }
834 
835 /* ---------------------------------------------------------------------- */
836 
837 	| SUB { sub_op = 0; } op_subadd
838 	| ADD { sub_op = 2; } op_subadd
839 	| MUL { sub_op = 3; } op_subadd
840 	| AND_ { sub_op = 4; } op_subadd
841 	| OR  { sub_op = 5; } op_subadd
842 
843 /* ---------------------------------------------------------------------- */
844 /* There is no SBB #imm so we fake it with ADC.  */
845 
846 	| SBB '#' EXPR ',' REG
847 	  { id24 (2, 0x70, 0x20); F ($5, 20, 4); NBIMM ($3, 12); }
848 
849 /* ---------------------------------------------------------------------- */
850 
851 	| MOVCO REG ',' '[' REG ']'
852 	  { rx_check_v2 (); B3 (0xfd, 0x27, 0x00); F ($5, 16, 4); F ($2, 20, 4); }
853 
854 /* ---------------------------------------------------------------------- */
855 
856 	| MOVLI '[' REG ']' ',' REG
857 	  { rx_check_v2 (); B3 (0xfd, 0x2f, 0x00); F ($3, 16, 4); F ($6, 20, 4); }
858 
859 /* ---------------------------------------------------------------------- */
860 
861 	| EMACA REG ',' REG ',' ACC
862 	  { rx_check_v2 (); id24 (2, 0x07, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
863 	| EMSBA REG ',' REG ',' ACC
864 	  { rx_check_v2 (); id24 (2, 0x47, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
865 	| EMULA REG ',' REG ',' ACC
866 	  { rx_check_v2 (); id24 (2, 0x03, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
867 	| MACLH REG ',' REG ',' ACC
868 	  { rx_check_v2 (); id24 (2, 0x06, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
869 	| MSBHI REG ',' REG ',' ACC
870 	  { rx_check_v2 (); id24 (2, 0x44, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
871 	| MSBLH REG ',' REG ',' ACC
872 	  { rx_check_v2 (); id24 (2, 0x46, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
873 	| MSBLO REG ',' REG ',' ACC
874 	  { rx_check_v2 (); id24 (2, 0x45, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
875 	| MULLH REG ',' REG ',' ACC
876 	  { rx_check_v2 (); id24 (2, 0x02, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
877 	| MVFACGU { sub_op = 3; } mvfa_op
878 	| MVTACGU REG ',' ACC
879 	  { rx_check_v2 (); id24 (2, 0x17, 0x30); F ($4, 16, 1); F ($2, 20, 4); }
880 	| RACL '#' EXPR ',' ACC
881 	{ rx_check_v2 (); id24 (2, 0x19, 0x00); F ($5, 16, 1);
882 	    if (rx_uintop ($3, 4) && $3.X_add_number == 1)
883 	      ;
884 	    else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
885 	      F (1, 19, 1);
886 	    else
887 	      as_bad (_("RACL expects #1 or #2"));}
888 	| RDACL '#' EXPR ',' ACC
889 	{ rx_check_v2 (); id24 (2, 0x19, 0x40); F ($5, 16, 1);
890 	    if (rx_uintop ($3, 4) && $3.X_add_number == 1)
891 	      ;
892 	    else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
893 	      F (1, 19, 1);
894 	    else
895 	      as_bad (_("RDACL expects #1 or #2"));}
896 	| RDACW '#' EXPR ',' ACC
897 	{ rx_check_v2 (); id24 (2, 0x18, 0x40); F ($5, 16, 1);
898 	    if (rx_uintop ($3, 4) && $3.X_add_number == 1)
899 	      ;
900 	    else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
901 	      F (1, 19, 1);
902 	    else
903 	      as_bad (_("RDACW expects #1 or #2"));}
904 
905 /* ---------------------------------------------------------------------- */
906 
907 	;
908 
909 /* ====================================================================== */
910 
911 op_subadd
912 	: REG ',' REG
913 	  { B2 (0x43 + (sub_op<<2), 0); F ($1, 8, 4); F ($3, 12, 4); }
914 	| disp '[' REG ']' DOT_UB ',' REG
915 	  { B2 (0x40 + (sub_op<<2), 0); F ($3, 8, 4); F ($7, 12, 4); DSP ($1, 6, BSIZE); }
916 	| disp '[' REG ']' memex ',' REG
917 	  { B3 (MEMEX, sub_op<<2, 0); F ($5, 8, 2); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, sizemap[$5]); }
918 	| REG ',' REG ',' REG
919 	  { id24 (4, sub_op<<4, 0), F ($5, 12, 4), F ($1, 16, 4), F ($3, 20, 4); }
920 	;
921 
922 /* sbb, neg, adc, abs, max, min, div, divu, tst, not, xor, stz, stnz, emul, emulu */
923 
924 op_dp20_rm_l
925 	: REG ',' REG
926 	  { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
927 	| disp '[' REG ']' opt_l ',' REG
928 	  { B4 (MEMEX, 0xa0, 0x00 + sub_op, 0x00);
929 	  F ($3, 24, 4); F ($7, 28, 4); DSP ($1, 14, LSIZE); }
930 	;
931 
932 /* neg, adc, abs, max, min, div, divu, tst, not, xor, stz, stnz, emul, emulu */
933 
934 op_dp20_rm
935 	: REG ',' REG
936 	  { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
937 	| disp '[' REG ']' DOT_UB ',' REG
938 	  { id24 (1, 0x00 + (sub_op<<2), 0x00); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, BSIZE); }
939 	| disp '[' REG ']' memex ',' REG
940 	  { B4 (MEMEX, 0x20 + ($5 << 6), 0x00 + sub_op, 0x00);
941 	  F ($3, 24, 4); F ($7, 28, 4); DSP ($1, 14, sizemap[$5]); }
942 	;
943 
944 op_dp20_i
945 	: '#' EXPR ',' REG
946 	  { id24 (2, 0x70, sub_op<<4); F ($4, 20, 4); IMM ($2, 12); }
947 	;
948 
949 op_dp20_rim
950 	: op_dp20_rm
951 	| op_dp20_i
952 	;
953 
954 op_dp20_rim_l
955 	: op_dp20_rm_l
956 	| op_dp20_i
957 	;
958 
959 op_dp20_rr
960 	: REG ',' REG
961 	  { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
962 	| REG
963 	  { B2 (0x7e, sub_op2 << 4); F ($1, 12, 4); }
964 	;
965 
966 op_dp20_r
967 	: REG ',' REG
968 	  { id24 (1, 0x4b + (sub_op2<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
969 	;
970 
971 op_dp20_ri
972 	: { rx_check_v2 (); }
973 	  op_dp20_r
974 	| op_dp20_i
975 	;
976 
977 /* xchg, utof, itof, emul, emulu */
978 op_xchg
979 	: REG ',' REG
980 	  { id24 (1, 0x03 + (sub_op<<2), 0); F ($1, 16, 4); F ($3, 20, 4); }
981 	| disp '[' REG ']' DOT_UB ',' REG
982 	  { id24 (1, 0x00 + (sub_op<<2), 0); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, BSIZE); }
983 	| disp '[' REG ']' memex ',' REG
984 	  { B4 (MEMEX, 0x20, 0x00 + sub_op, 0); F ($5, 8, 2); F ($3, 24, 4); F ($7, 28, 4);
985 	    DSP ($1, 14, sizemap[$5]); }
986 	;
987 
988 /* 000:SHLR, 001:SHAR, 010:SHLL, 011:-, 100:ROTR, 101:REVW, 110:ROTL, 111:REVL */
989 op_shift_rot
990 	: REG ',' REG
991 	  { id24 (2, 0x60 + sub_op, 0); F ($1, 16, 4); F ($3, 20, 4); }
992 	;
993 op_shift
994 	: '#' EXPR ',' REG
995 	  { B2 (0x68 + (sub_op<<1), 0); FE ($2, 7, 5); F ($4, 12, 4); }
996 	| '#' EXPR ',' REG ',' REG
997 	  { id24 (2, 0x80 + (sub_op << 5), 0); FE ($2, 11, 5); F ($4, 16, 4); F ($6, 20, 4); }
998 	| op_shift_rot
999 	;
1000 
1001 float3_op
1002 	: '#' EXPR ',' REG
1003 	  { rx_check_float_support (); id24 (2, 0x72, sub_op << 4); F ($4, 20, 4); O4 ($2); }
1004 	| REG ',' REG
1005 	  { rx_check_float_support (); id24 (1, 0x83 + (sub_op << 2), 0); F ($1, 16, 4); F ($3, 20, 4); }
1006 	| disp '[' REG ']' opt_l ',' REG
1007 	  { rx_check_float_support (); id24 (1, 0x80 + (sub_op << 2), 0); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, LSIZE); }
1008 	| REG ',' REG ',' REG
1009 	  { rx_check_v2 (); id24 (4, 0x80 + (sub_op << 4), 0 ); F ($1, 16, 4); F ($3, 20, 4); F ($5, 12, 4); }
1010 	;
1011 
1012 float2_op
1013 	: { rx_check_float_support (); }
1014 	  '#' EXPR ',' REG
1015 	  { id24 (2, 0x72, sub_op << 4); F ($5, 20, 4); O4 ($3); }
1016 	| float2_op_ni
1017 	;
1018 
1019 float2_op_ni
1020 	: { rx_check_float_support (); }
1021 	  REG ',' REG
1022 	  { id24 (1, 0x83 + (sub_op << 2), 0); F ($2, 16, 4); F ($4, 20, 4); }
1023 	| { rx_check_float_support (); }
1024 	  disp '[' REG ']' opt_l ',' REG
1025 	  { id24 (1, 0x80 + (sub_op << 2), 0); F ($4, 16, 4); F ($8, 20, 4); DSP ($2, 14, LSIZE); }
1026 	;
1027 
1028 mvfa_op
1029 	: { rx_check_v2 (); }
1030 	  '#' EXPR ',' ACC ',' REG
1031 	  { id24 (2, 0x1e, sub_op << 4); F ($7, 20, 4); F ($5, 16, 1);
1032 	    if (rx_uintop ($3, 4))
1033 	      {
1034 		switch (exp_val ($3))
1035 		  {
1036 		  case 0:
1037 		    F (1, 15, 1);
1038 		    break;
1039 		  case 1:
1040 		    F (1, 15, 1);
1041 		    F (1, 17, 1);
1042 		    break;
1043 		  case 2:
1044 		    break;
1045 		  default:
1046 		    as_bad (_("IMM expects #0 to #2"));}
1047 	      } else
1048 	        as_bad (_("IMM expects #0 to #2"));}
1049 	;
1050 
1051 /* ====================================================================== */
1052 
1053 disp	:      { $$ = zero_expr (); }
1054 	| EXPR { $$ = $1; }
1055 	;
1056 
1057 flag	: { need_flag = 1; } FLAG { need_flag = 0; $$ = $2; }
1058 	;
1059 
1060 /* DOT_UB is not listed here, it's handled with a separate pattern.  */
1061 /* Use sizemap[$n] to get LSIZE etc.  */
1062 memex	: DOT_B  { $$ = 0; }
1063 	| DOT_W  { $$ = 1; }
1064 	|        { $$ = 2; }
1065 	| DOT_L  { $$ = 2; }
1066 	| DOT_UW { $$ = 3; }
1067 	;
1068 
1069 bwl	:       { $$ = LSIZE; }
1070 	| DOT_B { $$ = BSIZE; }
1071 	| DOT_W { $$ = WSIZE; }
1072 	| DOT_L { $$ = LSIZE; }
1073 	;
1074 
1075 bw	:       { $$ = 1; }
1076 	| DOT_B { $$ = 0; }
1077 	| DOT_W { $$ = 1; }
1078 	;
1079 
1080 opt_l	: 	{}
1081 	| DOT_L {}
1082 	;
1083 
1084 opt_b	: 	{}
1085 	| DOT_B {}
1086 	;
1087 
1088 %%
1089 /* ====================================================================== */
1090 
1091 static struct
1092 {
1093   const char * string;
1094   int          token;
1095   int          val;
1096 }
1097 token_table[] =
1098 {
1099   { "r0", REG, 0 },
1100   { "r1", REG, 1 },
1101   { "r2", REG, 2 },
1102   { "r3", REG, 3 },
1103   { "r4", REG, 4 },
1104   { "r5", REG, 5 },
1105   { "r6", REG, 6 },
1106   { "r7", REG, 7 },
1107   { "r8", REG, 8 },
1108   { "r9", REG, 9 },
1109   { "r10", REG, 10 },
1110   { "r11", REG, 11 },
1111   { "r12", REG, 12 },
1112   { "r13", REG, 13 },
1113   { "r14", REG, 14 },
1114   { "r15", REG, 15 },
1115 
1116   { "psw", CREG, 0 },
1117   { "pc", CREG, 1 },
1118   { "usp", CREG, 2 },
1119   { "fpsw", CREG, 3 },
1120   /* reserved */
1121   /* reserved */
1122   /* reserved */
1123   { "wr", CREG, 7 },
1124 
1125   { "bpsw", CREG, 8 },
1126   { "bpc", CREG, 9 },
1127   { "isp", CREG, 10 },
1128   { "fintv", CREG, 11 },
1129   { "intb", CREG, 12 },
1130   { "extb", CREG, 13 },
1131 
1132   { "pbp", CREG, 16 },
1133   { "pben", CREG, 17 },
1134 
1135   { "bbpsw", CREG, 24 },
1136   { "bbpc", CREG, 25 },
1137 
1138   { ".s", DOT_S, 0 },
1139   { ".b", DOT_B, 0 },
1140   { ".w", DOT_W, 0 },
1141   { ".l", DOT_L, 0 },
1142   { ".a", DOT_A , 0},
1143   { ".ub", DOT_UB, 0 },
1144   { ".uw", DOT_UW , 0},
1145 
1146   { "c", FLAG, 0 },
1147   { "z", FLAG, 1 },
1148   { "s", FLAG, 2 },
1149   { "o", FLAG, 3 },
1150   { "i", FLAG, 8 },
1151   { "u", FLAG, 9 },
1152 
1153   { "a0", ACC, 0 },
1154   { "a1", ACC, 1 },
1155 
1156 #define OPC(x) { #x, x, IS_OPCODE }
1157   OPC(ABS),
1158   OPC(ADC),
1159   OPC(ADD),
1160   { "and", AND_, IS_OPCODE },
1161   OPC(BCLR),
1162   OPC(BCND),
1163   OPC(BMCND),
1164   OPC(BNOT),
1165   OPC(BRA),
1166   OPC(BRK),
1167   OPC(BSET),
1168   OPC(BSR),
1169   OPC(BTST),
1170   OPC(CLRPSW),
1171   OPC(CMP),
1172   OPC(DBT),
1173   OPC(DIV),
1174   OPC(DIVU),
1175   OPC(EDIV),
1176   OPC(EDIVU),
1177   OPC(EMACA),
1178   OPC(EMSBA),
1179   OPC(EMUL),
1180   OPC(EMULA),
1181   OPC(EMULU),
1182   OPC(FADD),
1183   OPC(FCMP),
1184   OPC(FDIV),
1185   OPC(FMUL),
1186   OPC(FREIT),
1187   OPC(FSQRT),
1188   OPC(FTOU),
1189   OPC(FSUB),
1190   OPC(FTOI),
1191   OPC(INT),
1192   OPC(ITOF),
1193   OPC(JMP),
1194   OPC(JSR),
1195   OPC(MVFACGU),
1196   OPC(MVFACHI),
1197   OPC(MVFACMI),
1198   OPC(MVFACLO),
1199   OPC(MVFC),
1200   OPC(MVTACGU),
1201   OPC(MVTACHI),
1202   OPC(MVTACLO),
1203   OPC(MVTC),
1204   OPC(MVTIPL),
1205   OPC(MACHI),
1206   OPC(MACLO),
1207   OPC(MACLH),
1208   OPC(MAX),
1209   OPC(MIN),
1210   OPC(MOV),
1211   OPC(MOVCO),
1212   OPC(MOVLI),
1213   OPC(MOVU),
1214   OPC(MSBHI),
1215   OPC(MSBLH),
1216   OPC(MSBLO),
1217   OPC(MUL),
1218   OPC(MULHI),
1219   OPC(MULLH),
1220   OPC(MULLO),
1221   OPC(MULU),
1222   OPC(NEG),
1223   OPC(NOP),
1224   OPC(NOT),
1225   OPC(OR),
1226   OPC(POP),
1227   OPC(POPC),
1228   OPC(POPM),
1229   OPC(PUSH),
1230   OPC(PUSHA),
1231   OPC(PUSHC),
1232   OPC(PUSHM),
1233   OPC(RACL),
1234   OPC(RACW),
1235   OPC(RDACL),
1236   OPC(RDACW),
1237   OPC(REIT),
1238   OPC(REVL),
1239   OPC(REVW),
1240   OPC(RMPA),
1241   OPC(ROLC),
1242   OPC(RORC),
1243   OPC(ROTL),
1244   OPC(ROTR),
1245   OPC(ROUND),
1246   OPC(RTE),
1247   OPC(RTFI),
1248   OPC(RTS),
1249   OPC(RTSD),
1250   OPC(SAT),
1251   OPC(SATR),
1252   OPC(SBB),
1253   OPC(SCCND),
1254   OPC(SCMPU),
1255   OPC(SETPSW),
1256   OPC(SHAR),
1257   OPC(SHLL),
1258   OPC(SHLR),
1259   OPC(SMOVB),
1260   OPC(SMOVF),
1261   OPC(SMOVU),
1262   OPC(SSTR),
1263   OPC(STNZ),
1264   OPC(STOP),
1265   OPC(STZ),
1266   OPC(SUB),
1267   OPC(SUNTIL),
1268   OPC(SWHILE),
1269   OPC(TST),
1270   OPC(UTOF),
1271   OPC(WAIT),
1272   OPC(XCHG),
1273   OPC(XOR),
1274 };
1275 
1276 #define NUM_TOKENS (sizeof (token_table) / sizeof (token_table[0]))
1277 
1278 static struct
1279 {
1280   const char * string;
1281   int    token;
1282 }
1283 condition_opcode_table[] =
1284 {
1285   { "b", BCND },
1286   { "bm", BMCND },
1287   { "sc", SCCND },
1288 };
1289 
1290 #define NUM_CONDITION_OPCODES (sizeof (condition_opcode_table) / sizeof (condition_opcode_table[0]))
1291 
1292 static struct
1293 {
1294   const char * string;
1295   int    val;
1296 }
1297 condition_table[] =
1298 {
1299   { "z", 0 },
1300   { "eq", 0 },
1301   { "geu",  2 },
1302   { "c",  2 },
1303   { "gtu", 4 },
1304   { "pz", 6 },
1305   { "ge", 8 },
1306   { "gt", 10 },
1307   { "o",  12},
1308   /* always = 14 */
1309   { "nz", 1 },
1310   { "ne", 1 },
1311   { "ltu", 3 },
1312   { "nc", 3 },
1313   { "leu", 5 },
1314   { "n", 7 },
1315   { "lt", 9 },
1316   { "le", 11 },
1317   { "no", 13 }
1318   /* never = 15 */
1319 };
1320 
1321 #define NUM_CONDITIONS (sizeof (condition_table) / sizeof (condition_table[0]))
1322 
1323 void
rx_lex_init(char * beginning,char * ending)1324 rx_lex_init (char * beginning, char * ending)
1325 {
1326   rx_init_start = beginning;
1327   rx_lex_start = beginning;
1328   rx_lex_end = ending;
1329   rx_in_brackets = 0;
1330   rx_last_token = 0;
1331 
1332   setbuf (stdout, 0);
1333 }
1334 
1335 static int
check_condition(const char * base)1336 check_condition (const char * base)
1337 {
1338   char * cp;
1339   unsigned int i;
1340 
1341   if ((unsigned) (rx_lex_end - rx_lex_start) < strlen (base) + 1)
1342     return 0;
1343   if (memcmp (rx_lex_start, base, strlen (base)))
1344     return 0;
1345   cp = rx_lex_start + strlen (base);
1346   for (i = 0; i < NUM_CONDITIONS; i ++)
1347     {
1348       if (strcasecmp (cp, condition_table[i].string) == 0)
1349 	{
1350 	  rx_lval.regno = condition_table[i].val;
1351 	  return 1;
1352 	}
1353     }
1354   return 0;
1355 }
1356 
1357 static int
rx_lex(void)1358 rx_lex (void)
1359 {
1360   unsigned int ci;
1361   char * save_input_pointer;
1362 
1363   while (ISSPACE (*rx_lex_start)
1364 	 && rx_lex_start != rx_lex_end)
1365     rx_lex_start ++;
1366 
1367   rx_last_exp_start = rx_lex_start;
1368 
1369   if (rx_lex_start == rx_lex_end)
1370     return 0;
1371 
1372   if (ISALPHA (*rx_lex_start)
1373       || (rx_pid_register != -1 && memcmp (rx_lex_start, "%pidreg", 7) == 0)
1374       || (rx_gp_register != -1 && memcmp (rx_lex_start, "%gpreg", 6) == 0)
1375       || (*rx_lex_start == '.' && ISALPHA (rx_lex_start[1])))
1376     {
1377       unsigned int i;
1378       char * e;
1379       char save;
1380 
1381       for (e = rx_lex_start + 1;
1382 	   e < rx_lex_end && ISALNUM (*e);
1383 	   e ++)
1384 	;
1385       save = *e;
1386       *e = 0;
1387 
1388       if (strcmp (rx_lex_start, "%pidreg") == 0)
1389 	{
1390 	  {
1391 	    rx_lval.regno = rx_pid_register;
1392 	    *e = save;
1393 	    rx_lex_start = e;
1394 	    rx_last_token = REG;
1395 	    return REG;
1396 	  }
1397 	}
1398 
1399       if (strcmp (rx_lex_start, "%gpreg") == 0)
1400 	{
1401 	  {
1402 	    rx_lval.regno = rx_gp_register;
1403 	    *e = save;
1404 	    rx_lex_start = e;
1405 	    rx_last_token = REG;
1406 	    return REG;
1407 	  }
1408 	}
1409 
1410       if (rx_last_token == 0)
1411 	for (ci = 0; ci < NUM_CONDITION_OPCODES; ci ++)
1412 	  if (check_condition (condition_opcode_table[ci].string))
1413 	    {
1414 	      *e = save;
1415 	      rx_lex_start = e;
1416 	      rx_last_token = condition_opcode_table[ci].token;
1417 	      return condition_opcode_table[ci].token;
1418 	    }
1419 
1420       for (i = 0; i < NUM_TOKENS; i++)
1421 	if (strcasecmp (rx_lex_start, token_table[i].string) == 0
1422 	    && !(token_table[i].val == IS_OPCODE && rx_last_token != 0)
1423 	    && !(token_table[i].token == FLAG && !need_flag))
1424 	  {
1425 	    rx_lval.regno = token_table[i].val;
1426 	    *e = save;
1427 	    rx_lex_start = e;
1428 	    rx_last_token = token_table[i].token;
1429 	    return token_table[i].token;
1430 	  }
1431       *e = save;
1432     }
1433 
1434   if (rx_last_token == 0)
1435     {
1436       rx_last_token = UNKNOWN_OPCODE;
1437       return UNKNOWN_OPCODE;
1438     }
1439 
1440   if (rx_last_token == UNKNOWN_OPCODE)
1441     return 0;
1442 
1443   if (*rx_lex_start == '[')
1444     rx_in_brackets = 1;
1445   if (*rx_lex_start == ']')
1446     rx_in_brackets = 0;
1447 
1448   if (rx_in_brackets
1449       || rx_last_token == REG
1450       || strchr ("[],#", *rx_lex_start))
1451     {
1452       rx_last_token = *rx_lex_start;
1453       return *rx_lex_start ++;
1454     }
1455 
1456   save_input_pointer = input_line_pointer;
1457   input_line_pointer = rx_lex_start;
1458   rx_lval.exp.X_md = 0;
1459   expression (&rx_lval.exp);
1460 
1461   /* We parse but ignore any :<size> modifier on expressions.  */
1462   if (*input_line_pointer == ':')
1463     {
1464       char *cp;
1465 
1466       for (cp  = input_line_pointer + 1; *cp && cp < rx_lex_end; cp++)
1467 	if (!ISDIGIT (*cp))
1468 	  break;
1469       if (cp > input_line_pointer+1)
1470 	input_line_pointer = cp;
1471     }
1472 
1473   rx_lex_start = input_line_pointer;
1474   input_line_pointer = save_input_pointer;
1475   rx_last_token = EXPR;
1476   return EXPR;
1477 }
1478 
1479 int
rx_error(const char * str)1480 rx_error (const char * str)
1481 {
1482   int len;
1483 
1484   len = rx_last_exp_start - rx_init_start;
1485 
1486   as_bad ("%s", rx_init_start);
1487   as_bad ("%*s^ %s", len, "", str);
1488   return 0;
1489 }
1490 
1491 static int
rx_intop(expressionS exp,int nbits,int opbits)1492 rx_intop (expressionS exp, int nbits, int opbits)
1493 {
1494   long v;
1495   long mask, msb;
1496 
1497   if (exp.X_op == O_big)
1498     {
1499       if (nbits == 32)
1500 	return 1;
1501       if (exp.X_add_number == -1)
1502 	return 0;
1503     }
1504   else if (exp.X_op != O_constant)
1505     return 0;
1506   v = exp.X_add_number;
1507 
1508   msb = 1UL << (opbits - 1);
1509   mask = (1UL << opbits) - 1;
1510 
1511   if ((v & msb) && ! (v & ~mask))
1512     v -= 1UL << opbits;
1513 
1514   switch (nbits)
1515     {
1516     case 4:
1517       return -0x8 <= v && v <= 0x7;
1518     case 5:
1519       return -0x10 <= v && v <= 0x17;
1520     case 8:
1521       return -0x80 <= v && v <= 0x7f;
1522     case 16:
1523       return -0x8000 <= v && v <= 0x7fff;
1524     case 24:
1525       return -0x800000 <= v && v <= 0x7fffff;
1526     case 32:
1527       return 1;
1528     default:
1529       printf ("rx_intop passed %d\n", nbits);
1530       abort ();
1531     }
1532   return 1;
1533 }
1534 
1535 static int
rx_uintop(expressionS exp,int nbits)1536 rx_uintop (expressionS exp, int nbits)
1537 {
1538   unsigned long v;
1539 
1540   if (exp.X_op != O_constant)
1541     return 0;
1542   v = exp.X_add_number;
1543 
1544   switch (nbits)
1545     {
1546     case 4:
1547       return v <= 0xf;
1548     case 8:
1549       return v <= 0xff;
1550     case 16:
1551       return v <= 0xffff;
1552     case 24:
1553       return v <= 0xffffff;
1554     default:
1555       printf ("rx_uintop passed %d\n", nbits);
1556       abort ();
1557     }
1558   return 1;
1559 }
1560 
1561 static int
rx_disp3op(expressionS exp)1562 rx_disp3op (expressionS exp)
1563 {
1564   unsigned long v;
1565 
1566   if (exp.X_op != O_constant)
1567     return 0;
1568   v = exp.X_add_number;
1569   if (v < 3 || v > 10)
1570     return 0;
1571   return 1;
1572 }
1573 
1574 static int
rx_disp5op(expressionS * exp,int msize)1575 rx_disp5op (expressionS * exp, int msize)
1576 {
1577   long v;
1578 
1579   if (exp->X_op != O_constant)
1580     return 0;
1581   v = exp->X_add_number;
1582 
1583   switch (msize)
1584     {
1585     case BSIZE:
1586       if (0 <= v && v <= 31)
1587 	return 1;
1588       break;
1589     case WSIZE:
1590       if (v & 1)
1591 	return 0;
1592       if (0 <= v && v <= 63)
1593 	{
1594 	  exp->X_add_number >>= 1;
1595 	  return 1;
1596 	}
1597       break;
1598     case LSIZE:
1599       if (v & 3)
1600 	return 0;
1601       if (0 <= v && v <= 127)
1602 	{
1603 	  exp->X_add_number >>= 2;
1604 	  return 1;
1605 	}
1606       break;
1607     }
1608   return 0;
1609 }
1610 
1611 /* Just like the above, but allows a zero displacement.  */
1612 
1613 static int
rx_disp5op0(expressionS * exp,int msize)1614 rx_disp5op0 (expressionS * exp, int msize)
1615 {
1616   if (exp->X_op != O_constant)
1617     return 0;
1618   if (exp->X_add_number == 0)
1619     return 1;
1620   return rx_disp5op (exp, msize);
1621 }
1622 
1623 static int
exp_val(expressionS exp)1624 exp_val (expressionS exp)
1625 {
1626   if (exp.X_op != O_constant)
1627   {
1628     rx_error (_("constant expected"));
1629     return 0;
1630   }
1631   return exp.X_add_number;
1632 }
1633 
1634 static expressionS
zero_expr(void)1635 zero_expr (void)
1636 {
1637   /* Static, so program load sets it to all zeros, which is what we want.  */
1638   static expressionS zero;
1639   zero.X_op = O_constant;
1640   return zero;
1641 }
1642 
1643 static int
immediate(expressionS exp,int type,int pos,int bits)1644 immediate (expressionS exp, int type, int pos, int bits)
1645 {
1646   /* We will emit constants ourself here, so negate them.  */
1647   if (type == RXREL_NEGATIVE && exp.X_op == O_constant)
1648     exp.X_add_number = - exp.X_add_number;
1649   if (type == RXREL_NEGATIVE_BORROW)
1650     {
1651       if (exp.X_op == O_constant)
1652 	exp.X_add_number = - exp.X_add_number - 1;
1653       else
1654 	rx_error (_("sbb cannot use symbolic immediates"));
1655     }
1656 
1657   if (rx_intop (exp, 8, bits))
1658     {
1659       rx_op (exp, 1, type);
1660       return 1;
1661     }
1662   else if (rx_intop (exp, 16, bits))
1663     {
1664       rx_op (exp, 2, type);
1665       return 2;
1666     }
1667   else if (rx_uintop (exp, 16) && bits == 16)
1668     {
1669       rx_op (exp, 2, type);
1670       return 2;
1671     }
1672   else if (rx_intop (exp, 24, bits))
1673     {
1674       rx_op (exp, 3, type);
1675       return 3;
1676     }
1677   else if (rx_intop (exp, 32, bits))
1678     {
1679       rx_op (exp, 4, type);
1680       return 0;
1681     }
1682   else if (type == RXREL_SIGNED)
1683     {
1684       /* This is a symbolic immediate, we will relax it later.  */
1685       rx_relax (RX_RELAX_IMM, pos);
1686       rx_op (exp, linkrelax ? 4 : 1, type);
1687       return 1;
1688     }
1689   else
1690     {
1691       /* Let the linker deal with it.  */
1692       rx_op (exp, 4, type);
1693       return 0;
1694     }
1695 }
1696 
1697 static int
displacement(expressionS exp,int msize)1698 displacement (expressionS exp, int msize)
1699 {
1700   int val;
1701   int vshift = 0;
1702 
1703   if (exp.X_op == O_symbol
1704       && exp.X_md)
1705     {
1706       switch (exp.X_md)
1707 	{
1708 	case BFD_RELOC_GPREL16:
1709 	  switch (msize)
1710 	    {
1711 	    case BSIZE:
1712 	      exp.X_md = BFD_RELOC_RX_GPRELB;
1713 	      break;
1714 	    case WSIZE:
1715 	      exp.X_md = BFD_RELOC_RX_GPRELW;
1716 	      break;
1717 	    case LSIZE:
1718 	      exp.X_md = BFD_RELOC_RX_GPRELL;
1719 	      break;
1720 	    }
1721 	  O2 (exp);
1722 	  return 2;
1723 	}
1724     }
1725 
1726   if (exp.X_op == O_subtract)
1727     {
1728       exp.X_md = BFD_RELOC_RX_DIFF;
1729       O2 (exp);
1730       return 2;
1731     }
1732 
1733   if (exp.X_op != O_constant)
1734     {
1735       rx_error (_("displacements must be constants"));
1736       return -1;
1737     }
1738   val = exp.X_add_number;
1739 
1740   if (val == 0)
1741     return 0;
1742 
1743   switch (msize)
1744     {
1745     case BSIZE:
1746       break;
1747     case WSIZE:
1748       if (val & 1)
1749 	rx_error (_("word displacement not word-aligned"));
1750       vshift = 1;
1751       break;
1752     case LSIZE:
1753       if (val & 3)
1754 	rx_error (_("long displacement not long-aligned"));
1755       vshift = 2;
1756       break;
1757     default:
1758       as_bad (_("displacement with unknown size (internal bug?)\n"));
1759       break;
1760     }
1761 
1762   val >>= vshift;
1763   exp.X_add_number = val;
1764 
1765   if (0 <= val && val <= 255 )
1766     {
1767       O1 (exp);
1768       return 1;
1769     }
1770 
1771   if (0 <= val && val <= 65535)
1772     {
1773       O2 (exp);
1774       return 2;
1775     }
1776   if (val < 0)
1777     rx_error (_("negative displacements not allowed"));
1778   else
1779     rx_error (_("displacement too large"));
1780   return -1;
1781 }
1782 
1783 static void
rtsd_immediate(expressionS exp)1784 rtsd_immediate (expressionS exp)
1785 {
1786   int val;
1787 
1788   if (exp.X_op != O_constant)
1789     {
1790       rx_error (_("rtsd size must be constant"));
1791       return;
1792     }
1793   val = exp.X_add_number;
1794   if (val & 3)
1795     rx_error (_("rtsd size must be multiple of 4"));
1796 
1797   if (val < 0 || val > 1020)
1798     rx_error (_("rtsd size must be 0..1020"));
1799 
1800   val >>= 2;
1801   exp.X_add_number = val;
1802   O1 (exp);
1803 }
1804 
1805 static void
rx_range(expressionS exp,int minv,int maxv)1806 rx_range (expressionS exp, int minv, int maxv)
1807 {
1808   int val;
1809 
1810   if (exp.X_op != O_constant)
1811     return;
1812 
1813   val = exp.X_add_number;
1814   if (val < minv || val > maxv)
1815     as_warn (_("Value %d out of range %d..%d"), val, minv, maxv);
1816 }
1817 
1818 static void
rx_check_float_support(void)1819 rx_check_float_support (void)
1820 {
1821   if (rx_cpu == RX100 || rx_cpu == RX200)
1822     rx_error (_("target CPU type does not support floating point instructions"));
1823 }
1824 
1825 static void
rx_check_v2(void)1826 rx_check_v2 (void)
1827 {
1828   if (rx_cpu < RXV2)
1829     rx_error (_("target CPU type does not support v2 instructions"));
1830 }
1831