1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "dead_code_elimination.h"
18
19 #include "base/array_ref.h"
20 #include "base/bit_vector-inl.h"
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "base/stl_util.h"
24 #include "ssa_phi_elimination.h"
25
26 namespace art {
27
MarkReachableBlocks(HGraph * graph,ArenaBitVector * visited)28 static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) {
29 // Use local allocator for allocating memory.
30 ScopedArenaAllocator allocator(graph->GetArenaStack());
31
32 ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocDCE));
33 constexpr size_t kDefaultWorlistSize = 8;
34 worklist.reserve(kDefaultWorlistSize);
35 visited->SetBit(graph->GetEntryBlock()->GetBlockId());
36 worklist.push_back(graph->GetEntryBlock());
37
38 while (!worklist.empty()) {
39 HBasicBlock* block = worklist.back();
40 worklist.pop_back();
41 int block_id = block->GetBlockId();
42 DCHECK(visited->IsBitSet(block_id));
43
44 ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors());
45 HInstruction* last_instruction = block->GetLastInstruction();
46 if (last_instruction->IsIf()) {
47 HIf* if_instruction = last_instruction->AsIf();
48 HInstruction* condition = if_instruction->InputAt(0);
49 if (condition->IsIntConstant()) {
50 if (condition->AsIntConstant()->IsTrue()) {
51 live_successors = live_successors.SubArray(0u, 1u);
52 DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor());
53 } else {
54 DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
55 live_successors = live_successors.SubArray(1u, 1u);
56 DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor());
57 }
58 }
59 } else if (last_instruction->IsPackedSwitch()) {
60 HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch();
61 HInstruction* switch_input = switch_instruction->InputAt(0);
62 if (switch_input->IsIntConstant()) {
63 int32_t switch_value = switch_input->AsIntConstant()->GetValue();
64 int32_t start_value = switch_instruction->GetStartValue();
65 // Note: Though the spec forbids packed-switch values to wrap around, we leave
66 // that task to the verifier and use unsigned arithmetic with it's "modulo 2^32"
67 // semantics to check if the value is in range, wrapped or not.
68 uint32_t switch_index =
69 static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value);
70 if (switch_index < switch_instruction->GetNumEntries()) {
71 live_successors = live_successors.SubArray(switch_index, 1u);
72 DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]);
73 } else {
74 live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u);
75 DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock());
76 }
77 }
78 }
79
80 for (HBasicBlock* successor : live_successors) {
81 // Add only those successors that have not been visited yet.
82 if (!visited->IsBitSet(successor->GetBlockId())) {
83 visited->SetBit(successor->GetBlockId());
84 worklist.push_back(successor);
85 }
86 }
87 }
88 }
89
MaybeRecordDeadBlock(HBasicBlock * block)90 void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) {
91 if (stats_ != nullptr) {
92 stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction,
93 block->GetPhis().CountSize() + block->GetInstructions().CountSize());
94 }
95 }
96
MaybeRecordSimplifyIf()97 void HDeadCodeElimination::MaybeRecordSimplifyIf() {
98 if (stats_ != nullptr) {
99 stats_->RecordStat(MethodCompilationStat::kSimplifyIf);
100 }
101 }
102
HasInput(HCondition * instruction,HInstruction * input)103 static bool HasInput(HCondition* instruction, HInstruction* input) {
104 return (instruction->InputAt(0) == input) ||
105 (instruction->InputAt(1) == input);
106 }
107
HasEquality(IfCondition condition)108 static bool HasEquality(IfCondition condition) {
109 switch (condition) {
110 case kCondEQ:
111 case kCondLE:
112 case kCondGE:
113 case kCondBE:
114 case kCondAE:
115 return true;
116 case kCondNE:
117 case kCondLT:
118 case kCondGT:
119 case kCondB:
120 case kCondA:
121 return false;
122 }
123 }
124
Evaluate(HCondition * condition,HInstruction * left,HInstruction * right)125 static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) {
126 if (left == right && !DataType::IsFloatingPointType(left->GetType())) {
127 return condition->GetBlock()->GetGraph()->GetIntConstant(
128 HasEquality(condition->GetCondition()) ? 1 : 0);
129 }
130
131 if (!left->IsConstant() || !right->IsConstant()) {
132 return nullptr;
133 }
134
135 if (left->IsIntConstant()) {
136 return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant());
137 } else if (left->IsNullConstant()) {
138 return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant());
139 } else if (left->IsLongConstant()) {
140 return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant());
141 } else if (left->IsFloatConstant()) {
142 return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
143 } else {
144 DCHECK(left->IsDoubleConstant());
145 return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
146 }
147 }
148
RemoveNonNullControlDependences(HBasicBlock * block,HBasicBlock * throws)149 static bool RemoveNonNullControlDependences(HBasicBlock* block, HBasicBlock* throws) {
150 // Test for an if as last statement.
151 if (!block->EndsWithIf()) {
152 return false;
153 }
154 HIf* ifs = block->GetLastInstruction()->AsIf();
155 // Find either:
156 // if obj == null
157 // throws
158 // else
159 // not_throws
160 // or:
161 // if obj != null
162 // not_throws
163 // else
164 // throws
165 HInstruction* cond = ifs->InputAt(0);
166 HBasicBlock* not_throws = nullptr;
167 if (throws == ifs->IfTrueSuccessor() && cond->IsEqual()) {
168 not_throws = ifs->IfFalseSuccessor();
169 } else if (throws == ifs->IfFalseSuccessor() && cond->IsNotEqual()) {
170 not_throws = ifs->IfTrueSuccessor();
171 } else {
172 return false;
173 }
174 DCHECK(cond->IsEqual() || cond->IsNotEqual());
175 HInstruction* obj = cond->InputAt(1);
176 if (obj->IsNullConstant()) {
177 obj = cond->InputAt(0);
178 } else if (!cond->InputAt(0)->IsNullConstant()) {
179 return false;
180 }
181 // Scan all uses of obj and find null check under control dependence.
182 HBoundType* bound = nullptr;
183 const HUseList<HInstruction*>& uses = obj->GetUses();
184 for (auto it = uses.begin(), end = uses.end(); it != end;) {
185 HInstruction* user = it->GetUser();
186 ++it; // increment before possibly replacing
187 if (user->IsNullCheck()) {
188 HBasicBlock* user_block = user->GetBlock();
189 if (user_block != block &&
190 user_block != throws &&
191 block->Dominates(user_block)) {
192 if (bound == nullptr) {
193 ReferenceTypeInfo ti = obj->GetReferenceTypeInfo();
194 bound = new (obj->GetBlock()->GetGraph()->GetAllocator()) HBoundType(obj);
195 bound->SetUpperBound(ti, /*can_be_null*/ false);
196 bound->SetReferenceTypeInfo(ti);
197 bound->SetCanBeNull(false);
198 not_throws->InsertInstructionBefore(bound, not_throws->GetFirstInstruction());
199 }
200 user->ReplaceWith(bound);
201 user_block->RemoveInstruction(user);
202 }
203 }
204 }
205 return bound != nullptr;
206 }
207
208 // Simplify the pattern:
209 //
210 // B1
211 // / \
212 // | foo() // always throws
213 // \ goto B2
214 // \ /
215 // B2
216 //
217 // Into:
218 //
219 // B1
220 // / \
221 // | foo()
222 // | goto Exit
223 // | |
224 // B2 Exit
225 //
226 // Rationale:
227 // Removal of the never taken edge to B2 may expose
228 // other optimization opportunities, such as code sinking.
SimplifyAlwaysThrows()229 bool HDeadCodeElimination::SimplifyAlwaysThrows() {
230 // Make sure exceptions go to exit.
231 if (graph_->HasTryCatch()) {
232 return false;
233 }
234 HBasicBlock* exit = graph_->GetExitBlock();
235 if (exit == nullptr) {
236 return false;
237 }
238
239 bool rerun_dominance_and_loop_analysis = false;
240
241 // Order does not matter, just pick one.
242 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
243 HInstruction* first = block->GetFirstInstruction();
244 HInstruction* last = block->GetLastInstruction();
245 // Ensure only one throwing instruction appears before goto.
246 if (first->AlwaysThrows() &&
247 first->GetNext() == last &&
248 last->IsGoto() &&
249 block->GetPhis().IsEmpty() &&
250 block->GetPredecessors().size() == 1u) {
251 DCHECK_EQ(block->GetSuccessors().size(), 1u);
252 HBasicBlock* pred = block->GetSinglePredecessor();
253 HBasicBlock* succ = block->GetSingleSuccessor();
254 // Ensure no computations are merged through throwing block.
255 // This does not prevent the optimization per se, but would
256 // require an elaborate clean up of the SSA graph.
257 if (succ != exit &&
258 !block->Dominates(pred) &&
259 pred->Dominates(succ) &&
260 succ->GetPredecessors().size() > 1u &&
261 succ->GetPhis().IsEmpty()) {
262 block->ReplaceSuccessor(succ, exit);
263 rerun_dominance_and_loop_analysis = true;
264 MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyThrowingInvoke);
265 // Perform a quick follow up optimization on object != null control dependences
266 // that is much cheaper to perform now than in a later phase.
267 if (RemoveNonNullControlDependences(pred, block)) {
268 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedNullCheck);
269 }
270 }
271 }
272 }
273
274 // We need to re-analyze the graph in order to run DCE afterwards.
275 if (rerun_dominance_and_loop_analysis) {
276 graph_->ClearLoopInformation();
277 graph_->ClearDominanceInformation();
278 graph_->BuildDominatorTree();
279 return true;
280 }
281 return false;
282 }
283
284 // Simplify the pattern:
285 //
286 // B1 B2 ...
287 // goto goto goto
288 // \ | /
289 // \ | /
290 // B3
291 // i1 = phi(input, input)
292 // (i2 = condition on i1)
293 // if i1 (or i2)
294 // / \
295 // / \
296 // B4 B5
297 //
298 // Into:
299 //
300 // B1 B2 ...
301 // | | |
302 // B4 B5 B?
303 //
304 // Note that individual edges can be redirected (for example B2->B3
305 // can be redirected as B2->B5) without applying this optimization
306 // to other incoming edges.
307 //
308 // This simplification cannot be applied to catch blocks, because
309 // exception handler edges do not represent normal control flow.
310 // Though in theory this could still apply to normal control flow
311 // going directly to a catch block, we cannot support it at the
312 // moment because the catch Phi's inputs do not correspond to the
313 // catch block's predecessors, so we cannot identify which
314 // predecessor corresponds to a given statically evaluated input.
315 //
316 // We do not apply this optimization to loop headers as this could
317 // create irreducible loops. We rely on the suspend check in the
318 // loop header to prevent the pattern match.
319 //
320 // Note that we rely on the dead code elimination to get rid of B3.
SimplifyIfs()321 bool HDeadCodeElimination::SimplifyIfs() {
322 bool simplified_one_or_more_ifs = false;
323 bool rerun_dominance_and_loop_analysis = false;
324
325 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
326 HInstruction* last = block->GetLastInstruction();
327 HInstruction* first = block->GetFirstInstruction();
328 if (!block->IsCatchBlock() &&
329 last->IsIf() &&
330 block->HasSinglePhi() &&
331 block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) {
332 bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi());
333 bool has_only_phi_condition_and_if =
334 !has_only_phi_and_if &&
335 first->IsCondition() &&
336 HasInput(first->AsCondition(), block->GetFirstPhi()) &&
337 (first->GetNext() == last) &&
338 (last->InputAt(0) == first) &&
339 first->HasOnlyOneNonEnvironmentUse();
340
341 if (has_only_phi_and_if || has_only_phi_condition_and_if) {
342 DCHECK(!block->IsLoopHeader());
343 HPhi* phi = block->GetFirstPhi()->AsPhi();
344 bool phi_input_is_left = (first->InputAt(0) == phi);
345
346 // Walk over all inputs of the phis and update the control flow of
347 // predecessors feeding constants to the phi.
348 // Note that phi->InputCount() may change inside the loop.
349 for (size_t i = 0; i < phi->InputCount();) {
350 HInstruction* input = phi->InputAt(i);
351 HInstruction* value_to_check = nullptr;
352 if (has_only_phi_and_if) {
353 if (input->IsIntConstant()) {
354 value_to_check = input;
355 }
356 } else {
357 DCHECK(has_only_phi_condition_and_if);
358 if (phi_input_is_left) {
359 value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1));
360 } else {
361 value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input);
362 }
363 }
364 if (value_to_check == nullptr) {
365 // Could not evaluate to a constant, continue iterating over the inputs.
366 ++i;
367 } else {
368 HBasicBlock* predecessor_to_update = block->GetPredecessors()[i];
369 HBasicBlock* successor_to_update = nullptr;
370 if (value_to_check->AsIntConstant()->IsTrue()) {
371 successor_to_update = last->AsIf()->IfTrueSuccessor();
372 } else {
373 DCHECK(value_to_check->AsIntConstant()->IsFalse())
374 << value_to_check->AsIntConstant()->GetValue();
375 successor_to_update = last->AsIf()->IfFalseSuccessor();
376 }
377 predecessor_to_update->ReplaceSuccessor(block, successor_to_update);
378 phi->RemoveInputAt(i);
379 simplified_one_or_more_ifs = true;
380 if (block->IsInLoop()) {
381 rerun_dominance_and_loop_analysis = true;
382 }
383 // For simplicity, don't create a dead block, let the dead code elimination
384 // pass deal with it.
385 if (phi->InputCount() == 1) {
386 break;
387 }
388 }
389 }
390 if (block->GetPredecessors().size() == 1) {
391 phi->ReplaceWith(phi->InputAt(0));
392 block->RemovePhi(phi);
393 if (has_only_phi_condition_and_if) {
394 // Evaluate here (and not wait for a constant folding pass) to open
395 // more opportunities for DCE.
396 HInstruction* result = first->AsCondition()->TryStaticEvaluation();
397 if (result != nullptr) {
398 first->ReplaceWith(result);
399 block->RemoveInstruction(first);
400 }
401 }
402 }
403 if (simplified_one_or_more_ifs) {
404 MaybeRecordSimplifyIf();
405 }
406 }
407 }
408 }
409 // We need to re-analyze the graph in order to run DCE afterwards.
410 if (simplified_one_or_more_ifs) {
411 if (rerun_dominance_and_loop_analysis) {
412 graph_->ClearLoopInformation();
413 graph_->ClearDominanceInformation();
414 graph_->BuildDominatorTree();
415 } else {
416 graph_->ClearDominanceInformation();
417 // We have introduced critical edges, remove them.
418 graph_->SimplifyCFG();
419 graph_->ComputeDominanceInformation();
420 graph_->ComputeTryBlockInformation();
421 }
422 }
423
424 return simplified_one_or_more_ifs;
425 }
426
ConnectSuccessiveBlocks()427 void HDeadCodeElimination::ConnectSuccessiveBlocks() {
428 // Order does not matter. Skip the entry block by starting at index 1 in reverse post order.
429 for (size_t i = 1u, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
430 HBasicBlock* block = graph_->GetReversePostOrder()[i];
431 DCHECK(!block->IsEntryBlock());
432 while (block->GetLastInstruction()->IsGoto()) {
433 HBasicBlock* successor = block->GetSingleSuccessor();
434 if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) {
435 break;
436 }
437 DCHECK_LT(i, IndexOfElement(graph_->GetReversePostOrder(), successor));
438 block->MergeWith(successor);
439 --size;
440 DCHECK_EQ(size, graph_->GetReversePostOrder().size());
441 DCHECK_EQ(block, graph_->GetReversePostOrder()[i]);
442 // Reiterate on this block in case it can be merged with its new successor.
443 }
444 }
445 }
446
RemoveDeadBlocks()447 bool HDeadCodeElimination::RemoveDeadBlocks() {
448 // Use local allocator for allocating memory.
449 ScopedArenaAllocator allocator(graph_->GetArenaStack());
450
451 // Classify blocks as reachable/unreachable.
452 ArenaBitVector live_blocks(&allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE);
453 live_blocks.ClearAllBits();
454
455 MarkReachableBlocks(graph_, &live_blocks);
456 bool removed_one_or_more_blocks = false;
457 bool rerun_dominance_and_loop_analysis = false;
458
459 // Remove all dead blocks. Iterate in post order because removal needs the
460 // block's chain of dominators and nested loops need to be updated from the
461 // inside out.
462 for (HBasicBlock* block : graph_->GetPostOrder()) {
463 int id = block->GetBlockId();
464 if (!live_blocks.IsBitSet(id)) {
465 MaybeRecordDeadBlock(block);
466 block->DisconnectAndDelete();
467 removed_one_or_more_blocks = true;
468 if (block->IsInLoop()) {
469 rerun_dominance_and_loop_analysis = true;
470 }
471 }
472 }
473
474 // If we removed at least one block, we need to recompute the full
475 // dominator tree and try block membership.
476 if (removed_one_or_more_blocks) {
477 if (rerun_dominance_and_loop_analysis) {
478 graph_->ClearLoopInformation();
479 graph_->ClearDominanceInformation();
480 graph_->BuildDominatorTree();
481 } else {
482 graph_->ClearDominanceInformation();
483 graph_->ComputeDominanceInformation();
484 graph_->ComputeTryBlockInformation();
485 }
486 }
487 return removed_one_or_more_blocks;
488 }
489
RemoveDeadInstructions()490 void HDeadCodeElimination::RemoveDeadInstructions() {
491 // Process basic blocks in post-order in the dominator tree, so that
492 // a dead instruction depending on another dead instruction is removed.
493 for (HBasicBlock* block : graph_->GetPostOrder()) {
494 // Traverse this block's instructions in backward order and remove
495 // the unused ones.
496 HBackwardInstructionIterator i(block->GetInstructions());
497 // Skip the first iteration, as the last instruction of a block is
498 // a branching instruction.
499 DCHECK(i.Current()->IsControlFlow());
500 for (i.Advance(); !i.Done(); i.Advance()) {
501 HInstruction* inst = i.Current();
502 DCHECK(!inst->IsControlFlow());
503 if (inst->IsDeadAndRemovable()) {
504 block->RemoveInstruction(inst);
505 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedDeadInstruction);
506 }
507 }
508 }
509 }
510
Run()511 void HDeadCodeElimination::Run() {
512 // Do not eliminate dead blocks if the graph has irreducible loops. We could
513 // support it, but that would require changes in our loop representation to handle
514 // multiple entry points. We decided it was not worth the complexity.
515 if (!graph_->HasIrreducibleLoops()) {
516 // Simplify graph to generate more dead block patterns.
517 ConnectSuccessiveBlocks();
518 bool did_any_simplification = false;
519 did_any_simplification |= SimplifyAlwaysThrows();
520 did_any_simplification |= SimplifyIfs();
521 did_any_simplification |= RemoveDeadBlocks();
522 if (did_any_simplification) {
523 // Connect successive blocks created by dead branches.
524 ConnectSuccessiveBlocks();
525 }
526 }
527 SsaRedundantPhiElimination(graph_).Run();
528 RemoveDeadInstructions();
529 }
530
531 } // namespace art
532