1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <fcntl.h>
18
19 #include <android-base/logging.h>
20 #include <android-base/unique_fd.h>
21 #include <cutils/properties.h>
22 #include <sys/stat.h>
23 #include <sys/sysmacros.h>
24
25 #include "hidl_return_util.h"
26 #include "hidl_struct_util.h"
27 #include "wifi_chip.h"
28 #include "wifi_status_util.h"
29
30 namespace {
31 using android::base::unique_fd;
32 using android::hardware::hidl_string;
33 using android::hardware::hidl_vec;
34 using android::hardware::wifi::V1_0::ChipModeId;
35 using android::hardware::wifi::V1_0::IfaceType;
36 using android::hardware::wifi::V1_0::IWifiChip;
37 using android::sp;
38
39 constexpr ChipModeId kInvalidModeId = UINT32_MAX;
40 // These mode ID's should be unique (even across combo versions). Refer to
41 // handleChipConfiguration() for it's usage.
42 // Mode ID's for V1
43 constexpr ChipModeId kV1StaChipModeId = 0;
44 constexpr ChipModeId kV1ApChipModeId = 1;
45 // Mode ID for V2
46 constexpr ChipModeId kV2ChipModeId = 2;
47
48 constexpr char kCpioMagic[] = "070701";
49 constexpr size_t kMaxBufferSizeBytes = 1024 * 1024;
50 constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60;
51 constexpr uint32_t kMaxRingBufferFileNum = 20;
52 constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/";
53
54 template <typename Iface>
invalidateAndClear(std::vector<sp<Iface>> & ifaces,sp<Iface> iface)55 void invalidateAndClear(std::vector<sp<Iface>>& ifaces, sp<Iface> iface) {
56 iface->invalidate();
57 ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface),
58 ifaces.end());
59 }
60
61 template <typename Iface>
invalidateAndClearAll(std::vector<sp<Iface>> & ifaces)62 void invalidateAndClearAll(std::vector<sp<Iface>>& ifaces) {
63 for (const auto& iface : ifaces) {
64 iface->invalidate();
65 }
66 ifaces.clear();
67 }
68
69 template <typename Iface>
getNames(std::vector<sp<Iface>> & ifaces)70 std::vector<hidl_string> getNames(std::vector<sp<Iface>>& ifaces) {
71 std::vector<hidl_string> names;
72 for (const auto& iface : ifaces) {
73 names.emplace_back(iface->getName());
74 }
75 return names;
76 }
77
78 template <typename Iface>
findUsingName(std::vector<sp<Iface>> & ifaces,const std::string & name)79 sp<Iface> findUsingName(std::vector<sp<Iface>>& ifaces,
80 const std::string& name) {
81 std::vector<hidl_string> names;
82 for (const auto& iface : ifaces) {
83 if (name == iface->getName()) {
84 return iface;
85 }
86 }
87 return nullptr;
88 }
89
getWlan0IfaceName()90 std::string getWlan0IfaceName() {
91 std::array<char, PROPERTY_VALUE_MAX> buffer;
92 property_get("wifi.interface", buffer.data(), "wlan0");
93 return buffer.data();
94 }
95
getWlan1IfaceName()96 std::string getWlan1IfaceName() {
97 std::array<char, PROPERTY_VALUE_MAX> buffer;
98 property_get("wifi.concurrent.interface", buffer.data(), "wlan1");
99 return buffer.data();
100 }
101
getP2pIfaceName()102 std::string getP2pIfaceName() {
103 std::array<char, PROPERTY_VALUE_MAX> buffer;
104 property_get("wifi.direct.interface", buffer.data(), "p2p0");
105 return buffer.data();
106 }
107
108 // delete files that meet either conditions:
109 // 1. older than a predefined time in the wifi tombstone dir.
110 // 2. Files in excess to a predefined amount, starting from the oldest ones
removeOldFilesInternal()111 bool removeOldFilesInternal() {
112 time_t now = time(0);
113 const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds;
114 DIR* dir_dump = opendir(kTombstoneFolderPath);
115 if (!dir_dump) {
116 LOG(ERROR) << "Failed to open directory: " << strerror(errno);
117 return false;
118 }
119 unique_fd dir_auto_closer(dirfd(dir_dump));
120 struct dirent* dp;
121 bool success = true;
122 std::list<std::pair<const time_t, std::string>> valid_files;
123 while ((dp = readdir(dir_dump))) {
124 if (dp->d_type != DT_REG) {
125 continue;
126 }
127 std::string cur_file_name(dp->d_name);
128 struct stat cur_file_stat;
129 std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
130 if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) {
131 LOG(ERROR) << "Failed to get file stat for " << cur_file_path
132 << ": " << strerror(errno);
133 success = false;
134 continue;
135 }
136 const time_t cur_file_time = cur_file_stat.st_mtime;
137 valid_files.push_back(
138 std::pair<const time_t, std::string>(cur_file_time, cur_file_path));
139 }
140 valid_files.sort(); // sort the list of files by last modified time from
141 // small to big.
142 uint32_t cur_file_count = valid_files.size();
143 for (auto cur_file : valid_files) {
144 if (cur_file_count > kMaxRingBufferFileNum ||
145 cur_file.first < delete_files_before) {
146 if (unlink(cur_file.second.c_str()) != 0) {
147 LOG(ERROR) << "Error deleting file " << strerror(errno);
148 success = false;
149 }
150 cur_file_count--;
151 } else {
152 break;
153 }
154 }
155 return success;
156 }
157
158 // Helper function for |cpioArchiveFilesInDir|
cpioWriteHeader(int out_fd,struct stat & st,const char * file_name,size_t file_name_len)159 bool cpioWriteHeader(int out_fd, struct stat& st, const char* file_name,
160 size_t file_name_len) {
161 std::array<char, 32 * 1024> read_buf;
162 ssize_t llen =
163 sprintf(read_buf.data(),
164 "%s%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X",
165 kCpioMagic, static_cast<int>(st.st_ino), st.st_mode, st.st_uid,
166 st.st_gid, static_cast<int>(st.st_nlink),
167 static_cast<int>(st.st_mtime), static_cast<int>(st.st_size),
168 major(st.st_dev), minor(st.st_dev), major(st.st_rdev),
169 minor(st.st_rdev), static_cast<uint32_t>(file_name_len), 0);
170 if (write(out_fd, read_buf.data(), llen) == -1) {
171 LOG(ERROR) << "Error writing cpio header to file " << file_name << " "
172 << strerror(errno);
173 return false;
174 }
175 if (write(out_fd, file_name, file_name_len) == -1) {
176 LOG(ERROR) << "Error writing filename to file " << file_name << " "
177 << strerror(errno);
178 return false;
179 }
180
181 // NUL Pad header up to 4 multiple bytes.
182 llen = (llen + file_name_len) % 4;
183 if (llen != 0) {
184 const uint32_t zero = 0;
185 if (write(out_fd, &zero, 4 - llen) == -1) {
186 LOG(ERROR) << "Error padding 0s to file " << file_name << " "
187 << strerror(errno);
188 return false;
189 }
190 }
191 return true;
192 }
193
194 // Helper function for |cpioArchiveFilesInDir|
cpioWriteFileContent(int fd_read,int out_fd,struct stat & st)195 size_t cpioWriteFileContent(int fd_read, int out_fd, struct stat& st) {
196 // writing content of file
197 std::array<char, 32 * 1024> read_buf;
198 ssize_t llen = st.st_size;
199 size_t n_error = 0;
200 while (llen > 0) {
201 ssize_t bytes_read = read(fd_read, read_buf.data(), read_buf.size());
202 if (bytes_read == -1) {
203 LOG(ERROR) << "Error reading file " << strerror(errno);
204 return ++n_error;
205 }
206 llen -= bytes_read;
207 if (write(out_fd, read_buf.data(), bytes_read) == -1) {
208 LOG(ERROR) << "Error writing data to file " << strerror(errno);
209 return ++n_error;
210 }
211 if (bytes_read == 0) { // this should never happen, but just in case
212 // to unstuck from while loop
213 LOG(ERROR) << "Unexpected read result for " << strerror(errno);
214 n_error++;
215 break;
216 }
217 }
218 llen = st.st_size % 4;
219 if (llen != 0) {
220 const uint32_t zero = 0;
221 if (write(out_fd, &zero, 4 - llen) == -1) {
222 LOG(ERROR) << "Error padding 0s to file " << strerror(errno);
223 return ++n_error;
224 }
225 }
226 return n_error;
227 }
228
229 // Helper function for |cpioArchiveFilesInDir|
cpioWriteFileTrailer(int out_fd)230 bool cpioWriteFileTrailer(int out_fd) {
231 std::array<char, 4096> read_buf;
232 read_buf.fill(0);
233 if (write(out_fd, read_buf.data(),
234 sprintf(read_buf.data(), "070701%040X%056X%08XTRAILER!!!", 1,
235 0x0b, 0) +
236 4) == -1) {
237 LOG(ERROR) << "Error writing trailing bytes " << strerror(errno);
238 return false;
239 }
240 return true;
241 }
242
243 // Archives all files in |input_dir| and writes result into |out_fd|
244 // Logic obtained from //external/toybox/toys/posix/cpio.c "Output cpio archive"
245 // portion
cpioArchiveFilesInDir(int out_fd,const char * input_dir)246 size_t cpioArchiveFilesInDir(int out_fd, const char* input_dir) {
247 struct dirent* dp;
248 size_t n_error = 0;
249 DIR* dir_dump = opendir(input_dir);
250 if (!dir_dump) {
251 LOG(ERROR) << "Failed to open directory: " << strerror(errno);
252 return ++n_error;
253 }
254 unique_fd dir_auto_closer(dirfd(dir_dump));
255 while ((dp = readdir(dir_dump))) {
256 if (dp->d_type != DT_REG) {
257 continue;
258 }
259 std::string cur_file_name(dp->d_name);
260 // string.size() does not include the null terminator. The cpio FreeBSD
261 // file header expects the null character to be included in the length.
262 const size_t file_name_len = cur_file_name.size() + 1;
263 struct stat st;
264 const std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
265 if (stat(cur_file_path.c_str(), &st) == -1) {
266 LOG(ERROR) << "Failed to get file stat for " << cur_file_path
267 << ": " << strerror(errno);
268 n_error++;
269 continue;
270 }
271 const int fd_read = open(cur_file_path.c_str(), O_RDONLY);
272 if (fd_read == -1) {
273 LOG(ERROR) << "Failed to open file " << cur_file_path << " "
274 << strerror(errno);
275 n_error++;
276 continue;
277 }
278 unique_fd file_auto_closer(fd_read);
279 if (!cpioWriteHeader(out_fd, st, cur_file_name.c_str(),
280 file_name_len)) {
281 return ++n_error;
282 }
283 size_t write_error = cpioWriteFileContent(fd_read, out_fd, st);
284 if (write_error) {
285 return n_error + write_error;
286 }
287 }
288 if (!cpioWriteFileTrailer(out_fd)) {
289 return ++n_error;
290 }
291 return n_error;
292 }
293
294 // Helper function to create a non-const char*.
makeCharVec(const std::string & str)295 std::vector<char> makeCharVec(const std::string& str) {
296 std::vector<char> vec(str.size() + 1);
297 vec.assign(str.begin(), str.end());
298 vec.push_back('\0');
299 return vec;
300 }
301
302 } // namespace
303
304 namespace android {
305 namespace hardware {
306 namespace wifi {
307 namespace V1_2 {
308 namespace implementation {
309 using hidl_return_util::validateAndCall;
310 using hidl_return_util::validateAndCallWithLock;
311
WifiChip(ChipId chip_id,const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,const std::weak_ptr<mode_controller::WifiModeController> mode_controller,const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)312 WifiChip::WifiChip(
313 ChipId chip_id, const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
314 const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
315 const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)
316 : chip_id_(chip_id),
317 legacy_hal_(legacy_hal),
318 mode_controller_(mode_controller),
319 feature_flags_(feature_flags),
320 is_valid_(true),
321 current_mode_id_(kInvalidModeId),
322 debug_ring_buffer_cb_registered_(false) {
323 populateModes();
324 }
325
invalidate()326 void WifiChip::invalidate() {
327 if (!writeRingbufferFilesInternal()) {
328 LOG(ERROR) << "Error writing files to flash";
329 }
330 invalidateAndRemoveAllIfaces();
331 legacy_hal_.reset();
332 event_cb_handler_.invalidate();
333 is_valid_ = false;
334 }
335
isValid()336 bool WifiChip::isValid() { return is_valid_; }
337
getEventCallbacks()338 std::set<sp<IWifiChipEventCallback>> WifiChip::getEventCallbacks() {
339 return event_cb_handler_.getCallbacks();
340 }
341
getId(getId_cb hidl_status_cb)342 Return<void> WifiChip::getId(getId_cb hidl_status_cb) {
343 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
344 &WifiChip::getIdInternal, hidl_status_cb);
345 }
346
registerEventCallback(const sp<V1_0::IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)347 Return<void> WifiChip::registerEventCallback(
348 const sp<V1_0::IWifiChipEventCallback>& event_callback,
349 registerEventCallback_cb hidl_status_cb) {
350 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
351 &WifiChip::registerEventCallbackInternal,
352 hidl_status_cb, event_callback);
353 }
354
getCapabilities(getCapabilities_cb hidl_status_cb)355 Return<void> WifiChip::getCapabilities(getCapabilities_cb hidl_status_cb) {
356 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
357 &WifiChip::getCapabilitiesInternal, hidl_status_cb);
358 }
359
getAvailableModes(getAvailableModes_cb hidl_status_cb)360 Return<void> WifiChip::getAvailableModes(getAvailableModes_cb hidl_status_cb) {
361 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
362 &WifiChip::getAvailableModesInternal,
363 hidl_status_cb);
364 }
365
configureChip(ChipModeId mode_id,configureChip_cb hidl_status_cb)366 Return<void> WifiChip::configureChip(ChipModeId mode_id,
367 configureChip_cb hidl_status_cb) {
368 return validateAndCallWithLock(
369 this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
370 &WifiChip::configureChipInternal, hidl_status_cb, mode_id);
371 }
372
getMode(getMode_cb hidl_status_cb)373 Return<void> WifiChip::getMode(getMode_cb hidl_status_cb) {
374 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
375 &WifiChip::getModeInternal, hidl_status_cb);
376 }
377
requestChipDebugInfo(requestChipDebugInfo_cb hidl_status_cb)378 Return<void> WifiChip::requestChipDebugInfo(
379 requestChipDebugInfo_cb hidl_status_cb) {
380 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
381 &WifiChip::requestChipDebugInfoInternal,
382 hidl_status_cb);
383 }
384
requestDriverDebugDump(requestDriverDebugDump_cb hidl_status_cb)385 Return<void> WifiChip::requestDriverDebugDump(
386 requestDriverDebugDump_cb hidl_status_cb) {
387 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
388 &WifiChip::requestDriverDebugDumpInternal,
389 hidl_status_cb);
390 }
391
requestFirmwareDebugDump(requestFirmwareDebugDump_cb hidl_status_cb)392 Return<void> WifiChip::requestFirmwareDebugDump(
393 requestFirmwareDebugDump_cb hidl_status_cb) {
394 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
395 &WifiChip::requestFirmwareDebugDumpInternal,
396 hidl_status_cb);
397 }
398
createApIface(createApIface_cb hidl_status_cb)399 Return<void> WifiChip::createApIface(createApIface_cb hidl_status_cb) {
400 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
401 &WifiChip::createApIfaceInternal, hidl_status_cb);
402 }
403
getApIfaceNames(getApIfaceNames_cb hidl_status_cb)404 Return<void> WifiChip::getApIfaceNames(getApIfaceNames_cb hidl_status_cb) {
405 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
406 &WifiChip::getApIfaceNamesInternal, hidl_status_cb);
407 }
408
getApIface(const hidl_string & ifname,getApIface_cb hidl_status_cb)409 Return<void> WifiChip::getApIface(const hidl_string& ifname,
410 getApIface_cb hidl_status_cb) {
411 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
412 &WifiChip::getApIfaceInternal, hidl_status_cb,
413 ifname);
414 }
415
removeApIface(const hidl_string & ifname,removeApIface_cb hidl_status_cb)416 Return<void> WifiChip::removeApIface(const hidl_string& ifname,
417 removeApIface_cb hidl_status_cb) {
418 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
419 &WifiChip::removeApIfaceInternal, hidl_status_cb,
420 ifname);
421 }
422
createNanIface(createNanIface_cb hidl_status_cb)423 Return<void> WifiChip::createNanIface(createNanIface_cb hidl_status_cb) {
424 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
425 &WifiChip::createNanIfaceInternal, hidl_status_cb);
426 }
427
getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb)428 Return<void> WifiChip::getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb) {
429 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
430 &WifiChip::getNanIfaceNamesInternal, hidl_status_cb);
431 }
432
getNanIface(const hidl_string & ifname,getNanIface_cb hidl_status_cb)433 Return<void> WifiChip::getNanIface(const hidl_string& ifname,
434 getNanIface_cb hidl_status_cb) {
435 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
436 &WifiChip::getNanIfaceInternal, hidl_status_cb,
437 ifname);
438 }
439
removeNanIface(const hidl_string & ifname,removeNanIface_cb hidl_status_cb)440 Return<void> WifiChip::removeNanIface(const hidl_string& ifname,
441 removeNanIface_cb hidl_status_cb) {
442 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
443 &WifiChip::removeNanIfaceInternal, hidl_status_cb,
444 ifname);
445 }
446
createP2pIface(createP2pIface_cb hidl_status_cb)447 Return<void> WifiChip::createP2pIface(createP2pIface_cb hidl_status_cb) {
448 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
449 &WifiChip::createP2pIfaceInternal, hidl_status_cb);
450 }
451
getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb)452 Return<void> WifiChip::getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb) {
453 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
454 &WifiChip::getP2pIfaceNamesInternal, hidl_status_cb);
455 }
456
getP2pIface(const hidl_string & ifname,getP2pIface_cb hidl_status_cb)457 Return<void> WifiChip::getP2pIface(const hidl_string& ifname,
458 getP2pIface_cb hidl_status_cb) {
459 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
460 &WifiChip::getP2pIfaceInternal, hidl_status_cb,
461 ifname);
462 }
463
removeP2pIface(const hidl_string & ifname,removeP2pIface_cb hidl_status_cb)464 Return<void> WifiChip::removeP2pIface(const hidl_string& ifname,
465 removeP2pIface_cb hidl_status_cb) {
466 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
467 &WifiChip::removeP2pIfaceInternal, hidl_status_cb,
468 ifname);
469 }
470
createStaIface(createStaIface_cb hidl_status_cb)471 Return<void> WifiChip::createStaIface(createStaIface_cb hidl_status_cb) {
472 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
473 &WifiChip::createStaIfaceInternal, hidl_status_cb);
474 }
475
getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb)476 Return<void> WifiChip::getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb) {
477 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
478 &WifiChip::getStaIfaceNamesInternal, hidl_status_cb);
479 }
480
getStaIface(const hidl_string & ifname,getStaIface_cb hidl_status_cb)481 Return<void> WifiChip::getStaIface(const hidl_string& ifname,
482 getStaIface_cb hidl_status_cb) {
483 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
484 &WifiChip::getStaIfaceInternal, hidl_status_cb,
485 ifname);
486 }
487
removeStaIface(const hidl_string & ifname,removeStaIface_cb hidl_status_cb)488 Return<void> WifiChip::removeStaIface(const hidl_string& ifname,
489 removeStaIface_cb hidl_status_cb) {
490 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
491 &WifiChip::removeStaIfaceInternal, hidl_status_cb,
492 ifname);
493 }
494
createRttController(const sp<IWifiIface> & bound_iface,createRttController_cb hidl_status_cb)495 Return<void> WifiChip::createRttController(
496 const sp<IWifiIface>& bound_iface, createRttController_cb hidl_status_cb) {
497 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
498 &WifiChip::createRttControllerInternal,
499 hidl_status_cb, bound_iface);
500 }
501
getDebugRingBuffersStatus(getDebugRingBuffersStatus_cb hidl_status_cb)502 Return<void> WifiChip::getDebugRingBuffersStatus(
503 getDebugRingBuffersStatus_cb hidl_status_cb) {
504 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
505 &WifiChip::getDebugRingBuffersStatusInternal,
506 hidl_status_cb);
507 }
508
startLoggingToDebugRingBuffer(const hidl_string & ring_name,WifiDebugRingBufferVerboseLevel verbose_level,uint32_t max_interval_in_sec,uint32_t min_data_size_in_bytes,startLoggingToDebugRingBuffer_cb hidl_status_cb)509 Return<void> WifiChip::startLoggingToDebugRingBuffer(
510 const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
511 uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes,
512 startLoggingToDebugRingBuffer_cb hidl_status_cb) {
513 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
514 &WifiChip::startLoggingToDebugRingBufferInternal,
515 hidl_status_cb, ring_name, verbose_level,
516 max_interval_in_sec, min_data_size_in_bytes);
517 }
518
forceDumpToDebugRingBuffer(const hidl_string & ring_name,forceDumpToDebugRingBuffer_cb hidl_status_cb)519 Return<void> WifiChip::forceDumpToDebugRingBuffer(
520 const hidl_string& ring_name,
521 forceDumpToDebugRingBuffer_cb hidl_status_cb) {
522 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
523 &WifiChip::forceDumpToDebugRingBufferInternal,
524 hidl_status_cb, ring_name);
525 }
526
stopLoggingToDebugRingBuffer(stopLoggingToDebugRingBuffer_cb hidl_status_cb)527 Return<void> WifiChip::stopLoggingToDebugRingBuffer(
528 stopLoggingToDebugRingBuffer_cb hidl_status_cb) {
529 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
530 &WifiChip::stopLoggingToDebugRingBufferInternal,
531 hidl_status_cb);
532 }
533
getDebugHostWakeReasonStats(getDebugHostWakeReasonStats_cb hidl_status_cb)534 Return<void> WifiChip::getDebugHostWakeReasonStats(
535 getDebugHostWakeReasonStats_cb hidl_status_cb) {
536 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
537 &WifiChip::getDebugHostWakeReasonStatsInternal,
538 hidl_status_cb);
539 }
540
enableDebugErrorAlerts(bool enable,enableDebugErrorAlerts_cb hidl_status_cb)541 Return<void> WifiChip::enableDebugErrorAlerts(
542 bool enable, enableDebugErrorAlerts_cb hidl_status_cb) {
543 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
544 &WifiChip::enableDebugErrorAlertsInternal,
545 hidl_status_cb, enable);
546 }
547
selectTxPowerScenario(V1_1::IWifiChip::TxPowerScenario scenario,selectTxPowerScenario_cb hidl_status_cb)548 Return<void> WifiChip::selectTxPowerScenario(
549 V1_1::IWifiChip::TxPowerScenario scenario, selectTxPowerScenario_cb hidl_status_cb) {
550 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
551 &WifiChip::selectTxPowerScenarioInternal,
552 hidl_status_cb, scenario);
553 }
554
resetTxPowerScenario(resetTxPowerScenario_cb hidl_status_cb)555 Return<void> WifiChip::resetTxPowerScenario(
556 resetTxPowerScenario_cb hidl_status_cb) {
557 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
558 &WifiChip::resetTxPowerScenarioInternal,
559 hidl_status_cb);
560 }
561
registerEventCallback_1_2(const sp<IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)562 Return<void> WifiChip::registerEventCallback_1_2(
563 const sp<IWifiChipEventCallback>& event_callback,
564 registerEventCallback_cb hidl_status_cb) {
565 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
566 &WifiChip::registerEventCallbackInternal_1_2,
567 hidl_status_cb, event_callback);
568 }
569
selectTxPowerScenario_1_2(TxPowerScenario scenario,selectTxPowerScenario_cb hidl_status_cb)570 Return<void> WifiChip::selectTxPowerScenario_1_2(
571 TxPowerScenario scenario, selectTxPowerScenario_cb hidl_status_cb) {
572 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
573 &WifiChip::selectTxPowerScenarioInternal_1_2, hidl_status_cb, scenario);
574 }
575
debug(const hidl_handle & handle,const hidl_vec<hidl_string> &)576 Return<void> WifiChip::debug(const hidl_handle& handle,
577 const hidl_vec<hidl_string>&) {
578 if (handle != nullptr && handle->numFds >= 1) {
579 int fd = handle->data[0];
580 if (!writeRingbufferFilesInternal()) {
581 LOG(ERROR) << "Error writing files to flash";
582 }
583 uint32_t n_error = cpioArchiveFilesInDir(fd, kTombstoneFolderPath);
584 if (n_error != 0) {
585 LOG(ERROR) << n_error << " errors occured in cpio function";
586 }
587 fsync(fd);
588 } else {
589 LOG(ERROR) << "File handle error";
590 }
591 return Void();
592 }
593
invalidateAndRemoveAllIfaces()594 void WifiChip::invalidateAndRemoveAllIfaces() {
595 invalidateAndClearAll(ap_ifaces_);
596 invalidateAndClearAll(nan_ifaces_);
597 invalidateAndClearAll(p2p_ifaces_);
598 invalidateAndClearAll(sta_ifaces_);
599 // Since all the ifaces are invalid now, all RTT controller objects
600 // using those ifaces also need to be invalidated.
601 for (const auto& rtt : rtt_controllers_) {
602 rtt->invalidate();
603 }
604 rtt_controllers_.clear();
605 }
606
getIdInternal()607 std::pair<WifiStatus, ChipId> WifiChip::getIdInternal() {
608 return {createWifiStatus(WifiStatusCode::SUCCESS), chip_id_};
609 }
610
registerEventCallbackInternal(const sp<V1_0::IWifiChipEventCallback> &)611 WifiStatus WifiChip::registerEventCallbackInternal(
612 const sp<V1_0::IWifiChipEventCallback>& /* event_callback */) {
613 // Deprecated support for this callback.
614 return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
615 }
616
getCapabilitiesInternal()617 std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal() {
618 legacy_hal::wifi_error legacy_status;
619 uint32_t legacy_feature_set;
620 uint32_t legacy_logger_feature_set;
621 std::tie(legacy_status, legacy_feature_set) =
622 legacy_hal_.lock()->getSupportedFeatureSet(getWlan0IfaceName());
623 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
624 return {createWifiStatusFromLegacyError(legacy_status), 0};
625 }
626 std::tie(legacy_status, legacy_logger_feature_set) =
627 legacy_hal_.lock()->getLoggerSupportedFeatureSet(getWlan0IfaceName());
628 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
629 // some devices don't support querying logger feature set
630 legacy_logger_feature_set = 0;
631 }
632 uint32_t hidl_caps;
633 if (!hidl_struct_util::convertLegacyFeaturesToHidlChipCapabilities(
634 legacy_feature_set, legacy_logger_feature_set, &hidl_caps)) {
635 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), 0};
636 }
637 return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_caps};
638 }
639
640 std::pair<WifiStatus, std::vector<IWifiChip::ChipMode>>
getAvailableModesInternal()641 WifiChip::getAvailableModesInternal() {
642 return {createWifiStatus(WifiStatusCode::SUCCESS), modes_};
643 }
644
configureChipInternal(std::unique_lock<std::recursive_mutex> * lock,ChipModeId mode_id)645 WifiStatus WifiChip::configureChipInternal(
646 /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
647 ChipModeId mode_id) {
648 if (!isValidModeId(mode_id)) {
649 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
650 }
651 if (mode_id == current_mode_id_) {
652 LOG(DEBUG) << "Already in the specified mode " << mode_id;
653 return createWifiStatus(WifiStatusCode::SUCCESS);
654 }
655 WifiStatus status = handleChipConfiguration(lock, mode_id);
656 if (status.code != WifiStatusCode::SUCCESS) {
657 for (const auto& callback : event_cb_handler_.getCallbacks()) {
658 if (!callback->onChipReconfigureFailure(status).isOk()) {
659 LOG(ERROR)
660 << "Failed to invoke onChipReconfigureFailure callback";
661 }
662 }
663 return status;
664 }
665 for (const auto& callback : event_cb_handler_.getCallbacks()) {
666 if (!callback->onChipReconfigured(mode_id).isOk()) {
667 LOG(ERROR) << "Failed to invoke onChipReconfigured callback";
668 }
669 }
670 current_mode_id_ = mode_id;
671 LOG(INFO) << "Configured chip in mode " << mode_id;
672 return status;
673 }
674
getModeInternal()675 std::pair<WifiStatus, uint32_t> WifiChip::getModeInternal() {
676 if (!isValidModeId(current_mode_id_)) {
677 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE),
678 current_mode_id_};
679 }
680 return {createWifiStatus(WifiStatusCode::SUCCESS), current_mode_id_};
681 }
682
683 std::pair<WifiStatus, IWifiChip::ChipDebugInfo>
requestChipDebugInfoInternal()684 WifiChip::requestChipDebugInfoInternal() {
685 IWifiChip::ChipDebugInfo result;
686 legacy_hal::wifi_error legacy_status;
687 std::string driver_desc;
688 std::tie(legacy_status, driver_desc) =
689 legacy_hal_.lock()->getDriverVersion(getWlan0IfaceName());
690 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
691 LOG(ERROR) << "Failed to get driver version: "
692 << legacyErrorToString(legacy_status);
693 WifiStatus status = createWifiStatusFromLegacyError(
694 legacy_status, "failed to get driver version");
695 return {status, result};
696 }
697 result.driverDescription = driver_desc.c_str();
698
699 std::string firmware_desc;
700 std::tie(legacy_status, firmware_desc) =
701 legacy_hal_.lock()->getFirmwareVersion(getWlan0IfaceName());
702 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
703 LOG(ERROR) << "Failed to get firmware version: "
704 << legacyErrorToString(legacy_status);
705 WifiStatus status = createWifiStatusFromLegacyError(
706 legacy_status, "failed to get firmware version");
707 return {status, result};
708 }
709 result.firmwareDescription = firmware_desc.c_str();
710
711 return {createWifiStatus(WifiStatusCode::SUCCESS), result};
712 }
713
714 std::pair<WifiStatus, std::vector<uint8_t>>
requestDriverDebugDumpInternal()715 WifiChip::requestDriverDebugDumpInternal() {
716 legacy_hal::wifi_error legacy_status;
717 std::vector<uint8_t> driver_dump;
718 std::tie(legacy_status, driver_dump) =
719 legacy_hal_.lock()->requestDriverMemoryDump(getWlan0IfaceName());
720 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
721 LOG(ERROR) << "Failed to get driver debug dump: "
722 << legacyErrorToString(legacy_status);
723 return {createWifiStatusFromLegacyError(legacy_status),
724 std::vector<uint8_t>()};
725 }
726 return {createWifiStatus(WifiStatusCode::SUCCESS), driver_dump};
727 }
728
729 std::pair<WifiStatus, std::vector<uint8_t>>
requestFirmwareDebugDumpInternal()730 WifiChip::requestFirmwareDebugDumpInternal() {
731 legacy_hal::wifi_error legacy_status;
732 std::vector<uint8_t> firmware_dump;
733 std::tie(legacy_status, firmware_dump) =
734 legacy_hal_.lock()->requestFirmwareMemoryDump(getWlan0IfaceName());
735 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
736 LOG(ERROR) << "Failed to get firmware debug dump: "
737 << legacyErrorToString(legacy_status);
738 return {createWifiStatusFromLegacyError(legacy_status), {}};
739 }
740 return {createWifiStatus(WifiStatusCode::SUCCESS), firmware_dump};
741 }
742
createApIfaceInternal()743 std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::createApIfaceInternal() {
744 if (!canCurrentModeSupportIfaceOfType(IfaceType::AP)) {
745 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
746 }
747 std::string ifname = allocateApOrStaIfaceName();
748 sp<WifiApIface> iface = new WifiApIface(ifname, legacy_hal_);
749 ap_ifaces_.push_back(iface);
750 for (const auto& callback : event_cb_handler_.getCallbacks()) {
751 if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) {
752 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
753 }
754 }
755 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
756 }
757
758 std::pair<WifiStatus, std::vector<hidl_string>>
getApIfaceNamesInternal()759 WifiChip::getApIfaceNamesInternal() {
760 if (ap_ifaces_.empty()) {
761 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
762 }
763 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(ap_ifaces_)};
764 }
765
getApIfaceInternal(const std::string & ifname)766 std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::getApIfaceInternal(
767 const std::string& ifname) {
768 const auto iface = findUsingName(ap_ifaces_, ifname);
769 if (!iface.get()) {
770 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
771 }
772 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
773 }
774
removeApIfaceInternal(const std::string & ifname)775 WifiStatus WifiChip::removeApIfaceInternal(const std::string& ifname) {
776 const auto iface = findUsingName(ap_ifaces_, ifname);
777 if (!iface.get()) {
778 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
779 }
780 invalidateAndClear(ap_ifaces_, iface);
781 for (const auto& callback : event_cb_handler_.getCallbacks()) {
782 if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) {
783 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
784 }
785 }
786 return createWifiStatus(WifiStatusCode::SUCCESS);
787 }
788
createNanIfaceInternal()789 std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::createNanIfaceInternal() {
790 if (!canCurrentModeSupportIfaceOfType(IfaceType::NAN)) {
791 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
792 }
793 // These are still assumed to be based on wlan0.
794 std::string ifname = getWlan0IfaceName();
795 sp<WifiNanIface> iface = new WifiNanIface(ifname, legacy_hal_);
796 nan_ifaces_.push_back(iface);
797 for (const auto& callback : event_cb_handler_.getCallbacks()) {
798 if (!callback->onIfaceAdded(IfaceType::NAN, ifname).isOk()) {
799 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
800 }
801 }
802 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
803 }
804
805 std::pair<WifiStatus, std::vector<hidl_string>>
getNanIfaceNamesInternal()806 WifiChip::getNanIfaceNamesInternal() {
807 if (nan_ifaces_.empty()) {
808 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
809 }
810 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(nan_ifaces_)};
811 }
812
getNanIfaceInternal(const std::string & ifname)813 std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::getNanIfaceInternal(
814 const std::string& ifname) {
815 const auto iface = findUsingName(nan_ifaces_, ifname);
816 if (!iface.get()) {
817 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
818 }
819 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
820 }
821
removeNanIfaceInternal(const std::string & ifname)822 WifiStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) {
823 const auto iface = findUsingName(nan_ifaces_, ifname);
824 if (!iface.get()) {
825 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
826 }
827 invalidateAndClear(nan_ifaces_, iface);
828 for (const auto& callback : event_cb_handler_.getCallbacks()) {
829 if (!callback->onIfaceRemoved(IfaceType::NAN, ifname).isOk()) {
830 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
831 }
832 }
833 return createWifiStatus(WifiStatusCode::SUCCESS);
834 }
835
createP2pIfaceInternal()836 std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::createP2pIfaceInternal() {
837 if (!canCurrentModeSupportIfaceOfType(IfaceType::P2P)) {
838 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
839 }
840 std::string ifname = getP2pIfaceName();
841 sp<WifiP2pIface> iface = new WifiP2pIface(ifname, legacy_hal_);
842 p2p_ifaces_.push_back(iface);
843 for (const auto& callback : event_cb_handler_.getCallbacks()) {
844 if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) {
845 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
846 }
847 }
848 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
849 }
850
851 std::pair<WifiStatus, std::vector<hidl_string>>
getP2pIfaceNamesInternal()852 WifiChip::getP2pIfaceNamesInternal() {
853 if (p2p_ifaces_.empty()) {
854 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
855 }
856 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(p2p_ifaces_)};
857 }
858
getP2pIfaceInternal(const std::string & ifname)859 std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::getP2pIfaceInternal(
860 const std::string& ifname) {
861 const auto iface = findUsingName(p2p_ifaces_, ifname);
862 if (!iface.get()) {
863 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
864 }
865 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
866 }
867
removeP2pIfaceInternal(const std::string & ifname)868 WifiStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) {
869 const auto iface = findUsingName(p2p_ifaces_, ifname);
870 if (!iface.get()) {
871 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
872 }
873 invalidateAndClear(p2p_ifaces_, iface);
874 for (const auto& callback : event_cb_handler_.getCallbacks()) {
875 if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) {
876 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
877 }
878 }
879 return createWifiStatus(WifiStatusCode::SUCCESS);
880 }
881
createStaIfaceInternal()882 std::pair<WifiStatus, sp<IWifiStaIface>> WifiChip::createStaIfaceInternal() {
883 if (!canCurrentModeSupportIfaceOfType(IfaceType::STA)) {
884 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
885 }
886 std::string ifname = allocateApOrStaIfaceName();
887 sp<WifiStaIface> iface = new WifiStaIface(ifname, legacy_hal_);
888 sta_ifaces_.push_back(iface);
889 for (const auto& callback : event_cb_handler_.getCallbacks()) {
890 if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) {
891 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
892 }
893 }
894 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
895 }
896
897 std::pair<WifiStatus, std::vector<hidl_string>>
getStaIfaceNamesInternal()898 WifiChip::getStaIfaceNamesInternal() {
899 if (sta_ifaces_.empty()) {
900 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
901 }
902 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(sta_ifaces_)};
903 }
904
getStaIfaceInternal(const std::string & ifname)905 std::pair<WifiStatus, sp<IWifiStaIface>> WifiChip::getStaIfaceInternal(
906 const std::string& ifname) {
907 const auto iface = findUsingName(sta_ifaces_, ifname);
908 if (!iface.get()) {
909 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
910 }
911 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
912 }
913
removeStaIfaceInternal(const std::string & ifname)914 WifiStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) {
915 const auto iface = findUsingName(sta_ifaces_, ifname);
916 if (!iface.get()) {
917 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
918 }
919 invalidateAndClear(sta_ifaces_, iface);
920 for (const auto& callback : event_cb_handler_.getCallbacks()) {
921 if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) {
922 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
923 }
924 }
925 return createWifiStatus(WifiStatusCode::SUCCESS);
926 }
927
928 std::pair<WifiStatus, sp<IWifiRttController>>
createRttControllerInternal(const sp<IWifiIface> & bound_iface)929 WifiChip::createRttControllerInternal(const sp<IWifiIface>& bound_iface) {
930 sp<WifiRttController> rtt =
931 new WifiRttController(getWlan0IfaceName(), bound_iface, legacy_hal_);
932 rtt_controllers_.emplace_back(rtt);
933 return {createWifiStatus(WifiStatusCode::SUCCESS), rtt};
934 }
935
936 std::pair<WifiStatus, std::vector<WifiDebugRingBufferStatus>>
getDebugRingBuffersStatusInternal()937 WifiChip::getDebugRingBuffersStatusInternal() {
938 legacy_hal::wifi_error legacy_status;
939 std::vector<legacy_hal::wifi_ring_buffer_status>
940 legacy_ring_buffer_status_vec;
941 std::tie(legacy_status, legacy_ring_buffer_status_vec) =
942 legacy_hal_.lock()->getRingBuffersStatus(getWlan0IfaceName());
943 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
944 return {createWifiStatusFromLegacyError(legacy_status), {}};
945 }
946 std::vector<WifiDebugRingBufferStatus> hidl_ring_buffer_status_vec;
947 if (!hidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToHidl(
948 legacy_ring_buffer_status_vec, &hidl_ring_buffer_status_vec)) {
949 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
950 }
951 return {createWifiStatus(WifiStatusCode::SUCCESS),
952 hidl_ring_buffer_status_vec};
953 }
954
startLoggingToDebugRingBufferInternal(const hidl_string & ring_name,WifiDebugRingBufferVerboseLevel verbose_level,uint32_t max_interval_in_sec,uint32_t min_data_size_in_bytes)955 WifiStatus WifiChip::startLoggingToDebugRingBufferInternal(
956 const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
957 uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) {
958 WifiStatus status = registerDebugRingBufferCallback();
959 if (status.code != WifiStatusCode::SUCCESS) {
960 return status;
961 }
962 legacy_hal::wifi_error legacy_status =
963 legacy_hal_.lock()->startRingBufferLogging(
964 getWlan0IfaceName(), ring_name,
965 static_cast<
966 std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(
967 verbose_level),
968 max_interval_in_sec, min_data_size_in_bytes);
969 ringbuffer_map_.insert(std::pair<std::string, Ringbuffer>(
970 ring_name, Ringbuffer(kMaxBufferSizeBytes)));
971 return createWifiStatusFromLegacyError(legacy_status);
972 }
973
forceDumpToDebugRingBufferInternal(const hidl_string & ring_name)974 WifiStatus WifiChip::forceDumpToDebugRingBufferInternal(
975 const hidl_string& ring_name) {
976 WifiStatus status = registerDebugRingBufferCallback();
977 if (status.code != WifiStatusCode::SUCCESS) {
978 return status;
979 }
980 legacy_hal::wifi_error legacy_status =
981 legacy_hal_.lock()->getRingBufferData(getWlan0IfaceName(), ring_name);
982
983 return createWifiStatusFromLegacyError(legacy_status);
984 }
985
stopLoggingToDebugRingBufferInternal()986 WifiStatus WifiChip::stopLoggingToDebugRingBufferInternal() {
987 legacy_hal::wifi_error legacy_status =
988 legacy_hal_.lock()->deregisterRingBufferCallbackHandler(
989 getWlan0IfaceName());
990 return createWifiStatusFromLegacyError(legacy_status);
991 }
992
993 std::pair<WifiStatus, WifiDebugHostWakeReasonStats>
getDebugHostWakeReasonStatsInternal()994 WifiChip::getDebugHostWakeReasonStatsInternal() {
995 legacy_hal::wifi_error legacy_status;
996 legacy_hal::WakeReasonStats legacy_stats;
997 std::tie(legacy_status, legacy_stats) =
998 legacy_hal_.lock()->getWakeReasonStats(getWlan0IfaceName());
999 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1000 return {createWifiStatusFromLegacyError(legacy_status), {}};
1001 }
1002 WifiDebugHostWakeReasonStats hidl_stats;
1003 if (!hidl_struct_util::convertLegacyWakeReasonStatsToHidl(legacy_stats,
1004 &hidl_stats)) {
1005 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
1006 }
1007 return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_stats};
1008 }
1009
enableDebugErrorAlertsInternal(bool enable)1010 WifiStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) {
1011 legacy_hal::wifi_error legacy_status;
1012 if (enable) {
1013 android::wp<WifiChip> weak_ptr_this(this);
1014 const auto& on_alert_callback = [weak_ptr_this](
1015 int32_t error_code,
1016 std::vector<uint8_t> debug_data) {
1017 const auto shared_ptr_this = weak_ptr_this.promote();
1018 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1019 LOG(ERROR) << "Callback invoked on an invalid object";
1020 return;
1021 }
1022 for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
1023 if (!callback->onDebugErrorAlert(error_code, debug_data)
1024 .isOk()) {
1025 LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback";
1026 }
1027 }
1028 };
1029 legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler(
1030 getWlan0IfaceName(), on_alert_callback);
1031 } else {
1032 legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler(
1033 getWlan0IfaceName());
1034 }
1035 return createWifiStatusFromLegacyError(legacy_status);
1036 }
1037
selectTxPowerScenarioInternal(V1_1::IWifiChip::TxPowerScenario scenario)1038 WifiStatus WifiChip::selectTxPowerScenarioInternal(
1039 V1_1::IWifiChip::TxPowerScenario scenario) {
1040 auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
1041 getWlan0IfaceName(),
1042 hidl_struct_util::convertHidlTxPowerScenarioToLegacy(scenario));
1043 return createWifiStatusFromLegacyError(legacy_status);
1044 }
1045
resetTxPowerScenarioInternal()1046 WifiStatus WifiChip::resetTxPowerScenarioInternal() {
1047 auto legacy_status =
1048 legacy_hal_.lock()->resetTxPowerScenario(getWlan0IfaceName());
1049 return createWifiStatusFromLegacyError(legacy_status);
1050 }
1051
registerEventCallbackInternal_1_2(const sp<IWifiChipEventCallback> & event_callback)1052 WifiStatus WifiChip::registerEventCallbackInternal_1_2(
1053 const sp<IWifiChipEventCallback>& event_callback) {
1054 if (!event_cb_handler_.addCallback(event_callback)) {
1055 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1056 }
1057 return createWifiStatus(WifiStatusCode::SUCCESS);
1058 }
1059
selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario)1060 WifiStatus WifiChip::selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario) {
1061 auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
1062 getWlan0IfaceName(),
1063 hidl_struct_util::convertHidlTxPowerScenarioToLegacy_1_2(scenario));
1064 return createWifiStatusFromLegacyError(legacy_status);
1065 }
1066
handleChipConfiguration(std::unique_lock<std::recursive_mutex> * lock,ChipModeId mode_id)1067 WifiStatus WifiChip::handleChipConfiguration(
1068 /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
1069 ChipModeId mode_id) {
1070 // If the chip is already configured in a different mode, stop
1071 // the legacy HAL and then start it after firmware mode change.
1072 if (isValidModeId(current_mode_id_)) {
1073 LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_
1074 << " to mode " << mode_id;
1075 invalidateAndRemoveAllIfaces();
1076 legacy_hal::wifi_error legacy_status =
1077 legacy_hal_.lock()->stop(lock, []() {});
1078 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1079 LOG(ERROR) << "Failed to stop legacy HAL: "
1080 << legacyErrorToString(legacy_status);
1081 return createWifiStatusFromLegacyError(legacy_status);
1082 }
1083 }
1084 // Firmware mode change not needed for V2 devices.
1085 bool success = true;
1086 if (mode_id == kV1StaChipModeId) {
1087 success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA);
1088 } else if (mode_id == kV1ApChipModeId) {
1089 success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP);
1090 }
1091 if (!success) {
1092 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1093 }
1094 legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start();
1095 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1096 LOG(ERROR) << "Failed to start legacy HAL: "
1097 << legacyErrorToString(legacy_status);
1098 return createWifiStatusFromLegacyError(legacy_status);
1099 }
1100 // Every time the HAL is restarted, we need to register the
1101 // radio mode change callback.
1102 WifiStatus status = registerRadioModeChangeCallback();
1103 if (status.code != WifiStatusCode::SUCCESS) {
1104 // This probably is not a critical failure?
1105 LOG(ERROR) << "Failed to register radio mode change callback";
1106 }
1107 return createWifiStatus(WifiStatusCode::SUCCESS);
1108 }
1109
registerDebugRingBufferCallback()1110 WifiStatus WifiChip::registerDebugRingBufferCallback() {
1111 if (debug_ring_buffer_cb_registered_) {
1112 return createWifiStatus(WifiStatusCode::SUCCESS);
1113 }
1114
1115 android::wp<WifiChip> weak_ptr_this(this);
1116 const auto& on_ring_buffer_data_callback =
1117 [weak_ptr_this](const std::string& name,
1118 const std::vector<uint8_t>& data,
1119 const legacy_hal::wifi_ring_buffer_status& status) {
1120 const auto shared_ptr_this = weak_ptr_this.promote();
1121 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1122 LOG(ERROR) << "Callback invoked on an invalid object";
1123 return;
1124 }
1125 WifiDebugRingBufferStatus hidl_status;
1126 if (!hidl_struct_util::convertLegacyDebugRingBufferStatusToHidl(
1127 status, &hidl_status)) {
1128 LOG(ERROR) << "Error converting ring buffer status";
1129 return;
1130 }
1131 const auto& target = shared_ptr_this->ringbuffer_map_.find(name);
1132 if (target != shared_ptr_this->ringbuffer_map_.end()) {
1133 Ringbuffer& cur_buffer = target->second;
1134 cur_buffer.append(data);
1135 } else {
1136 LOG(ERROR) << "Ringname " << name << " not found";
1137 return;
1138 }
1139 };
1140 legacy_hal::wifi_error legacy_status =
1141 legacy_hal_.lock()->registerRingBufferCallbackHandler(
1142 getWlan0IfaceName(), on_ring_buffer_data_callback);
1143
1144 if (legacy_status == legacy_hal::WIFI_SUCCESS) {
1145 debug_ring_buffer_cb_registered_ = true;
1146 }
1147 return createWifiStatusFromLegacyError(legacy_status);
1148 }
1149
registerRadioModeChangeCallback()1150 WifiStatus WifiChip::registerRadioModeChangeCallback() {
1151 android::wp<WifiChip> weak_ptr_this(this);
1152 const auto& on_radio_mode_change_callback =
1153 [weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) {
1154 const auto shared_ptr_this = weak_ptr_this.promote();
1155 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1156 LOG(ERROR) << "Callback invoked on an invalid object";
1157 return;
1158 }
1159 std::vector<IWifiChipEventCallback::RadioModeInfo>
1160 hidl_radio_mode_infos;
1161 if (!hidl_struct_util::convertLegacyWifiMacInfosToHidl(
1162 mac_infos, &hidl_radio_mode_infos)) {
1163 LOG(ERROR) << "Error converting wifi mac info";
1164 return;
1165 }
1166 for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
1167 if (!callback->onRadioModeChange(hidl_radio_mode_infos)
1168 .isOk()) {
1169 LOG(ERROR) << "Failed to invoke onRadioModeChange"
1170 << " callback on: " << toString(callback);
1171 }
1172 }
1173 };
1174 legacy_hal::wifi_error legacy_status =
1175 legacy_hal_.lock()->registerRadioModeChangeCallbackHandler(
1176 getWlan0IfaceName(), on_radio_mode_change_callback);
1177 return createWifiStatusFromLegacyError(legacy_status);
1178 }
1179
populateModes()1180 void WifiChip::populateModes() {
1181 // The chip combination supported for current devices is fixed.
1182 // They can be one of the following based on device features:
1183 // a) 2 separate modes of operation with 1 interface combination each:
1184 // Mode 1 (STA mode): Will support 1 STA and 1 P2P or NAN(optional)
1185 // concurrent iface operations.
1186 // Mode 2 (AP mode): Will support 1 AP iface operation.
1187 //
1188 // b) 1 mode of operation with 2 interface combinations
1189 // (conditional on isDualInterfaceSupported()):
1190 // Interface Combination 1: Will support 1 STA and 1 P2P or NAN(optional)
1191 // concurrent iface operations.
1192 // Interface Combination 2: Will support 1 STA and 1 AP concurrent
1193 // iface operations.
1194 // If Aware is enabled (conditional on isAwareSupported()), the iface
1195 // combination will be modified to support either P2P or NAN in place of
1196 // just P2P.
1197 if (feature_flags_.lock()->isDualInterfaceSupported()) {
1198 // V2 Iface combinations for Mode Id = 2.
1199 const IWifiChip::ChipIfaceCombinationLimit
1200 chip_iface_combination_limit_1 = {{IfaceType::STA}, 1};
1201 const IWifiChip::ChipIfaceCombinationLimit
1202 chip_iface_combination_limit_2 = {{IfaceType::AP}, 1};
1203 IWifiChip::ChipIfaceCombinationLimit chip_iface_combination_limit_3;
1204 if (feature_flags_.lock()->isAwareSupported()) {
1205 chip_iface_combination_limit_3 = {{IfaceType::P2P, IfaceType::NAN},
1206 1};
1207 } else {
1208 chip_iface_combination_limit_3 = {{IfaceType::P2P}, 1};
1209 }
1210 const IWifiChip::ChipIfaceCombination chip_iface_combination_1 = {
1211 {chip_iface_combination_limit_1, chip_iface_combination_limit_2}};
1212 const IWifiChip::ChipIfaceCombination chip_iface_combination_2 = {
1213 {chip_iface_combination_limit_1, chip_iface_combination_limit_3}};
1214 if (feature_flags_.lock()->isApDisabled()) {
1215 const IWifiChip::ChipMode chip_mode = {
1216 kV2ChipModeId,
1217 {chip_iface_combination_2}};
1218 modes_ = {chip_mode};
1219 } else {
1220 const IWifiChip::ChipMode chip_mode = {
1221 kV2ChipModeId,
1222 {chip_iface_combination_1, chip_iface_combination_2}};
1223 modes_ = {chip_mode};
1224 }
1225 } else {
1226 // V1 Iface combinations for Mode Id = 0. (STA Mode)
1227 const IWifiChip::ChipIfaceCombinationLimit
1228 sta_chip_iface_combination_limit_1 = {{IfaceType::STA}, 1};
1229 IWifiChip::ChipIfaceCombinationLimit sta_chip_iface_combination_limit_2;
1230 if (feature_flags_.lock()->isAwareSupported()) {
1231 sta_chip_iface_combination_limit_2 = {
1232 {IfaceType::P2P, IfaceType::NAN}, 1};
1233 } else {
1234 sta_chip_iface_combination_limit_2 = {{IfaceType::P2P}, 1};
1235 }
1236 const IWifiChip::ChipIfaceCombination sta_chip_iface_combination = {
1237 {sta_chip_iface_combination_limit_1,
1238 sta_chip_iface_combination_limit_2}};
1239 const IWifiChip::ChipMode sta_chip_mode = {
1240 kV1StaChipModeId, {sta_chip_iface_combination}};
1241 // Iface combinations for Mode Id = 1. (AP Mode)
1242 const IWifiChip::ChipIfaceCombinationLimit
1243 ap_chip_iface_combination_limit = {{IfaceType::AP}, 1};
1244 const IWifiChip::ChipIfaceCombination ap_chip_iface_combination = {
1245 {ap_chip_iface_combination_limit}};
1246 const IWifiChip::ChipMode ap_chip_mode = {kV1ApChipModeId,
1247 {ap_chip_iface_combination}};
1248 if (feature_flags_.lock()->isApDisabled()) {
1249 modes_ = {sta_chip_mode};
1250 } else {
1251 modes_ = {sta_chip_mode, ap_chip_mode};
1252 }
1253 }
1254 }
1255
1256 std::vector<IWifiChip::ChipIfaceCombination>
getCurrentModeIfaceCombinations()1257 WifiChip::getCurrentModeIfaceCombinations() {
1258 if (!isValidModeId(current_mode_id_)) {
1259 LOG(ERROR) << "Chip not configured in a mode yet";
1260 return {};
1261 }
1262 for (const auto& mode : modes_) {
1263 if (mode.id == current_mode_id_) {
1264 return mode.availableCombinations;
1265 }
1266 }
1267 CHECK(0) << "Expected to find iface combinations for current mode!";
1268 return {};
1269 }
1270
1271 // Returns a map indexed by IfaceType with the number of ifaces currently
1272 // created of the corresponding type.
getCurrentIfaceCombination()1273 std::map<IfaceType, size_t> WifiChip::getCurrentIfaceCombination() {
1274 std::map<IfaceType, size_t> iface_counts;
1275 iface_counts[IfaceType::AP] = ap_ifaces_.size();
1276 iface_counts[IfaceType::NAN] = nan_ifaces_.size();
1277 iface_counts[IfaceType::P2P] = p2p_ifaces_.size();
1278 iface_counts[IfaceType::STA] = sta_ifaces_.size();
1279 return iface_counts;
1280 }
1281
1282 // This expands the provided iface combinations to a more parseable
1283 // form. Returns a vector of available combinations possible with the number
1284 // of ifaces of each type in the combination.
1285 // This method is a port of HalDeviceManager.expandIfaceCombos() from framework.
expandIfaceCombinations(const IWifiChip::ChipIfaceCombination & combination)1286 std::vector<std::map<IfaceType, size_t>> WifiChip::expandIfaceCombinations(
1287 const IWifiChip::ChipIfaceCombination& combination) {
1288 uint32_t num_expanded_combos = 1;
1289 for (const auto& limit : combination.limits) {
1290 for (uint32_t i = 0; i < limit.maxIfaces; i++) {
1291 num_expanded_combos *= limit.types.size();
1292 }
1293 }
1294
1295 // Allocate the vector of expanded combos and reset all iface counts to 0
1296 // in each combo.
1297 std::vector<std::map<IfaceType, size_t>> expanded_combos;
1298 expanded_combos.resize(num_expanded_combos);
1299 for (auto& expanded_combo : expanded_combos) {
1300 for (const auto type :
1301 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1302 expanded_combo[type] = 0;
1303 }
1304 }
1305 uint32_t span = num_expanded_combos;
1306 for (const auto& limit : combination.limits) {
1307 for (uint32_t i = 0; i < limit.maxIfaces; i++) {
1308 span /= limit.types.size();
1309 for (uint32_t k = 0; k < num_expanded_combos; ++k) {
1310 const auto iface_type =
1311 limit.types[(k / span) % limit.types.size()];
1312 expanded_combos[k][iface_type]++;
1313 }
1314 }
1315 }
1316 return expanded_combos;
1317 }
1318
canExpandedIfaceCombinationSupportIfaceOfType(const std::map<IfaceType,size_t> & combo,IfaceType requested_type)1319 bool WifiChip::canExpandedIfaceCombinationSupportIfaceOfType(
1320 const std::map<IfaceType, size_t>& combo, IfaceType requested_type) {
1321 const auto current_combo = getCurrentIfaceCombination();
1322
1323 // Check if we have space for 1 more iface of |type| in this combo
1324 for (const auto type :
1325 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1326 size_t num_ifaces_needed = current_combo.at(type);
1327 if (type == requested_type) {
1328 num_ifaces_needed++;
1329 }
1330 size_t num_ifaces_allowed = combo.at(type);
1331 if (num_ifaces_needed > num_ifaces_allowed) {
1332 return false;
1333 }
1334 }
1335 return true;
1336 }
1337
1338 // This method does the following:
1339 // a) Enumerate all possible iface combos by expanding the current
1340 // ChipIfaceCombination.
1341 // b) Check if the requested iface type can be added to the current mode.
canCurrentModeSupportIfaceOfType(IfaceType type)1342 bool WifiChip::canCurrentModeSupportIfaceOfType(IfaceType type) {
1343 if (!isValidModeId(current_mode_id_)) {
1344 LOG(ERROR) << "Chip not configured in a mode yet";
1345 return false;
1346 }
1347 const auto combinations = getCurrentModeIfaceCombinations();
1348 for (const auto& combination : combinations) {
1349 const auto expanded_combos = expandIfaceCombinations(combination);
1350 for (const auto& expanded_combo : expanded_combos) {
1351 if (canExpandedIfaceCombinationSupportIfaceOfType(expanded_combo,
1352 type)) {
1353 return true;
1354 }
1355 }
1356 }
1357 return false;
1358 }
1359
isValidModeId(ChipModeId mode_id)1360 bool WifiChip::isValidModeId(ChipModeId mode_id) {
1361 for (const auto& mode : modes_) {
1362 if (mode.id == mode_id) {
1363 return true;
1364 }
1365 }
1366 return false;
1367 }
1368
1369 // Return "wlan0", if "wlan0" is not already in use, else return "wlan1".
1370 // This is based on the assumption that we'll have a max of 2 concurrent
1371 // AP/STA ifaces.
allocateApOrStaIfaceName()1372 std::string WifiChip::allocateApOrStaIfaceName() {
1373 auto ap_iface = findUsingName(ap_ifaces_, getWlan0IfaceName());
1374 auto sta_iface = findUsingName(sta_ifaces_, getWlan0IfaceName());
1375 if (!ap_iface.get() && !sta_iface.get()) {
1376 return getWlan0IfaceName();
1377 }
1378 ap_iface = findUsingName(ap_ifaces_, getWlan1IfaceName());
1379 sta_iface = findUsingName(sta_ifaces_, getWlan1IfaceName());
1380 if (!ap_iface.get() && !sta_iface.get()) {
1381 return getWlan1IfaceName();
1382 }
1383 // This should never happen. We screwed up somewhere if it did.
1384 CHECK(0) << "wlan0 and wlan1 in use already!";
1385 return {};
1386 }
1387
writeRingbufferFilesInternal()1388 bool WifiChip::writeRingbufferFilesInternal() {
1389 if (!removeOldFilesInternal()) {
1390 LOG(ERROR) << "Error occurred while deleting old tombstone files";
1391 return false;
1392 }
1393 // write ringbuffers to file
1394 for (const auto& item : ringbuffer_map_) {
1395 const Ringbuffer& cur_buffer = item.second;
1396 if (cur_buffer.getData().empty()) {
1397 continue;
1398 }
1399 const std::string file_path_raw =
1400 kTombstoneFolderPath + item.first + "XXXXXXXXXX";
1401 const int dump_fd = mkstemp(makeCharVec(file_path_raw).data());
1402 if (dump_fd == -1) {
1403 LOG(ERROR) << "create file failed: " << strerror(errno);
1404 return false;
1405 }
1406 unique_fd file_auto_closer(dump_fd);
1407 for (const auto& cur_block : cur_buffer.getData()) {
1408 if (write(dump_fd, cur_block.data(),
1409 sizeof(cur_block[0]) * cur_block.size()) == -1) {
1410 LOG(ERROR) << "Error writing to file " << strerror(errno);
1411 }
1412 }
1413 }
1414 return true;
1415 }
1416
1417 } // namespace implementation
1418 } // namespace V1_2
1419 } // namespace wifi
1420 } // namespace hardware
1421 } // namespace android
1422