1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
mips_output_flavor(void)52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? µmips_nop32_insn \
815 : µmips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
1457 OPTION_FPXX,
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
1484 OPTION_NAN,
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
1487 OPTION_END_OF_ENUM
1488 };
1489
1490 struct option md_longopts[] =
1491 {
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1620
1621 {NULL, no_argument, NULL, 0}
1622 };
1623 size_t md_longopts_size = sizeof (md_longopts);
1624
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628 struct mips_ase
1629 {
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
1656 };
1657
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1662 2, 2, 2, 2,
1663 -1 },
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1667 2, 2, 2, 2,
1668 -1 },
1669
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1677 2, 2, 2, 2,
1678 -1 },
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1682 2, 2, 2, 2,
1683 -1 },
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1688 -1, 1, -1, -1,
1689 6 },
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1694 2, 1, -1, -1,
1695 6 },
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
1699 2, 2, -1, -1,
1700 -1 },
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1704 1, -1, -1, -1,
1705 6 },
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1709 2, 2, 2, 2,
1710 -1 },
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1714 2, 2, 2, 2,
1715 -1 },
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1719 2, 2, -1, -1,
1720 -1 },
1721 };
1722
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1725
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1729 };
1730
1731 /* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1747
1748 static const pseudo_typeS mips_pseudo_table[] =
1749 {
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1772 {"nan", s_nan, 0},
1773 {"module", s_module, 0},
1774
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1776 chips. */
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1785
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1811
1812 { "extern", ecoff_directive_extern, 0},
1813
1814 { NULL, NULL, 0 },
1815 };
1816
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818 {
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1832 { NULL, NULL, 0 },
1833 };
1834
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838 int
mips_address_bytes(void)1839 mips_address_bytes (void)
1840 {
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843 }
1844
1845 extern void pop_insert (const pseudo_typeS *);
1846
1847 void
mips_pop_insert(void)1848 mips_pop_insert (void)
1849 {
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853 }
1854
1855 /* Symbols labelling the current insn. */
1856
1857 struct insn_label_list
1858 {
1859 struct insn_label_list *next;
1860 symbolS *label;
1861 };
1862
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1865
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1869
1870 static inline void
mips_clear_insn_labels(void)1871 mips_clear_insn_labels (void)
1872 {
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1875
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
1880
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
1885 }
1886
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889 static inline void
mips_mark_labels(void)1890 mips_mark_labels (void)
1891 {
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894 }
1895
1896 static char *expr_end;
1897
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1900
1901 static expressionS imm_expr;
1902
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1907
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1911
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1915
1916 static unsigned int forced_insn_length;
1917
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921 static bfd_boolean mips_assembling_insn;
1922
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
1925
1926 static segT pdr_seg;
1927
1928 /* The default target format to use. */
1929
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934 #else
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936 #endif
1937
1938 const char *
mips_target_format(void)1939 mips_target_format (void)
1940 {
1941 switch (OUTPUT_FLAVOR)
1942 {
1943 case bfd_target_elf_flavour:
1944 #ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949 #endif
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1953 : (HAVE_NEWABI
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1958 : (HAVE_NEWABI
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965 }
1966
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970 static int
mips_isa_rev(void)1971 mips_isa_rev (void)
1972 {
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993 }
1994
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997 static unsigned int
mips_ase_mask(unsigned int flags)1998 mips_ase_mask (unsigned int flags)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006 }
2007
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011 static void
mips_check_isa_supports_ase(const struct mips_ase * ase)2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2013 {
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2032 else
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2035 }
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2052 }
2053 }
2054
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058 static void
mips_check_isa_supports_ases(void)2059 mips_check_isa_supports_ases (void)
2060 {
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069 }
2070
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074 static unsigned int
mips_set_ase(const struct mips_ase * ase,struct mips_set_options * opts,bfd_boolean enabled_p)2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2077 {
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
2081 opts->ase &= ~mask;
2082 if (enabled_p)
2083 opts->ase |= ase->flags;
2084 return mask;
2085 }
2086
2087 /* Return the ASE called NAME, or null if none. */
2088
2089 static const struct mips_ase *
mips_lookup_ase(const char * name)2090 mips_lookup_ase (const char *name)
2091 {
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098 }
2099
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2103
2104 static inline unsigned int
micromips_insn_length(const struct mips_opcode * mo)2105 micromips_insn_length (const struct mips_opcode *mo)
2106 {
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108 }
2109
2110 /* Return the length of MIPS16 instruction OPCODE. */
2111
2112 static inline unsigned int
mips16_opcode_length(unsigned long opcode)2113 mips16_opcode_length (unsigned long opcode)
2114 {
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116 }
2117
2118 /* Return the length of instruction INSN. */
2119
2120 static inline unsigned int
insn_length(const struct mips_cl_insn * insn)2121 insn_length (const struct mips_cl_insn *insn)
2122 {
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2127 else
2128 return 4;
2129 }
2130
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133 static void
create_insn(struct mips_cl_insn * insn,const struct mips_opcode * mo)2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135 {
2136 size_t i;
2137
2138 insn->insn_mo = mo;
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2149 }
2150
2151 /* Get a list of all the operands in INSN. */
2152
2153 static const struct mips_operand_array *
insn_operands(const struct mips_cl_insn * insn)2154 insn_operands (const struct mips_cl_insn *insn)
2155 {
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= µmips_opcodes[0]
2165 && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
2166 return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
2167
2168 abort ();
2169 }
2170
2171 /* Get a description of operand OPNO of INSN. */
2172
2173 static const struct mips_operand *
insn_opno(const struct mips_cl_insn * insn,unsigned opno)2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175 {
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182 }
2183
2184 /* Install UVAL as the value of OPERAND in INSN. */
2185
2186 static inline void
insn_insert_operand(struct mips_cl_insn * insn,const struct mips_operand * operand,unsigned int uval)2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189 {
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191 }
2192
2193 /* Extract the value of OPERAND from INSN. */
2194
2195 static inline unsigned
insn_extract_operand(const struct mips_cl_insn * insn,const struct mips_operand * operand)2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198 {
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200 }
2201
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2203
2204 static void
mips_record_compressed_mode(void)2205 mips_record_compressed_mode (void)
2206 {
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2214 }
2215
2216 /* Read a standard MIPS instruction from BUF. */
2217
2218 static unsigned long
read_insn(char * buf)2219 read_insn (char *buf)
2220 {
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225 }
2226
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230 static char *
write_insn(char * buf,unsigned int insn)2231 write_insn (char *buf, unsigned int insn)
2232 {
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235 }
2236
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240 static unsigned long
read_compressed_insn(char * buf,unsigned int length)2241 read_compressed_insn (char *buf, unsigned int length)
2242 {
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257 }
2258
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262 static char *
write_compressed_insn(char * buf,unsigned int insn,unsigned int length)2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264 {
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270 }
2271
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274 static void
install_insn(const struct mips_cl_insn * insn)2275 install_insn (const struct mips_cl_insn *insn)
2276 {
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2280 else
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2283 }
2284
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288 static void
move_insn(struct mips_cl_insn * insn,fragS * frag,long where)2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290 {
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302 }
2303
2304 /* Add INSN to the end of the output. */
2305
2306 static void
add_fixed_insn(struct mips_cl_insn * insn)2307 add_fixed_insn (struct mips_cl_insn *insn)
2308 {
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311 }
2312
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316 static void
add_relaxed_insn(struct mips_cl_insn * insn,int max_chars,int var,relax_substateT subtype,symbolS * symbol,offsetT offset)2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319 {
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325 }
2326
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330 static void
insert_into_history(unsigned int first,unsigned int n,const struct mips_cl_insn * insn)2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333 {
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344 }
2345
2346 /* Clear the error in insn_error. */
2347
2348 static void
clear_insn_error(void)2349 clear_insn_error (void)
2350 {
2351 memset (&insn_error, 0, sizeof (insn_error));
2352 }
2353
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360 static bfd_boolean
set_insn_error_format(int argnum,enum mips_insn_error_format format,const char * msg)2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363 {
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393 }
2394
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
set_insn_error(int argnum,const char * msg)2399 set_insn_error (int argnum, const char *msg)
2400 {
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402 }
2403
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407 static void
set_insn_error_i(int argnum,const char * msg,int i)2408 set_insn_error_i (int argnum, const char *msg, int i)
2409 {
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412 }
2413
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417 static void
set_insn_error_ss(int argnum,const char * msg,const char * s1,const char * s2)2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419 {
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425 }
2426
2427 /* Report the error in insn_error, which is against assembly code STR. */
2428
2429 static void
report_insn_error(const char * str)2430 report_insn_error (const char *str)
2431 {
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2433
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
2448
2449 free ((char *) msg);
2450 }
2451
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456 static void
init_vr4120_conflicts(void)2457 init_vr4120_conflicts (void)
2458 {
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493 #undef CONFLICT
2494 }
2495
2496 struct regname {
2497 const char *name;
2498 unsigned int num;
2499 };
2500
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2520
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2554
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2636
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743 };
2744
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748 };
2749
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753 };
2754
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2759
2760 static unsigned int
mips_prefer_vec_regno(unsigned int symval)2761 mips_prefer_vec_regno (unsigned int symval)
2762 {
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766 }
2767
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2770
2771 static bfd_boolean
mips_parse_register_1(char * s,char * e,unsigned int * symval_ptr)2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2773 {
2774 char save_c;
2775 symbolS *symbol;
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790 }
2791
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802 static bfd_boolean
mips_parse_register(char ** sptr,unsigned int * symval_ptr,unsigned int * channels_ptr)2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805 {
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
2841 *sptr = e;
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
2845 return TRUE;
2846 }
2847
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852 static int
reg_lookup(char ** s,unsigned int types,unsigned int * regnop)2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854 {
2855 unsigned int regno;
2856
2857 if (mips_parse_register (s, ®no, NULL))
2858 {
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
2865 }
2866 else
2867 {
2868 if (types & RWARN)
2869 as_warn (_("unrecognized register name `%s'"), *s);
2870 regno = ~0;
2871 }
2872 if (regnop)
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
2875 }
2876
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880 static char *
mips_parse_vu0_channels(char * s,unsigned int * channels)2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2882 {
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893 }
2894
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
2899
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
2908
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
2925 /* The end of the operand list. */
2926 OT_END
2927 };
2928
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2931 {
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2937 unsigned int regno;
2938
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2968 char ch;
2969 } u;
2970 };
2971
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2974
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977 static void
mips_add_token(struct mips_operand_token * token,enum mips_operand_token_type type)2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980 {
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983 }
2984
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989 static char *
mips_parse_base_start(char * s)2990 mips_parse_base_start (char *s)
2991 {
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
2995
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, ®no, &channels))
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
3043 return s;
3044 }
3045
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051 static char *
mips_parse_argument_token(char * s,char float_format)3052 mips_parse_argument_token (char *s, char float_format)
3053 {
3054 char *end, *save_in;
3055 const char *err;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, ®no1, &channels))
3076 {
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
3090 {
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, ®no2, NULL))
3095 {
3096 set_insn_error (0, _("invalid register range"));
3097 return 0;
3098 }
3099
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
3105
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
3113 ++s;
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
3118 {
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3130 }
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
3134 set_insn_error (0, _("missing `]'"));
3135 return 0;
3136 }
3137 ++s;
3138 }
3139 return s;
3140 }
3141
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
3153 set_insn_error (0, err);
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171 }
3172
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181 static struct mips_operand_token *
mips_parse_arguments(char * s,char float_format)3182 mips_parse_arguments (char *s, char float_format)
3183 {
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3200 }
3201
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3204
3205 static bfd_boolean
is_opcode_valid(const struct mips_opcode * mo)3206 is_opcode_valid (const struct mips_opcode *mo)
3207 {
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3210 int fp_s, fp_d;
3211 unsigned int i;
3212
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3217
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247 static bfd_boolean
is_opcode_valid_16(const struct mips_opcode * mo)3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3249 {
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3251 }
3252
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256 static bfd_boolean
is_size_valid(const struct mips_opcode * mo)3257 is_size_valid (const struct mips_opcode *mo)
3258 {
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274 }
3275
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3289
3290 static bfd_boolean
is_delay_slot_valid(const struct mips_opcode * mo)3291 is_delay_slot_valid (const struct mips_opcode *mo)
3292 {
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306 }
3307
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3316
3317 static int
validate_mips_insn(const struct mips_opcode * opcode,unsigned long insn_bits,const struct mips_operand * (* decode_operand)(const char *),struct mips_operand_array * operands)3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3322 {
3323 const char *s;
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3326
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
3335 opno = 0;
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
3346 case '#':
3347 s++;
3348 break;
3349
3350 default:
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3364 {
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3375 ++s;
3376 opno += 1;
3377 break;
3378 }
3379 doubled = used_bits & mask & insn_bits;
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
3386 used_bits |= mask;
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402 }
3403
3404 /* The MIPS16 version of validate_mips_insn. */
3405
3406 static int
validate_mips16_insn(const struct mips_opcode * opcode,struct mips_operand_array * operands)3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409 {
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422 }
3423
3424 /* The microMIPS version of validate_mips_insn. */
3425
3426 static int
validate_micromips_insn(const struct mips_opcode * opc,struct mips_operand_array * operands)3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3429 {
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
3460 }
3461
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3464
3465 void
md_begin(void)3466 md_begin (void)
3467 {
3468 const char *retval = NULL;
3469 int i = 0;
3470 int broken = 0;
3471
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
3484
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3487
3488 op_hash = hash_new ();
3489
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3502 }
3503 do
3504 {
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3509 {
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) µmips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (µmips_opcodes[i],
3567 µmips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = µmips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = µmips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
3591 if (broken)
3592 as_fatal (_("broken assembler, no assembly attempted"));
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3605 else
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3610
3611 for (i = 0; i < 32; i++)
3612 {
3613 char regname[6];
3614
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
3625 /* MSA register. */
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3629 }
3630
3631 obstack_init (&mips_operand_tokens);
3632
3633 mips_no_prev_insn ();
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3645
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3651 {
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
3656
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
3676 {
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3678
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3681
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3691
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
3709
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3722 }
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
3734
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3737 }
3738
3739 static inline void
fpabi_incompatible_with(int fpabi,const char * what)3740 fpabi_incompatible_with (int fpabi, const char *what)
3741 {
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744 }
3745
3746 static inline void
fpabi_requires(int fpabi,const char * what)3747 fpabi_requires (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3754 static void
check_fpabi(int fpabi)3755 check_fpabi (int fpabi)
3756 {
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
3823 }
3824
3825 /* Perform consistency checks on the current options. */
3826
3827 static void
mips_check_options(struct mips_set_options * opts,bfd_boolean abi_checks)3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829 {
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3884 }
3885
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893 static void
file_mips_check_options(void)3894 file_mips_check_options (void)
3895 {
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996 }
3997
3998 void
md_assemble(char * str)3999 md_assemble (char *str)
4000 {
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4004
4005 file_mips_check_options ();
4006
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4012
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4016
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4024 }
4025
4026 if (insn_error.msg)
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4029 {
4030 macro_start ();
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
4034 macro (&insn, str);
4035 macro_end ();
4036 }
4037 else
4038 {
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4041 else
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4043 }
4044
4045 mips_assembling_insn = FALSE;
4046 }
4047
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051 static inline bfd_boolean
mips16_reloc_p(bfd_reloc_code_real_type reloc)4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053 {
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 case BFD_RELOC_MIPS16_16_PCREL_S1:
4064 return TRUE;
4065
4066 default:
4067 return FALSE;
4068 }
4069 }
4070
4071 static inline bfd_boolean
micromips_reloc_p(bfd_reloc_code_real_type reloc)4072 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4073 {
4074 switch (reloc)
4075 {
4076 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4079 case BFD_RELOC_MICROMIPS_GPREL16:
4080 case BFD_RELOC_MICROMIPS_JMP:
4081 case BFD_RELOC_MICROMIPS_HI16:
4082 case BFD_RELOC_MICROMIPS_HI16_S:
4083 case BFD_RELOC_MICROMIPS_LO16:
4084 case BFD_RELOC_MICROMIPS_LITERAL:
4085 case BFD_RELOC_MICROMIPS_GOT16:
4086 case BFD_RELOC_MICROMIPS_CALL16:
4087 case BFD_RELOC_MICROMIPS_GOT_HI16:
4088 case BFD_RELOC_MICROMIPS_GOT_LO16:
4089 case BFD_RELOC_MICROMIPS_CALL_HI16:
4090 case BFD_RELOC_MICROMIPS_CALL_LO16:
4091 case BFD_RELOC_MICROMIPS_SUB:
4092 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4093 case BFD_RELOC_MICROMIPS_GOT_OFST:
4094 case BFD_RELOC_MICROMIPS_GOT_DISP:
4095 case BFD_RELOC_MICROMIPS_HIGHEST:
4096 case BFD_RELOC_MICROMIPS_HIGHER:
4097 case BFD_RELOC_MICROMIPS_SCN_DISP:
4098 case BFD_RELOC_MICROMIPS_JALR:
4099 return TRUE;
4100
4101 default:
4102 return FALSE;
4103 }
4104 }
4105
4106 static inline bfd_boolean
jmp_reloc_p(bfd_reloc_code_real_type reloc)4107 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4108 {
4109 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4110 }
4111
4112 static inline bfd_boolean
b_reloc_p(bfd_reloc_code_real_type reloc)4113 b_reloc_p (bfd_reloc_code_real_type reloc)
4114 {
4115 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4116 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4117 || reloc == BFD_RELOC_16_PCREL_S2
4118 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4119 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4120 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4121 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4122 }
4123
4124 static inline bfd_boolean
got16_reloc_p(bfd_reloc_code_real_type reloc)4125 got16_reloc_p (bfd_reloc_code_real_type reloc)
4126 {
4127 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4128 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4129 }
4130
4131 static inline bfd_boolean
hi16_reloc_p(bfd_reloc_code_real_type reloc)4132 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4133 {
4134 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4135 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4136 }
4137
4138 static inline bfd_boolean
lo16_reloc_p(bfd_reloc_code_real_type reloc)4139 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4142 || reloc == BFD_RELOC_MICROMIPS_LO16);
4143 }
4144
4145 static inline bfd_boolean
jalr_reloc_p(bfd_reloc_code_real_type reloc)4146 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4147 {
4148 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4149 }
4150
4151 static inline bfd_boolean
gprel16_reloc_p(bfd_reloc_code_real_type reloc)4152 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4153 {
4154 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4155 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4156 }
4157
4158 /* Return true if RELOC is a PC-relative relocation that does not have
4159 full address range. */
4160
4161 static inline bfd_boolean
limited_pcrel_reloc_p(bfd_reloc_code_real_type reloc)4162 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4163 {
4164 switch (reloc)
4165 {
4166 case BFD_RELOC_16_PCREL_S2:
4167 case BFD_RELOC_MIPS16_16_PCREL_S1:
4168 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4169 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4170 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4171 case BFD_RELOC_MIPS_21_PCREL_S2:
4172 case BFD_RELOC_MIPS_26_PCREL_S2:
4173 case BFD_RELOC_MIPS_18_PCREL_S3:
4174 case BFD_RELOC_MIPS_19_PCREL_S2:
4175 return TRUE;
4176
4177 case BFD_RELOC_32_PCREL:
4178 case BFD_RELOC_HI16_S_PCREL:
4179 case BFD_RELOC_LO16_PCREL:
4180 return HAVE_64BIT_ADDRESSES;
4181
4182 default:
4183 return FALSE;
4184 }
4185 }
4186
4187 /* Return true if the given relocation might need a matching %lo().
4188 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4189 need a matching %lo() when applied to local symbols. */
4190
4191 static inline bfd_boolean
reloc_needs_lo_p(bfd_reloc_code_real_type reloc)4192 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4193 {
4194 return (HAVE_IN_PLACE_ADDENDS
4195 && (hi16_reloc_p (reloc)
4196 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4197 all GOT16 relocations evaluate to "G". */
4198 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4199 }
4200
4201 /* Return the type of %lo() reloc needed by RELOC, given that
4202 reloc_needs_lo_p. */
4203
4204 static inline bfd_reloc_code_real_type
matching_lo_reloc(bfd_reloc_code_real_type reloc)4205 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4206 {
4207 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4208 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4209 : BFD_RELOC_LO16));
4210 }
4211
4212 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4213 relocation. */
4214
4215 static inline bfd_boolean
fixup_has_matching_lo_p(fixS * fixp)4216 fixup_has_matching_lo_p (fixS *fixp)
4217 {
4218 return (fixp->fx_next != NULL
4219 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4220 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4221 && fixp->fx_offset == fixp->fx_next->fx_offset);
4222 }
4223
4224 /* Move all labels in LABELS to the current insertion point. TEXT_P
4225 says whether the labels refer to text or data. */
4226
4227 static void
mips_move_labels(struct insn_label_list * labels,bfd_boolean text_p)4228 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4229 {
4230 struct insn_label_list *l;
4231 valueT val;
4232
4233 for (l = labels; l != NULL; l = l->next)
4234 {
4235 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4236 symbol_set_frag (l->label, frag_now);
4237 val = (valueT) frag_now_fix ();
4238 /* MIPS16/microMIPS text labels are stored as odd. */
4239 if (text_p && HAVE_CODE_COMPRESSION)
4240 ++val;
4241 S_SET_VALUE (l->label, val);
4242 }
4243 }
4244
4245 /* Move all labels in insn_labels to the current insertion point
4246 and treat them as text labels. */
4247
4248 static void
mips_move_text_labels(void)4249 mips_move_text_labels (void)
4250 {
4251 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4252 }
4253
4254 static bfd_boolean
s_is_linkonce(symbolS * sym,segT from_seg)4255 s_is_linkonce (symbolS *sym, segT from_seg)
4256 {
4257 bfd_boolean linkonce = FALSE;
4258 segT symseg = S_GET_SEGMENT (sym);
4259
4260 if (symseg != from_seg && !S_IS_LOCAL (sym))
4261 {
4262 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4263 linkonce = TRUE;
4264 /* The GNU toolchain uses an extension for ELF: a section
4265 beginning with the magic string .gnu.linkonce is a
4266 linkonce section. */
4267 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4268 sizeof ".gnu.linkonce" - 1) == 0)
4269 linkonce = TRUE;
4270 }
4271 return linkonce;
4272 }
4273
4274 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4275 linker to handle them specially, such as generating jalx instructions
4276 when needed. We also make them odd for the duration of the assembly,
4277 in order to generate the right sort of code. We will make them even
4278 in the adjust_symtab routine, while leaving them marked. This is
4279 convenient for the debugger and the disassembler. The linker knows
4280 to make them odd again. */
4281
4282 static void
mips_compressed_mark_label(symbolS * label)4283 mips_compressed_mark_label (symbolS *label)
4284 {
4285 gas_assert (HAVE_CODE_COMPRESSION);
4286
4287 if (mips_opts.mips16)
4288 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4289 else
4290 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4291 if ((S_GET_VALUE (label) & 1) == 0
4292 /* Don't adjust the address if the label is global or weak, or
4293 in a link-once section, since we'll be emitting symbol reloc
4294 references to it which will be patched up by the linker, and
4295 the final value of the symbol may or may not be MIPS16/microMIPS. */
4296 && !S_IS_WEAK (label)
4297 && !S_IS_EXTERNAL (label)
4298 && !s_is_linkonce (label, now_seg))
4299 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4300 }
4301
4302 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4303
4304 static void
mips_compressed_mark_labels(void)4305 mips_compressed_mark_labels (void)
4306 {
4307 struct insn_label_list *l;
4308
4309 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4310 mips_compressed_mark_label (l->label);
4311 }
4312
4313 /* End the current frag. Make it a variant frag and record the
4314 relaxation info. */
4315
4316 static void
relax_close_frag(void)4317 relax_close_frag (void)
4318 {
4319 mips_macro_warning.first_frag = frag_now;
4320 frag_var (rs_machine_dependent, 0, 0,
4321 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4322 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4323
4324 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4325 mips_relax.first_fixup = 0;
4326 }
4327
4328 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4329 See the comment above RELAX_ENCODE for more details. */
4330
4331 static void
relax_start(symbolS * symbol)4332 relax_start (symbolS *symbol)
4333 {
4334 gas_assert (mips_relax.sequence == 0);
4335 mips_relax.sequence = 1;
4336 mips_relax.symbol = symbol;
4337 }
4338
4339 /* Start generating the second version of a relaxable sequence.
4340 See the comment above RELAX_ENCODE for more details. */
4341
4342 static void
relax_switch(void)4343 relax_switch (void)
4344 {
4345 gas_assert (mips_relax.sequence == 1);
4346 mips_relax.sequence = 2;
4347 }
4348
4349 /* End the current relaxable sequence. */
4350
4351 static void
relax_end(void)4352 relax_end (void)
4353 {
4354 gas_assert (mips_relax.sequence == 2);
4355 relax_close_frag ();
4356 mips_relax.sequence = 0;
4357 }
4358
4359 /* Return true if IP is a delayed branch or jump. */
4360
4361 static inline bfd_boolean
delayed_branch_p(const struct mips_cl_insn * ip)4362 delayed_branch_p (const struct mips_cl_insn *ip)
4363 {
4364 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4365 | INSN_COND_BRANCH_DELAY
4366 | INSN_COND_BRANCH_LIKELY)) != 0;
4367 }
4368
4369 /* Return true if IP is a compact branch or jump. */
4370
4371 static inline bfd_boolean
compact_branch_p(const struct mips_cl_insn * ip)4372 compact_branch_p (const struct mips_cl_insn *ip)
4373 {
4374 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4375 | INSN2_COND_BRANCH)) != 0;
4376 }
4377
4378 /* Return true if IP is an unconditional branch or jump. */
4379
4380 static inline bfd_boolean
uncond_branch_p(const struct mips_cl_insn * ip)4381 uncond_branch_p (const struct mips_cl_insn *ip)
4382 {
4383 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4384 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4385 }
4386
4387 /* Return true if IP is a branch-likely instruction. */
4388
4389 static inline bfd_boolean
branch_likely_p(const struct mips_cl_insn * ip)4390 branch_likely_p (const struct mips_cl_insn *ip)
4391 {
4392 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4393 }
4394
4395 /* Return the type of nop that should be used to fill the delay slot
4396 of delayed branch IP. */
4397
4398 static struct mips_cl_insn *
get_delay_slot_nop(const struct mips_cl_insn * ip)4399 get_delay_slot_nop (const struct mips_cl_insn *ip)
4400 {
4401 if (mips_opts.micromips
4402 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4403 return µmips_nop32_insn;
4404 return NOP_INSN;
4405 }
4406
4407 /* Return a mask that has bit N set if OPCODE reads the register(s)
4408 in operand N. */
4409
4410 static unsigned int
insn_read_mask(const struct mips_opcode * opcode)4411 insn_read_mask (const struct mips_opcode *opcode)
4412 {
4413 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4414 }
4415
4416 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4417 in operand N. */
4418
4419 static unsigned int
insn_write_mask(const struct mips_opcode * opcode)4420 insn_write_mask (const struct mips_opcode *opcode)
4421 {
4422 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4423 }
4424
4425 /* Return a mask of the registers specified by operand OPERAND of INSN.
4426 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4427 is set. */
4428
4429 static unsigned int
operand_reg_mask(const struct mips_cl_insn * insn,const struct mips_operand * operand,unsigned int type_mask)4430 operand_reg_mask (const struct mips_cl_insn *insn,
4431 const struct mips_operand *operand,
4432 unsigned int type_mask)
4433 {
4434 unsigned int uval, vsel;
4435
4436 switch (operand->type)
4437 {
4438 case OP_INT:
4439 case OP_MAPPED_INT:
4440 case OP_MSB:
4441 case OP_PCREL:
4442 case OP_PERF_REG:
4443 case OP_ADDIUSP_INT:
4444 case OP_ENTRY_EXIT_LIST:
4445 case OP_REPEAT_DEST_REG:
4446 case OP_REPEAT_PREV_REG:
4447 case OP_PC:
4448 case OP_VU0_SUFFIX:
4449 case OP_VU0_MATCH_SUFFIX:
4450 case OP_IMM_INDEX:
4451 abort ();
4452
4453 case OP_REG:
4454 case OP_OPTIONAL_REG:
4455 {
4456 const struct mips_reg_operand *reg_op;
4457
4458 reg_op = (const struct mips_reg_operand *) operand;
4459 if (!(type_mask & (1 << reg_op->reg_type)))
4460 return 0;
4461 uval = insn_extract_operand (insn, operand);
4462 return 1 << mips_decode_reg_operand (reg_op, uval);
4463 }
4464
4465 case OP_REG_PAIR:
4466 {
4467 const struct mips_reg_pair_operand *pair_op;
4468
4469 pair_op = (const struct mips_reg_pair_operand *) operand;
4470 if (!(type_mask & (1 << pair_op->reg_type)))
4471 return 0;
4472 uval = insn_extract_operand (insn, operand);
4473 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4474 }
4475
4476 case OP_CLO_CLZ_DEST:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << (uval & 31)) | (1 << (uval >> 5));
4481
4482 case OP_SAME_RS_RT:
4483 if (!(type_mask & (1 << OP_REG_GP)))
4484 return 0;
4485 uval = insn_extract_operand (insn, operand);
4486 gas_assert ((uval & 31) == (uval >> 5));
4487 return 1 << (uval & 31);
4488
4489 case OP_CHECK_PREV:
4490 case OP_NON_ZERO_REG:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4492 return 0;
4493 uval = insn_extract_operand (insn, operand);
4494 return 1 << (uval & 31);
4495
4496 case OP_LWM_SWM_LIST:
4497 abort ();
4498
4499 case OP_SAVE_RESTORE_LIST:
4500 abort ();
4501
4502 case OP_MDMX_IMM_REG:
4503 if (!(type_mask & (1 << OP_REG_VEC)))
4504 return 0;
4505 uval = insn_extract_operand (insn, operand);
4506 vsel = uval >> 5;
4507 if ((vsel & 0x18) == 0x18)
4508 return 0;
4509 return 1 << (uval & 31);
4510
4511 case OP_REG_INDEX:
4512 if (!(type_mask & (1 << OP_REG_GP)))
4513 return 0;
4514 return 1 << insn_extract_operand (insn, operand);
4515 }
4516 abort ();
4517 }
4518
4519 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4520 where bit N of OPNO_MASK is set if operand N should be included.
4521 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4522 is set. */
4523
4524 static unsigned int
insn_reg_mask(const struct mips_cl_insn * insn,unsigned int type_mask,unsigned int opno_mask)4525 insn_reg_mask (const struct mips_cl_insn *insn,
4526 unsigned int type_mask, unsigned int opno_mask)
4527 {
4528 unsigned int opno, reg_mask;
4529
4530 opno = 0;
4531 reg_mask = 0;
4532 while (opno_mask != 0)
4533 {
4534 if (opno_mask & 1)
4535 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4536 opno_mask >>= 1;
4537 opno += 1;
4538 }
4539 return reg_mask;
4540 }
4541
4542 /* Return the mask of core registers that IP reads. */
4543
4544 static unsigned int
gpr_read_mask(const struct mips_cl_insn * ip)4545 gpr_read_mask (const struct mips_cl_insn *ip)
4546 {
4547 unsigned long pinfo, pinfo2;
4548 unsigned int mask;
4549
4550 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4551 pinfo = ip->insn_mo->pinfo;
4552 pinfo2 = ip->insn_mo->pinfo2;
4553 if (pinfo & INSN_UDI)
4554 {
4555 /* UDI instructions have traditionally been assumed to read RS
4556 and RT. */
4557 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4558 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4559 }
4560 if (pinfo & INSN_READ_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo2 & INSN2_READ_GPR_16)
4563 mask |= 1 << 16;
4564 if (pinfo2 & INSN2_READ_SP)
4565 mask |= 1 << SP;
4566 if (pinfo2 & INSN2_READ_GPR_31)
4567 mask |= 1 << 31;
4568 /* Don't include register 0. */
4569 return mask & ~1;
4570 }
4571
4572 /* Return the mask of core registers that IP writes. */
4573
4574 static unsigned int
gpr_write_mask(const struct mips_cl_insn * ip)4575 gpr_write_mask (const struct mips_cl_insn *ip)
4576 {
4577 unsigned long pinfo, pinfo2;
4578 unsigned int mask;
4579
4580 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4581 pinfo = ip->insn_mo->pinfo;
4582 pinfo2 = ip->insn_mo->pinfo2;
4583 if (pinfo & INSN_WRITE_GPR_24)
4584 mask |= 1 << 24;
4585 if (pinfo & INSN_WRITE_GPR_31)
4586 mask |= 1 << 31;
4587 if (pinfo & INSN_UDI)
4588 /* UDI instructions have traditionally been assumed to write to RD. */
4589 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4590 if (pinfo2 & INSN2_WRITE_SP)
4591 mask |= 1 << SP;
4592 /* Don't include register 0. */
4593 return mask & ~1;
4594 }
4595
4596 /* Return the mask of floating-point registers that IP reads. */
4597
4598 static unsigned int
fpr_read_mask(const struct mips_cl_insn * ip)4599 fpr_read_mask (const struct mips_cl_insn *ip)
4600 {
4601 unsigned long pinfo;
4602 unsigned int mask;
4603
4604 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4605 | (1 << OP_REG_MSA)),
4606 insn_read_mask (ip->insn_mo));
4607 pinfo = ip->insn_mo->pinfo;
4608 /* Conservatively treat all operands to an FP_D instruction are doubles.
4609 (This is overly pessimistic for things like cvt.d.s.) */
4610 if (FPR_SIZE != 64 && (pinfo & FP_D))
4611 mask |= mask << 1;
4612 return mask;
4613 }
4614
4615 /* Return the mask of floating-point registers that IP writes. */
4616
4617 static unsigned int
fpr_write_mask(const struct mips_cl_insn * ip)4618 fpr_write_mask (const struct mips_cl_insn *ip)
4619 {
4620 unsigned long pinfo;
4621 unsigned int mask;
4622
4623 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4624 | (1 << OP_REG_MSA)),
4625 insn_write_mask (ip->insn_mo));
4626 pinfo = ip->insn_mo->pinfo;
4627 /* Conservatively treat all operands to an FP_D instruction are doubles.
4628 (This is overly pessimistic for things like cvt.s.d.) */
4629 if (FPR_SIZE != 64 && (pinfo & FP_D))
4630 mask |= mask << 1;
4631 return mask;
4632 }
4633
4634 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4635 Check whether that is allowed. */
4636
4637 static bfd_boolean
mips_oddfpreg_ok(const struct mips_opcode * insn,int opnum)4638 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4639 {
4640 const char *s = insn->name;
4641 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4642 || FPR_SIZE == 64)
4643 && mips_opts.oddspreg;
4644
4645 if (insn->pinfo == INSN_MACRO)
4646 /* Let a macro pass, we'll catch it later when it is expanded. */
4647 return TRUE;
4648
4649 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4650 otherwise it depends on oddspreg. */
4651 if ((insn->pinfo & FP_S)
4652 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4653 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4654 return FPR_SIZE == 32 || oddspreg;
4655
4656 /* Allow odd registers for single-precision ops and double-precision if the
4657 floating-point registers are 64-bit wide. */
4658 switch (insn->pinfo & (FP_S | FP_D))
4659 {
4660 case FP_S:
4661 case 0:
4662 return oddspreg;
4663 case FP_D:
4664 return FPR_SIZE == 64;
4665 default:
4666 break;
4667 }
4668
4669 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4670 s = strchr (insn->name, '.');
4671 if (s != NULL && opnum == 2)
4672 s = strchr (s + 1, '.');
4673 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4674 return oddspreg;
4675
4676 return FPR_SIZE == 64;
4677 }
4678
4679 /* Information about an instruction argument that we're trying to match. */
4680 struct mips_arg_info
4681 {
4682 /* The instruction so far. */
4683 struct mips_cl_insn *insn;
4684
4685 /* The first unconsumed operand token. */
4686 struct mips_operand_token *token;
4687
4688 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4689 int opnum;
4690
4691 /* The 1-based argument number, for error reporting. This does not
4692 count elided optional registers, etc.. */
4693 int argnum;
4694
4695 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4696 unsigned int last_regno;
4697
4698 /* If the first operand was an OP_REG, this is the register that it
4699 specified, otherwise it is ILLEGAL_REG. */
4700 unsigned int dest_regno;
4701
4702 /* The value of the last OP_INT operand. Only used for OP_MSB,
4703 where it gives the lsb position. */
4704 unsigned int last_op_int;
4705
4706 /* If true, match routines should assume that no later instruction
4707 alternative matches and should therefore be as accomodating as
4708 possible. Match routines should not report errors if something
4709 is only invalid for !LAX_MATCH. */
4710 bfd_boolean lax_match;
4711
4712 /* True if a reference to the current AT register was seen. */
4713 bfd_boolean seen_at;
4714 };
4715
4716 /* Record that the argument is out of range. */
4717
4718 static void
match_out_of_range(struct mips_arg_info * arg)4719 match_out_of_range (struct mips_arg_info *arg)
4720 {
4721 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4722 }
4723
4724 /* Record that the argument isn't constant but needs to be. */
4725
4726 static void
match_not_constant(struct mips_arg_info * arg)4727 match_not_constant (struct mips_arg_info *arg)
4728 {
4729 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4730 arg->argnum);
4731 }
4732
4733 /* Try to match an OT_CHAR token for character CH. Consume the token
4734 and return true on success, otherwise return false. */
4735
4736 static bfd_boolean
match_char(struct mips_arg_info * arg,char ch)4737 match_char (struct mips_arg_info *arg, char ch)
4738 {
4739 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4740 {
4741 ++arg->token;
4742 if (ch == ',')
4743 arg->argnum += 1;
4744 return TRUE;
4745 }
4746 return FALSE;
4747 }
4748
4749 /* Try to get an expression from the next tokens in ARG. Consume the
4750 tokens and return true on success, storing the expression value in
4751 VALUE and relocation types in R. */
4752
4753 static bfd_boolean
match_expression(struct mips_arg_info * arg,expressionS * value,bfd_reloc_code_real_type * r)4754 match_expression (struct mips_arg_info *arg, expressionS *value,
4755 bfd_reloc_code_real_type *r)
4756 {
4757 /* If the next token is a '(' that was parsed as being part of a base
4758 expression, assume we have an elided offset. The later match will fail
4759 if this turns out to be wrong. */
4760 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4761 {
4762 value->X_op = O_constant;
4763 value->X_add_number = 0;
4764 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4765 return TRUE;
4766 }
4767
4768 /* Reject register-based expressions such as "0+$2" and "(($2))".
4769 For plain registers the default error seems more appropriate. */
4770 if (arg->token->type == OT_INTEGER
4771 && arg->token->u.integer.value.X_op == O_register)
4772 {
4773 set_insn_error (arg->argnum, _("register value used as expression"));
4774 return FALSE;
4775 }
4776
4777 if (arg->token->type == OT_INTEGER)
4778 {
4779 *value = arg->token->u.integer.value;
4780 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4781 ++arg->token;
4782 return TRUE;
4783 }
4784
4785 set_insn_error_i
4786 (arg->argnum, _("operand %d must be an immediate expression"),
4787 arg->argnum);
4788 return FALSE;
4789 }
4790
4791 /* Try to get a constant expression from the next tokens in ARG. Consume
4792 the tokens and return return true on success, storing the constant value
4793 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4794 error. */
4795
4796 static bfd_boolean
match_const_int(struct mips_arg_info * arg,offsetT * value)4797 match_const_int (struct mips_arg_info *arg, offsetT *value)
4798 {
4799 expressionS ex;
4800 bfd_reloc_code_real_type r[3];
4801
4802 if (!match_expression (arg, &ex, r))
4803 return FALSE;
4804
4805 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4806 *value = ex.X_add_number;
4807 else
4808 {
4809 match_not_constant (arg);
4810 return FALSE;
4811 }
4812 return TRUE;
4813 }
4814
4815 /* Return the RTYPE_* flags for a register operand of type TYPE that
4816 appears in instruction OPCODE. */
4817
4818 static unsigned int
convert_reg_type(const struct mips_opcode * opcode,enum mips_reg_operand_type type)4819 convert_reg_type (const struct mips_opcode *opcode,
4820 enum mips_reg_operand_type type)
4821 {
4822 switch (type)
4823 {
4824 case OP_REG_GP:
4825 return RTYPE_NUM | RTYPE_GP;
4826
4827 case OP_REG_FP:
4828 /* Allow vector register names for MDMX if the instruction is a 64-bit
4829 FPR load, store or move (including moves to and from GPRs). */
4830 if ((mips_opts.ase & ASE_MDMX)
4831 && (opcode->pinfo & FP_D)
4832 && (opcode->pinfo & (INSN_COPROC_MOVE
4833 | INSN_COPROC_MEMORY_DELAY
4834 | INSN_LOAD_COPROC
4835 | INSN_LOAD_MEMORY
4836 | INSN_STORE_MEMORY)))
4837 return RTYPE_FPU | RTYPE_VEC;
4838 return RTYPE_FPU;
4839
4840 case OP_REG_CCC:
4841 if (opcode->pinfo & (FP_D | FP_S))
4842 return RTYPE_CCC | RTYPE_FCC;
4843 return RTYPE_CCC;
4844
4845 case OP_REG_VEC:
4846 if (opcode->membership & INSN_5400)
4847 return RTYPE_FPU;
4848 return RTYPE_FPU | RTYPE_VEC;
4849
4850 case OP_REG_ACC:
4851 return RTYPE_ACC;
4852
4853 case OP_REG_COPRO:
4854 if (opcode->name[strlen (opcode->name) - 1] == '0')
4855 return RTYPE_NUM | RTYPE_CP0;
4856 return RTYPE_NUM;
4857
4858 case OP_REG_HW:
4859 return RTYPE_NUM;
4860
4861 case OP_REG_VI:
4862 return RTYPE_NUM | RTYPE_VI;
4863
4864 case OP_REG_VF:
4865 return RTYPE_NUM | RTYPE_VF;
4866
4867 case OP_REG_R5900_I:
4868 return RTYPE_R5900_I;
4869
4870 case OP_REG_R5900_Q:
4871 return RTYPE_R5900_Q;
4872
4873 case OP_REG_R5900_R:
4874 return RTYPE_R5900_R;
4875
4876 case OP_REG_R5900_ACC:
4877 return RTYPE_R5900_ACC;
4878
4879 case OP_REG_MSA:
4880 return RTYPE_MSA;
4881
4882 case OP_REG_MSA_CTRL:
4883 return RTYPE_NUM;
4884 }
4885 abort ();
4886 }
4887
4888 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4889
4890 static void
check_regno(struct mips_arg_info * arg,enum mips_reg_operand_type type,unsigned int regno)4891 check_regno (struct mips_arg_info *arg,
4892 enum mips_reg_operand_type type, unsigned int regno)
4893 {
4894 if (AT && type == OP_REG_GP && regno == AT)
4895 arg->seen_at = TRUE;
4896
4897 if (type == OP_REG_FP
4898 && (regno & 1) != 0
4899 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4900 {
4901 /* This was a warning prior to introducing O32 FPXX and FP64 support
4902 so maintain a warning for FP32 but raise an error for the new
4903 cases. */
4904 if (FPR_SIZE == 32)
4905 as_warn (_("float register should be even, was %d"), regno);
4906 else
4907 as_bad (_("float register should be even, was %d"), regno);
4908 }
4909
4910 if (type == OP_REG_CCC)
4911 {
4912 const char *name;
4913 size_t length;
4914
4915 name = arg->insn->insn_mo->name;
4916 length = strlen (name);
4917 if ((regno & 1) != 0
4918 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4919 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4920 as_warn (_("condition code register should be even for %s, was %d"),
4921 name, regno);
4922
4923 if ((regno & 3) != 0
4924 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4925 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4926 name, regno);
4927 }
4928 }
4929
4930 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4931 a register of type TYPE. Return true on success, storing the register
4932 number in *REGNO and warning about any dubious uses. */
4933
4934 static bfd_boolean
match_regno(struct mips_arg_info * arg,enum mips_reg_operand_type type,unsigned int symval,unsigned int * regno)4935 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4936 unsigned int symval, unsigned int *regno)
4937 {
4938 if (type == OP_REG_VEC)
4939 symval = mips_prefer_vec_regno (symval);
4940 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4941 return FALSE;
4942
4943 *regno = symval & RNUM_MASK;
4944 check_regno (arg, type, *regno);
4945 return TRUE;
4946 }
4947
4948 /* Try to interpret the next token in ARG as a register of type TYPE.
4949 Consume the token and return true on success, storing the register
4950 number in *REGNO. Return false on failure. */
4951
4952 static bfd_boolean
match_reg(struct mips_arg_info * arg,enum mips_reg_operand_type type,unsigned int * regno)4953 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4954 unsigned int *regno)
4955 {
4956 if (arg->token->type == OT_REG
4957 && match_regno (arg, type, arg->token->u.regno, regno))
4958 {
4959 ++arg->token;
4960 return TRUE;
4961 }
4962 return FALSE;
4963 }
4964
4965 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4966 Consume the token and return true on success, storing the register numbers
4967 in *REGNO1 and *REGNO2. Return false on failure. */
4968
4969 static bfd_boolean
match_reg_range(struct mips_arg_info * arg,enum mips_reg_operand_type type,unsigned int * regno1,unsigned int * regno2)4970 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4971 unsigned int *regno1, unsigned int *regno2)
4972 {
4973 if (match_reg (arg, type, regno1))
4974 {
4975 *regno2 = *regno1;
4976 return TRUE;
4977 }
4978 if (arg->token->type == OT_REG_RANGE
4979 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4980 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4981 && *regno1 <= *regno2)
4982 {
4983 ++arg->token;
4984 return TRUE;
4985 }
4986 return FALSE;
4987 }
4988
4989 /* OP_INT matcher. */
4990
4991 static bfd_boolean
match_int_operand(struct mips_arg_info * arg,const struct mips_operand * operand_base)4992 match_int_operand (struct mips_arg_info *arg,
4993 const struct mips_operand *operand_base)
4994 {
4995 const struct mips_int_operand *operand;
4996 unsigned int uval;
4997 int min_val, max_val, factor;
4998 offsetT sval;
4999
5000 operand = (const struct mips_int_operand *) operand_base;
5001 factor = 1 << operand->shift;
5002 min_val = mips_int_operand_min (operand);
5003 max_val = mips_int_operand_max (operand);
5004
5005 if (operand_base->lsb == 0
5006 && operand_base->size == 16
5007 && operand->shift == 0
5008 && operand->bias == 0
5009 && (operand->max_val == 32767 || operand->max_val == 65535))
5010 {
5011 /* The operand can be relocated. */
5012 if (!match_expression (arg, &offset_expr, offset_reloc))
5013 return FALSE;
5014
5015 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5016 /* Relocation operators were used. Accept the arguent and
5017 leave the relocation value in offset_expr and offset_relocs
5018 for the caller to process. */
5019 return TRUE;
5020
5021 if (offset_expr.X_op != O_constant)
5022 {
5023 /* Accept non-constant operands if no later alternative matches,
5024 leaving it for the caller to process. */
5025 if (!arg->lax_match)
5026 return FALSE;
5027 offset_reloc[0] = BFD_RELOC_LO16;
5028 return TRUE;
5029 }
5030
5031 /* Clear the global state; we're going to install the operand
5032 ourselves. */
5033 sval = offset_expr.X_add_number;
5034 offset_expr.X_op = O_absent;
5035
5036 /* For compatibility with older assemblers, we accept
5037 0x8000-0xffff as signed 16-bit numbers when only
5038 signed numbers are allowed. */
5039 if (sval > max_val)
5040 {
5041 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5042 if (!arg->lax_match && sval <= max_val)
5043 return FALSE;
5044 }
5045 }
5046 else
5047 {
5048 if (!match_const_int (arg, &sval))
5049 return FALSE;
5050 }
5051
5052 arg->last_op_int = sval;
5053
5054 if (sval < min_val || sval > max_val || sval % factor)
5055 {
5056 match_out_of_range (arg);
5057 return FALSE;
5058 }
5059
5060 uval = (unsigned int) sval >> operand->shift;
5061 uval -= operand->bias;
5062
5063 /* Handle -mfix-cn63xxp1. */
5064 if (arg->opnum == 1
5065 && mips_fix_cn63xxp1
5066 && !mips_opts.micromips
5067 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5068 switch (uval)
5069 {
5070 case 5:
5071 case 25:
5072 case 26:
5073 case 27:
5074 case 28:
5075 case 29:
5076 case 30:
5077 case 31:
5078 /* These are ok. */
5079 break;
5080
5081 default:
5082 /* The rest must be changed to 28. */
5083 uval = 28;
5084 break;
5085 }
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
5088 return TRUE;
5089 }
5090
5091 /* OP_MAPPED_INT matcher. */
5092
5093 static bfd_boolean
match_mapped_int_operand(struct mips_arg_info * arg,const struct mips_operand * operand_base)5094 match_mapped_int_operand (struct mips_arg_info *arg,
5095 const struct mips_operand *operand_base)
5096 {
5097 const struct mips_mapped_int_operand *operand;
5098 unsigned int uval, num_vals;
5099 offsetT sval;
5100
5101 operand = (const struct mips_mapped_int_operand *) operand_base;
5102 if (!match_const_int (arg, &sval))
5103 return FALSE;
5104
5105 num_vals = 1 << operand_base->size;
5106 for (uval = 0; uval < num_vals; uval++)
5107 if (operand->int_map[uval] == sval)
5108 break;
5109 if (uval == num_vals)
5110 {
5111 match_out_of_range (arg);
5112 return FALSE;
5113 }
5114
5115 insn_insert_operand (arg->insn, operand_base, uval);
5116 return TRUE;
5117 }
5118
5119 /* OP_MSB matcher. */
5120
5121 static bfd_boolean
match_msb_operand(struct mips_arg_info * arg,const struct mips_operand * operand_base)5122 match_msb_operand (struct mips_arg_info *arg,
5123 const struct mips_operand *operand_base)
5124 {
5125 const struct mips_msb_operand *operand;
5126 int min_val, max_val, max_high;
5127 offsetT size, sval, high;
5128
5129 operand = (const struct mips_msb_operand *) operand_base;
5130 min_val = operand->bias;
5131 max_val = min_val + (1 << operand_base->size) - 1;
5132 max_high = operand->opsize;
5133
5134 if (!match_const_int (arg, &size))
5135 return FALSE;
5136
5137 high = size + arg->last_op_int;
5138 sval = operand->add_lsb ? high : size;
5139
5140 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5141 {
5142 match_out_of_range (arg);
5143 return FALSE;
5144 }
5145 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5146 return TRUE;
5147 }
5148
5149 /* OP_REG matcher. */
5150
5151 static bfd_boolean
match_reg_operand(struct mips_arg_info * arg,const struct mips_operand * operand_base)5152 match_reg_operand (struct mips_arg_info *arg,
5153 const struct mips_operand *operand_base)
5154 {
5155 const struct mips_reg_operand *operand;
5156 unsigned int regno, uval, num_vals;
5157
5158 operand = (const struct mips_reg_operand *) operand_base;
5159 if (!match_reg (arg, operand->reg_type, ®no))
5160 return FALSE;
5161
5162 if (operand->reg_map)
5163 {
5164 num_vals = 1 << operand->root.size;
5165 for (uval = 0; uval < num_vals; uval++)
5166 if (operand->reg_map[uval] == regno)
5167 break;
5168 if (num_vals == uval)
5169 return FALSE;
5170 }
5171 else
5172 uval = regno;
5173
5174 arg->last_regno = regno;
5175 if (arg->opnum == 1)
5176 arg->dest_regno = regno;
5177 insn_insert_operand (arg->insn, operand_base, uval);
5178 return TRUE;
5179 }
5180
5181 /* OP_REG_PAIR matcher. */
5182
5183 static bfd_boolean
match_reg_pair_operand(struct mips_arg_info * arg,const struct mips_operand * operand_base)5184 match_reg_pair_operand (struct mips_arg_info *arg,
5185 const struct mips_operand *operand_base)
5186 {
5187 const struct mips_reg_pair_operand *operand;
5188 unsigned int regno1, regno2, uval, num_vals;
5189
5190 operand = (const struct mips_reg_pair_operand *) operand_base;
5191 if (!match_reg (arg, operand->reg_type, ®no1)
5192 || !match_char (arg, ',')
5193 || !match_reg (arg, operand->reg_type, ®no2))
5194 return FALSE;
5195
5196 num_vals = 1 << operand_base->size;
5197 for (uval = 0; uval < num_vals; uval++)
5198 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5199 break;
5200 if (uval == num_vals)
5201 return FALSE;
5202
5203 insn_insert_operand (arg->insn, operand_base, uval);
5204 return TRUE;
5205 }
5206
5207 /* OP_PCREL matcher. The caller chooses the relocation type. */
5208
5209 static bfd_boolean
match_pcrel_operand(struct mips_arg_info * arg)5210 match_pcrel_operand (struct mips_arg_info *arg)
5211 {
5212 bfd_reloc_code_real_type r[3];
5213
5214 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5215 }
5216
5217 /* OP_PERF_REG matcher. */
5218
5219 static bfd_boolean
match_perf_reg_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5220 match_perf_reg_operand (struct mips_arg_info *arg,
5221 const struct mips_operand *operand)
5222 {
5223 offsetT sval;
5224
5225 if (!match_const_int (arg, &sval))
5226 return FALSE;
5227
5228 if (sval != 0
5229 && (sval != 1
5230 || (mips_opts.arch == CPU_R5900
5231 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5232 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5233 {
5234 set_insn_error (arg->argnum, _("invalid performance register"));
5235 return FALSE;
5236 }
5237
5238 insn_insert_operand (arg->insn, operand, sval);
5239 return TRUE;
5240 }
5241
5242 /* OP_ADDIUSP matcher. */
5243
5244 static bfd_boolean
match_addiusp_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5245 match_addiusp_operand (struct mips_arg_info *arg,
5246 const struct mips_operand *operand)
5247 {
5248 offsetT sval;
5249 unsigned int uval;
5250
5251 if (!match_const_int (arg, &sval))
5252 return FALSE;
5253
5254 if (sval % 4)
5255 {
5256 match_out_of_range (arg);
5257 return FALSE;
5258 }
5259
5260 sval /= 4;
5261 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5262 {
5263 match_out_of_range (arg);
5264 return FALSE;
5265 }
5266
5267 uval = (unsigned int) sval;
5268 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5269 insn_insert_operand (arg->insn, operand, uval);
5270 return TRUE;
5271 }
5272
5273 /* OP_CLO_CLZ_DEST matcher. */
5274
5275 static bfd_boolean
match_clo_clz_dest_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5276 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5277 const struct mips_operand *operand)
5278 {
5279 unsigned int regno;
5280
5281 if (!match_reg (arg, OP_REG_GP, ®no))
5282 return FALSE;
5283
5284 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5285 return TRUE;
5286 }
5287
5288 /* OP_CHECK_PREV matcher. */
5289
5290 static bfd_boolean
match_check_prev_operand(struct mips_arg_info * arg,const struct mips_operand * operand_base)5291 match_check_prev_operand (struct mips_arg_info *arg,
5292 const struct mips_operand *operand_base)
5293 {
5294 const struct mips_check_prev_operand *operand;
5295 unsigned int regno;
5296
5297 operand = (const struct mips_check_prev_operand *) operand_base;
5298
5299 if (!match_reg (arg, OP_REG_GP, ®no))
5300 return FALSE;
5301
5302 if (!operand->zero_ok && regno == 0)
5303 return FALSE;
5304
5305 if ((operand->less_than_ok && regno < arg->last_regno)
5306 || (operand->greater_than_ok && regno > arg->last_regno)
5307 || (operand->equal_ok && regno == arg->last_regno))
5308 {
5309 arg->last_regno = regno;
5310 insn_insert_operand (arg->insn, operand_base, regno);
5311 return TRUE;
5312 }
5313
5314 return FALSE;
5315 }
5316
5317 /* OP_SAME_RS_RT matcher. */
5318
5319 static bfd_boolean
match_same_rs_rt_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5320 match_same_rs_rt_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5322 {
5323 unsigned int regno;
5324
5325 if (!match_reg (arg, OP_REG_GP, ®no))
5326 return FALSE;
5327
5328 if (regno == 0)
5329 {
5330 set_insn_error (arg->argnum, _("the source register must not be $0"));
5331 return FALSE;
5332 }
5333
5334 arg->last_regno = regno;
5335
5336 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5337 return TRUE;
5338 }
5339
5340 /* OP_LWM_SWM_LIST matcher. */
5341
5342 static bfd_boolean
match_lwm_swm_list_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5343 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5344 const struct mips_operand *operand)
5345 {
5346 unsigned int reglist, sregs, ra, regno1, regno2;
5347 struct mips_arg_info reset;
5348
5349 reglist = 0;
5350 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5351 return FALSE;
5352 do
5353 {
5354 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5355 {
5356 reglist |= 1 << FP;
5357 regno2 = S7;
5358 }
5359 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5360 reset = *arg;
5361 }
5362 while (match_char (arg, ',')
5363 && match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
5364 *arg = reset;
5365
5366 if (operand->size == 2)
5367 {
5368 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5369
5370 s0, ra
5371 s0, s1, ra, s2, s3
5372 s0-s2, ra
5373
5374 and any permutations of these. */
5375 if ((reglist & 0xfff1ffff) != 0x80010000)
5376 return FALSE;
5377
5378 sregs = (reglist >> 17) & 7;
5379 ra = 0;
5380 }
5381 else
5382 {
5383 /* The list must include at least one of ra and s0-sN,
5384 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5385 which are $23 and $30 respectively.) E.g.:
5386
5387 ra
5388 s0
5389 ra, s0, s1, s2
5390 s0-s8
5391 s0-s5, ra
5392
5393 and any permutations of these. */
5394 if ((reglist & 0x3f00ffff) != 0)
5395 return FALSE;
5396
5397 ra = (reglist >> 27) & 0x10;
5398 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5399 }
5400 sregs += 1;
5401 if ((sregs & -sregs) != sregs)
5402 return FALSE;
5403
5404 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5405 return TRUE;
5406 }
5407
5408 /* OP_ENTRY_EXIT_LIST matcher. */
5409
5410 static unsigned int
match_entry_exit_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5411 match_entry_exit_operand (struct mips_arg_info *arg,
5412 const struct mips_operand *operand)
5413 {
5414 unsigned int mask;
5415 bfd_boolean is_exit;
5416
5417 /* The format is the same for both ENTRY and EXIT, but the constraints
5418 are different. */
5419 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5420 mask = (is_exit ? 7 << 3 : 0);
5421 do
5422 {
5423 unsigned int regno1, regno2;
5424 bfd_boolean is_freg;
5425
5426 if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5427 is_freg = FALSE;
5428 else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
5429 is_freg = TRUE;
5430 else
5431 return FALSE;
5432
5433 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5434 {
5435 mask &= ~(7 << 3);
5436 mask |= (5 + regno2) << 3;
5437 }
5438 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5439 mask |= (regno2 - 3) << 3;
5440 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5441 mask |= (regno2 - 15) << 1;
5442 else if (regno1 == RA && regno2 == RA)
5443 mask |= 1;
5444 else
5445 return FALSE;
5446 }
5447 while (match_char (arg, ','));
5448
5449 insn_insert_operand (arg->insn, operand, mask);
5450 return TRUE;
5451 }
5452
5453 /* OP_SAVE_RESTORE_LIST matcher. */
5454
5455 static bfd_boolean
match_save_restore_list_operand(struct mips_arg_info * arg)5456 match_save_restore_list_operand (struct mips_arg_info *arg)
5457 {
5458 unsigned int opcode, args, statics, sregs;
5459 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5460 offsetT frame_size;
5461
5462 opcode = arg->insn->insn_opcode;
5463 frame_size = 0;
5464 num_frame_sizes = 0;
5465 args = 0;
5466 statics = 0;
5467 sregs = 0;
5468 do
5469 {
5470 unsigned int regno1, regno2;
5471
5472 if (arg->token->type == OT_INTEGER)
5473 {
5474 /* Handle the frame size. */
5475 if (!match_const_int (arg, &frame_size))
5476 return FALSE;
5477 num_frame_sizes += 1;
5478 }
5479 else
5480 {
5481 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5482 return FALSE;
5483
5484 while (regno1 <= regno2)
5485 {
5486 if (regno1 >= 4 && regno1 <= 7)
5487 {
5488 if (num_frame_sizes == 0)
5489 /* args $a0-$a3 */
5490 args |= 1 << (regno1 - 4);
5491 else
5492 /* statics $a0-$a3 */
5493 statics |= 1 << (regno1 - 4);
5494 }
5495 else if (regno1 >= 16 && regno1 <= 23)
5496 /* $s0-$s7 */
5497 sregs |= 1 << (regno1 - 16);
5498 else if (regno1 == 30)
5499 /* $s8 */
5500 sregs |= 1 << 8;
5501 else if (regno1 == 31)
5502 /* Add $ra to insn. */
5503 opcode |= 0x40;
5504 else
5505 return FALSE;
5506 regno1 += 1;
5507 if (regno1 == 24)
5508 regno1 = 30;
5509 }
5510 }
5511 }
5512 while (match_char (arg, ','));
5513
5514 /* Encode args/statics combination. */
5515 if (args & statics)
5516 return FALSE;
5517 else if (args == 0xf)
5518 /* All $a0-$a3 are args. */
5519 opcode |= MIPS16_ALL_ARGS << 16;
5520 else if (statics == 0xf)
5521 /* All $a0-$a3 are statics. */
5522 opcode |= MIPS16_ALL_STATICS << 16;
5523 else
5524 {
5525 /* Count arg registers. */
5526 num_args = 0;
5527 while (args & 0x1)
5528 {
5529 args >>= 1;
5530 num_args += 1;
5531 }
5532 if (args != 0)
5533 return FALSE;
5534
5535 /* Count static registers. */
5536 num_statics = 0;
5537 while (statics & 0x8)
5538 {
5539 statics = (statics << 1) & 0xf;
5540 num_statics += 1;
5541 }
5542 if (statics != 0)
5543 return FALSE;
5544
5545 /* Encode args/statics. */
5546 opcode |= ((num_args << 2) | num_statics) << 16;
5547 }
5548
5549 /* Encode $s0/$s1. */
5550 if (sregs & (1 << 0)) /* $s0 */
5551 opcode |= 0x20;
5552 if (sregs & (1 << 1)) /* $s1 */
5553 opcode |= 0x10;
5554 sregs >>= 2;
5555
5556 /* Encode $s2-$s8. */
5557 num_sregs = 0;
5558 while (sregs & 1)
5559 {
5560 sregs >>= 1;
5561 num_sregs += 1;
5562 }
5563 if (sregs != 0)
5564 return FALSE;
5565 opcode |= num_sregs << 24;
5566
5567 /* Encode frame size. */
5568 if (num_frame_sizes == 0)
5569 {
5570 set_insn_error (arg->argnum, _("missing frame size"));
5571 return FALSE;
5572 }
5573 if (num_frame_sizes > 1)
5574 {
5575 set_insn_error (arg->argnum, _("frame size specified twice"));
5576 return FALSE;
5577 }
5578 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5579 {
5580 set_insn_error (arg->argnum, _("invalid frame size"));
5581 return FALSE;
5582 }
5583 if (frame_size != 128 || (opcode >> 16) != 0)
5584 {
5585 frame_size /= 8;
5586 opcode |= (((frame_size & 0xf0) << 16)
5587 | (frame_size & 0x0f));
5588 }
5589
5590 /* Finally build the instruction. */
5591 if ((opcode >> 16) != 0 || frame_size == 0)
5592 opcode |= MIPS16_EXTEND;
5593 arg->insn->insn_opcode = opcode;
5594 return TRUE;
5595 }
5596
5597 /* OP_MDMX_IMM_REG matcher. */
5598
5599 static bfd_boolean
match_mdmx_imm_reg_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5600 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5601 const struct mips_operand *operand)
5602 {
5603 unsigned int regno, uval;
5604 bfd_boolean is_qh;
5605 const struct mips_opcode *opcode;
5606
5607 /* The mips_opcode records whether this is an octobyte or quadhalf
5608 instruction. Start out with that bit in place. */
5609 opcode = arg->insn->insn_mo;
5610 uval = mips_extract_operand (operand, opcode->match);
5611 is_qh = (uval != 0);
5612
5613 if (arg->token->type == OT_REG)
5614 {
5615 if ((opcode->membership & INSN_5400)
5616 && strcmp (opcode->name, "rzu.ob") == 0)
5617 {
5618 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5619 arg->argnum);
5620 return FALSE;
5621 }
5622
5623 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
5624 return FALSE;
5625 ++arg->token;
5626
5627 /* Check whether this is a vector register or a broadcast of
5628 a single element. */
5629 if (arg->token->type == OT_INTEGER_INDEX)
5630 {
5631 if (arg->token->u.index > (is_qh ? 3 : 7))
5632 {
5633 set_insn_error (arg->argnum, _("invalid element selector"));
5634 return FALSE;
5635 }
5636 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5637 ++arg->token;
5638 }
5639 else
5640 {
5641 /* A full vector. */
5642 if ((opcode->membership & INSN_5400)
5643 && (strcmp (opcode->name, "sll.ob") == 0
5644 || strcmp (opcode->name, "srl.ob") == 0))
5645 {
5646 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5647 arg->argnum);
5648 return FALSE;
5649 }
5650
5651 if (is_qh)
5652 uval |= MDMX_FMTSEL_VEC_QH << 5;
5653 else
5654 uval |= MDMX_FMTSEL_VEC_OB << 5;
5655 }
5656 uval |= regno;
5657 }
5658 else
5659 {
5660 offsetT sval;
5661
5662 if (!match_const_int (arg, &sval))
5663 return FALSE;
5664 if (sval < 0 || sval > 31)
5665 {
5666 match_out_of_range (arg);
5667 return FALSE;
5668 }
5669 uval |= (sval & 31);
5670 if (is_qh)
5671 uval |= MDMX_FMTSEL_IMM_QH << 5;
5672 else
5673 uval |= MDMX_FMTSEL_IMM_OB << 5;
5674 }
5675 insn_insert_operand (arg->insn, operand, uval);
5676 return TRUE;
5677 }
5678
5679 /* OP_IMM_INDEX matcher. */
5680
5681 static bfd_boolean
match_imm_index_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5682 match_imm_index_operand (struct mips_arg_info *arg,
5683 const struct mips_operand *operand)
5684 {
5685 unsigned int max_val;
5686
5687 if (arg->token->type != OT_INTEGER_INDEX)
5688 return FALSE;
5689
5690 max_val = (1 << operand->size) - 1;
5691 if (arg->token->u.index > max_val)
5692 {
5693 match_out_of_range (arg);
5694 return FALSE;
5695 }
5696 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5697 ++arg->token;
5698 return TRUE;
5699 }
5700
5701 /* OP_REG_INDEX matcher. */
5702
5703 static bfd_boolean
match_reg_index_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5704 match_reg_index_operand (struct mips_arg_info *arg,
5705 const struct mips_operand *operand)
5706 {
5707 unsigned int regno;
5708
5709 if (arg->token->type != OT_REG_INDEX)
5710 return FALSE;
5711
5712 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
5713 return FALSE;
5714
5715 insn_insert_operand (arg->insn, operand, regno);
5716 ++arg->token;
5717 return TRUE;
5718 }
5719
5720 /* OP_PC matcher. */
5721
5722 static bfd_boolean
match_pc_operand(struct mips_arg_info * arg)5723 match_pc_operand (struct mips_arg_info *arg)
5724 {
5725 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5726 {
5727 ++arg->token;
5728 return TRUE;
5729 }
5730 return FALSE;
5731 }
5732
5733 /* OP_NON_ZERO_REG matcher. */
5734
5735 static bfd_boolean
match_non_zero_reg_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5736 match_non_zero_reg_operand (struct mips_arg_info *arg,
5737 const struct mips_operand *operand)
5738 {
5739 unsigned int regno;
5740
5741 if (!match_reg (arg, OP_REG_GP, ®no))
5742 return FALSE;
5743
5744 if (regno == 0)
5745 return FALSE;
5746
5747 arg->last_regno = regno;
5748 insn_insert_operand (arg->insn, operand, regno);
5749 return TRUE;
5750 }
5751
5752 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5753 register that we need to match. */
5754
5755 static bfd_boolean
match_tied_reg_operand(struct mips_arg_info * arg,unsigned int other_regno)5756 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5757 {
5758 unsigned int regno;
5759
5760 return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
5761 }
5762
5763 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5764 the length of the value in bytes (4 for float, 8 for double) and
5765 USING_GPRS says whether the destination is a GPR rather than an FPR.
5766
5767 Return the constant in IMM and OFFSET as follows:
5768
5769 - If the constant should be loaded via memory, set IMM to O_absent and
5770 OFFSET to the memory address.
5771
5772 - Otherwise, if the constant should be loaded into two 32-bit registers,
5773 set IMM to the O_constant to load into the high register and OFFSET
5774 to the corresponding value for the low register.
5775
5776 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5777
5778 These constants only appear as the last operand in an instruction,
5779 and every instruction that accepts them in any variant accepts them
5780 in all variants. This means we don't have to worry about backing out
5781 any changes if the instruction does not match. We just match
5782 unconditionally and report an error if the constant is invalid. */
5783
5784 static bfd_boolean
match_float_constant(struct mips_arg_info * arg,expressionS * imm,expressionS * offset,int length,bfd_boolean using_gprs)5785 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5786 expressionS *offset, int length, bfd_boolean using_gprs)
5787 {
5788 char *p;
5789 segT seg, new_seg;
5790 subsegT subseg;
5791 const char *newname;
5792 unsigned char *data;
5793
5794 /* Where the constant is placed is based on how the MIPS assembler
5795 does things:
5796
5797 length == 4 && using_gprs -- immediate value only
5798 length == 8 && using_gprs -- .rdata or immediate value
5799 length == 4 && !using_gprs -- .lit4 or immediate value
5800 length == 8 && !using_gprs -- .lit8 or immediate value
5801
5802 The .lit4 and .lit8 sections are only used if permitted by the
5803 -G argument. */
5804 if (arg->token->type != OT_FLOAT)
5805 {
5806 set_insn_error (arg->argnum, _("floating-point expression required"));
5807 return FALSE;
5808 }
5809
5810 gas_assert (arg->token->u.flt.length == length);
5811 data = arg->token->u.flt.data;
5812 ++arg->token;
5813
5814 /* Handle 32-bit constants for which an immediate value is best. */
5815 if (length == 4
5816 && (using_gprs
5817 || g_switch_value < 4
5818 || (data[0] == 0 && data[1] == 0)
5819 || (data[2] == 0 && data[3] == 0)))
5820 {
5821 imm->X_op = O_constant;
5822 if (!target_big_endian)
5823 imm->X_add_number = bfd_getl32 (data);
5824 else
5825 imm->X_add_number = bfd_getb32 (data);
5826 offset->X_op = O_absent;
5827 return TRUE;
5828 }
5829
5830 /* Handle 64-bit constants for which an immediate value is best. */
5831 if (length == 8
5832 && !mips_disable_float_construction
5833 /* Constants can only be constructed in GPRs and copied to FPRs if the
5834 GPRs are at least as wide as the FPRs or MTHC1 is available.
5835 Unlike most tests for 32-bit floating-point registers this check
5836 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5837 permit 64-bit moves without MXHC1.
5838 Force the constant into memory otherwise. */
5839 && (using_gprs
5840 || GPR_SIZE == 64
5841 || ISA_HAS_MXHC1 (mips_opts.isa)
5842 || FPR_SIZE == 32)
5843 && ((data[0] == 0 && data[1] == 0)
5844 || (data[2] == 0 && data[3] == 0))
5845 && ((data[4] == 0 && data[5] == 0)
5846 || (data[6] == 0 && data[7] == 0)))
5847 {
5848 /* The value is simple enough to load with a couple of instructions.
5849 If using 32-bit registers, set IMM to the high order 32 bits and
5850 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5851 64 bit constant. */
5852 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5853 {
5854 imm->X_op = O_constant;
5855 offset->X_op = O_constant;
5856 if (!target_big_endian)
5857 {
5858 imm->X_add_number = bfd_getl32 (data + 4);
5859 offset->X_add_number = bfd_getl32 (data);
5860 }
5861 else
5862 {
5863 imm->X_add_number = bfd_getb32 (data);
5864 offset->X_add_number = bfd_getb32 (data + 4);
5865 }
5866 if (offset->X_add_number == 0)
5867 offset->X_op = O_absent;
5868 }
5869 else
5870 {
5871 imm->X_op = O_constant;
5872 if (!target_big_endian)
5873 imm->X_add_number = bfd_getl64 (data);
5874 else
5875 imm->X_add_number = bfd_getb64 (data);
5876 offset->X_op = O_absent;
5877 }
5878 return TRUE;
5879 }
5880
5881 /* Switch to the right section. */
5882 seg = now_seg;
5883 subseg = now_subseg;
5884 if (length == 4)
5885 {
5886 gas_assert (!using_gprs && g_switch_value >= 4);
5887 newname = ".lit4";
5888 }
5889 else
5890 {
5891 if (using_gprs || g_switch_value < 8)
5892 newname = RDATA_SECTION_NAME;
5893 else
5894 newname = ".lit8";
5895 }
5896
5897 new_seg = subseg_new (newname, (subsegT) 0);
5898 bfd_set_section_flags (stdoutput, new_seg,
5899 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5900 frag_align (length == 4 ? 2 : 3, 0, 0);
5901 if (strncmp (TARGET_OS, "elf", 3) != 0)
5902 record_alignment (new_seg, 4);
5903 else
5904 record_alignment (new_seg, length == 4 ? 2 : 3);
5905 if (seg == now_seg)
5906 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5907
5908 /* Set the argument to the current address in the section. */
5909 imm->X_op = O_absent;
5910 offset->X_op = O_symbol;
5911 offset->X_add_symbol = symbol_temp_new_now ();
5912 offset->X_add_number = 0;
5913
5914 /* Put the floating point number into the section. */
5915 p = frag_more (length);
5916 memcpy (p, data, length);
5917
5918 /* Switch back to the original section. */
5919 subseg_set (seg, subseg);
5920 return TRUE;
5921 }
5922
5923 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5924 them. */
5925
5926 static bfd_boolean
match_vu0_suffix_operand(struct mips_arg_info * arg,const struct mips_operand * operand,bfd_boolean match_p)5927 match_vu0_suffix_operand (struct mips_arg_info *arg,
5928 const struct mips_operand *operand,
5929 bfd_boolean match_p)
5930 {
5931 unsigned int uval;
5932
5933 /* The operand can be an XYZW mask or a single 2-bit channel index
5934 (with X being 0). */
5935 gas_assert (operand->size == 2 || operand->size == 4);
5936
5937 /* The suffix can be omitted when it is already part of the opcode. */
5938 if (arg->token->type != OT_CHANNELS)
5939 return match_p;
5940
5941 uval = arg->token->u.channels;
5942 if (operand->size == 2)
5943 {
5944 /* Check that a single bit is set and convert it into a 2-bit index. */
5945 if ((uval & -uval) != uval)
5946 return FALSE;
5947 uval = 4 - ffs (uval);
5948 }
5949
5950 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5951 return FALSE;
5952
5953 ++arg->token;
5954 if (!match_p)
5955 insn_insert_operand (arg->insn, operand, uval);
5956 return TRUE;
5957 }
5958
5959 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5960 of the argument text if the match is successful, otherwise return null. */
5961
5962 static bfd_boolean
match_operand(struct mips_arg_info * arg,const struct mips_operand * operand)5963 match_operand (struct mips_arg_info *arg,
5964 const struct mips_operand *operand)
5965 {
5966 switch (operand->type)
5967 {
5968 case OP_INT:
5969 return match_int_operand (arg, operand);
5970
5971 case OP_MAPPED_INT:
5972 return match_mapped_int_operand (arg, operand);
5973
5974 case OP_MSB:
5975 return match_msb_operand (arg, operand);
5976
5977 case OP_REG:
5978 case OP_OPTIONAL_REG:
5979 return match_reg_operand (arg, operand);
5980
5981 case OP_REG_PAIR:
5982 return match_reg_pair_operand (arg, operand);
5983
5984 case OP_PCREL:
5985 return match_pcrel_operand (arg);
5986
5987 case OP_PERF_REG:
5988 return match_perf_reg_operand (arg, operand);
5989
5990 case OP_ADDIUSP_INT:
5991 return match_addiusp_operand (arg, operand);
5992
5993 case OP_CLO_CLZ_DEST:
5994 return match_clo_clz_dest_operand (arg, operand);
5995
5996 case OP_LWM_SWM_LIST:
5997 return match_lwm_swm_list_operand (arg, operand);
5998
5999 case OP_ENTRY_EXIT_LIST:
6000 return match_entry_exit_operand (arg, operand);
6001
6002 case OP_SAVE_RESTORE_LIST:
6003 return match_save_restore_list_operand (arg);
6004
6005 case OP_MDMX_IMM_REG:
6006 return match_mdmx_imm_reg_operand (arg, operand);
6007
6008 case OP_REPEAT_DEST_REG:
6009 return match_tied_reg_operand (arg, arg->dest_regno);
6010
6011 case OP_REPEAT_PREV_REG:
6012 return match_tied_reg_operand (arg, arg->last_regno);
6013
6014 case OP_PC:
6015 return match_pc_operand (arg);
6016
6017 case OP_VU0_SUFFIX:
6018 return match_vu0_suffix_operand (arg, operand, FALSE);
6019
6020 case OP_VU0_MATCH_SUFFIX:
6021 return match_vu0_suffix_operand (arg, operand, TRUE);
6022
6023 case OP_IMM_INDEX:
6024 return match_imm_index_operand (arg, operand);
6025
6026 case OP_REG_INDEX:
6027 return match_reg_index_operand (arg, operand);
6028
6029 case OP_SAME_RS_RT:
6030 return match_same_rs_rt_operand (arg, operand);
6031
6032 case OP_CHECK_PREV:
6033 return match_check_prev_operand (arg, operand);
6034
6035 case OP_NON_ZERO_REG:
6036 return match_non_zero_reg_operand (arg, operand);
6037 }
6038 abort ();
6039 }
6040
6041 /* ARG is the state after successfully matching an instruction.
6042 Issue any queued-up warnings. */
6043
6044 static void
check_completed_insn(struct mips_arg_info * arg)6045 check_completed_insn (struct mips_arg_info *arg)
6046 {
6047 if (arg->seen_at)
6048 {
6049 if (AT == ATREG)
6050 as_warn (_("used $at without \".set noat\""));
6051 else
6052 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6053 }
6054 }
6055
6056 /* Return true if modifying general-purpose register REG needs a delay. */
6057
6058 static bfd_boolean
reg_needs_delay(unsigned int reg)6059 reg_needs_delay (unsigned int reg)
6060 {
6061 unsigned long prev_pinfo;
6062
6063 prev_pinfo = history[0].insn_mo->pinfo;
6064 if (!mips_opts.noreorder
6065 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6066 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6067 && (gpr_write_mask (&history[0]) & (1 << reg)))
6068 return TRUE;
6069
6070 return FALSE;
6071 }
6072
6073 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6074 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6075 by VR4120 errata. */
6076
6077 static unsigned int
classify_vr4120_insn(const char * name)6078 classify_vr4120_insn (const char *name)
6079 {
6080 if (strncmp (name, "macc", 4) == 0)
6081 return FIX_VR4120_MACC;
6082 if (strncmp (name, "dmacc", 5) == 0)
6083 return FIX_VR4120_DMACC;
6084 if (strncmp (name, "mult", 4) == 0)
6085 return FIX_VR4120_MULT;
6086 if (strncmp (name, "dmult", 5) == 0)
6087 return FIX_VR4120_DMULT;
6088 if (strstr (name, "div"))
6089 return FIX_VR4120_DIV;
6090 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6091 return FIX_VR4120_MTHILO;
6092 return NUM_FIX_VR4120_CLASSES;
6093 }
6094
6095 #define INSN_ERET 0x42000018
6096 #define INSN_DERET 0x4200001f
6097 #define INSN_DMULT 0x1c
6098 #define INSN_DMULTU 0x1d
6099
6100 /* Return the number of instructions that must separate INSN1 and INSN2,
6101 where INSN1 is the earlier instruction. Return the worst-case value
6102 for any INSN2 if INSN2 is null. */
6103
6104 static unsigned int
insns_between(const struct mips_cl_insn * insn1,const struct mips_cl_insn * insn2)6105 insns_between (const struct mips_cl_insn *insn1,
6106 const struct mips_cl_insn *insn2)
6107 {
6108 unsigned long pinfo1, pinfo2;
6109 unsigned int mask;
6110
6111 /* If INFO2 is null, pessimistically assume that all flags are set for
6112 the second instruction. */
6113 pinfo1 = insn1->insn_mo->pinfo;
6114 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6115
6116 /* For most targets, write-after-read dependencies on the HI and LO
6117 registers must be separated by at least two instructions. */
6118 if (!hilo_interlocks)
6119 {
6120 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6121 return 2;
6122 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6123 return 2;
6124 }
6125
6126 /* If we're working around r7000 errata, there must be two instructions
6127 between an mfhi or mflo and any instruction that uses the result. */
6128 if (mips_7000_hilo_fix
6129 && !mips_opts.micromips
6130 && MF_HILO_INSN (pinfo1)
6131 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6132 return 2;
6133
6134 /* If we're working around 24K errata, one instruction is required
6135 if an ERET or DERET is followed by a branch instruction. */
6136 if (mips_fix_24k && !mips_opts.micromips)
6137 {
6138 if (insn1->insn_opcode == INSN_ERET
6139 || insn1->insn_opcode == INSN_DERET)
6140 {
6141 if (insn2 == NULL
6142 || insn2->insn_opcode == INSN_ERET
6143 || insn2->insn_opcode == INSN_DERET
6144 || delayed_branch_p (insn2))
6145 return 1;
6146 }
6147 }
6148
6149 /* If we're working around PMC RM7000 errata, there must be three
6150 nops between a dmult and a load instruction. */
6151 if (mips_fix_rm7000 && !mips_opts.micromips)
6152 {
6153 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6154 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6155 {
6156 if (pinfo2 & INSN_LOAD_MEMORY)
6157 return 3;
6158 }
6159 }
6160
6161 /* If working around VR4120 errata, check for combinations that need
6162 a single intervening instruction. */
6163 if (mips_fix_vr4120 && !mips_opts.micromips)
6164 {
6165 unsigned int class1, class2;
6166
6167 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6168 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6169 {
6170 if (insn2 == NULL)
6171 return 1;
6172 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6173 if (vr4120_conflicts[class1] & (1 << class2))
6174 return 1;
6175 }
6176 }
6177
6178 if (!HAVE_CODE_COMPRESSION)
6179 {
6180 /* Check for GPR or coprocessor load delays. All such delays
6181 are on the RT register. */
6182 /* Itbl support may require additional care here. */
6183 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6184 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6185 {
6186 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6187 return 1;
6188 }
6189
6190 /* Check for generic coprocessor hazards.
6191
6192 This case is not handled very well. There is no special
6193 knowledge of CP0 handling, and the coprocessors other than
6194 the floating point unit are not distinguished at all. */
6195 /* Itbl support may require additional care here. FIXME!
6196 Need to modify this to include knowledge about
6197 user specified delays! */
6198 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6199 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6200 {
6201 /* Handle cases where INSN1 writes to a known general coprocessor
6202 register. There must be a one instruction delay before INSN2
6203 if INSN2 reads that register, otherwise no delay is needed. */
6204 mask = fpr_write_mask (insn1);
6205 if (mask != 0)
6206 {
6207 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6208 return 1;
6209 }
6210 else
6211 {
6212 /* Read-after-write dependencies on the control registers
6213 require a two-instruction gap. */
6214 if ((pinfo1 & INSN_WRITE_COND_CODE)
6215 && (pinfo2 & INSN_READ_COND_CODE))
6216 return 2;
6217
6218 /* We don't know exactly what INSN1 does. If INSN2 is
6219 also a coprocessor instruction, assume there must be
6220 a one instruction gap. */
6221 if (pinfo2 & INSN_COP)
6222 return 1;
6223 }
6224 }
6225
6226 /* Check for read-after-write dependencies on the coprocessor
6227 control registers in cases where INSN1 does not need a general
6228 coprocessor delay. This means that INSN1 is a floating point
6229 comparison instruction. */
6230 /* Itbl support may require additional care here. */
6231 else if (!cop_interlocks
6232 && (pinfo1 & INSN_WRITE_COND_CODE)
6233 && (pinfo2 & INSN_READ_COND_CODE))
6234 return 1;
6235 }
6236
6237 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6238 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6239 and pause. */
6240 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6241 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6242 || (insn2 && delayed_branch_p (insn2))))
6243 return 1;
6244
6245 return 0;
6246 }
6247
6248 /* Return the number of nops that would be needed to work around the
6249 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6250 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6251 that are contained within the first IGNORE instructions of HIST. */
6252
6253 static int
nops_for_vr4130(int ignore,const struct mips_cl_insn * hist,const struct mips_cl_insn * insn)6254 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6255 const struct mips_cl_insn *insn)
6256 {
6257 int i, j;
6258 unsigned int mask;
6259
6260 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6261 are not affected by the errata. */
6262 if (insn != 0
6263 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6264 || strcmp (insn->insn_mo->name, "mtlo") == 0
6265 || strcmp (insn->insn_mo->name, "mthi") == 0))
6266 return 0;
6267
6268 /* Search for the first MFLO or MFHI. */
6269 for (i = 0; i < MAX_VR4130_NOPS; i++)
6270 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6271 {
6272 /* Extract the destination register. */
6273 mask = gpr_write_mask (&hist[i]);
6274
6275 /* No nops are needed if INSN reads that register. */
6276 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6277 return 0;
6278
6279 /* ...or if any of the intervening instructions do. */
6280 for (j = 0; j < i; j++)
6281 if (gpr_read_mask (&hist[j]) & mask)
6282 return 0;
6283
6284 if (i >= ignore)
6285 return MAX_VR4130_NOPS - i;
6286 }
6287 return 0;
6288 }
6289
6290 #define BASE_REG_EQ(INSN1, INSN2) \
6291 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6292 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6293
6294 /* Return the minimum alignment for this store instruction. */
6295
6296 static int
fix_24k_align_to(const struct mips_opcode * mo)6297 fix_24k_align_to (const struct mips_opcode *mo)
6298 {
6299 if (strcmp (mo->name, "sh") == 0)
6300 return 2;
6301
6302 if (strcmp (mo->name, "swc1") == 0
6303 || strcmp (mo->name, "swc2") == 0
6304 || strcmp (mo->name, "sw") == 0
6305 || strcmp (mo->name, "sc") == 0
6306 || strcmp (mo->name, "s.s") == 0)
6307 return 4;
6308
6309 if (strcmp (mo->name, "sdc1") == 0
6310 || strcmp (mo->name, "sdc2") == 0
6311 || strcmp (mo->name, "s.d") == 0)
6312 return 8;
6313
6314 /* sb, swl, swr */
6315 return 1;
6316 }
6317
6318 struct fix_24k_store_info
6319 {
6320 /* Immediate offset, if any, for this store instruction. */
6321 short off;
6322 /* Alignment required by this store instruction. */
6323 int align_to;
6324 /* True for register offsets. */
6325 int register_offset;
6326 };
6327
6328 /* Comparison function used by qsort. */
6329
6330 static int
fix_24k_sort(const void * a,const void * b)6331 fix_24k_sort (const void *a, const void *b)
6332 {
6333 const struct fix_24k_store_info *pos1 = a;
6334 const struct fix_24k_store_info *pos2 = b;
6335
6336 return (pos1->off - pos2->off);
6337 }
6338
6339 /* INSN is a store instruction. Try to record the store information
6340 in STINFO. Return false if the information isn't known. */
6341
6342 static bfd_boolean
fix_24k_record_store_info(struct fix_24k_store_info * stinfo,const struct mips_cl_insn * insn)6343 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6344 const struct mips_cl_insn *insn)
6345 {
6346 /* The instruction must have a known offset. */
6347 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6348 return FALSE;
6349
6350 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6351 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6352 return TRUE;
6353 }
6354
6355 /* Return the number of nops that would be needed to work around the 24k
6356 "lost data on stores during refill" errata if instruction INSN
6357 immediately followed the 2 instructions described by HIST.
6358 Ignore hazards that are contained within the first IGNORE
6359 instructions of HIST.
6360
6361 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6362 for the data cache refills and store data. The following describes
6363 the scenario where the store data could be lost.
6364
6365 * A data cache miss, due to either a load or a store, causing fill
6366 data to be supplied by the memory subsystem
6367 * The first three doublewords of fill data are returned and written
6368 into the cache
6369 * A sequence of four stores occurs in consecutive cycles around the
6370 final doubleword of the fill:
6371 * Store A
6372 * Store B
6373 * Store C
6374 * Zero, One or more instructions
6375 * Store D
6376
6377 The four stores A-D must be to different doublewords of the line that
6378 is being filled. The fourth instruction in the sequence above permits
6379 the fill of the final doubleword to be transferred from the FSB into
6380 the cache. In the sequence above, the stores may be either integer
6381 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6382 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6383 different doublewords on the line. If the floating point unit is
6384 running in 1:2 mode, it is not possible to create the sequence above
6385 using only floating point store instructions.
6386
6387 In this case, the cache line being filled is incorrectly marked
6388 invalid, thereby losing the data from any store to the line that
6389 occurs between the original miss and the completion of the five
6390 cycle sequence shown above.
6391
6392 The workarounds are:
6393
6394 * Run the data cache in write-through mode.
6395 * Insert a non-store instruction between
6396 Store A and Store B or Store B and Store C. */
6397
6398 static int
nops_for_24k(int ignore,const struct mips_cl_insn * hist,const struct mips_cl_insn * insn)6399 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6400 const struct mips_cl_insn *insn)
6401 {
6402 struct fix_24k_store_info pos[3];
6403 int align, i, base_offset;
6404
6405 if (ignore >= 2)
6406 return 0;
6407
6408 /* If the previous instruction wasn't a store, there's nothing to
6409 worry about. */
6410 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6411 return 0;
6412
6413 /* If the instructions after the previous one are unknown, we have
6414 to assume the worst. */
6415 if (!insn)
6416 return 1;
6417
6418 /* Check whether we are dealing with three consecutive stores. */
6419 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6420 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6421 return 0;
6422
6423 /* If we don't know the relationship between the store addresses,
6424 assume the worst. */
6425 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6426 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6427 return 1;
6428
6429 if (!fix_24k_record_store_info (&pos[0], insn)
6430 || !fix_24k_record_store_info (&pos[1], &hist[0])
6431 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6432 return 1;
6433
6434 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6435
6436 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6437 X bytes and such that the base register + X is known to be aligned
6438 to align bytes. */
6439
6440 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6441 align = 8;
6442 else
6443 {
6444 align = pos[0].align_to;
6445 base_offset = pos[0].off;
6446 for (i = 1; i < 3; i++)
6447 if (align < pos[i].align_to)
6448 {
6449 align = pos[i].align_to;
6450 base_offset = pos[i].off;
6451 }
6452 for (i = 0; i < 3; i++)
6453 pos[i].off -= base_offset;
6454 }
6455
6456 pos[0].off &= ~align + 1;
6457 pos[1].off &= ~align + 1;
6458 pos[2].off &= ~align + 1;
6459
6460 /* If any two stores write to the same chunk, they also write to the
6461 same doubleword. The offsets are still sorted at this point. */
6462 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6463 return 0;
6464
6465 /* A range of at least 9 bytes is needed for the stores to be in
6466 non-overlapping doublewords. */
6467 if (pos[2].off - pos[0].off <= 8)
6468 return 0;
6469
6470 if (pos[2].off - pos[1].off >= 24
6471 || pos[1].off - pos[0].off >= 24
6472 || pos[2].off - pos[0].off >= 32)
6473 return 0;
6474
6475 return 1;
6476 }
6477
6478 /* Return the number of nops that would be needed if instruction INSN
6479 immediately followed the MAX_NOPS instructions given by HIST,
6480 where HIST[0] is the most recent instruction. Ignore hazards
6481 between INSN and the first IGNORE instructions in HIST.
6482
6483 If INSN is null, return the worse-case number of nops for any
6484 instruction. */
6485
6486 static int
nops_for_insn(int ignore,const struct mips_cl_insn * hist,const struct mips_cl_insn * insn)6487 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6488 const struct mips_cl_insn *insn)
6489 {
6490 int i, nops, tmp_nops;
6491
6492 nops = 0;
6493 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6494 {
6495 tmp_nops = insns_between (hist + i, insn) - i;
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
6500 if (mips_fix_vr4130 && !mips_opts.micromips)
6501 {
6502 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6503 if (tmp_nops > nops)
6504 nops = tmp_nops;
6505 }
6506
6507 if (mips_fix_24k && !mips_opts.micromips)
6508 {
6509 tmp_nops = nops_for_24k (ignore, hist, insn);
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
6514 return nops;
6515 }
6516
6517 /* The variable arguments provide NUM_INSNS extra instructions that
6518 might be added to HIST. Return the largest number of nops that
6519 would be needed after the extended sequence, ignoring hazards
6520 in the first IGNORE instructions. */
6521
6522 static int
nops_for_sequence(int num_insns,int ignore,const struct mips_cl_insn * hist,...)6523 nops_for_sequence (int num_insns, int ignore,
6524 const struct mips_cl_insn *hist, ...)
6525 {
6526 va_list args;
6527 struct mips_cl_insn buffer[MAX_NOPS];
6528 struct mips_cl_insn *cursor;
6529 int nops;
6530
6531 va_start (args, hist);
6532 cursor = buffer + num_insns;
6533 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6534 while (cursor > buffer)
6535 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6536
6537 nops = nops_for_insn (ignore, buffer, NULL);
6538 va_end (args);
6539 return nops;
6540 }
6541
6542 /* Like nops_for_insn, but if INSN is a branch, take into account the
6543 worst-case delay for the branch target. */
6544
6545 static int
nops_for_insn_or_target(int ignore,const struct mips_cl_insn * hist,const struct mips_cl_insn * insn)6546 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6547 const struct mips_cl_insn *insn)
6548 {
6549 int nops, tmp_nops;
6550
6551 nops = nops_for_insn (ignore, hist, insn);
6552 if (delayed_branch_p (insn))
6553 {
6554 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6555 hist, insn, get_delay_slot_nop (insn));
6556 if (tmp_nops > nops)
6557 nops = tmp_nops;
6558 }
6559 else if (compact_branch_p (insn))
6560 {
6561 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6562 if (tmp_nops > nops)
6563 nops = tmp_nops;
6564 }
6565 return nops;
6566 }
6567
6568 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6569
6570 static void
fix_loongson2f_nop(struct mips_cl_insn * ip)6571 fix_loongson2f_nop (struct mips_cl_insn * ip)
6572 {
6573 gas_assert (!HAVE_CODE_COMPRESSION);
6574 if (strcmp (ip->insn_mo->name, "nop") == 0)
6575 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6576 }
6577
6578 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6579 jr target pc &= 'hffff_ffff_cfff_ffff. */
6580
6581 static void
fix_loongson2f_jump(struct mips_cl_insn * ip)6582 fix_loongson2f_jump (struct mips_cl_insn * ip)
6583 {
6584 gas_assert (!HAVE_CODE_COMPRESSION);
6585 if (strcmp (ip->insn_mo->name, "j") == 0
6586 || strcmp (ip->insn_mo->name, "jr") == 0
6587 || strcmp (ip->insn_mo->name, "jalr") == 0)
6588 {
6589 int sreg;
6590 expressionS ep;
6591
6592 if (! mips_opts.at)
6593 return;
6594
6595 sreg = EXTRACT_OPERAND (0, RS, *ip);
6596 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6597 return;
6598
6599 ep.X_op = O_constant;
6600 ep.X_add_number = 0xcfff0000;
6601 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6602 ep.X_add_number = 0xffff;
6603 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6604 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6605 }
6606 }
6607
6608 static void
fix_loongson2f(struct mips_cl_insn * ip)6609 fix_loongson2f (struct mips_cl_insn * ip)
6610 {
6611 if (mips_fix_loongson2f_nop)
6612 fix_loongson2f_nop (ip);
6613
6614 if (mips_fix_loongson2f_jump)
6615 fix_loongson2f_jump (ip);
6616 }
6617
6618 /* IP is a branch that has a delay slot, and we need to fill it
6619 automatically. Return true if we can do that by swapping IP
6620 with the previous instruction.
6621 ADDRESS_EXPR is an operand of the instruction to be used with
6622 RELOC_TYPE. */
6623
6624 static bfd_boolean
can_swap_branch_p(struct mips_cl_insn * ip,expressionS * address_expr,bfd_reloc_code_real_type * reloc_type)6625 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6626 bfd_reloc_code_real_type *reloc_type)
6627 {
6628 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6629 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6630 unsigned int fpr_read, prev_fpr_write;
6631
6632 /* -O2 and above is required for this optimization. */
6633 if (mips_optimize < 2)
6634 return FALSE;
6635
6636 /* If we have seen .set volatile or .set nomove, don't optimize. */
6637 if (mips_opts.nomove)
6638 return FALSE;
6639
6640 /* We can't swap if the previous instruction's position is fixed. */
6641 if (history[0].fixed_p)
6642 return FALSE;
6643
6644 /* If the previous previous insn was in a .set noreorder, we can't
6645 swap. Actually, the MIPS assembler will swap in this situation.
6646 However, gcc configured -with-gnu-as will generate code like
6647
6648 .set noreorder
6649 lw $4,XXX
6650 .set reorder
6651 INSN
6652 bne $4,$0,foo
6653
6654 in which we can not swap the bne and INSN. If gcc is not configured
6655 -with-gnu-as, it does not output the .set pseudo-ops. */
6656 if (history[1].noreorder_p)
6657 return FALSE;
6658
6659 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6660 This means that the previous instruction was a 4-byte one anyhow. */
6661 if (mips_opts.mips16 && history[0].fixp[0])
6662 return FALSE;
6663
6664 /* If the branch is itself the target of a branch, we can not swap.
6665 We cheat on this; all we check for is whether there is a label on
6666 this instruction. If there are any branches to anything other than
6667 a label, users must use .set noreorder. */
6668 if (seg_info (now_seg)->label_list)
6669 return FALSE;
6670
6671 /* If the previous instruction is in a variant frag other than this
6672 branch's one, we cannot do the swap. This does not apply to
6673 MIPS16 code, which uses variant frags for different purposes. */
6674 if (!mips_opts.mips16
6675 && history[0].frag
6676 && history[0].frag->fr_type == rs_machine_dependent)
6677 return FALSE;
6678
6679 /* We do not swap with instructions that cannot architecturally
6680 be placed in a branch delay slot, such as SYNC or ERET. We
6681 also refrain from swapping with a trap instruction, since it
6682 complicates trap handlers to have the trap instruction be in
6683 a delay slot. */
6684 prev_pinfo = history[0].insn_mo->pinfo;
6685 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6686 return FALSE;
6687
6688 /* Check for conflicts between the branch and the instructions
6689 before the candidate delay slot. */
6690 if (nops_for_insn (0, history + 1, ip) > 0)
6691 return FALSE;
6692
6693 /* Check for conflicts between the swapped sequence and the
6694 target of the branch. */
6695 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6696 return FALSE;
6697
6698 /* If the branch reads a register that the previous
6699 instruction sets, we can not swap. */
6700 gpr_read = gpr_read_mask (ip);
6701 prev_gpr_write = gpr_write_mask (&history[0]);
6702 if (gpr_read & prev_gpr_write)
6703 return FALSE;
6704
6705 fpr_read = fpr_read_mask (ip);
6706 prev_fpr_write = fpr_write_mask (&history[0]);
6707 if (fpr_read & prev_fpr_write)
6708 return FALSE;
6709
6710 /* If the branch writes a register that the previous
6711 instruction sets, we can not swap. */
6712 gpr_write = gpr_write_mask (ip);
6713 if (gpr_write & prev_gpr_write)
6714 return FALSE;
6715
6716 /* If the branch writes a register that the previous
6717 instruction reads, we can not swap. */
6718 prev_gpr_read = gpr_read_mask (&history[0]);
6719 if (gpr_write & prev_gpr_read)
6720 return FALSE;
6721
6722 /* If one instruction sets a condition code and the
6723 other one uses a condition code, we can not swap. */
6724 pinfo = ip->insn_mo->pinfo;
6725 if ((pinfo & INSN_READ_COND_CODE)
6726 && (prev_pinfo & INSN_WRITE_COND_CODE))
6727 return FALSE;
6728 if ((pinfo & INSN_WRITE_COND_CODE)
6729 && (prev_pinfo & INSN_READ_COND_CODE))
6730 return FALSE;
6731
6732 /* If the previous instruction uses the PC, we can not swap. */
6733 prev_pinfo2 = history[0].insn_mo->pinfo2;
6734 if (prev_pinfo2 & INSN2_READ_PC)
6735 return FALSE;
6736
6737 /* If the previous instruction has an incorrect size for a fixed
6738 branch delay slot in microMIPS mode, we cannot swap. */
6739 pinfo2 = ip->insn_mo->pinfo2;
6740 if (mips_opts.micromips
6741 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6742 && insn_length (history) != 2)
6743 return FALSE;
6744 if (mips_opts.micromips
6745 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6746 && insn_length (history) != 4)
6747 return FALSE;
6748
6749 /* On R5900 short loops need to be fixed by inserting a nop in
6750 the branch delay slots.
6751 A short loop can be terminated too early. */
6752 if (mips_opts.arch == CPU_R5900
6753 /* Check if instruction has a parameter, ignore "j $31". */
6754 && (address_expr != NULL)
6755 /* Parameter must be 16 bit. */
6756 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6757 /* Branch to same segment. */
6758 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6759 /* Branch to same code fragment. */
6760 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6761 /* Can only calculate branch offset if value is known. */
6762 && symbol_constant_p (address_expr->X_add_symbol)
6763 /* Check if branch is really conditional. */
6764 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6765 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6766 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6767 {
6768 int distance;
6769 /* Check if loop is shorter than 6 instructions including
6770 branch and delay slot. */
6771 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6772 if (distance <= 20)
6773 {
6774 int i;
6775 int rv;
6776
6777 rv = FALSE;
6778 /* When the loop includes branches or jumps,
6779 it is not a short loop. */
6780 for (i = 0; i < (distance / 4); i++)
6781 {
6782 if ((history[i].cleared_p)
6783 || delayed_branch_p (&history[i]))
6784 {
6785 rv = TRUE;
6786 break;
6787 }
6788 }
6789 if (rv == FALSE)
6790 {
6791 /* Insert nop after branch to fix short loop. */
6792 return FALSE;
6793 }
6794 }
6795 }
6796
6797 return TRUE;
6798 }
6799
6800 /* Decide how we should add IP to the instruction stream.
6801 ADDRESS_EXPR is an operand of the instruction to be used with
6802 RELOC_TYPE. */
6803
6804 static enum append_method
get_append_method(struct mips_cl_insn * ip,expressionS * address_expr,bfd_reloc_code_real_type * reloc_type)6805 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6806 bfd_reloc_code_real_type *reloc_type)
6807 {
6808 /* The relaxed version of a macro sequence must be inherently
6809 hazard-free. */
6810 if (mips_relax.sequence == 2)
6811 return APPEND_ADD;
6812
6813 /* We must not dabble with instructions in a ".set noreorder" block. */
6814 if (mips_opts.noreorder)
6815 return APPEND_ADD;
6816
6817 /* Otherwise, it's our responsibility to fill branch delay slots. */
6818 if (delayed_branch_p (ip))
6819 {
6820 if (!branch_likely_p (ip)
6821 && can_swap_branch_p (ip, address_expr, reloc_type))
6822 return APPEND_SWAP;
6823
6824 if (mips_opts.mips16
6825 && ISA_SUPPORTS_MIPS16E
6826 && gpr_read_mask (ip) != 0)
6827 return APPEND_ADD_COMPACT;
6828
6829 return APPEND_ADD_WITH_NOP;
6830 }
6831
6832 return APPEND_ADD;
6833 }
6834
6835 /* IP is a MIPS16 instruction whose opcode we have just changed.
6836 Point IP->insn_mo to the new opcode's definition. */
6837
6838 static void
find_altered_mips16_opcode(struct mips_cl_insn * ip)6839 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6840 {
6841 const struct mips_opcode *mo, *end;
6842
6843 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6844 for (mo = ip->insn_mo; mo < end; mo++)
6845 if ((ip->insn_opcode & mo->mask) == mo->match)
6846 {
6847 ip->insn_mo = mo;
6848 return;
6849 }
6850 abort ();
6851 }
6852
6853 /* For microMIPS macros, we need to generate a local number label
6854 as the target of branches. */
6855 #define MICROMIPS_LABEL_CHAR '\037'
6856 static unsigned long micromips_target_label;
6857 static char micromips_target_name[32];
6858
6859 static char *
micromips_label_name(void)6860 micromips_label_name (void)
6861 {
6862 char *p = micromips_target_name;
6863 char symbol_name_temporary[24];
6864 unsigned long l;
6865 int i;
6866
6867 if (*p)
6868 return p;
6869
6870 i = 0;
6871 l = micromips_target_label;
6872 #ifdef LOCAL_LABEL_PREFIX
6873 *p++ = LOCAL_LABEL_PREFIX;
6874 #endif
6875 *p++ = 'L';
6876 *p++ = MICROMIPS_LABEL_CHAR;
6877 do
6878 {
6879 symbol_name_temporary[i++] = l % 10 + '0';
6880 l /= 10;
6881 }
6882 while (l != 0);
6883 while (i > 0)
6884 *p++ = symbol_name_temporary[--i];
6885 *p = '\0';
6886
6887 return micromips_target_name;
6888 }
6889
6890 static void
micromips_label_expr(expressionS * label_expr)6891 micromips_label_expr (expressionS *label_expr)
6892 {
6893 label_expr->X_op = O_symbol;
6894 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6895 label_expr->X_add_number = 0;
6896 }
6897
6898 static void
micromips_label_inc(void)6899 micromips_label_inc (void)
6900 {
6901 micromips_target_label++;
6902 *micromips_target_name = '\0';
6903 }
6904
6905 static void
micromips_add_label(void)6906 micromips_add_label (void)
6907 {
6908 symbolS *s;
6909
6910 s = colon (micromips_label_name ());
6911 micromips_label_inc ();
6912 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6913 }
6914
6915 /* If assembling microMIPS code, then return the microMIPS reloc
6916 corresponding to the requested one if any. Otherwise return
6917 the reloc unchanged. */
6918
6919 static bfd_reloc_code_real_type
micromips_map_reloc(bfd_reloc_code_real_type reloc)6920 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6921 {
6922 static const bfd_reloc_code_real_type relocs[][2] =
6923 {
6924 /* Keep sorted incrementally by the left-hand key. */
6925 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6926 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6927 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6928 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6929 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6930 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6931 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6932 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6933 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6934 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6935 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6936 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6937 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6938 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6939 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6940 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6941 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6942 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6943 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6944 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6945 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6946 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6947 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6948 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6949 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6950 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6951 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6952 };
6953 bfd_reloc_code_real_type r;
6954 size_t i;
6955
6956 if (!mips_opts.micromips)
6957 return reloc;
6958 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6959 {
6960 r = relocs[i][0];
6961 if (r > reloc)
6962 return reloc;
6963 if (r == reloc)
6964 return relocs[i][1];
6965 }
6966 return reloc;
6967 }
6968
6969 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6970 Return true on success, storing the resolved value in RESULT. */
6971
6972 static bfd_boolean
calculate_reloc(bfd_reloc_code_real_type reloc,offsetT operand,offsetT * result)6973 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6974 offsetT *result)
6975 {
6976 switch (reloc)
6977 {
6978 case BFD_RELOC_MIPS_HIGHEST:
6979 case BFD_RELOC_MICROMIPS_HIGHEST:
6980 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_MIPS_HIGHER:
6984 case BFD_RELOC_MICROMIPS_HIGHER:
6985 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6986 return TRUE;
6987
6988 case BFD_RELOC_HI16_S:
6989 case BFD_RELOC_HI16_S_PCREL:
6990 case BFD_RELOC_MICROMIPS_HI16_S:
6991 case BFD_RELOC_MIPS16_HI16_S:
6992 *result = ((operand + 0x8000) >> 16) & 0xffff;
6993 return TRUE;
6994
6995 case BFD_RELOC_HI16:
6996 case BFD_RELOC_MICROMIPS_HI16:
6997 case BFD_RELOC_MIPS16_HI16:
6998 *result = (operand >> 16) & 0xffff;
6999 return TRUE;
7000
7001 case BFD_RELOC_LO16:
7002 case BFD_RELOC_LO16_PCREL:
7003 case BFD_RELOC_MICROMIPS_LO16:
7004 case BFD_RELOC_MIPS16_LO16:
7005 *result = operand & 0xffff;
7006 return TRUE;
7007
7008 case BFD_RELOC_UNUSED:
7009 *result = operand;
7010 return TRUE;
7011
7012 default:
7013 return FALSE;
7014 }
7015 }
7016
7017 /* Output an instruction. IP is the instruction information.
7018 ADDRESS_EXPR is an operand of the instruction to be used with
7019 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7020 a macro expansion. */
7021
7022 static void
append_insn(struct mips_cl_insn * ip,expressionS * address_expr,bfd_reloc_code_real_type * reloc_type,bfd_boolean expansionp)7023 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7024 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7025 {
7026 unsigned long prev_pinfo2, pinfo;
7027 bfd_boolean relaxed_branch = FALSE;
7028 enum append_method method;
7029 bfd_boolean relax32;
7030 int branch_disp;
7031
7032 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7033 fix_loongson2f (ip);
7034
7035 file_ase_mips16 |= mips_opts.mips16;
7036 file_ase_micromips |= mips_opts.micromips;
7037
7038 prev_pinfo2 = history[0].insn_mo->pinfo2;
7039 pinfo = ip->insn_mo->pinfo;
7040
7041 if (mips_opts.micromips
7042 && !expansionp
7043 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7044 && micromips_insn_length (ip->insn_mo) != 2)
7045 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7046 && micromips_insn_length (ip->insn_mo) != 4)))
7047 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7048 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7049
7050 if (address_expr == NULL)
7051 ip->complete_p = 1;
7052 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7053 && reloc_type[1] == BFD_RELOC_UNUSED
7054 && reloc_type[2] == BFD_RELOC_UNUSED
7055 && address_expr->X_op == O_constant)
7056 {
7057 switch (*reloc_type)
7058 {
7059 case BFD_RELOC_MIPS_JMP:
7060 {
7061 int shift;
7062
7063 /* Shift is 2, unusually, for microMIPS JALX. */
7064 shift = (mips_opts.micromips
7065 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7066 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7067 as_bad (_("jump to misaligned address (0x%lx)"),
7068 (unsigned long) address_expr->X_add_number);
7069 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7070 & 0x3ffffff);
7071 ip->complete_p = 1;
7072 }
7073 break;
7074
7075 case BFD_RELOC_MIPS16_JMP:
7076 if ((address_expr->X_add_number & 3) != 0)
7077 as_bad (_("jump to misaligned address (0x%lx)"),
7078 (unsigned long) address_expr->X_add_number);
7079 ip->insn_opcode |=
7080 (((address_expr->X_add_number & 0x7c0000) << 3)
7081 | ((address_expr->X_add_number & 0xf800000) >> 7)
7082 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7083 ip->complete_p = 1;
7084 break;
7085
7086 case BFD_RELOC_16_PCREL_S2:
7087 {
7088 int shift;
7089
7090 shift = mips_opts.micromips ? 1 : 2;
7091 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7092 as_bad (_("branch to misaligned address (0x%lx)"),
7093 (unsigned long) address_expr->X_add_number);
7094 if (!mips_relax_branch)
7095 {
7096 if ((address_expr->X_add_number + (1 << (shift + 15)))
7097 & ~((1 << (shift + 16)) - 1))
7098 as_bad (_("branch address range overflow (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7101 & 0xffff);
7102 }
7103 }
7104 break;
7105
7106 case BFD_RELOC_MIPS_21_PCREL_S2:
7107 {
7108 int shift;
7109
7110 shift = 2;
7111 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7112 as_bad (_("branch to misaligned address (0x%lx)"),
7113 (unsigned long) address_expr->X_add_number);
7114 if ((address_expr->X_add_number + (1 << (shift + 20)))
7115 & ~((1 << (shift + 21)) - 1))
7116 as_bad (_("branch address range overflow (0x%lx)"),
7117 (unsigned long) address_expr->X_add_number);
7118 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7119 & 0x1fffff);
7120 }
7121 break;
7122
7123 case BFD_RELOC_MIPS_26_PCREL_S2:
7124 {
7125 int shift;
7126
7127 shift = 2;
7128 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7129 as_bad (_("branch to misaligned address (0x%lx)"),
7130 (unsigned long) address_expr->X_add_number);
7131 if ((address_expr->X_add_number + (1 << (shift + 25)))
7132 & ~((1 << (shift + 26)) - 1))
7133 as_bad (_("branch address range overflow (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7136 & 0x3ffffff);
7137 }
7138 break;
7139
7140 default:
7141 {
7142 offsetT value;
7143
7144 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7145 &value))
7146 {
7147 ip->insn_opcode |= value & 0xffff;
7148 ip->complete_p = 1;
7149 }
7150 }
7151 break;
7152 }
7153 }
7154
7155 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7156 {
7157 /* There are a lot of optimizations we could do that we don't.
7158 In particular, we do not, in general, reorder instructions.
7159 If you use gcc with optimization, it will reorder
7160 instructions and generally do much more optimization then we
7161 do here; repeating all that work in the assembler would only
7162 benefit hand written assembly code, and does not seem worth
7163 it. */
7164 int nops = (mips_optimize == 0
7165 ? nops_for_insn (0, history, NULL)
7166 : nops_for_insn_or_target (0, history, ip));
7167 if (nops > 0)
7168 {
7169 fragS *old_frag;
7170 unsigned long old_frag_offset;
7171 int i;
7172
7173 old_frag = frag_now;
7174 old_frag_offset = frag_now_fix ();
7175
7176 for (i = 0; i < nops; i++)
7177 add_fixed_insn (NOP_INSN);
7178 insert_into_history (0, nops, NOP_INSN);
7179
7180 if (listing)
7181 {
7182 listing_prev_line ();
7183 /* We may be at the start of a variant frag. In case we
7184 are, make sure there is enough space for the frag
7185 after the frags created by listing_prev_line. The
7186 argument to frag_grow here must be at least as large
7187 as the argument to all other calls to frag_grow in
7188 this file. We don't have to worry about being in the
7189 middle of a variant frag, because the variants insert
7190 all needed nop instructions themselves. */
7191 frag_grow (40);
7192 }
7193
7194 mips_move_text_labels ();
7195
7196 #ifndef NO_ECOFF_DEBUGGING
7197 if (ECOFF_DEBUGGING)
7198 ecoff_fix_loc (old_frag, old_frag_offset);
7199 #endif
7200 }
7201 }
7202 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7203 {
7204 int nops;
7205
7206 /* Work out how many nops in prev_nop_frag are needed by IP,
7207 ignoring hazards generated by the first prev_nop_frag_since
7208 instructions. */
7209 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7210 gas_assert (nops <= prev_nop_frag_holds);
7211
7212 /* Enforce NOPS as a minimum. */
7213 if (nops > prev_nop_frag_required)
7214 prev_nop_frag_required = nops;
7215
7216 if (prev_nop_frag_holds == prev_nop_frag_required)
7217 {
7218 /* Settle for the current number of nops. Update the history
7219 accordingly (for the benefit of any future .set reorder code). */
7220 prev_nop_frag = NULL;
7221 insert_into_history (prev_nop_frag_since,
7222 prev_nop_frag_holds, NOP_INSN);
7223 }
7224 else
7225 {
7226 /* Allow this instruction to replace one of the nops that was
7227 tentatively added to prev_nop_frag. */
7228 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7229 prev_nop_frag_holds--;
7230 prev_nop_frag_since++;
7231 }
7232 }
7233
7234 method = get_append_method (ip, address_expr, reloc_type);
7235 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7236
7237 dwarf2_emit_insn (0);
7238 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7239 so "move" the instruction address accordingly.
7240
7241 Also, it doesn't seem appropriate for the assembler to reorder .loc
7242 entries. If this instruction is a branch that we are going to swap
7243 with the previous instruction, the two instructions should be
7244 treated as a unit, and the debug information for both instructions
7245 should refer to the start of the branch sequence. Using the
7246 current position is certainly wrong when swapping a 32-bit branch
7247 and a 16-bit delay slot, since the current position would then be
7248 in the middle of a branch. */
7249 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7250
7251 relax32 = (mips_relax_branch
7252 /* Don't try branch relaxation within .set nomacro, or within
7253 .set noat if we use $at for PIC computations. If it turns
7254 out that the branch was out-of-range, we'll get an error. */
7255 && !mips_opts.warn_about_macros
7256 && (mips_opts.at || mips_pic == NO_PIC)
7257 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7258 as they have no complementing branches. */
7259 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7260
7261 if (!HAVE_CODE_COMPRESSION
7262 && address_expr
7263 && relax32
7264 && *reloc_type == BFD_RELOC_16_PCREL_S2
7265 && delayed_branch_p (ip))
7266 {
7267 relaxed_branch = TRUE;
7268 add_relaxed_insn (ip, (relaxed_branch_length
7269 (NULL, NULL,
7270 uncond_branch_p (ip) ? -1
7271 : branch_likely_p (ip) ? 1
7272 : 0)), 4,
7273 RELAX_BRANCH_ENCODE
7274 (AT,
7275 uncond_branch_p (ip),
7276 branch_likely_p (ip),
7277 pinfo & INSN_WRITE_GPR_31,
7278 0),
7279 address_expr->X_add_symbol,
7280 address_expr->X_add_number);
7281 *reloc_type = BFD_RELOC_UNUSED;
7282 }
7283 else if (mips_opts.micromips
7284 && address_expr
7285 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7286 || *reloc_type > BFD_RELOC_UNUSED)
7287 && (delayed_branch_p (ip) || compact_branch_p (ip))
7288 /* Don't try branch relaxation when users specify
7289 16-bit/32-bit instructions. */
7290 && !forced_insn_length)
7291 {
7292 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7293 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7294 int uncond = uncond_branch_p (ip) ? -1 : 0;
7295 int compact = compact_branch_p (ip);
7296 int al = pinfo & INSN_WRITE_GPR_31;
7297 int length32;
7298
7299 gas_assert (address_expr != NULL);
7300 gas_assert (!mips_relax.sequence);
7301
7302 relaxed_branch = TRUE;
7303 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7304 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7305 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7306 relax32, 0, 0),
7307 address_expr->X_add_symbol,
7308 address_expr->X_add_number);
7309 *reloc_type = BFD_RELOC_UNUSED;
7310 }
7311 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7312 {
7313 symbolS *symbol;
7314 offsetT offset;
7315
7316 /* We need to set up a variant frag. */
7317 gas_assert (address_expr != NULL);
7318 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7319 symbol created by `make_expr_symbol' may not get a necessary
7320 external relocation produced. */
7321 if (address_expr->X_op == O_symbol)
7322 {
7323 symbol = address_expr->X_add_symbol;
7324 offset = address_expr->X_add_number;
7325 }
7326 else
7327 {
7328 symbol = make_expr_symbol (address_expr);
7329 offset = 0;
7330 }
7331 add_relaxed_insn (ip, 4, 0,
7332 RELAX_MIPS16_ENCODE
7333 (*reloc_type - BFD_RELOC_UNUSED,
7334 forced_insn_length == 2, forced_insn_length == 4,
7335 delayed_branch_p (&history[0]),
7336 history[0].mips16_absolute_jump_p),
7337 symbol, offset);
7338 }
7339 else if (mips_opts.mips16 && insn_length (ip) == 2)
7340 {
7341 if (!delayed_branch_p (ip))
7342 /* Make sure there is enough room to swap this instruction with
7343 a following jump instruction. */
7344 frag_grow (6);
7345 add_fixed_insn (ip);
7346 }
7347 else
7348 {
7349 if (mips_opts.mips16
7350 && mips_opts.noreorder
7351 && delayed_branch_p (&history[0]))
7352 as_warn (_("extended instruction in delay slot"));
7353
7354 if (mips_relax.sequence)
7355 {
7356 /* If we've reached the end of this frag, turn it into a variant
7357 frag and record the information for the instructions we've
7358 written so far. */
7359 if (frag_room () < 4)
7360 relax_close_frag ();
7361 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7362 }
7363
7364 if (mips_relax.sequence != 2)
7365 {
7366 if (mips_macro_warning.first_insn_sizes[0] == 0)
7367 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7368 mips_macro_warning.sizes[0] += insn_length (ip);
7369 mips_macro_warning.insns[0]++;
7370 }
7371 if (mips_relax.sequence != 1)
7372 {
7373 if (mips_macro_warning.first_insn_sizes[1] == 0)
7374 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7375 mips_macro_warning.sizes[1] += insn_length (ip);
7376 mips_macro_warning.insns[1]++;
7377 }
7378
7379 if (mips_opts.mips16)
7380 {
7381 ip->fixed_p = 1;
7382 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7383 }
7384 add_fixed_insn (ip);
7385 }
7386
7387 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7388 {
7389 bfd_reloc_code_real_type final_type[3];
7390 reloc_howto_type *howto0;
7391 reloc_howto_type *howto;
7392 int i;
7393
7394 /* Perform any necessary conversion to microMIPS relocations
7395 and find out how many relocations there actually are. */
7396 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7397 final_type[i] = micromips_map_reloc (reloc_type[i]);
7398
7399 /* In a compound relocation, it is the final (outermost)
7400 operator that determines the relocated field. */
7401 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7402 if (!howto)
7403 abort ();
7404
7405 if (i > 1)
7406 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7407 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7408 bfd_get_reloc_size (howto),
7409 address_expr,
7410 howto0 && howto0->pc_relative,
7411 final_type[0]);
7412
7413 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7414 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7415 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7416
7417 /* These relocations can have an addend that won't fit in
7418 4 octets for 64bit assembly. */
7419 if (GPR_SIZE == 64
7420 && ! howto->partial_inplace
7421 && (reloc_type[0] == BFD_RELOC_16
7422 || reloc_type[0] == BFD_RELOC_32
7423 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7424 || reloc_type[0] == BFD_RELOC_GPREL16
7425 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7426 || reloc_type[0] == BFD_RELOC_GPREL32
7427 || reloc_type[0] == BFD_RELOC_64
7428 || reloc_type[0] == BFD_RELOC_CTOR
7429 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7430 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7431 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7432 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7433 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7434 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7435 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7436 || hi16_reloc_p (reloc_type[0])
7437 || lo16_reloc_p (reloc_type[0])))
7438 ip->fixp[0]->fx_no_overflow = 1;
7439
7440 /* These relocations can have an addend that won't fit in 2 octets. */
7441 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7442 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7443 ip->fixp[0]->fx_no_overflow = 1;
7444
7445 if (mips_relax.sequence)
7446 {
7447 if (mips_relax.first_fixup == 0)
7448 mips_relax.first_fixup = ip->fixp[0];
7449 }
7450 else if (reloc_needs_lo_p (*reloc_type))
7451 {
7452 struct mips_hi_fixup *hi_fixup;
7453
7454 /* Reuse the last entry if it already has a matching %lo. */
7455 hi_fixup = mips_hi_fixup_list;
7456 if (hi_fixup == 0
7457 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7458 {
7459 hi_fixup = XNEW (struct mips_hi_fixup);
7460 hi_fixup->next = mips_hi_fixup_list;
7461 mips_hi_fixup_list = hi_fixup;
7462 }
7463 hi_fixup->fixp = ip->fixp[0];
7464 hi_fixup->seg = now_seg;
7465 }
7466
7467 /* Add fixups for the second and third relocations, if given.
7468 Note that the ABI allows the second relocation to be
7469 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7470 moment we only use RSS_UNDEF, but we could add support
7471 for the others if it ever becomes necessary. */
7472 for (i = 1; i < 3; i++)
7473 if (reloc_type[i] != BFD_RELOC_UNUSED)
7474 {
7475 ip->fixp[i] = fix_new (ip->frag, ip->where,
7476 ip->fixp[0]->fx_size, NULL, 0,
7477 FALSE, final_type[i]);
7478
7479 /* Use fx_tcbit to mark compound relocs. */
7480 ip->fixp[0]->fx_tcbit = 1;
7481 ip->fixp[i]->fx_tcbit = 1;
7482 }
7483 }
7484 install_insn (ip);
7485
7486 /* Update the register mask information. */
7487 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7488 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7489
7490 switch (method)
7491 {
7492 case APPEND_ADD:
7493 insert_into_history (0, 1, ip);
7494 break;
7495
7496 case APPEND_ADD_WITH_NOP:
7497 {
7498 struct mips_cl_insn *nop;
7499
7500 insert_into_history (0, 1, ip);
7501 nop = get_delay_slot_nop (ip);
7502 add_fixed_insn (nop);
7503 insert_into_history (0, 1, nop);
7504 if (mips_relax.sequence)
7505 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7506 }
7507 break;
7508
7509 case APPEND_ADD_COMPACT:
7510 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7511 gas_assert (mips_opts.mips16);
7512 ip->insn_opcode |= 0x0080;
7513 find_altered_mips16_opcode (ip);
7514 install_insn (ip);
7515 insert_into_history (0, 1, ip);
7516 break;
7517
7518 case APPEND_SWAP:
7519 {
7520 struct mips_cl_insn delay = history[0];
7521
7522 if (relaxed_branch || delay.frag != ip->frag)
7523 {
7524 /* Add the delay slot instruction to the end of the
7525 current frag and shrink the fixed part of the
7526 original frag. If the branch occupies the tail of
7527 the latter, move it backwards to cover the gap. */
7528 delay.frag->fr_fix -= branch_disp;
7529 if (delay.frag == ip->frag)
7530 move_insn (ip, ip->frag, ip->where - branch_disp);
7531 add_fixed_insn (&delay);
7532 }
7533 else
7534 {
7535 /* If this is not a relaxed branch and we are in the
7536 same frag, then just swap the instructions. */
7537 move_insn (ip, delay.frag, delay.where);
7538 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7539 }
7540 history[0] = *ip;
7541 delay.fixed_p = 1;
7542 insert_into_history (0, 1, &delay);
7543 }
7544 break;
7545 }
7546
7547 /* If we have just completed an unconditional branch, clear the history. */
7548 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7549 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7550 {
7551 unsigned int i;
7552
7553 mips_no_prev_insn ();
7554
7555 for (i = 0; i < ARRAY_SIZE (history); i++)
7556 history[i].cleared_p = 1;
7557 }
7558
7559 /* We need to emit a label at the end of branch-likely macros. */
7560 if (emit_branch_likely_macro)
7561 {
7562 emit_branch_likely_macro = FALSE;
7563 micromips_add_label ();
7564 }
7565
7566 /* We just output an insn, so the next one doesn't have a label. */
7567 mips_clear_insn_labels ();
7568 }
7569
7570 /* Forget that there was any previous instruction or label.
7571 When BRANCH is true, the branch history is also flushed. */
7572
7573 static void
mips_no_prev_insn(void)7574 mips_no_prev_insn (void)
7575 {
7576 prev_nop_frag = NULL;
7577 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7578 mips_clear_insn_labels ();
7579 }
7580
7581 /* This function must be called before we emit something other than
7582 instructions. It is like mips_no_prev_insn except that it inserts
7583 any NOPS that might be needed by previous instructions. */
7584
7585 void
mips_emit_delays(void)7586 mips_emit_delays (void)
7587 {
7588 if (! mips_opts.noreorder)
7589 {
7590 int nops = nops_for_insn (0, history, NULL);
7591 if (nops > 0)
7592 {
7593 while (nops-- > 0)
7594 add_fixed_insn (NOP_INSN);
7595 mips_move_text_labels ();
7596 }
7597 }
7598 mips_no_prev_insn ();
7599 }
7600
7601 /* Start a (possibly nested) noreorder block. */
7602
7603 static void
start_noreorder(void)7604 start_noreorder (void)
7605 {
7606 if (mips_opts.noreorder == 0)
7607 {
7608 unsigned int i;
7609 int nops;
7610
7611 /* None of the instructions before the .set noreorder can be moved. */
7612 for (i = 0; i < ARRAY_SIZE (history); i++)
7613 history[i].fixed_p = 1;
7614
7615 /* Insert any nops that might be needed between the .set noreorder
7616 block and the previous instructions. We will later remove any
7617 nops that turn out not to be needed. */
7618 nops = nops_for_insn (0, history, NULL);
7619 if (nops > 0)
7620 {
7621 if (mips_optimize != 0)
7622 {
7623 /* Record the frag which holds the nop instructions, so
7624 that we can remove them if we don't need them. */
7625 frag_grow (nops * NOP_INSN_SIZE);
7626 prev_nop_frag = frag_now;
7627 prev_nop_frag_holds = nops;
7628 prev_nop_frag_required = 0;
7629 prev_nop_frag_since = 0;
7630 }
7631
7632 for (; nops > 0; --nops)
7633 add_fixed_insn (NOP_INSN);
7634
7635 /* Move on to a new frag, so that it is safe to simply
7636 decrease the size of prev_nop_frag. */
7637 frag_wane (frag_now);
7638 frag_new (0);
7639 mips_move_text_labels ();
7640 }
7641 mips_mark_labels ();
7642 mips_clear_insn_labels ();
7643 }
7644 mips_opts.noreorder++;
7645 mips_any_noreorder = 1;
7646 }
7647
7648 /* End a nested noreorder block. */
7649
7650 static void
end_noreorder(void)7651 end_noreorder (void)
7652 {
7653 mips_opts.noreorder--;
7654 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7655 {
7656 /* Commit to inserting prev_nop_frag_required nops and go back to
7657 handling nop insertion the .set reorder way. */
7658 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7659 * NOP_INSN_SIZE);
7660 insert_into_history (prev_nop_frag_since,
7661 prev_nop_frag_required, NOP_INSN);
7662 prev_nop_frag = NULL;
7663 }
7664 }
7665
7666 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7667 higher bits unset. */
7668
7669 static void
normalize_constant_expr(expressionS * ex)7670 normalize_constant_expr (expressionS *ex)
7671 {
7672 if (ex->X_op == O_constant
7673 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7674 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7675 - 0x80000000);
7676 }
7677
7678 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7679 all higher bits unset. */
7680
7681 static void
normalize_address_expr(expressionS * ex)7682 normalize_address_expr (expressionS *ex)
7683 {
7684 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7685 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7686 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7687 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7688 - 0x80000000);
7689 }
7690
7691 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7692 Return true if the match was successful.
7693
7694 OPCODE_EXTRA is a value that should be ORed into the opcode
7695 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7696 there are more alternatives after OPCODE and SOFT_MATCH is
7697 as for mips_arg_info. */
7698
7699 static bfd_boolean
match_insn(struct mips_cl_insn * insn,const struct mips_opcode * opcode,struct mips_operand_token * tokens,unsigned int opcode_extra,bfd_boolean lax_match,bfd_boolean complete_p)7700 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7701 struct mips_operand_token *tokens, unsigned int opcode_extra,
7702 bfd_boolean lax_match, bfd_boolean complete_p)
7703 {
7704 const char *args;
7705 struct mips_arg_info arg;
7706 const struct mips_operand *operand;
7707 char c;
7708
7709 imm_expr.X_op = O_absent;
7710 offset_expr.X_op = O_absent;
7711 offset_reloc[0] = BFD_RELOC_UNUSED;
7712 offset_reloc[1] = BFD_RELOC_UNUSED;
7713 offset_reloc[2] = BFD_RELOC_UNUSED;
7714
7715 create_insn (insn, opcode);
7716 /* When no opcode suffix is specified, assume ".xyzw". */
7717 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7718 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7719 else
7720 insn->insn_opcode |= opcode_extra;
7721 memset (&arg, 0, sizeof (arg));
7722 arg.insn = insn;
7723 arg.token = tokens;
7724 arg.argnum = 1;
7725 arg.last_regno = ILLEGAL_REG;
7726 arg.dest_regno = ILLEGAL_REG;
7727 arg.lax_match = lax_match;
7728 for (args = opcode->args;; ++args)
7729 {
7730 if (arg.token->type == OT_END)
7731 {
7732 /* Handle unary instructions in which only one operand is given.
7733 The source is then the same as the destination. */
7734 if (arg.opnum == 1 && *args == ',')
7735 {
7736 operand = (mips_opts.micromips
7737 ? decode_micromips_operand (args + 1)
7738 : decode_mips_operand (args + 1));
7739 if (operand && mips_optional_operand_p (operand))
7740 {
7741 arg.token = tokens;
7742 arg.argnum = 1;
7743 continue;
7744 }
7745 }
7746
7747 /* Treat elided base registers as $0. */
7748 if (strcmp (args, "(b)") == 0)
7749 args += 3;
7750
7751 if (args[0] == '+')
7752 switch (args[1])
7753 {
7754 case 'K':
7755 case 'N':
7756 /* The register suffix is optional. */
7757 args += 2;
7758 break;
7759 }
7760
7761 /* Fail the match if there were too few operands. */
7762 if (*args)
7763 return FALSE;
7764
7765 /* Successful match. */
7766 if (!complete_p)
7767 return TRUE;
7768 clear_insn_error ();
7769 if (arg.dest_regno == arg.last_regno
7770 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7771 {
7772 if (arg.opnum == 2)
7773 set_insn_error
7774 (0, _("source and destination must be different"));
7775 else if (arg.last_regno == 31)
7776 set_insn_error
7777 (0, _("a destination register must be supplied"));
7778 }
7779 else if (arg.last_regno == 31
7780 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7781 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7782 set_insn_error (0, _("the source register must not be $31"));
7783 check_completed_insn (&arg);
7784 return TRUE;
7785 }
7786
7787 /* Fail the match if the line has too many operands. */
7788 if (*args == 0)
7789 return FALSE;
7790
7791 /* Handle characters that need to match exactly. */
7792 if (*args == '(' || *args == ')' || *args == ',')
7793 {
7794 if (match_char (&arg, *args))
7795 continue;
7796 return FALSE;
7797 }
7798 if (*args == '#')
7799 {
7800 ++args;
7801 if (arg.token->type == OT_DOUBLE_CHAR
7802 && arg.token->u.ch == *args)
7803 {
7804 ++arg.token;
7805 continue;
7806 }
7807 return FALSE;
7808 }
7809
7810 /* Handle special macro operands. Work out the properties of
7811 other operands. */
7812 arg.opnum += 1;
7813 switch (*args)
7814 {
7815 case '-':
7816 switch (args[1])
7817 {
7818 case 'A':
7819 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7820 break;
7821
7822 case 'B':
7823 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7824 break;
7825 }
7826 break;
7827
7828 case '+':
7829 switch (args[1])
7830 {
7831 case 'i':
7832 *offset_reloc = BFD_RELOC_MIPS_JMP;
7833 break;
7834
7835 case '\'':
7836 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7837 break;
7838
7839 case '\"':
7840 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7841 break;
7842 }
7843 break;
7844
7845 case 'I':
7846 if (!match_const_int (&arg, &imm_expr.X_add_number))
7847 return FALSE;
7848 imm_expr.X_op = O_constant;
7849 if (GPR_SIZE == 32)
7850 normalize_constant_expr (&imm_expr);
7851 continue;
7852
7853 case 'A':
7854 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7855 {
7856 /* Assume that the offset has been elided and that what
7857 we saw was a base register. The match will fail later
7858 if that assumption turns out to be wrong. */
7859 offset_expr.X_op = O_constant;
7860 offset_expr.X_add_number = 0;
7861 }
7862 else
7863 {
7864 if (!match_expression (&arg, &offset_expr, offset_reloc))
7865 return FALSE;
7866 normalize_address_expr (&offset_expr);
7867 }
7868 continue;
7869
7870 case 'F':
7871 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7872 8, TRUE))
7873 return FALSE;
7874 continue;
7875
7876 case 'L':
7877 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7878 8, FALSE))
7879 return FALSE;
7880 continue;
7881
7882 case 'f':
7883 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7884 4, TRUE))
7885 return FALSE;
7886 continue;
7887
7888 case 'l':
7889 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7890 4, FALSE))
7891 return FALSE;
7892 continue;
7893
7894 case 'p':
7895 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7896 break;
7897
7898 case 'a':
7899 *offset_reloc = BFD_RELOC_MIPS_JMP;
7900 break;
7901
7902 case 'm':
7903 gas_assert (mips_opts.micromips);
7904 c = args[1];
7905 switch (c)
7906 {
7907 case 'D':
7908 case 'E':
7909 if (!forced_insn_length)
7910 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7911 else if (c == 'D')
7912 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7913 else
7914 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7915 break;
7916 }
7917 break;
7918 }
7919
7920 operand = (mips_opts.micromips
7921 ? decode_micromips_operand (args)
7922 : decode_mips_operand (args));
7923 if (!operand)
7924 abort ();
7925
7926 /* Skip prefixes. */
7927 if (*args == '+' || *args == 'm' || *args == '-')
7928 args++;
7929
7930 if (mips_optional_operand_p (operand)
7931 && args[1] == ','
7932 && (arg.token[0].type != OT_REG
7933 || arg.token[1].type == OT_END))
7934 {
7935 /* Assume that the register has been elided and is the
7936 same as the first operand. */
7937 arg.token = tokens;
7938 arg.argnum = 1;
7939 }
7940
7941 if (!match_operand (&arg, operand))
7942 return FALSE;
7943 }
7944 }
7945
7946 /* Like match_insn, but for MIPS16. */
7947
7948 static bfd_boolean
match_mips16_insn(struct mips_cl_insn * insn,const struct mips_opcode * opcode,struct mips_operand_token * tokens)7949 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7950 struct mips_operand_token *tokens)
7951 {
7952 const char *args;
7953 const struct mips_operand *operand;
7954 const struct mips_operand *ext_operand;
7955 struct mips_arg_info arg;
7956 int relax_char;
7957
7958 create_insn (insn, opcode);
7959 imm_expr.X_op = O_absent;
7960 offset_expr.X_op = O_absent;
7961 offset_reloc[0] = BFD_RELOC_UNUSED;
7962 offset_reloc[1] = BFD_RELOC_UNUSED;
7963 offset_reloc[2] = BFD_RELOC_UNUSED;
7964 relax_char = 0;
7965
7966 memset (&arg, 0, sizeof (arg));
7967 arg.insn = insn;
7968 arg.token = tokens;
7969 arg.argnum = 1;
7970 arg.last_regno = ILLEGAL_REG;
7971 arg.dest_regno = ILLEGAL_REG;
7972 relax_char = 0;
7973 for (args = opcode->args;; ++args)
7974 {
7975 int c;
7976
7977 if (arg.token->type == OT_END)
7978 {
7979 offsetT value;
7980
7981 /* Handle unary instructions in which only one operand is given.
7982 The source is then the same as the destination. */
7983 if (arg.opnum == 1 && *args == ',')
7984 {
7985 operand = decode_mips16_operand (args[1], FALSE);
7986 if (operand && mips_optional_operand_p (operand))
7987 {
7988 arg.token = tokens;
7989 arg.argnum = 1;
7990 continue;
7991 }
7992 }
7993
7994 /* Fail the match if there were too few operands. */
7995 if (*args)
7996 return FALSE;
7997
7998 /* Successful match. Stuff the immediate value in now, if
7999 we can. */
8000 clear_insn_error ();
8001 if (opcode->pinfo == INSN_MACRO)
8002 {
8003 gas_assert (relax_char == 0 || relax_char == 'p');
8004 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8005 }
8006 else if (relax_char
8007 && offset_expr.X_op == O_constant
8008 && calculate_reloc (*offset_reloc,
8009 offset_expr.X_add_number,
8010 &value))
8011 {
8012 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8013 forced_insn_length, &insn->insn_opcode);
8014 offset_expr.X_op = O_absent;
8015 *offset_reloc = BFD_RELOC_UNUSED;
8016 }
8017 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8018 {
8019 if (forced_insn_length == 2)
8020 set_insn_error (0, _("invalid unextended operand value"));
8021 forced_insn_length = 4;
8022 insn->insn_opcode |= MIPS16_EXTEND;
8023 }
8024 else if (relax_char)
8025 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8026
8027 check_completed_insn (&arg);
8028 return TRUE;
8029 }
8030
8031 /* Fail the match if the line has too many operands. */
8032 if (*args == 0)
8033 return FALSE;
8034
8035 /* Handle characters that need to match exactly. */
8036 if (*args == '(' || *args == ')' || *args == ',')
8037 {
8038 if (match_char (&arg, *args))
8039 continue;
8040 return FALSE;
8041 }
8042
8043 arg.opnum += 1;
8044 c = *args;
8045 switch (c)
8046 {
8047 case 'p':
8048 case 'q':
8049 case 'A':
8050 case 'B':
8051 case 'E':
8052 relax_char = c;
8053 break;
8054
8055 case 'I':
8056 if (!match_const_int (&arg, &imm_expr.X_add_number))
8057 return FALSE;
8058 imm_expr.X_op = O_constant;
8059 if (GPR_SIZE == 32)
8060 normalize_constant_expr (&imm_expr);
8061 continue;
8062
8063 case 'a':
8064 case 'i':
8065 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8066 insn->insn_opcode <<= 16;
8067 break;
8068 }
8069
8070 operand = decode_mips16_operand (c, FALSE);
8071 if (!operand)
8072 abort ();
8073
8074 /* '6' is a special case. It is used for BREAK and SDBBP,
8075 whose operands are only meaningful to the software that decodes
8076 them. This means that there is no architectural reason why
8077 they cannot be prefixed by EXTEND, but in practice,
8078 exception handlers will only look at the instruction
8079 itself. We therefore allow '6' to be extended when
8080 disassembling but not when assembling. */
8081 if (operand->type != OP_PCREL && c != '6')
8082 {
8083 ext_operand = decode_mips16_operand (c, TRUE);
8084 if (operand != ext_operand)
8085 {
8086 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8087 {
8088 offset_expr.X_op = O_constant;
8089 offset_expr.X_add_number = 0;
8090 relax_char = c;
8091 continue;
8092 }
8093
8094 /* We need the OT_INTEGER check because some MIPS16
8095 immediate variants are listed before the register ones. */
8096 if (arg.token->type != OT_INTEGER
8097 || !match_expression (&arg, &offset_expr, offset_reloc))
8098 return FALSE;
8099
8100 /* '8' is used for SLTI(U) and has traditionally not
8101 been allowed to take relocation operators. */
8102 if (offset_reloc[0] != BFD_RELOC_UNUSED
8103 && (ext_operand->size != 16 || c == '8'))
8104 return FALSE;
8105
8106 relax_char = c;
8107 continue;
8108 }
8109 }
8110
8111 if (mips_optional_operand_p (operand)
8112 && args[1] == ','
8113 && (arg.token[0].type != OT_REG
8114 || arg.token[1].type == OT_END))
8115 {
8116 /* Assume that the register has been elided and is the
8117 same as the first operand. */
8118 arg.token = tokens;
8119 arg.argnum = 1;
8120 }
8121
8122 if (!match_operand (&arg, operand))
8123 return FALSE;
8124 }
8125 }
8126
8127 /* Record that the current instruction is invalid for the current ISA. */
8128
8129 static void
match_invalid_for_isa(void)8130 match_invalid_for_isa (void)
8131 {
8132 set_insn_error_ss
8133 (0, _("opcode not supported on this processor: %s (%s)"),
8134 mips_cpu_info_from_arch (mips_opts.arch)->name,
8135 mips_cpu_info_from_isa (mips_opts.isa)->name);
8136 }
8137
8138 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8139 Return true if a definite match or failure was found, storing any match
8140 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8141 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8142 tried and failed to match under normal conditions and now want to try a
8143 more relaxed match. */
8144
8145 static bfd_boolean
match_insns(struct mips_cl_insn * insn,const struct mips_opcode * first,const struct mips_opcode * past,struct mips_operand_token * tokens,int opcode_extra,bfd_boolean lax_match)8146 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8147 const struct mips_opcode *past, struct mips_operand_token *tokens,
8148 int opcode_extra, bfd_boolean lax_match)
8149 {
8150 const struct mips_opcode *opcode;
8151 const struct mips_opcode *invalid_delay_slot;
8152 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8153
8154 /* Search for a match, ignoring alternatives that don't satisfy the
8155 current ISA or forced_length. */
8156 invalid_delay_slot = 0;
8157 seen_valid_for_isa = FALSE;
8158 seen_valid_for_size = FALSE;
8159 opcode = first;
8160 do
8161 {
8162 gas_assert (strcmp (opcode->name, first->name) == 0);
8163 if (is_opcode_valid (opcode))
8164 {
8165 seen_valid_for_isa = TRUE;
8166 if (is_size_valid (opcode))
8167 {
8168 bfd_boolean delay_slot_ok;
8169
8170 seen_valid_for_size = TRUE;
8171 delay_slot_ok = is_delay_slot_valid (opcode);
8172 if (match_insn (insn, opcode, tokens, opcode_extra,
8173 lax_match, delay_slot_ok))
8174 {
8175 if (!delay_slot_ok)
8176 {
8177 if (!invalid_delay_slot)
8178 invalid_delay_slot = opcode;
8179 }
8180 else
8181 return TRUE;
8182 }
8183 }
8184 }
8185 ++opcode;
8186 }
8187 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8188
8189 /* If the only matches we found had the wrong length for the delay slot,
8190 pick the first such match. We'll issue an appropriate warning later. */
8191 if (invalid_delay_slot)
8192 {
8193 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8194 lax_match, TRUE))
8195 return TRUE;
8196 abort ();
8197 }
8198
8199 /* Handle the case where we didn't try to match an instruction because
8200 all the alternatives were incompatible with the current ISA. */
8201 if (!seen_valid_for_isa)
8202 {
8203 match_invalid_for_isa ();
8204 return TRUE;
8205 }
8206
8207 /* Handle the case where we didn't try to match an instruction because
8208 all the alternatives were of the wrong size. */
8209 if (!seen_valid_for_size)
8210 {
8211 if (mips_opts.insn32)
8212 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8213 else
8214 set_insn_error_i
8215 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8216 8 * forced_insn_length);
8217 return TRUE;
8218 }
8219
8220 return FALSE;
8221 }
8222
8223 /* Like match_insns, but for MIPS16. */
8224
8225 static bfd_boolean
match_mips16_insns(struct mips_cl_insn * insn,const struct mips_opcode * first,struct mips_operand_token * tokens)8226 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8227 struct mips_operand_token *tokens)
8228 {
8229 const struct mips_opcode *opcode;
8230 bfd_boolean seen_valid_for_isa;
8231
8232 /* Search for a match, ignoring alternatives that don't satisfy the
8233 current ISA. There are no separate entries for extended forms so
8234 we deal with forced_length later. */
8235 seen_valid_for_isa = FALSE;
8236 opcode = first;
8237 do
8238 {
8239 gas_assert (strcmp (opcode->name, first->name) == 0);
8240 if (is_opcode_valid_16 (opcode))
8241 {
8242 seen_valid_for_isa = TRUE;
8243 if (match_mips16_insn (insn, opcode, tokens))
8244 return TRUE;
8245 }
8246 ++opcode;
8247 }
8248 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8249 && strcmp (opcode->name, first->name) == 0);
8250
8251 /* Handle the case where we didn't try to match an instruction because
8252 all the alternatives were incompatible with the current ISA. */
8253 if (!seen_valid_for_isa)
8254 {
8255 match_invalid_for_isa ();
8256 return TRUE;
8257 }
8258
8259 return FALSE;
8260 }
8261
8262 /* Set up global variables for the start of a new macro. */
8263
8264 static void
macro_start(void)8265 macro_start (void)
8266 {
8267 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8268 memset (&mips_macro_warning.first_insn_sizes, 0,
8269 sizeof (mips_macro_warning.first_insn_sizes));
8270 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8271 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8272 && delayed_branch_p (&history[0]));
8273 switch (history[0].insn_mo->pinfo2
8274 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8275 {
8276 case INSN2_BRANCH_DELAY_32BIT:
8277 mips_macro_warning.delay_slot_length = 4;
8278 break;
8279 case INSN2_BRANCH_DELAY_16BIT:
8280 mips_macro_warning.delay_slot_length = 2;
8281 break;
8282 default:
8283 mips_macro_warning.delay_slot_length = 0;
8284 break;
8285 }
8286 mips_macro_warning.first_frag = NULL;
8287 }
8288
8289 /* Given that a macro is longer than one instruction or of the wrong size,
8290 return the appropriate warning for it. Return null if no warning is
8291 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8292 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8293 and RELAX_NOMACRO. */
8294
8295 static const char *
macro_warning(relax_substateT subtype)8296 macro_warning (relax_substateT subtype)
8297 {
8298 if (subtype & RELAX_DELAY_SLOT)
8299 return _("macro instruction expanded into multiple instructions"
8300 " in a branch delay slot");
8301 else if (subtype & RELAX_NOMACRO)
8302 return _("macro instruction expanded into multiple instructions");
8303 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8304 | RELAX_DELAY_SLOT_SIZE_SECOND))
8305 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8306 ? _("macro instruction expanded into a wrong size instruction"
8307 " in a 16-bit branch delay slot")
8308 : _("macro instruction expanded into a wrong size instruction"
8309 " in a 32-bit branch delay slot"));
8310 else
8311 return 0;
8312 }
8313
8314 /* Finish up a macro. Emit warnings as appropriate. */
8315
8316 static void
macro_end(void)8317 macro_end (void)
8318 {
8319 /* Relaxation warning flags. */
8320 relax_substateT subtype = 0;
8321
8322 /* Check delay slot size requirements. */
8323 if (mips_macro_warning.delay_slot_length == 2)
8324 subtype |= RELAX_DELAY_SLOT_16BIT;
8325 if (mips_macro_warning.delay_slot_length != 0)
8326 {
8327 if (mips_macro_warning.delay_slot_length
8328 != mips_macro_warning.first_insn_sizes[0])
8329 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8330 if (mips_macro_warning.delay_slot_length
8331 != mips_macro_warning.first_insn_sizes[1])
8332 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8333 }
8334
8335 /* Check instruction count requirements. */
8336 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8337 {
8338 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8339 subtype |= RELAX_SECOND_LONGER;
8340 if (mips_opts.warn_about_macros)
8341 subtype |= RELAX_NOMACRO;
8342 if (mips_macro_warning.delay_slot_p)
8343 subtype |= RELAX_DELAY_SLOT;
8344 }
8345
8346 /* If both alternatives fail to fill a delay slot correctly,
8347 emit the warning now. */
8348 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8349 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8350 {
8351 relax_substateT s;
8352 const char *msg;
8353
8354 s = subtype & (RELAX_DELAY_SLOT_16BIT
8355 | RELAX_DELAY_SLOT_SIZE_FIRST
8356 | RELAX_DELAY_SLOT_SIZE_SECOND);
8357 msg = macro_warning (s);
8358 if (msg != NULL)
8359 as_warn ("%s", msg);
8360 subtype &= ~s;
8361 }
8362
8363 /* If both implementations are longer than 1 instruction, then emit the
8364 warning now. */
8365 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8366 {
8367 relax_substateT s;
8368 const char *msg;
8369
8370 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8371 msg = macro_warning (s);
8372 if (msg != NULL)
8373 as_warn ("%s", msg);
8374 subtype &= ~s;
8375 }
8376
8377 /* If any flags still set, then one implementation might need a warning
8378 and the other either will need one of a different kind or none at all.
8379 Pass any remaining flags over to relaxation. */
8380 if (mips_macro_warning.first_frag != NULL)
8381 mips_macro_warning.first_frag->fr_subtype |= subtype;
8382 }
8383
8384 /* Instruction operand formats used in macros that vary between
8385 standard MIPS and microMIPS code. */
8386
8387 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8388 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8389 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8390 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8391 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8392 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8393 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8394 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8395
8396 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8397 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8398 : cop12_fmt[mips_opts.micromips])
8399 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8400 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8401 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8402 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8403 : mem12_fmt[mips_opts.micromips])
8404 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8405 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8406 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8407
8408 /* Read a macro's relocation codes from *ARGS and store them in *R.
8409 The first argument in *ARGS will be either the code for a single
8410 relocation or -1 followed by the three codes that make up a
8411 composite relocation. */
8412
8413 static void
macro_read_relocs(va_list * args,bfd_reloc_code_real_type * r)8414 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8415 {
8416 int i, next;
8417
8418 next = va_arg (*args, int);
8419 if (next >= 0)
8420 r[0] = (bfd_reloc_code_real_type) next;
8421 else
8422 {
8423 for (i = 0; i < 3; i++)
8424 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8425 /* This function is only used for 16-bit relocation fields.
8426 To make the macro code simpler, treat an unrelocated value
8427 in the same way as BFD_RELOC_LO16. */
8428 if (r[0] == BFD_RELOC_UNUSED)
8429 r[0] = BFD_RELOC_LO16;
8430 }
8431 }
8432
8433 /* Build an instruction created by a macro expansion. This is passed
8434 a pointer to the count of instructions created so far, an
8435 expression, the name of the instruction to build, an operand format
8436 string, and corresponding arguments. */
8437
8438 static void
macro_build(expressionS * ep,const char * name,const char * fmt,...)8439 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8440 {
8441 const struct mips_opcode *mo = NULL;
8442 bfd_reloc_code_real_type r[3];
8443 const struct mips_opcode *amo;
8444 const struct mips_operand *operand;
8445 struct hash_control *hash;
8446 struct mips_cl_insn insn;
8447 va_list args;
8448 unsigned int uval;
8449
8450 va_start (args, fmt);
8451
8452 if (mips_opts.mips16)
8453 {
8454 mips16_macro_build (ep, name, fmt, &args);
8455 va_end (args);
8456 return;
8457 }
8458
8459 r[0] = BFD_RELOC_UNUSED;
8460 r[1] = BFD_RELOC_UNUSED;
8461 r[2] = BFD_RELOC_UNUSED;
8462 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8463 amo = (struct mips_opcode *) hash_find (hash, name);
8464 gas_assert (amo);
8465 gas_assert (strcmp (name, amo->name) == 0);
8466
8467 do
8468 {
8469 /* Search until we get a match for NAME. It is assumed here that
8470 macros will never generate MDMX, MIPS-3D, or MT instructions.
8471 We try to match an instruction that fulfils the branch delay
8472 slot instruction length requirement (if any) of the previous
8473 instruction. While doing this we record the first instruction
8474 seen that matches all the other conditions and use it anyway
8475 if the requirement cannot be met; we will issue an appropriate
8476 warning later on. */
8477 if (strcmp (fmt, amo->args) == 0
8478 && amo->pinfo != INSN_MACRO
8479 && is_opcode_valid (amo)
8480 && is_size_valid (amo))
8481 {
8482 if (is_delay_slot_valid (amo))
8483 {
8484 mo = amo;
8485 break;
8486 }
8487 else if (!mo)
8488 mo = amo;
8489 }
8490
8491 ++amo;
8492 gas_assert (amo->name);
8493 }
8494 while (strcmp (name, amo->name) == 0);
8495
8496 gas_assert (mo);
8497 create_insn (&insn, mo);
8498 for (; *fmt; ++fmt)
8499 {
8500 switch (*fmt)
8501 {
8502 case ',':
8503 case '(':
8504 case ')':
8505 case 'z':
8506 break;
8507
8508 case 'i':
8509 case 'j':
8510 macro_read_relocs (&args, r);
8511 gas_assert (*r == BFD_RELOC_GPREL16
8512 || *r == BFD_RELOC_MIPS_HIGHER
8513 || *r == BFD_RELOC_HI16_S
8514 || *r == BFD_RELOC_LO16
8515 || *r == BFD_RELOC_MIPS_GOT_OFST);
8516 break;
8517
8518 case 'o':
8519 macro_read_relocs (&args, r);
8520 break;
8521
8522 case 'u':
8523 macro_read_relocs (&args, r);
8524 gas_assert (ep != NULL
8525 && (ep->X_op == O_constant
8526 || (ep->X_op == O_symbol
8527 && (*r == BFD_RELOC_MIPS_HIGHEST
8528 || *r == BFD_RELOC_HI16_S
8529 || *r == BFD_RELOC_HI16
8530 || *r == BFD_RELOC_GPREL16
8531 || *r == BFD_RELOC_MIPS_GOT_HI16
8532 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8533 break;
8534
8535 case 'p':
8536 gas_assert (ep != NULL);
8537
8538 /*
8539 * This allows macro() to pass an immediate expression for
8540 * creating short branches without creating a symbol.
8541 *
8542 * We don't allow branch relaxation for these branches, as
8543 * they should only appear in ".set nomacro" anyway.
8544 */
8545 if (ep->X_op == O_constant)
8546 {
8547 /* For microMIPS we always use relocations for branches.
8548 So we should not resolve immediate values. */
8549 gas_assert (!mips_opts.micromips);
8550
8551 if ((ep->X_add_number & 3) != 0)
8552 as_bad (_("branch to misaligned address (0x%lx)"),
8553 (unsigned long) ep->X_add_number);
8554 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8555 as_bad (_("branch address range overflow (0x%lx)"),
8556 (unsigned long) ep->X_add_number);
8557 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8558 ep = NULL;
8559 }
8560 else
8561 *r = BFD_RELOC_16_PCREL_S2;
8562 break;
8563
8564 case 'a':
8565 gas_assert (ep != NULL);
8566 *r = BFD_RELOC_MIPS_JMP;
8567 break;
8568
8569 default:
8570 operand = (mips_opts.micromips
8571 ? decode_micromips_operand (fmt)
8572 : decode_mips_operand (fmt));
8573 if (!operand)
8574 abort ();
8575
8576 uval = va_arg (args, int);
8577 if (operand->type == OP_CLO_CLZ_DEST)
8578 uval |= (uval << 5);
8579 insn_insert_operand (&insn, operand, uval);
8580
8581 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8582 ++fmt;
8583 break;
8584 }
8585 }
8586 va_end (args);
8587 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8588
8589 append_insn (&insn, ep, r, TRUE);
8590 }
8591
8592 static void
mips16_macro_build(expressionS * ep,const char * name,const char * fmt,va_list * args)8593 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8594 va_list *args)
8595 {
8596 struct mips_opcode *mo;
8597 struct mips_cl_insn insn;
8598 const struct mips_operand *operand;
8599 bfd_reloc_code_real_type r[3]
8600 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8601
8602 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8603 gas_assert (mo);
8604 gas_assert (strcmp (name, mo->name) == 0);
8605
8606 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8607 {
8608 ++mo;
8609 gas_assert (mo->name);
8610 gas_assert (strcmp (name, mo->name) == 0);
8611 }
8612
8613 create_insn (&insn, mo);
8614 for (; *fmt; ++fmt)
8615 {
8616 int c;
8617
8618 c = *fmt;
8619 switch (c)
8620 {
8621 case ',':
8622 case '(':
8623 case ')':
8624 break;
8625
8626 case '0':
8627 case 'S':
8628 case 'P':
8629 case 'R':
8630 break;
8631
8632 case '<':
8633 case '>':
8634 case '4':
8635 case '5':
8636 case 'H':
8637 case 'W':
8638 case 'D':
8639 case 'j':
8640 case '8':
8641 case 'V':
8642 case 'C':
8643 case 'U':
8644 case 'k':
8645 case 'K':
8646 case 'p':
8647 case 'q':
8648 {
8649 offsetT value;
8650
8651 gas_assert (ep != NULL);
8652
8653 if (ep->X_op != O_constant)
8654 *r = (int) BFD_RELOC_UNUSED + c;
8655 else if (calculate_reloc (*r, ep->X_add_number, &value))
8656 {
8657 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8658 ep = NULL;
8659 *r = BFD_RELOC_UNUSED;
8660 }
8661 }
8662 break;
8663
8664 default:
8665 operand = decode_mips16_operand (c, FALSE);
8666 if (!operand)
8667 abort ();
8668
8669 insn_insert_operand (&insn, operand, va_arg (*args, int));
8670 break;
8671 }
8672 }
8673
8674 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8675
8676 append_insn (&insn, ep, r, TRUE);
8677 }
8678
8679 /*
8680 * Generate a "jalr" instruction with a relocation hint to the called
8681 * function. This occurs in NewABI PIC code.
8682 */
8683 static void
macro_build_jalr(expressionS * ep,int cprestore)8684 macro_build_jalr (expressionS *ep, int cprestore)
8685 {
8686 static const bfd_reloc_code_real_type jalr_relocs[2]
8687 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8688 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8689 const char *jalr;
8690 char *f = NULL;
8691
8692 if (MIPS_JALR_HINT_P (ep))
8693 {
8694 frag_grow (8);
8695 f = frag_more (0);
8696 }
8697 if (mips_opts.micromips)
8698 {
8699 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8700 ? "jalr" : "jalrs");
8701 if (MIPS_JALR_HINT_P (ep)
8702 || mips_opts.insn32
8703 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8704 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8705 else
8706 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8707 }
8708 else
8709 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8710 if (MIPS_JALR_HINT_P (ep))
8711 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8712 }
8713
8714 /*
8715 * Generate a "lui" instruction.
8716 */
8717 static void
macro_build_lui(expressionS * ep,int regnum)8718 macro_build_lui (expressionS *ep, int regnum)
8719 {
8720 gas_assert (! mips_opts.mips16);
8721
8722 if (ep->X_op != O_constant)
8723 {
8724 gas_assert (ep->X_op == O_symbol);
8725 /* _gp_disp is a special case, used from s_cpload.
8726 __gnu_local_gp is used if mips_no_shared. */
8727 gas_assert (mips_pic == NO_PIC
8728 || (! HAVE_NEWABI
8729 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8730 || (! mips_in_shared
8731 && strcmp (S_GET_NAME (ep->X_add_symbol),
8732 "__gnu_local_gp") == 0));
8733 }
8734
8735 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8736 }
8737
8738 /* Generate a sequence of instructions to do a load or store from a constant
8739 offset off of a base register (breg) into/from a target register (treg),
8740 using AT if necessary. */
8741 static void
macro_build_ldst_constoffset(expressionS * ep,const char * op,int treg,int breg,int dbl)8742 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8743 int treg, int breg, int dbl)
8744 {
8745 gas_assert (ep->X_op == O_constant);
8746
8747 /* Sign-extending 32-bit constants makes their handling easier. */
8748 if (!dbl)
8749 normalize_constant_expr (ep);
8750
8751 /* Right now, this routine can only handle signed 32-bit constants. */
8752 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8753 as_warn (_("operand overflow"));
8754
8755 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8756 {
8757 /* Signed 16-bit offset will fit in the op. Easy! */
8758 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8759 }
8760 else
8761 {
8762 /* 32-bit offset, need multiple instructions and AT, like:
8763 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8764 addu $tempreg,$tempreg,$breg
8765 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8766 to handle the complete offset. */
8767 macro_build_lui (ep, AT);
8768 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8769 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8770
8771 if (!mips_opts.at)
8772 as_bad (_("macro used $at after \".set noat\""));
8773 }
8774 }
8775
8776 /* set_at()
8777 * Generates code to set the $at register to true (one)
8778 * if reg is less than the immediate expression.
8779 */
8780 static void
set_at(int reg,int unsignedp)8781 set_at (int reg, int unsignedp)
8782 {
8783 if (imm_expr.X_add_number >= -0x8000
8784 && imm_expr.X_add_number < 0x8000)
8785 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8786 AT, reg, BFD_RELOC_LO16);
8787 else
8788 {
8789 load_register (AT, &imm_expr, GPR_SIZE == 64);
8790 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8791 }
8792 }
8793
8794 /* Count the leading zeroes by performing a binary chop. This is a
8795 bulky bit of source, but performance is a LOT better for the
8796 majority of values than a simple loop to count the bits:
8797 for (lcnt = 0; (lcnt < 32); lcnt++)
8798 if ((v) & (1 << (31 - lcnt)))
8799 break;
8800 However it is not code size friendly, and the gain will drop a bit
8801 on certain cached systems.
8802 */
8803 #define COUNT_TOP_ZEROES(v) \
8804 (((v) & ~0xffff) == 0 \
8805 ? ((v) & ~0xff) == 0 \
8806 ? ((v) & ~0xf) == 0 \
8807 ? ((v) & ~0x3) == 0 \
8808 ? ((v) & ~0x1) == 0 \
8809 ? !(v) \
8810 ? 32 \
8811 : 31 \
8812 : 30 \
8813 : ((v) & ~0x7) == 0 \
8814 ? 29 \
8815 : 28 \
8816 : ((v) & ~0x3f) == 0 \
8817 ? ((v) & ~0x1f) == 0 \
8818 ? 27 \
8819 : 26 \
8820 : ((v) & ~0x7f) == 0 \
8821 ? 25 \
8822 : 24 \
8823 : ((v) & ~0xfff) == 0 \
8824 ? ((v) & ~0x3ff) == 0 \
8825 ? ((v) & ~0x1ff) == 0 \
8826 ? 23 \
8827 : 22 \
8828 : ((v) & ~0x7ff) == 0 \
8829 ? 21 \
8830 : 20 \
8831 : ((v) & ~0x3fff) == 0 \
8832 ? ((v) & ~0x1fff) == 0 \
8833 ? 19 \
8834 : 18 \
8835 : ((v) & ~0x7fff) == 0 \
8836 ? 17 \
8837 : 16 \
8838 : ((v) & ~0xffffff) == 0 \
8839 ? ((v) & ~0xfffff) == 0 \
8840 ? ((v) & ~0x3ffff) == 0 \
8841 ? ((v) & ~0x1ffff) == 0 \
8842 ? 15 \
8843 : 14 \
8844 : ((v) & ~0x7ffff) == 0 \
8845 ? 13 \
8846 : 12 \
8847 : ((v) & ~0x3fffff) == 0 \
8848 ? ((v) & ~0x1fffff) == 0 \
8849 ? 11 \
8850 : 10 \
8851 : ((v) & ~0x7fffff) == 0 \
8852 ? 9 \
8853 : 8 \
8854 : ((v) & ~0xfffffff) == 0 \
8855 ? ((v) & ~0x3ffffff) == 0 \
8856 ? ((v) & ~0x1ffffff) == 0 \
8857 ? 7 \
8858 : 6 \
8859 : ((v) & ~0x7ffffff) == 0 \
8860 ? 5 \
8861 : 4 \
8862 : ((v) & ~0x3fffffff) == 0 \
8863 ? ((v) & ~0x1fffffff) == 0 \
8864 ? 3 \
8865 : 2 \
8866 : ((v) & ~0x7fffffff) == 0 \
8867 ? 1 \
8868 : 0)
8869
8870 /* load_register()
8871 * This routine generates the least number of instructions necessary to load
8872 * an absolute expression value into a register.
8873 */
8874 static void
load_register(int reg,expressionS * ep,int dbl)8875 load_register (int reg, expressionS *ep, int dbl)
8876 {
8877 int freg;
8878 expressionS hi32, lo32;
8879
8880 if (ep->X_op != O_big)
8881 {
8882 gas_assert (ep->X_op == O_constant);
8883
8884 /* Sign-extending 32-bit constants makes their handling easier. */
8885 if (!dbl)
8886 normalize_constant_expr (ep);
8887
8888 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8889 {
8890 /* We can handle 16 bit signed values with an addiu to
8891 $zero. No need to ever use daddiu here, since $zero and
8892 the result are always correct in 32 bit mode. */
8893 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8894 return;
8895 }
8896 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8897 {
8898 /* We can handle 16 bit unsigned values with an ori to
8899 $zero. */
8900 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8901 return;
8902 }
8903 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8904 {
8905 /* 32 bit values require an lui. */
8906 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8907 if ((ep->X_add_number & 0xffff) != 0)
8908 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8909 return;
8910 }
8911 }
8912
8913 /* The value is larger than 32 bits. */
8914
8915 if (!dbl || GPR_SIZE == 32)
8916 {
8917 char value[32];
8918
8919 sprintf_vma (value, ep->X_add_number);
8920 as_bad (_("number (0x%s) larger than 32 bits"), value);
8921 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8922 return;
8923 }
8924
8925 if (ep->X_op != O_big)
8926 {
8927 hi32 = *ep;
8928 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8929 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8930 hi32.X_add_number &= 0xffffffff;
8931 lo32 = *ep;
8932 lo32.X_add_number &= 0xffffffff;
8933 }
8934 else
8935 {
8936 gas_assert (ep->X_add_number > 2);
8937 if (ep->X_add_number == 3)
8938 generic_bignum[3] = 0;
8939 else if (ep->X_add_number > 4)
8940 as_bad (_("number larger than 64 bits"));
8941 lo32.X_op = O_constant;
8942 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8943 hi32.X_op = O_constant;
8944 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8945 }
8946
8947 if (hi32.X_add_number == 0)
8948 freg = 0;
8949 else
8950 {
8951 int shift, bit;
8952 unsigned long hi, lo;
8953
8954 if (hi32.X_add_number == (offsetT) 0xffffffff)
8955 {
8956 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8957 {
8958 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8959 return;
8960 }
8961 if (lo32.X_add_number & 0x80000000)
8962 {
8963 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8964 if (lo32.X_add_number & 0xffff)
8965 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8966 return;
8967 }
8968 }
8969
8970 /* Check for 16bit shifted constant. We know that hi32 is
8971 non-zero, so start the mask on the first bit of the hi32
8972 value. */
8973 shift = 17;
8974 do
8975 {
8976 unsigned long himask, lomask;
8977
8978 if (shift < 32)
8979 {
8980 himask = 0xffff >> (32 - shift);
8981 lomask = (0xffff << shift) & 0xffffffff;
8982 }
8983 else
8984 {
8985 himask = 0xffff << (shift - 32);
8986 lomask = 0;
8987 }
8988 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8989 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8990 {
8991 expressionS tmp;
8992
8993 tmp.X_op = O_constant;
8994 if (shift < 32)
8995 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8996 | (lo32.X_add_number >> shift));
8997 else
8998 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8999 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9000 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9001 reg, reg, (shift >= 32) ? shift - 32 : shift);
9002 return;
9003 }
9004 ++shift;
9005 }
9006 while (shift <= (64 - 16));
9007
9008 /* Find the bit number of the lowest one bit, and store the
9009 shifted value in hi/lo. */
9010 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9011 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9012 if (lo != 0)
9013 {
9014 bit = 0;
9015 while ((lo & 1) == 0)
9016 {
9017 lo >>= 1;
9018 ++bit;
9019 }
9020 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9021 hi >>= bit;
9022 }
9023 else
9024 {
9025 bit = 32;
9026 while ((hi & 1) == 0)
9027 {
9028 hi >>= 1;
9029 ++bit;
9030 }
9031 lo = hi;
9032 hi = 0;
9033 }
9034
9035 /* Optimize if the shifted value is a (power of 2) - 1. */
9036 if ((hi == 0 && ((lo + 1) & lo) == 0)
9037 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9038 {
9039 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9040 if (shift != 0)
9041 {
9042 expressionS tmp;
9043
9044 /* This instruction will set the register to be all
9045 ones. */
9046 tmp.X_op = O_constant;
9047 tmp.X_add_number = (offsetT) -1;
9048 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9049 if (bit != 0)
9050 {
9051 bit += shift;
9052 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9053 reg, reg, (bit >= 32) ? bit - 32 : bit);
9054 }
9055 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9056 reg, reg, (shift >= 32) ? shift - 32 : shift);
9057 return;
9058 }
9059 }
9060
9061 /* Sign extend hi32 before calling load_register, because we can
9062 generally get better code when we load a sign extended value. */
9063 if ((hi32.X_add_number & 0x80000000) != 0)
9064 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9065 load_register (reg, &hi32, 0);
9066 freg = reg;
9067 }
9068 if ((lo32.X_add_number & 0xffff0000) == 0)
9069 {
9070 if (freg != 0)
9071 {
9072 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9073 freg = reg;
9074 }
9075 }
9076 else
9077 {
9078 expressionS mid16;
9079
9080 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9081 {
9082 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9083 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9084 return;
9085 }
9086
9087 if (freg != 0)
9088 {
9089 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9090 freg = reg;
9091 }
9092 mid16 = lo32;
9093 mid16.X_add_number >>= 16;
9094 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9095 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9096 freg = reg;
9097 }
9098 if ((lo32.X_add_number & 0xffff) != 0)
9099 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9100 }
9101
9102 static inline void
load_delay_nop(void)9103 load_delay_nop (void)
9104 {
9105 if (!gpr_interlocks)
9106 macro_build (NULL, "nop", "");
9107 }
9108
9109 /* Load an address into a register. */
9110
9111 static void
load_address(int reg,expressionS * ep,int * used_at)9112 load_address (int reg, expressionS *ep, int *used_at)
9113 {
9114 if (ep->X_op != O_constant
9115 && ep->X_op != O_symbol)
9116 {
9117 as_bad (_("expression too complex"));
9118 ep->X_op = O_constant;
9119 }
9120
9121 if (ep->X_op == O_constant)
9122 {
9123 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9124 return;
9125 }
9126
9127 if (mips_pic == NO_PIC)
9128 {
9129 /* If this is a reference to a GP relative symbol, we want
9130 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9131 Otherwise we want
9132 lui $reg,<sym> (BFD_RELOC_HI16_S)
9133 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9134 If we have an addend, we always use the latter form.
9135
9136 With 64bit address space and a usable $at we want
9137 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9138 lui $at,<sym> (BFD_RELOC_HI16_S)
9139 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9140 daddiu $at,<sym> (BFD_RELOC_LO16)
9141 dsll32 $reg,0
9142 daddu $reg,$reg,$at
9143
9144 If $at is already in use, we use a path which is suboptimal
9145 on superscalar processors.
9146 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9147 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9148 dsll $reg,16
9149 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9150 dsll $reg,16
9151 daddiu $reg,<sym> (BFD_RELOC_LO16)
9152
9153 For GP relative symbols in 64bit address space we can use
9154 the same sequence as in 32bit address space. */
9155 if (HAVE_64BIT_SYMBOLS)
9156 {
9157 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9158 && !nopic_need_relax (ep->X_add_symbol, 1))
9159 {
9160 relax_start (ep->X_add_symbol);
9161 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9162 mips_gp_register, BFD_RELOC_GPREL16);
9163 relax_switch ();
9164 }
9165
9166 if (*used_at == 0 && mips_opts.at)
9167 {
9168 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9169 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9170 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9171 BFD_RELOC_MIPS_HIGHER);
9172 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9173 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9174 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9175 *used_at = 1;
9176 }
9177 else
9178 {
9179 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9180 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9181 BFD_RELOC_MIPS_HIGHER);
9182 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9183 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9184 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9185 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9186 }
9187
9188 if (mips_relax.sequence)
9189 relax_end ();
9190 }
9191 else
9192 {
9193 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9194 && !nopic_need_relax (ep->X_add_symbol, 1))
9195 {
9196 relax_start (ep->X_add_symbol);
9197 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9198 mips_gp_register, BFD_RELOC_GPREL16);
9199 relax_switch ();
9200 }
9201 macro_build_lui (ep, reg);
9202 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9203 reg, reg, BFD_RELOC_LO16);
9204 if (mips_relax.sequence)
9205 relax_end ();
9206 }
9207 }
9208 else if (!mips_big_got)
9209 {
9210 expressionS ex;
9211
9212 /* If this is a reference to an external symbol, we want
9213 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9214 Otherwise we want
9215 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9216 nop
9217 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9218 If there is a constant, it must be added in after.
9219
9220 If we have NewABI, we want
9221 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9222 unless we're referencing a global symbol with a non-zero
9223 offset, in which case cst must be added separately. */
9224 if (HAVE_NEWABI)
9225 {
9226 if (ep->X_add_number)
9227 {
9228 ex.X_add_number = ep->X_add_number;
9229 ep->X_add_number = 0;
9230 relax_start (ep->X_add_symbol);
9231 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9232 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9233 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9234 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9235 ex.X_op = O_constant;
9236 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9237 reg, reg, BFD_RELOC_LO16);
9238 ep->X_add_number = ex.X_add_number;
9239 relax_switch ();
9240 }
9241 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9242 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9243 if (mips_relax.sequence)
9244 relax_end ();
9245 }
9246 else
9247 {
9248 ex.X_add_number = ep->X_add_number;
9249 ep->X_add_number = 0;
9250 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9251 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9252 load_delay_nop ();
9253 relax_start (ep->X_add_symbol);
9254 relax_switch ();
9255 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9256 BFD_RELOC_LO16);
9257 relax_end ();
9258
9259 if (ex.X_add_number != 0)
9260 {
9261 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9262 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9263 ex.X_op = O_constant;
9264 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9265 reg, reg, BFD_RELOC_LO16);
9266 }
9267 }
9268 }
9269 else if (mips_big_got)
9270 {
9271 expressionS ex;
9272
9273 /* This is the large GOT case. If this is a reference to an
9274 external symbol, we want
9275 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9276 addu $reg,$reg,$gp
9277 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9278
9279 Otherwise, for a reference to a local symbol in old ABI, we want
9280 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9281 nop
9282 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9283 If there is a constant, it must be added in after.
9284
9285 In the NewABI, for local symbols, with or without offsets, we want:
9286 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9287 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9288 */
9289 if (HAVE_NEWABI)
9290 {
9291 ex.X_add_number = ep->X_add_number;
9292 ep->X_add_number = 0;
9293 relax_start (ep->X_add_symbol);
9294 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9295 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9296 reg, reg, mips_gp_register);
9297 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9298 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9299 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9300 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9301 else if (ex.X_add_number)
9302 {
9303 ex.X_op = O_constant;
9304 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9305 BFD_RELOC_LO16);
9306 }
9307
9308 ep->X_add_number = ex.X_add_number;
9309 relax_switch ();
9310 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9311 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9312 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9313 BFD_RELOC_MIPS_GOT_OFST);
9314 relax_end ();
9315 }
9316 else
9317 {
9318 ex.X_add_number = ep->X_add_number;
9319 ep->X_add_number = 0;
9320 relax_start (ep->X_add_symbol);
9321 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9323 reg, reg, mips_gp_register);
9324 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9325 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9326 relax_switch ();
9327 if (reg_needs_delay (mips_gp_register))
9328 {
9329 /* We need a nop before loading from $gp. This special
9330 check is required because the lui which starts the main
9331 instruction stream does not refer to $gp, and so will not
9332 insert the nop which may be required. */
9333 macro_build (NULL, "nop", "");
9334 }
9335 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9336 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9337 load_delay_nop ();
9338 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9339 BFD_RELOC_LO16);
9340 relax_end ();
9341
9342 if (ex.X_add_number != 0)
9343 {
9344 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9345 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9346 ex.X_op = O_constant;
9347 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9348 BFD_RELOC_LO16);
9349 }
9350 }
9351 }
9352 else
9353 abort ();
9354
9355 if (!mips_opts.at && *used_at == 1)
9356 as_bad (_("macro used $at after \".set noat\""));
9357 }
9358
9359 /* Move the contents of register SOURCE into register DEST. */
9360
9361 static void
move_register(int dest,int source)9362 move_register (int dest, int source)
9363 {
9364 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9365 instruction specifically requires a 32-bit one. */
9366 if (mips_opts.micromips
9367 && !mips_opts.insn32
9368 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9369 macro_build (NULL, "move", "mp,mj", dest, source);
9370 else
9371 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9372 }
9373
9374 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9375 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9376 The two alternatives are:
9377
9378 Global symbol Local sybmol
9379 ------------- ------------
9380 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9381 ... ...
9382 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9383
9384 load_got_offset emits the first instruction and add_got_offset
9385 emits the second for a 16-bit offset or add_got_offset_hilo emits
9386 a sequence to add a 32-bit offset using a scratch register. */
9387
9388 static void
load_got_offset(int dest,expressionS * local)9389 load_got_offset (int dest, expressionS *local)
9390 {
9391 expressionS global;
9392
9393 global = *local;
9394 global.X_add_number = 0;
9395
9396 relax_start (local->X_add_symbol);
9397 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9398 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9399 relax_switch ();
9400 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9401 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9402 relax_end ();
9403 }
9404
9405 static void
add_got_offset(int dest,expressionS * local)9406 add_got_offset (int dest, expressionS *local)
9407 {
9408 expressionS global;
9409
9410 global.X_op = O_constant;
9411 global.X_op_symbol = NULL;
9412 global.X_add_symbol = NULL;
9413 global.X_add_number = local->X_add_number;
9414
9415 relax_start (local->X_add_symbol);
9416 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9417 dest, dest, BFD_RELOC_LO16);
9418 relax_switch ();
9419 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9420 relax_end ();
9421 }
9422
9423 static void
add_got_offset_hilo(int dest,expressionS * local,int tmp)9424 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9425 {
9426 expressionS global;
9427 int hold_mips_optimize;
9428
9429 global.X_op = O_constant;
9430 global.X_op_symbol = NULL;
9431 global.X_add_symbol = NULL;
9432 global.X_add_number = local->X_add_number;
9433
9434 relax_start (local->X_add_symbol);
9435 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9436 relax_switch ();
9437 /* Set mips_optimize around the lui instruction to avoid
9438 inserting an unnecessary nop after the lw. */
9439 hold_mips_optimize = mips_optimize;
9440 mips_optimize = 2;
9441 macro_build_lui (&global, tmp);
9442 mips_optimize = hold_mips_optimize;
9443 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9444 relax_end ();
9445
9446 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9447 }
9448
9449 /* Emit a sequence of instructions to emulate a branch likely operation.
9450 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9451 is its complementing branch with the original condition negated.
9452 CALL is set if the original branch specified the link operation.
9453 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9454
9455 Code like this is produced in the noreorder mode:
9456
9457 BRNEG <args>, 1f
9458 nop
9459 b <sym>
9460 delay slot (executed only if branch taken)
9461 1:
9462
9463 or, if CALL is set:
9464
9465 BRNEG <args>, 1f
9466 nop
9467 bal <sym>
9468 delay slot (executed only if branch taken)
9469 1:
9470
9471 In the reorder mode the delay slot would be filled with a nop anyway,
9472 so code produced is simply:
9473
9474 BR <args>, <sym>
9475 nop
9476
9477 This function is used when producing code for the microMIPS ASE that
9478 does not implement branch likely instructions in hardware. */
9479
9480 static void
macro_build_branch_likely(const char * br,const char * brneg,int call,expressionS * ep,const char * fmt,unsigned int sreg,unsigned int treg)9481 macro_build_branch_likely (const char *br, const char *brneg,
9482 int call, expressionS *ep, const char *fmt,
9483 unsigned int sreg, unsigned int treg)
9484 {
9485 int noreorder = mips_opts.noreorder;
9486 expressionS expr1;
9487
9488 gas_assert (mips_opts.micromips);
9489 start_noreorder ();
9490 if (noreorder)
9491 {
9492 micromips_label_expr (&expr1);
9493 macro_build (&expr1, brneg, fmt, sreg, treg);
9494 macro_build (NULL, "nop", "");
9495 macro_build (ep, call ? "bal" : "b", "p");
9496
9497 /* Set to true so that append_insn adds a label. */
9498 emit_branch_likely_macro = TRUE;
9499 }
9500 else
9501 {
9502 macro_build (ep, br, fmt, sreg, treg);
9503 macro_build (NULL, "nop", "");
9504 }
9505 end_noreorder ();
9506 }
9507
9508 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9509 the condition code tested. EP specifies the branch target. */
9510
9511 static void
macro_build_branch_ccl(int type,expressionS * ep,unsigned int cc)9512 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9513 {
9514 const int call = 0;
9515 const char *brneg;
9516 const char *br;
9517
9518 switch (type)
9519 {
9520 case M_BC1FL:
9521 br = "bc1f";
9522 brneg = "bc1t";
9523 break;
9524 case M_BC1TL:
9525 br = "bc1t";
9526 brneg = "bc1f";
9527 break;
9528 case M_BC2FL:
9529 br = "bc2f";
9530 brneg = "bc2t";
9531 break;
9532 case M_BC2TL:
9533 br = "bc2t";
9534 brneg = "bc2f";
9535 break;
9536 default:
9537 abort ();
9538 }
9539 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9540 }
9541
9542 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9543 the register tested. EP specifies the branch target. */
9544
9545 static void
macro_build_branch_rs(int type,expressionS * ep,unsigned int sreg)9546 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9547 {
9548 const char *brneg = NULL;
9549 const char *br;
9550 int call = 0;
9551
9552 switch (type)
9553 {
9554 case M_BGEZ:
9555 br = "bgez";
9556 break;
9557 case M_BGEZL:
9558 br = mips_opts.micromips ? "bgez" : "bgezl";
9559 brneg = "bltz";
9560 break;
9561 case M_BGEZALL:
9562 gas_assert (mips_opts.micromips);
9563 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9564 brneg = "bltz";
9565 call = 1;
9566 break;
9567 case M_BGTZ:
9568 br = "bgtz";
9569 break;
9570 case M_BGTZL:
9571 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9572 brneg = "blez";
9573 break;
9574 case M_BLEZ:
9575 br = "blez";
9576 break;
9577 case M_BLEZL:
9578 br = mips_opts.micromips ? "blez" : "blezl";
9579 brneg = "bgtz";
9580 break;
9581 case M_BLTZ:
9582 br = "bltz";
9583 break;
9584 case M_BLTZL:
9585 br = mips_opts.micromips ? "bltz" : "bltzl";
9586 brneg = "bgez";
9587 break;
9588 case M_BLTZALL:
9589 gas_assert (mips_opts.micromips);
9590 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9591 brneg = "bgez";
9592 call = 1;
9593 break;
9594 default:
9595 abort ();
9596 }
9597 if (mips_opts.micromips && brneg)
9598 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9599 else
9600 macro_build (ep, br, "s,p", sreg);
9601 }
9602
9603 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9604 TREG as the registers tested. EP specifies the branch target. */
9605
9606 static void
macro_build_branch_rsrt(int type,expressionS * ep,unsigned int sreg,unsigned int treg)9607 macro_build_branch_rsrt (int type, expressionS *ep,
9608 unsigned int sreg, unsigned int treg)
9609 {
9610 const char *brneg = NULL;
9611 const int call = 0;
9612 const char *br;
9613
9614 switch (type)
9615 {
9616 case M_BEQ:
9617 case M_BEQ_I:
9618 br = "beq";
9619 break;
9620 case M_BEQL:
9621 case M_BEQL_I:
9622 br = mips_opts.micromips ? "beq" : "beql";
9623 brneg = "bne";
9624 break;
9625 case M_BNE:
9626 case M_BNE_I:
9627 br = "bne";
9628 break;
9629 case M_BNEL:
9630 case M_BNEL_I:
9631 br = mips_opts.micromips ? "bne" : "bnel";
9632 brneg = "beq";
9633 break;
9634 default:
9635 abort ();
9636 }
9637 if (mips_opts.micromips && brneg)
9638 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9639 else
9640 macro_build (ep, br, "s,t,p", sreg, treg);
9641 }
9642
9643 /* Return the high part that should be loaded in order to make the low
9644 part of VALUE accessible using an offset of OFFBITS bits. */
9645
9646 static offsetT
offset_high_part(offsetT value,unsigned int offbits)9647 offset_high_part (offsetT value, unsigned int offbits)
9648 {
9649 offsetT bias;
9650 addressT low_mask;
9651
9652 if (offbits == 0)
9653 return value;
9654 bias = 1 << (offbits - 1);
9655 low_mask = bias * 2 - 1;
9656 return (value + bias) & ~low_mask;
9657 }
9658
9659 /* Return true if the value stored in offset_expr and offset_reloc
9660 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9661 amount that the caller wants to add without inducing overflow
9662 and ALIGN is the known alignment of the value in bytes. */
9663
9664 static bfd_boolean
small_offset_p(unsigned int range,unsigned int align,unsigned int offbits)9665 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9666 {
9667 if (offbits == 16)
9668 {
9669 /* Accept any relocation operator if overflow isn't a concern. */
9670 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9671 return TRUE;
9672
9673 /* These relocations are guaranteed not to overflow in correct links. */
9674 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9675 || gprel16_reloc_p (*offset_reloc))
9676 return TRUE;
9677 }
9678 if (offset_expr.X_op == O_constant
9679 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9680 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9681 return TRUE;
9682 return FALSE;
9683 }
9684
9685 /*
9686 * Build macros
9687 * This routine implements the seemingly endless macro or synthesized
9688 * instructions and addressing modes in the mips assembly language. Many
9689 * of these macros are simple and are similar to each other. These could
9690 * probably be handled by some kind of table or grammar approach instead of
9691 * this verbose method. Others are not simple macros but are more like
9692 * optimizing code generation.
9693 * One interesting optimization is when several store macros appear
9694 * consecutively that would load AT with the upper half of the same address.
9695 * The ensuing load upper instructions are ommited. This implies some kind
9696 * of global optimization. We currently only optimize within a single macro.
9697 * For many of the load and store macros if the address is specified as a
9698 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9699 * first load register 'at' with zero and use it as the base register. The
9700 * mips assembler simply uses register $zero. Just one tiny optimization
9701 * we're missing.
9702 */
9703 static void
macro(struct mips_cl_insn * ip,char * str)9704 macro (struct mips_cl_insn *ip, char *str)
9705 {
9706 const struct mips_operand_array *operands;
9707 unsigned int breg, i;
9708 unsigned int tempreg;
9709 int mask;
9710 int used_at = 0;
9711 expressionS label_expr;
9712 expressionS expr1;
9713 expressionS *ep;
9714 const char *s;
9715 const char *s2;
9716 const char *fmt;
9717 int likely = 0;
9718 int coproc = 0;
9719 int offbits = 16;
9720 int call = 0;
9721 int jals = 0;
9722 int dbl = 0;
9723 int imm = 0;
9724 int ust = 0;
9725 int lp = 0;
9726 bfd_boolean large_offset;
9727 int off;
9728 int hold_mips_optimize;
9729 unsigned int align;
9730 unsigned int op[MAX_OPERANDS];
9731
9732 gas_assert (! mips_opts.mips16);
9733
9734 operands = insn_operands (ip);
9735 for (i = 0; i < MAX_OPERANDS; i++)
9736 if (operands->operand[i])
9737 op[i] = insn_extract_operand (ip, operands->operand[i]);
9738 else
9739 op[i] = -1;
9740
9741 mask = ip->insn_mo->mask;
9742
9743 label_expr.X_op = O_constant;
9744 label_expr.X_op_symbol = NULL;
9745 label_expr.X_add_symbol = NULL;
9746 label_expr.X_add_number = 0;
9747
9748 expr1.X_op = O_constant;
9749 expr1.X_op_symbol = NULL;
9750 expr1.X_add_symbol = NULL;
9751 expr1.X_add_number = 1;
9752 align = 1;
9753
9754 switch (mask)
9755 {
9756 case M_DABS:
9757 dbl = 1;
9758 case M_ABS:
9759 /* bgez $a0,1f
9760 move v0,$a0
9761 sub v0,$zero,$a0
9762 1:
9763 */
9764
9765 start_noreorder ();
9766
9767 if (mips_opts.micromips)
9768 micromips_label_expr (&label_expr);
9769 else
9770 label_expr.X_add_number = 8;
9771 macro_build (&label_expr, "bgez", "s,p", op[1]);
9772 if (op[0] == op[1])
9773 macro_build (NULL, "nop", "");
9774 else
9775 move_register (op[0], op[1]);
9776 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9777 if (mips_opts.micromips)
9778 micromips_add_label ();
9779
9780 end_noreorder ();
9781 break;
9782
9783 case M_ADD_I:
9784 s = "addi";
9785 s2 = "add";
9786 goto do_addi;
9787 case M_ADDU_I:
9788 s = "addiu";
9789 s2 = "addu";
9790 goto do_addi;
9791 case M_DADD_I:
9792 dbl = 1;
9793 s = "daddi";
9794 s2 = "dadd";
9795 if (!mips_opts.micromips)
9796 goto do_addi;
9797 if (imm_expr.X_add_number >= -0x200
9798 && imm_expr.X_add_number < 0x200)
9799 {
9800 macro_build (NULL, s, "t,r,.", op[0], op[1],
9801 (int) imm_expr.X_add_number);
9802 break;
9803 }
9804 goto do_addi_i;
9805 case M_DADDU_I:
9806 dbl = 1;
9807 s = "daddiu";
9808 s2 = "daddu";
9809 do_addi:
9810 if (imm_expr.X_add_number >= -0x8000
9811 && imm_expr.X_add_number < 0x8000)
9812 {
9813 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9814 break;
9815 }
9816 do_addi_i:
9817 used_at = 1;
9818 load_register (AT, &imm_expr, dbl);
9819 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9820 break;
9821
9822 case M_AND_I:
9823 s = "andi";
9824 s2 = "and";
9825 goto do_bit;
9826 case M_OR_I:
9827 s = "ori";
9828 s2 = "or";
9829 goto do_bit;
9830 case M_NOR_I:
9831 s = "";
9832 s2 = "nor";
9833 goto do_bit;
9834 case M_XOR_I:
9835 s = "xori";
9836 s2 = "xor";
9837 do_bit:
9838 if (imm_expr.X_add_number >= 0
9839 && imm_expr.X_add_number < 0x10000)
9840 {
9841 if (mask != M_NOR_I)
9842 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9843 else
9844 {
9845 macro_build (&imm_expr, "ori", "t,r,i",
9846 op[0], op[1], BFD_RELOC_LO16);
9847 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9848 }
9849 break;
9850 }
9851
9852 used_at = 1;
9853 load_register (AT, &imm_expr, GPR_SIZE == 64);
9854 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9855 break;
9856
9857 case M_BALIGN:
9858 switch (imm_expr.X_add_number)
9859 {
9860 case 0:
9861 macro_build (NULL, "nop", "");
9862 break;
9863 case 2:
9864 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9865 break;
9866 case 1:
9867 case 3:
9868 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9869 (int) imm_expr.X_add_number);
9870 break;
9871 default:
9872 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9873 (unsigned long) imm_expr.X_add_number);
9874 break;
9875 }
9876 break;
9877
9878 case M_BC1FL:
9879 case M_BC1TL:
9880 case M_BC2FL:
9881 case M_BC2TL:
9882 gas_assert (mips_opts.micromips);
9883 macro_build_branch_ccl (mask, &offset_expr,
9884 EXTRACT_OPERAND (1, BCC, *ip));
9885 break;
9886
9887 case M_BEQ_I:
9888 case M_BEQL_I:
9889 case M_BNE_I:
9890 case M_BNEL_I:
9891 if (imm_expr.X_add_number == 0)
9892 op[1] = 0;
9893 else
9894 {
9895 op[1] = AT;
9896 used_at = 1;
9897 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9898 }
9899 /* Fall through. */
9900 case M_BEQL:
9901 case M_BNEL:
9902 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9903 break;
9904
9905 case M_BGEL:
9906 likely = 1;
9907 case M_BGE:
9908 if (op[1] == 0)
9909 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9910 else if (op[0] == 0)
9911 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9912 else
9913 {
9914 used_at = 1;
9915 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9916 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9917 &offset_expr, AT, ZERO);
9918 }
9919 break;
9920
9921 case M_BGEZL:
9922 case M_BGEZALL:
9923 case M_BGTZL:
9924 case M_BLEZL:
9925 case M_BLTZL:
9926 case M_BLTZALL:
9927 macro_build_branch_rs (mask, &offset_expr, op[0]);
9928 break;
9929
9930 case M_BGTL_I:
9931 likely = 1;
9932 case M_BGT_I:
9933 /* Check for > max integer. */
9934 if (imm_expr.X_add_number >= GPR_SMAX)
9935 {
9936 do_false:
9937 /* Result is always false. */
9938 if (! likely)
9939 macro_build (NULL, "nop", "");
9940 else
9941 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9942 break;
9943 }
9944 ++imm_expr.X_add_number;
9945 /* FALLTHROUGH */
9946 case M_BGE_I:
9947 case M_BGEL_I:
9948 if (mask == M_BGEL_I)
9949 likely = 1;
9950 if (imm_expr.X_add_number == 0)
9951 {
9952 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9953 &offset_expr, op[0]);
9954 break;
9955 }
9956 if (imm_expr.X_add_number == 1)
9957 {
9958 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9959 &offset_expr, op[0]);
9960 break;
9961 }
9962 if (imm_expr.X_add_number <= GPR_SMIN)
9963 {
9964 do_true:
9965 /* result is always true */
9966 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9967 macro_build (&offset_expr, "b", "p");
9968 break;
9969 }
9970 used_at = 1;
9971 set_at (op[0], 0);
9972 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9973 &offset_expr, AT, ZERO);
9974 break;
9975
9976 case M_BGEUL:
9977 likely = 1;
9978 case M_BGEU:
9979 if (op[1] == 0)
9980 goto do_true;
9981 else if (op[0] == 0)
9982 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9983 &offset_expr, ZERO, op[1]);
9984 else
9985 {
9986 used_at = 1;
9987 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9988 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9989 &offset_expr, AT, ZERO);
9990 }
9991 break;
9992
9993 case M_BGTUL_I:
9994 likely = 1;
9995 case M_BGTU_I:
9996 if (op[0] == 0
9997 || (GPR_SIZE == 32
9998 && imm_expr.X_add_number == -1))
9999 goto do_false;
10000 ++imm_expr.X_add_number;
10001 /* FALLTHROUGH */
10002 case M_BGEU_I:
10003 case M_BGEUL_I:
10004 if (mask == M_BGEUL_I)
10005 likely = 1;
10006 if (imm_expr.X_add_number == 0)
10007 goto do_true;
10008 else if (imm_expr.X_add_number == 1)
10009 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10010 &offset_expr, op[0], ZERO);
10011 else
10012 {
10013 used_at = 1;
10014 set_at (op[0], 1);
10015 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10016 &offset_expr, AT, ZERO);
10017 }
10018 break;
10019
10020 case M_BGTL:
10021 likely = 1;
10022 case M_BGT:
10023 if (op[1] == 0)
10024 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10025 else if (op[0] == 0)
10026 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10027 else
10028 {
10029 used_at = 1;
10030 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10031 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10032 &offset_expr, AT, ZERO);
10033 }
10034 break;
10035
10036 case M_BGTUL:
10037 likely = 1;
10038 case M_BGTU:
10039 if (op[1] == 0)
10040 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10041 &offset_expr, op[0], ZERO);
10042 else if (op[0] == 0)
10043 goto do_false;
10044 else
10045 {
10046 used_at = 1;
10047 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10048 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10049 &offset_expr, AT, ZERO);
10050 }
10051 break;
10052
10053 case M_BLEL:
10054 likely = 1;
10055 case M_BLE:
10056 if (op[1] == 0)
10057 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10058 else if (op[0] == 0)
10059 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10060 else
10061 {
10062 used_at = 1;
10063 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10064 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10065 &offset_expr, AT, ZERO);
10066 }
10067 break;
10068
10069 case M_BLEL_I:
10070 likely = 1;
10071 case M_BLE_I:
10072 if (imm_expr.X_add_number >= GPR_SMAX)
10073 goto do_true;
10074 ++imm_expr.X_add_number;
10075 /* FALLTHROUGH */
10076 case M_BLT_I:
10077 case M_BLTL_I:
10078 if (mask == M_BLTL_I)
10079 likely = 1;
10080 if (imm_expr.X_add_number == 0)
10081 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10082 else if (imm_expr.X_add_number == 1)
10083 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10084 else
10085 {
10086 used_at = 1;
10087 set_at (op[0], 0);
10088 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10089 &offset_expr, AT, ZERO);
10090 }
10091 break;
10092
10093 case M_BLEUL:
10094 likely = 1;
10095 case M_BLEU:
10096 if (op[1] == 0)
10097 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10098 &offset_expr, op[0], ZERO);
10099 else if (op[0] == 0)
10100 goto do_true;
10101 else
10102 {
10103 used_at = 1;
10104 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10105 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10106 &offset_expr, AT, ZERO);
10107 }
10108 break;
10109
10110 case M_BLEUL_I:
10111 likely = 1;
10112 case M_BLEU_I:
10113 if (op[0] == 0
10114 || (GPR_SIZE == 32
10115 && imm_expr.X_add_number == -1))
10116 goto do_true;
10117 ++imm_expr.X_add_number;
10118 /* FALLTHROUGH */
10119 case M_BLTU_I:
10120 case M_BLTUL_I:
10121 if (mask == M_BLTUL_I)
10122 likely = 1;
10123 if (imm_expr.X_add_number == 0)
10124 goto do_false;
10125 else if (imm_expr.X_add_number == 1)
10126 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10127 &offset_expr, op[0], ZERO);
10128 else
10129 {
10130 used_at = 1;
10131 set_at (op[0], 1);
10132 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10133 &offset_expr, AT, ZERO);
10134 }
10135 break;
10136
10137 case M_BLTL:
10138 likely = 1;
10139 case M_BLT:
10140 if (op[1] == 0)
10141 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10142 else if (op[0] == 0)
10143 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10144 else
10145 {
10146 used_at = 1;
10147 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10148 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10149 &offset_expr, AT, ZERO);
10150 }
10151 break;
10152
10153 case M_BLTUL:
10154 likely = 1;
10155 case M_BLTU:
10156 if (op[1] == 0)
10157 goto do_false;
10158 else if (op[0] == 0)
10159 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10160 &offset_expr, ZERO, op[1]);
10161 else
10162 {
10163 used_at = 1;
10164 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10165 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10166 &offset_expr, AT, ZERO);
10167 }
10168 break;
10169
10170 case M_DDIV_3:
10171 dbl = 1;
10172 case M_DIV_3:
10173 s = "mflo";
10174 goto do_div3;
10175 case M_DREM_3:
10176 dbl = 1;
10177 case M_REM_3:
10178 s = "mfhi";
10179 do_div3:
10180 if (op[2] == 0)
10181 {
10182 as_warn (_("divide by zero"));
10183 if (mips_trap)
10184 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10185 else
10186 macro_build (NULL, "break", BRK_FMT, 7);
10187 break;
10188 }
10189
10190 start_noreorder ();
10191 if (mips_trap)
10192 {
10193 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10194 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10195 }
10196 else
10197 {
10198 if (mips_opts.micromips)
10199 micromips_label_expr (&label_expr);
10200 else
10201 label_expr.X_add_number = 8;
10202 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10203 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10204 macro_build (NULL, "break", BRK_FMT, 7);
10205 if (mips_opts.micromips)
10206 micromips_add_label ();
10207 }
10208 expr1.X_add_number = -1;
10209 used_at = 1;
10210 load_register (AT, &expr1, dbl);
10211 if (mips_opts.micromips)
10212 micromips_label_expr (&label_expr);
10213 else
10214 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10215 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10216 if (dbl)
10217 {
10218 expr1.X_add_number = 1;
10219 load_register (AT, &expr1, dbl);
10220 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10221 }
10222 else
10223 {
10224 expr1.X_add_number = 0x80000000;
10225 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10226 }
10227 if (mips_trap)
10228 {
10229 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10230 /* We want to close the noreorder block as soon as possible, so
10231 that later insns are available for delay slot filling. */
10232 end_noreorder ();
10233 }
10234 else
10235 {
10236 if (mips_opts.micromips)
10237 micromips_label_expr (&label_expr);
10238 else
10239 label_expr.X_add_number = 8;
10240 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10241 macro_build (NULL, "nop", "");
10242
10243 /* We want to close the noreorder block as soon as possible, so
10244 that later insns are available for delay slot filling. */
10245 end_noreorder ();
10246
10247 macro_build (NULL, "break", BRK_FMT, 6);
10248 }
10249 if (mips_opts.micromips)
10250 micromips_add_label ();
10251 macro_build (NULL, s, MFHL_FMT, op[0]);
10252 break;
10253
10254 case M_DIV_3I:
10255 s = "div";
10256 s2 = "mflo";
10257 goto do_divi;
10258 case M_DIVU_3I:
10259 s = "divu";
10260 s2 = "mflo";
10261 goto do_divi;
10262 case M_REM_3I:
10263 s = "div";
10264 s2 = "mfhi";
10265 goto do_divi;
10266 case M_REMU_3I:
10267 s = "divu";
10268 s2 = "mfhi";
10269 goto do_divi;
10270 case M_DDIV_3I:
10271 dbl = 1;
10272 s = "ddiv";
10273 s2 = "mflo";
10274 goto do_divi;
10275 case M_DDIVU_3I:
10276 dbl = 1;
10277 s = "ddivu";
10278 s2 = "mflo";
10279 goto do_divi;
10280 case M_DREM_3I:
10281 dbl = 1;
10282 s = "ddiv";
10283 s2 = "mfhi";
10284 goto do_divi;
10285 case M_DREMU_3I:
10286 dbl = 1;
10287 s = "ddivu";
10288 s2 = "mfhi";
10289 do_divi:
10290 if (imm_expr.X_add_number == 0)
10291 {
10292 as_warn (_("divide by zero"));
10293 if (mips_trap)
10294 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10295 else
10296 macro_build (NULL, "break", BRK_FMT, 7);
10297 break;
10298 }
10299 if (imm_expr.X_add_number == 1)
10300 {
10301 if (strcmp (s2, "mflo") == 0)
10302 move_register (op[0], op[1]);
10303 else
10304 move_register (op[0], ZERO);
10305 break;
10306 }
10307 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10308 {
10309 if (strcmp (s2, "mflo") == 0)
10310 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10311 else
10312 move_register (op[0], ZERO);
10313 break;
10314 }
10315
10316 used_at = 1;
10317 load_register (AT, &imm_expr, dbl);
10318 macro_build (NULL, s, "z,s,t", op[1], AT);
10319 macro_build (NULL, s2, MFHL_FMT, op[0]);
10320 break;
10321
10322 case M_DIVU_3:
10323 s = "divu";
10324 s2 = "mflo";
10325 goto do_divu3;
10326 case M_REMU_3:
10327 s = "divu";
10328 s2 = "mfhi";
10329 goto do_divu3;
10330 case M_DDIVU_3:
10331 s = "ddivu";
10332 s2 = "mflo";
10333 goto do_divu3;
10334 case M_DREMU_3:
10335 s = "ddivu";
10336 s2 = "mfhi";
10337 do_divu3:
10338 start_noreorder ();
10339 if (mips_trap)
10340 {
10341 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10342 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10343 /* We want to close the noreorder block as soon as possible, so
10344 that later insns are available for delay slot filling. */
10345 end_noreorder ();
10346 }
10347 else
10348 {
10349 if (mips_opts.micromips)
10350 micromips_label_expr (&label_expr);
10351 else
10352 label_expr.X_add_number = 8;
10353 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10354 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10355
10356 /* We want to close the noreorder block as soon as possible, so
10357 that later insns are available for delay slot filling. */
10358 end_noreorder ();
10359 macro_build (NULL, "break", BRK_FMT, 7);
10360 if (mips_opts.micromips)
10361 micromips_add_label ();
10362 }
10363 macro_build (NULL, s2, MFHL_FMT, op[0]);
10364 break;
10365
10366 case M_DLCA_AB:
10367 dbl = 1;
10368 case M_LCA_AB:
10369 call = 1;
10370 goto do_la;
10371 case M_DLA_AB:
10372 dbl = 1;
10373 case M_LA_AB:
10374 do_la:
10375 /* Load the address of a symbol into a register. If breg is not
10376 zero, we then add a base register to it. */
10377
10378 breg = op[2];
10379 if (dbl && GPR_SIZE == 32)
10380 as_warn (_("dla used to load 32-bit register; recommend using la "
10381 "instead"));
10382
10383 if (!dbl && HAVE_64BIT_OBJECTS)
10384 as_warn (_("la used to load 64-bit address; recommend using dla "
10385 "instead"));
10386
10387 if (small_offset_p (0, align, 16))
10388 {
10389 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10390 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10391 break;
10392 }
10393
10394 if (mips_opts.at && (op[0] == breg))
10395 {
10396 tempreg = AT;
10397 used_at = 1;
10398 }
10399 else
10400 tempreg = op[0];
10401
10402 if (offset_expr.X_op != O_symbol
10403 && offset_expr.X_op != O_constant)
10404 {
10405 as_bad (_("expression too complex"));
10406 offset_expr.X_op = O_constant;
10407 }
10408
10409 if (offset_expr.X_op == O_constant)
10410 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10411 else if (mips_pic == NO_PIC)
10412 {
10413 /* If this is a reference to a GP relative symbol, we want
10414 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10415 Otherwise we want
10416 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10417 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10418 If we have a constant, we need two instructions anyhow,
10419 so we may as well always use the latter form.
10420
10421 With 64bit address space and a usable $at we want
10422 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10423 lui $at,<sym> (BFD_RELOC_HI16_S)
10424 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10425 daddiu $at,<sym> (BFD_RELOC_LO16)
10426 dsll32 $tempreg,0
10427 daddu $tempreg,$tempreg,$at
10428
10429 If $at is already in use, we use a path which is suboptimal
10430 on superscalar processors.
10431 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10432 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10433 dsll $tempreg,16
10434 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10435 dsll $tempreg,16
10436 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10437
10438 For GP relative symbols in 64bit address space we can use
10439 the same sequence as in 32bit address space. */
10440 if (HAVE_64BIT_SYMBOLS)
10441 {
10442 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10443 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10444 {
10445 relax_start (offset_expr.X_add_symbol);
10446 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10447 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10448 relax_switch ();
10449 }
10450
10451 if (used_at == 0 && mips_opts.at)
10452 {
10453 macro_build (&offset_expr, "lui", LUI_FMT,
10454 tempreg, BFD_RELOC_MIPS_HIGHEST);
10455 macro_build (&offset_expr, "lui", LUI_FMT,
10456 AT, BFD_RELOC_HI16_S);
10457 macro_build (&offset_expr, "daddiu", "t,r,j",
10458 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10459 macro_build (&offset_expr, "daddiu", "t,r,j",
10460 AT, AT, BFD_RELOC_LO16);
10461 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10462 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10463 used_at = 1;
10464 }
10465 else
10466 {
10467 macro_build (&offset_expr, "lui", LUI_FMT,
10468 tempreg, BFD_RELOC_MIPS_HIGHEST);
10469 macro_build (&offset_expr, "daddiu", "t,r,j",
10470 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10471 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10472 macro_build (&offset_expr, "daddiu", "t,r,j",
10473 tempreg, tempreg, BFD_RELOC_HI16_S);
10474 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10475 macro_build (&offset_expr, "daddiu", "t,r,j",
10476 tempreg, tempreg, BFD_RELOC_LO16);
10477 }
10478
10479 if (mips_relax.sequence)
10480 relax_end ();
10481 }
10482 else
10483 {
10484 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10485 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10486 {
10487 relax_start (offset_expr.X_add_symbol);
10488 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10489 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10490 relax_switch ();
10491 }
10492 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10493 as_bad (_("offset too large"));
10494 macro_build_lui (&offset_expr, tempreg);
10495 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10496 tempreg, tempreg, BFD_RELOC_LO16);
10497 if (mips_relax.sequence)
10498 relax_end ();
10499 }
10500 }
10501 else if (!mips_big_got && !HAVE_NEWABI)
10502 {
10503 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10504
10505 /* If this is a reference to an external symbol, and there
10506 is no constant, we want
10507 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10508 or for lca or if tempreg is PIC_CALL_REG
10509 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10510 For a local symbol, we want
10511 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10512 nop
10513 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10514
10515 If we have a small constant, and this is a reference to
10516 an external symbol, we want
10517 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10518 nop
10519 addiu $tempreg,$tempreg,<constant>
10520 For a local symbol, we want the same instruction
10521 sequence, but we output a BFD_RELOC_LO16 reloc on the
10522 addiu instruction.
10523
10524 If we have a large constant, and this is a reference to
10525 an external symbol, we want
10526 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10527 lui $at,<hiconstant>
10528 addiu $at,$at,<loconstant>
10529 addu $tempreg,$tempreg,$at
10530 For a local symbol, we want the same instruction
10531 sequence, but we output a BFD_RELOC_LO16 reloc on the
10532 addiu instruction.
10533 */
10534
10535 if (offset_expr.X_add_number == 0)
10536 {
10537 if (mips_pic == SVR4_PIC
10538 && breg == 0
10539 && (call || tempreg == PIC_CALL_REG))
10540 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10541
10542 relax_start (offset_expr.X_add_symbol);
10543 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10544 lw_reloc_type, mips_gp_register);
10545 if (breg != 0)
10546 {
10547 /* We're going to put in an addu instruction using
10548 tempreg, so we may as well insert the nop right
10549 now. */
10550 load_delay_nop ();
10551 }
10552 relax_switch ();
10553 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10554 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10555 load_delay_nop ();
10556 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10557 tempreg, tempreg, BFD_RELOC_LO16);
10558 relax_end ();
10559 /* FIXME: If breg == 0, and the next instruction uses
10560 $tempreg, then if this variant case is used an extra
10561 nop will be generated. */
10562 }
10563 else if (offset_expr.X_add_number >= -0x8000
10564 && offset_expr.X_add_number < 0x8000)
10565 {
10566 load_got_offset (tempreg, &offset_expr);
10567 load_delay_nop ();
10568 add_got_offset (tempreg, &offset_expr);
10569 }
10570 else
10571 {
10572 expr1.X_add_number = offset_expr.X_add_number;
10573 offset_expr.X_add_number =
10574 SEXT_16BIT (offset_expr.X_add_number);
10575 load_got_offset (tempreg, &offset_expr);
10576 offset_expr.X_add_number = expr1.X_add_number;
10577 /* If we are going to add in a base register, and the
10578 target register and the base register are the same,
10579 then we are using AT as a temporary register. Since
10580 we want to load the constant into AT, we add our
10581 current AT (from the global offset table) and the
10582 register into the register now, and pretend we were
10583 not using a base register. */
10584 if (breg == op[0])
10585 {
10586 load_delay_nop ();
10587 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10588 op[0], AT, breg);
10589 breg = 0;
10590 tempreg = op[0];
10591 }
10592 add_got_offset_hilo (tempreg, &offset_expr, AT);
10593 used_at = 1;
10594 }
10595 }
10596 else if (!mips_big_got && HAVE_NEWABI)
10597 {
10598 int add_breg_early = 0;
10599
10600 /* If this is a reference to an external, and there is no
10601 constant, or local symbol (*), with or without a
10602 constant, we want
10603 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10604 or for lca or if tempreg is PIC_CALL_REG
10605 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10606
10607 If we have a small constant, and this is a reference to
10608 an external symbol, we want
10609 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10610 addiu $tempreg,$tempreg,<constant>
10611
10612 If we have a large constant, and this is a reference to
10613 an external symbol, we want
10614 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10615 lui $at,<hiconstant>
10616 addiu $at,$at,<loconstant>
10617 addu $tempreg,$tempreg,$at
10618
10619 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10620 local symbols, even though it introduces an additional
10621 instruction. */
10622
10623 if (offset_expr.X_add_number)
10624 {
10625 expr1.X_add_number = offset_expr.X_add_number;
10626 offset_expr.X_add_number = 0;
10627
10628 relax_start (offset_expr.X_add_symbol);
10629 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10630 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10631
10632 if (expr1.X_add_number >= -0x8000
10633 && expr1.X_add_number < 0x8000)
10634 {
10635 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10636 tempreg, tempreg, BFD_RELOC_LO16);
10637 }
10638 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10639 {
10640 unsigned int dreg;
10641
10642 /* If we are going to add in a base register, and the
10643 target register and the base register are the same,
10644 then we are using AT as a temporary register. Since
10645 we want to load the constant into AT, we add our
10646 current AT (from the global offset table) and the
10647 register into the register now, and pretend we were
10648 not using a base register. */
10649 if (breg != op[0])
10650 dreg = tempreg;
10651 else
10652 {
10653 gas_assert (tempreg == AT);
10654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10655 op[0], AT, breg);
10656 dreg = op[0];
10657 add_breg_early = 1;
10658 }
10659
10660 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10661 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10662 dreg, dreg, AT);
10663
10664 used_at = 1;
10665 }
10666 else
10667 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10668
10669 relax_switch ();
10670 offset_expr.X_add_number = expr1.X_add_number;
10671
10672 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10673 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10674 if (add_breg_early)
10675 {
10676 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10677 op[0], tempreg, breg);
10678 breg = 0;
10679 tempreg = op[0];
10680 }
10681 relax_end ();
10682 }
10683 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10684 {
10685 relax_start (offset_expr.X_add_symbol);
10686 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10687 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10688 relax_switch ();
10689 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10690 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10691 relax_end ();
10692 }
10693 else
10694 {
10695 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10696 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10697 }
10698 }
10699 else if (mips_big_got && !HAVE_NEWABI)
10700 {
10701 int gpdelay;
10702 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10703 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10704 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10705
10706 /* This is the large GOT case. If this is a reference to an
10707 external symbol, and there is no constant, we want
10708 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10709 addu $tempreg,$tempreg,$gp
10710 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10711 or for lca or if tempreg is PIC_CALL_REG
10712 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10713 addu $tempreg,$tempreg,$gp
10714 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10715 For a local symbol, we want
10716 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10717 nop
10718 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10719
10720 If we have a small constant, and this is a reference to
10721 an external symbol, we want
10722 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10723 addu $tempreg,$tempreg,$gp
10724 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10725 nop
10726 addiu $tempreg,$tempreg,<constant>
10727 For a local symbol, we want
10728 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10729 nop
10730 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10731
10732 If we have a large constant, and this is a reference to
10733 an external symbol, we want
10734 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10735 addu $tempreg,$tempreg,$gp
10736 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10737 lui $at,<hiconstant>
10738 addiu $at,$at,<loconstant>
10739 addu $tempreg,$tempreg,$at
10740 For a local symbol, we want
10741 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10742 lui $at,<hiconstant>
10743 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10744 addu $tempreg,$tempreg,$at
10745 */
10746
10747 expr1.X_add_number = offset_expr.X_add_number;
10748 offset_expr.X_add_number = 0;
10749 relax_start (offset_expr.X_add_symbol);
10750 gpdelay = reg_needs_delay (mips_gp_register);
10751 if (expr1.X_add_number == 0 && breg == 0
10752 && (call || tempreg == PIC_CALL_REG))
10753 {
10754 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10755 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10756 }
10757 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10758 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10759 tempreg, tempreg, mips_gp_register);
10760 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10761 tempreg, lw_reloc_type, tempreg);
10762 if (expr1.X_add_number == 0)
10763 {
10764 if (breg != 0)
10765 {
10766 /* We're going to put in an addu instruction using
10767 tempreg, so we may as well insert the nop right
10768 now. */
10769 load_delay_nop ();
10770 }
10771 }
10772 else if (expr1.X_add_number >= -0x8000
10773 && expr1.X_add_number < 0x8000)
10774 {
10775 load_delay_nop ();
10776 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10777 tempreg, tempreg, BFD_RELOC_LO16);
10778 }
10779 else
10780 {
10781 unsigned int dreg;
10782
10783 /* If we are going to add in a base register, and the
10784 target register and the base register are the same,
10785 then we are using AT as a temporary register. Since
10786 we want to load the constant into AT, we add our
10787 current AT (from the global offset table) and the
10788 register into the register now, and pretend we were
10789 not using a base register. */
10790 if (breg != op[0])
10791 dreg = tempreg;
10792 else
10793 {
10794 gas_assert (tempreg == AT);
10795 load_delay_nop ();
10796 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10797 op[0], AT, breg);
10798 dreg = op[0];
10799 }
10800
10801 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10802 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10803
10804 used_at = 1;
10805 }
10806 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10807 relax_switch ();
10808
10809 if (gpdelay)
10810 {
10811 /* This is needed because this instruction uses $gp, but
10812 the first instruction on the main stream does not. */
10813 macro_build (NULL, "nop", "");
10814 }
10815
10816 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10817 local_reloc_type, mips_gp_register);
10818 if (expr1.X_add_number >= -0x8000
10819 && expr1.X_add_number < 0x8000)
10820 {
10821 load_delay_nop ();
10822 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10823 tempreg, tempreg, BFD_RELOC_LO16);
10824 /* FIXME: If add_number is 0, and there was no base
10825 register, the external symbol case ended with a load,
10826 so if the symbol turns out to not be external, and
10827 the next instruction uses tempreg, an unnecessary nop
10828 will be inserted. */
10829 }
10830 else
10831 {
10832 if (breg == op[0])
10833 {
10834 /* We must add in the base register now, as in the
10835 external symbol case. */
10836 gas_assert (tempreg == AT);
10837 load_delay_nop ();
10838 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10839 op[0], AT, breg);
10840 tempreg = op[0];
10841 /* We set breg to 0 because we have arranged to add
10842 it in in both cases. */
10843 breg = 0;
10844 }
10845
10846 macro_build_lui (&expr1, AT);
10847 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10848 AT, AT, BFD_RELOC_LO16);
10849 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10850 tempreg, tempreg, AT);
10851 used_at = 1;
10852 }
10853 relax_end ();
10854 }
10855 else if (mips_big_got && HAVE_NEWABI)
10856 {
10857 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10858 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10859 int add_breg_early = 0;
10860
10861 /* This is the large GOT case. If this is a reference to an
10862 external symbol, and there is no constant, we want
10863 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10864 add $tempreg,$tempreg,$gp
10865 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10866 or for lca or if tempreg is PIC_CALL_REG
10867 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10868 add $tempreg,$tempreg,$gp
10869 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10870
10871 If we have a small constant, and this is a reference to
10872 an external symbol, we want
10873 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10874 add $tempreg,$tempreg,$gp
10875 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10876 addi $tempreg,$tempreg,<constant>
10877
10878 If we have a large constant, and this is a reference to
10879 an external symbol, we want
10880 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10881 addu $tempreg,$tempreg,$gp
10882 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10883 lui $at,<hiconstant>
10884 addi $at,$at,<loconstant>
10885 add $tempreg,$tempreg,$at
10886
10887 If we have NewABI, and we know it's a local symbol, we want
10888 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10889 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10890 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10891
10892 relax_start (offset_expr.X_add_symbol);
10893
10894 expr1.X_add_number = offset_expr.X_add_number;
10895 offset_expr.X_add_number = 0;
10896
10897 if (expr1.X_add_number == 0 && breg == 0
10898 && (call || tempreg == PIC_CALL_REG))
10899 {
10900 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10901 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10902 }
10903 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10904 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10905 tempreg, tempreg, mips_gp_register);
10906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10907 tempreg, lw_reloc_type, tempreg);
10908
10909 if (expr1.X_add_number == 0)
10910 ;
10911 else if (expr1.X_add_number >= -0x8000
10912 && expr1.X_add_number < 0x8000)
10913 {
10914 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10915 tempreg, tempreg, BFD_RELOC_LO16);
10916 }
10917 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10918 {
10919 unsigned int dreg;
10920
10921 /* If we are going to add in a base register, and the
10922 target register and the base register are the same,
10923 then we are using AT as a temporary register. Since
10924 we want to load the constant into AT, we add our
10925 current AT (from the global offset table) and the
10926 register into the register now, and pretend we were
10927 not using a base register. */
10928 if (breg != op[0])
10929 dreg = tempreg;
10930 else
10931 {
10932 gas_assert (tempreg == AT);
10933 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10934 op[0], AT, breg);
10935 dreg = op[0];
10936 add_breg_early = 1;
10937 }
10938
10939 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10941
10942 used_at = 1;
10943 }
10944 else
10945 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10946
10947 relax_switch ();
10948 offset_expr.X_add_number = expr1.X_add_number;
10949 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10950 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10951 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10952 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10953 if (add_breg_early)
10954 {
10955 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10956 op[0], tempreg, breg);
10957 breg = 0;
10958 tempreg = op[0];
10959 }
10960 relax_end ();
10961 }
10962 else
10963 abort ();
10964
10965 if (breg != 0)
10966 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10967 break;
10968
10969 case M_MSGSND:
10970 gas_assert (!mips_opts.micromips);
10971 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10972 break;
10973
10974 case M_MSGLD:
10975 gas_assert (!mips_opts.micromips);
10976 macro_build (NULL, "c2", "C", 0x02);
10977 break;
10978
10979 case M_MSGLD_T:
10980 gas_assert (!mips_opts.micromips);
10981 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10982 break;
10983
10984 case M_MSGWAIT:
10985 gas_assert (!mips_opts.micromips);
10986 macro_build (NULL, "c2", "C", 3);
10987 break;
10988
10989 case M_MSGWAIT_T:
10990 gas_assert (!mips_opts.micromips);
10991 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10992 break;
10993
10994 case M_J_A:
10995 /* The j instruction may not be used in PIC code, since it
10996 requires an absolute address. We convert it to a b
10997 instruction. */
10998 if (mips_pic == NO_PIC)
10999 macro_build (&offset_expr, "j", "a");
11000 else
11001 macro_build (&offset_expr, "b", "p");
11002 break;
11003
11004 /* The jal instructions must be handled as macros because when
11005 generating PIC code they expand to multi-instruction
11006 sequences. Normally they are simple instructions. */
11007 case M_JALS_1:
11008 op[1] = op[0];
11009 op[0] = RA;
11010 /* Fall through. */
11011 case M_JALS_2:
11012 gas_assert (mips_opts.micromips);
11013 if (mips_opts.insn32)
11014 {
11015 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11016 break;
11017 }
11018 jals = 1;
11019 goto jal;
11020 case M_JAL_1:
11021 op[1] = op[0];
11022 op[0] = RA;
11023 /* Fall through. */
11024 case M_JAL_2:
11025 jal:
11026 if (mips_pic == NO_PIC)
11027 {
11028 s = jals ? "jalrs" : "jalr";
11029 if (mips_opts.micromips
11030 && !mips_opts.insn32
11031 && op[0] == RA
11032 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11033 macro_build (NULL, s, "mj", op[1]);
11034 else
11035 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11036 }
11037 else
11038 {
11039 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11040 && mips_cprestore_offset >= 0);
11041
11042 if (op[1] != PIC_CALL_REG)
11043 as_warn (_("MIPS PIC call to register other than $25"));
11044
11045 s = ((mips_opts.micromips
11046 && !mips_opts.insn32
11047 && (!mips_opts.noreorder || cprestore))
11048 ? "jalrs" : "jalr");
11049 if (mips_opts.micromips
11050 && !mips_opts.insn32
11051 && op[0] == RA
11052 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11053 macro_build (NULL, s, "mj", op[1]);
11054 else
11055 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11056 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11057 {
11058 if (mips_cprestore_offset < 0)
11059 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11060 else
11061 {
11062 if (!mips_frame_reg_valid)
11063 {
11064 as_warn (_("no .frame pseudo-op used in PIC code"));
11065 /* Quiet this warning. */
11066 mips_frame_reg_valid = 1;
11067 }
11068 if (!mips_cprestore_valid)
11069 {
11070 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11071 /* Quiet this warning. */
11072 mips_cprestore_valid = 1;
11073 }
11074 if (mips_opts.noreorder)
11075 macro_build (NULL, "nop", "");
11076 expr1.X_add_number = mips_cprestore_offset;
11077 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11078 mips_gp_register,
11079 mips_frame_reg,
11080 HAVE_64BIT_ADDRESSES);
11081 }
11082 }
11083 }
11084
11085 break;
11086
11087 case M_JALS_A:
11088 gas_assert (mips_opts.micromips);
11089 if (mips_opts.insn32)
11090 {
11091 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11092 break;
11093 }
11094 jals = 1;
11095 /* Fall through. */
11096 case M_JAL_A:
11097 if (mips_pic == NO_PIC)
11098 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11099 else if (mips_pic == SVR4_PIC)
11100 {
11101 /* If this is a reference to an external symbol, and we are
11102 using a small GOT, we want
11103 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11104 nop
11105 jalr $ra,$25
11106 nop
11107 lw $gp,cprestore($sp)
11108 The cprestore value is set using the .cprestore
11109 pseudo-op. If we are using a big GOT, we want
11110 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11111 addu $25,$25,$gp
11112 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11113 nop
11114 jalr $ra,$25
11115 nop
11116 lw $gp,cprestore($sp)
11117 If the symbol is not external, we want
11118 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11119 nop
11120 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11121 jalr $ra,$25
11122 nop
11123 lw $gp,cprestore($sp)
11124
11125 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11126 sequences above, minus nops, unless the symbol is local,
11127 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11128 GOT_DISP. */
11129 if (HAVE_NEWABI)
11130 {
11131 if (!mips_big_got)
11132 {
11133 relax_start (offset_expr.X_add_symbol);
11134 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11135 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11136 mips_gp_register);
11137 relax_switch ();
11138 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11139 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11140 mips_gp_register);
11141 relax_end ();
11142 }
11143 else
11144 {
11145 relax_start (offset_expr.X_add_symbol);
11146 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11147 BFD_RELOC_MIPS_CALL_HI16);
11148 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11149 PIC_CALL_REG, mips_gp_register);
11150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11151 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11152 PIC_CALL_REG);
11153 relax_switch ();
11154 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11155 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11156 mips_gp_register);
11157 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11158 PIC_CALL_REG, PIC_CALL_REG,
11159 BFD_RELOC_MIPS_GOT_OFST);
11160 relax_end ();
11161 }
11162
11163 macro_build_jalr (&offset_expr, 0);
11164 }
11165 else
11166 {
11167 relax_start (offset_expr.X_add_symbol);
11168 if (!mips_big_got)
11169 {
11170 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11171 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11172 mips_gp_register);
11173 load_delay_nop ();
11174 relax_switch ();
11175 }
11176 else
11177 {
11178 int gpdelay;
11179
11180 gpdelay = reg_needs_delay (mips_gp_register);
11181 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11182 BFD_RELOC_MIPS_CALL_HI16);
11183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11184 PIC_CALL_REG, mips_gp_register);
11185 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11186 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11187 PIC_CALL_REG);
11188 load_delay_nop ();
11189 relax_switch ();
11190 if (gpdelay)
11191 macro_build (NULL, "nop", "");
11192 }
11193 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11194 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11195 mips_gp_register);
11196 load_delay_nop ();
11197 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11198 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11199 relax_end ();
11200 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11201
11202 if (mips_cprestore_offset < 0)
11203 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11204 else
11205 {
11206 if (!mips_frame_reg_valid)
11207 {
11208 as_warn (_("no .frame pseudo-op used in PIC code"));
11209 /* Quiet this warning. */
11210 mips_frame_reg_valid = 1;
11211 }
11212 if (!mips_cprestore_valid)
11213 {
11214 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11215 /* Quiet this warning. */
11216 mips_cprestore_valid = 1;
11217 }
11218 if (mips_opts.noreorder)
11219 macro_build (NULL, "nop", "");
11220 expr1.X_add_number = mips_cprestore_offset;
11221 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11222 mips_gp_register,
11223 mips_frame_reg,
11224 HAVE_64BIT_ADDRESSES);
11225 }
11226 }
11227 }
11228 else if (mips_pic == VXWORKS_PIC)
11229 as_bad (_("non-PIC jump used in PIC library"));
11230 else
11231 abort ();
11232
11233 break;
11234
11235 case M_LBUE_AB:
11236 s = "lbue";
11237 fmt = "t,+j(b)";
11238 offbits = 9;
11239 goto ld_st;
11240 case M_LHUE_AB:
11241 s = "lhue";
11242 fmt = "t,+j(b)";
11243 offbits = 9;
11244 goto ld_st;
11245 case M_LBE_AB:
11246 s = "lbe";
11247 fmt = "t,+j(b)";
11248 offbits = 9;
11249 goto ld_st;
11250 case M_LHE_AB:
11251 s = "lhe";
11252 fmt = "t,+j(b)";
11253 offbits = 9;
11254 goto ld_st;
11255 case M_LLE_AB:
11256 s = "lle";
11257 fmt = "t,+j(b)";
11258 offbits = 9;
11259 goto ld_st;
11260 case M_LWE_AB:
11261 s = "lwe";
11262 fmt = "t,+j(b)";
11263 offbits = 9;
11264 goto ld_st;
11265 case M_LWLE_AB:
11266 s = "lwle";
11267 fmt = "t,+j(b)";
11268 offbits = 9;
11269 goto ld_st;
11270 case M_LWRE_AB:
11271 s = "lwre";
11272 fmt = "t,+j(b)";
11273 offbits = 9;
11274 goto ld_st;
11275 case M_SBE_AB:
11276 s = "sbe";
11277 fmt = "t,+j(b)";
11278 offbits = 9;
11279 goto ld_st;
11280 case M_SCE_AB:
11281 s = "sce";
11282 fmt = "t,+j(b)";
11283 offbits = 9;
11284 goto ld_st;
11285 case M_SHE_AB:
11286 s = "she";
11287 fmt = "t,+j(b)";
11288 offbits = 9;
11289 goto ld_st;
11290 case M_SWE_AB:
11291 s = "swe";
11292 fmt = "t,+j(b)";
11293 offbits = 9;
11294 goto ld_st;
11295 case M_SWLE_AB:
11296 s = "swle";
11297 fmt = "t,+j(b)";
11298 offbits = 9;
11299 goto ld_st;
11300 case M_SWRE_AB:
11301 s = "swre";
11302 fmt = "t,+j(b)";
11303 offbits = 9;
11304 goto ld_st;
11305 case M_ACLR_AB:
11306 s = "aclr";
11307 fmt = "\\,~(b)";
11308 offbits = 12;
11309 goto ld_st;
11310 case M_ASET_AB:
11311 s = "aset";
11312 fmt = "\\,~(b)";
11313 offbits = 12;
11314 goto ld_st;
11315 case M_LB_AB:
11316 s = "lb";
11317 fmt = "t,o(b)";
11318 goto ld;
11319 case M_LBU_AB:
11320 s = "lbu";
11321 fmt = "t,o(b)";
11322 goto ld;
11323 case M_LH_AB:
11324 s = "lh";
11325 fmt = "t,o(b)";
11326 goto ld;
11327 case M_LHU_AB:
11328 s = "lhu";
11329 fmt = "t,o(b)";
11330 goto ld;
11331 case M_LW_AB:
11332 s = "lw";
11333 fmt = "t,o(b)";
11334 goto ld;
11335 case M_LWC0_AB:
11336 gas_assert (!mips_opts.micromips);
11337 s = "lwc0";
11338 fmt = "E,o(b)";
11339 /* Itbl support may require additional care here. */
11340 coproc = 1;
11341 goto ld_st;
11342 case M_LWC1_AB:
11343 s = "lwc1";
11344 fmt = "T,o(b)";
11345 /* Itbl support may require additional care here. */
11346 coproc = 1;
11347 goto ld_st;
11348 case M_LWC2_AB:
11349 s = "lwc2";
11350 fmt = COP12_FMT;
11351 offbits = (mips_opts.micromips ? 12
11352 : ISA_IS_R6 (mips_opts.isa) ? 11
11353 : 16);
11354 /* Itbl support may require additional care here. */
11355 coproc = 1;
11356 goto ld_st;
11357 case M_LWC3_AB:
11358 gas_assert (!mips_opts.micromips);
11359 s = "lwc3";
11360 fmt = "E,o(b)";
11361 /* Itbl support may require additional care here. */
11362 coproc = 1;
11363 goto ld_st;
11364 case M_LWL_AB:
11365 s = "lwl";
11366 fmt = MEM12_FMT;
11367 offbits = (mips_opts.micromips ? 12 : 16);
11368 goto ld_st;
11369 case M_LWR_AB:
11370 s = "lwr";
11371 fmt = MEM12_FMT;
11372 offbits = (mips_opts.micromips ? 12 : 16);
11373 goto ld_st;
11374 case M_LDC1_AB:
11375 s = "ldc1";
11376 fmt = "T,o(b)";
11377 /* Itbl support may require additional care here. */
11378 coproc = 1;
11379 goto ld_st;
11380 case M_LDC2_AB:
11381 s = "ldc2";
11382 fmt = COP12_FMT;
11383 offbits = (mips_opts.micromips ? 12
11384 : ISA_IS_R6 (mips_opts.isa) ? 11
11385 : 16);
11386 /* Itbl support may require additional care here. */
11387 coproc = 1;
11388 goto ld_st;
11389 case M_LQC2_AB:
11390 s = "lqc2";
11391 fmt = "+7,o(b)";
11392 /* Itbl support may require additional care here. */
11393 coproc = 1;
11394 goto ld_st;
11395 case M_LDC3_AB:
11396 s = "ldc3";
11397 fmt = "E,o(b)";
11398 /* Itbl support may require additional care here. */
11399 coproc = 1;
11400 goto ld_st;
11401 case M_LDL_AB:
11402 s = "ldl";
11403 fmt = MEM12_FMT;
11404 offbits = (mips_opts.micromips ? 12 : 16);
11405 goto ld_st;
11406 case M_LDR_AB:
11407 s = "ldr";
11408 fmt = MEM12_FMT;
11409 offbits = (mips_opts.micromips ? 12 : 16);
11410 goto ld_st;
11411 case M_LL_AB:
11412 s = "ll";
11413 fmt = LL_SC_FMT;
11414 offbits = (mips_opts.micromips ? 12
11415 : ISA_IS_R6 (mips_opts.isa) ? 9
11416 : 16);
11417 goto ld;
11418 case M_LLD_AB:
11419 s = "lld";
11420 fmt = LL_SC_FMT;
11421 offbits = (mips_opts.micromips ? 12
11422 : ISA_IS_R6 (mips_opts.isa) ? 9
11423 : 16);
11424 goto ld;
11425 case M_LWU_AB:
11426 s = "lwu";
11427 fmt = MEM12_FMT;
11428 offbits = (mips_opts.micromips ? 12 : 16);
11429 goto ld;
11430 case M_LWP_AB:
11431 gas_assert (mips_opts.micromips);
11432 s = "lwp";
11433 fmt = "t,~(b)";
11434 offbits = 12;
11435 lp = 1;
11436 goto ld;
11437 case M_LDP_AB:
11438 gas_assert (mips_opts.micromips);
11439 s = "ldp";
11440 fmt = "t,~(b)";
11441 offbits = 12;
11442 lp = 1;
11443 goto ld;
11444 case M_LWM_AB:
11445 gas_assert (mips_opts.micromips);
11446 s = "lwm";
11447 fmt = "n,~(b)";
11448 offbits = 12;
11449 goto ld_st;
11450 case M_LDM_AB:
11451 gas_assert (mips_opts.micromips);
11452 s = "ldm";
11453 fmt = "n,~(b)";
11454 offbits = 12;
11455 goto ld_st;
11456
11457 ld:
11458 /* We don't want to use $0 as tempreg. */
11459 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11460 goto ld_st;
11461 else
11462 tempreg = op[0] + lp;
11463 goto ld_noat;
11464
11465 case M_SB_AB:
11466 s = "sb";
11467 fmt = "t,o(b)";
11468 goto ld_st;
11469 case M_SH_AB:
11470 s = "sh";
11471 fmt = "t,o(b)";
11472 goto ld_st;
11473 case M_SW_AB:
11474 s = "sw";
11475 fmt = "t,o(b)";
11476 goto ld_st;
11477 case M_SWC0_AB:
11478 gas_assert (!mips_opts.micromips);
11479 s = "swc0";
11480 fmt = "E,o(b)";
11481 /* Itbl support may require additional care here. */
11482 coproc = 1;
11483 goto ld_st;
11484 case M_SWC1_AB:
11485 s = "swc1";
11486 fmt = "T,o(b)";
11487 /* Itbl support may require additional care here. */
11488 coproc = 1;
11489 goto ld_st;
11490 case M_SWC2_AB:
11491 s = "swc2";
11492 fmt = COP12_FMT;
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 11
11495 : 16);
11496 /* Itbl support may require additional care here. */
11497 coproc = 1;
11498 goto ld_st;
11499 case M_SWC3_AB:
11500 gas_assert (!mips_opts.micromips);
11501 s = "swc3";
11502 fmt = "E,o(b)";
11503 /* Itbl support may require additional care here. */
11504 coproc = 1;
11505 goto ld_st;
11506 case M_SWL_AB:
11507 s = "swl";
11508 fmt = MEM12_FMT;
11509 offbits = (mips_opts.micromips ? 12 : 16);
11510 goto ld_st;
11511 case M_SWR_AB:
11512 s = "swr";
11513 fmt = MEM12_FMT;
11514 offbits = (mips_opts.micromips ? 12 : 16);
11515 goto ld_st;
11516 case M_SC_AB:
11517 s = "sc";
11518 fmt = LL_SC_FMT;
11519 offbits = (mips_opts.micromips ? 12
11520 : ISA_IS_R6 (mips_opts.isa) ? 9
11521 : 16);
11522 goto ld_st;
11523 case M_SCD_AB:
11524 s = "scd";
11525 fmt = LL_SC_FMT;
11526 offbits = (mips_opts.micromips ? 12
11527 : ISA_IS_R6 (mips_opts.isa) ? 9
11528 : 16);
11529 goto ld_st;
11530 case M_CACHE_AB:
11531 s = "cache";
11532 fmt = (mips_opts.micromips ? "k,~(b)"
11533 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11534 : "k,o(b)");
11535 offbits = (mips_opts.micromips ? 12
11536 : ISA_IS_R6 (mips_opts.isa) ? 9
11537 : 16);
11538 goto ld_st;
11539 case M_CACHEE_AB:
11540 s = "cachee";
11541 fmt = "k,+j(b)";
11542 offbits = 9;
11543 goto ld_st;
11544 case M_PREF_AB:
11545 s = "pref";
11546 fmt = (mips_opts.micromips ? "k,~(b)"
11547 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11548 : "k,o(b)");
11549 offbits = (mips_opts.micromips ? 12
11550 : ISA_IS_R6 (mips_opts.isa) ? 9
11551 : 16);
11552 goto ld_st;
11553 case M_PREFE_AB:
11554 s = "prefe";
11555 fmt = "k,+j(b)";
11556 offbits = 9;
11557 goto ld_st;
11558 case M_SDC1_AB:
11559 s = "sdc1";
11560 fmt = "T,o(b)";
11561 coproc = 1;
11562 /* Itbl support may require additional care here. */
11563 goto ld_st;
11564 case M_SDC2_AB:
11565 s = "sdc2";
11566 fmt = COP12_FMT;
11567 offbits = (mips_opts.micromips ? 12
11568 : ISA_IS_R6 (mips_opts.isa) ? 11
11569 : 16);
11570 /* Itbl support may require additional care here. */
11571 coproc = 1;
11572 goto ld_st;
11573 case M_SQC2_AB:
11574 s = "sqc2";
11575 fmt = "+7,o(b)";
11576 /* Itbl support may require additional care here. */
11577 coproc = 1;
11578 goto ld_st;
11579 case M_SDC3_AB:
11580 gas_assert (!mips_opts.micromips);
11581 s = "sdc3";
11582 fmt = "E,o(b)";
11583 /* Itbl support may require additional care here. */
11584 coproc = 1;
11585 goto ld_st;
11586 case M_SDL_AB:
11587 s = "sdl";
11588 fmt = MEM12_FMT;
11589 offbits = (mips_opts.micromips ? 12 : 16);
11590 goto ld_st;
11591 case M_SDR_AB:
11592 s = "sdr";
11593 fmt = MEM12_FMT;
11594 offbits = (mips_opts.micromips ? 12 : 16);
11595 goto ld_st;
11596 case M_SWP_AB:
11597 gas_assert (mips_opts.micromips);
11598 s = "swp";
11599 fmt = "t,~(b)";
11600 offbits = 12;
11601 goto ld_st;
11602 case M_SDP_AB:
11603 gas_assert (mips_opts.micromips);
11604 s = "sdp";
11605 fmt = "t,~(b)";
11606 offbits = 12;
11607 goto ld_st;
11608 case M_SWM_AB:
11609 gas_assert (mips_opts.micromips);
11610 s = "swm";
11611 fmt = "n,~(b)";
11612 offbits = 12;
11613 goto ld_st;
11614 case M_SDM_AB:
11615 gas_assert (mips_opts.micromips);
11616 s = "sdm";
11617 fmt = "n,~(b)";
11618 offbits = 12;
11619
11620 ld_st:
11621 tempreg = AT;
11622 ld_noat:
11623 breg = op[2];
11624 if (small_offset_p (0, align, 16))
11625 {
11626 /* The first case exists for M_LD_AB and M_SD_AB, which are
11627 macros for o32 but which should act like normal instructions
11628 otherwise. */
11629 if (offbits == 16)
11630 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11631 offset_reloc[1], offset_reloc[2], breg);
11632 else if (small_offset_p (0, align, offbits))
11633 {
11634 if (offbits == 0)
11635 macro_build (NULL, s, fmt, op[0], breg);
11636 else
11637 macro_build (NULL, s, fmt, op[0],
11638 (int) offset_expr.X_add_number, breg);
11639 }
11640 else
11641 {
11642 if (tempreg == AT)
11643 used_at = 1;
11644 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11645 tempreg, breg, -1, offset_reloc[0],
11646 offset_reloc[1], offset_reloc[2]);
11647 if (offbits == 0)
11648 macro_build (NULL, s, fmt, op[0], tempreg);
11649 else
11650 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11651 }
11652 break;
11653 }
11654
11655 if (tempreg == AT)
11656 used_at = 1;
11657
11658 if (offset_expr.X_op != O_constant
11659 && offset_expr.X_op != O_symbol)
11660 {
11661 as_bad (_("expression too complex"));
11662 offset_expr.X_op = O_constant;
11663 }
11664
11665 if (HAVE_32BIT_ADDRESSES
11666 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11667 {
11668 char value [32];
11669
11670 sprintf_vma (value, offset_expr.X_add_number);
11671 as_bad (_("number (0x%s) larger than 32 bits"), value);
11672 }
11673
11674 /* A constant expression in PIC code can be handled just as it
11675 is in non PIC code. */
11676 if (offset_expr.X_op == O_constant)
11677 {
11678 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11679 offbits == 0 ? 16 : offbits);
11680 offset_expr.X_add_number -= expr1.X_add_number;
11681
11682 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11683 if (breg != 0)
11684 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11685 tempreg, tempreg, breg);
11686 if (offbits == 0)
11687 {
11688 if (offset_expr.X_add_number != 0)
11689 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11690 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11691 macro_build (NULL, s, fmt, op[0], tempreg);
11692 }
11693 else if (offbits == 16)
11694 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11695 else
11696 macro_build (NULL, s, fmt, op[0],
11697 (int) offset_expr.X_add_number, tempreg);
11698 }
11699 else if (offbits != 16)
11700 {
11701 /* The offset field is too narrow to be used for a low-part
11702 relocation, so load the whole address into the auxillary
11703 register. */
11704 load_address (tempreg, &offset_expr, &used_at);
11705 if (breg != 0)
11706 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11707 tempreg, tempreg, breg);
11708 if (offbits == 0)
11709 macro_build (NULL, s, fmt, op[0], tempreg);
11710 else
11711 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11712 }
11713 else if (mips_pic == NO_PIC)
11714 {
11715 /* If this is a reference to a GP relative symbol, and there
11716 is no base register, we want
11717 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11718 Otherwise, if there is no base register, we want
11719 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11720 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11721 If we have a constant, we need two instructions anyhow,
11722 so we always use the latter form.
11723
11724 If we have a base register, and this is a reference to a
11725 GP relative symbol, we want
11726 addu $tempreg,$breg,$gp
11727 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11728 Otherwise we want
11729 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11730 addu $tempreg,$tempreg,$breg
11731 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11732 With a constant we always use the latter case.
11733
11734 With 64bit address space and no base register and $at usable,
11735 we want
11736 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11737 lui $at,<sym> (BFD_RELOC_HI16_S)
11738 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11739 dsll32 $tempreg,0
11740 daddu $tempreg,$at
11741 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11742 If we have a base register, we want
11743 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11744 lui $at,<sym> (BFD_RELOC_HI16_S)
11745 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11746 daddu $at,$breg
11747 dsll32 $tempreg,0
11748 daddu $tempreg,$at
11749 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11750
11751 Without $at we can't generate the optimal path for superscalar
11752 processors here since this would require two temporary registers.
11753 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11754 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11755 dsll $tempreg,16
11756 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11757 dsll $tempreg,16
11758 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11759 If we have a base register, we want
11760 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11761 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11762 dsll $tempreg,16
11763 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11764 dsll $tempreg,16
11765 daddu $tempreg,$tempreg,$breg
11766 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11767
11768 For GP relative symbols in 64bit address space we can use
11769 the same sequence as in 32bit address space. */
11770 if (HAVE_64BIT_SYMBOLS)
11771 {
11772 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11773 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11774 {
11775 relax_start (offset_expr.X_add_symbol);
11776 if (breg == 0)
11777 {
11778 macro_build (&offset_expr, s, fmt, op[0],
11779 BFD_RELOC_GPREL16, mips_gp_register);
11780 }
11781 else
11782 {
11783 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11784 tempreg, breg, mips_gp_register);
11785 macro_build (&offset_expr, s, fmt, op[0],
11786 BFD_RELOC_GPREL16, tempreg);
11787 }
11788 relax_switch ();
11789 }
11790
11791 if (used_at == 0 && mips_opts.at)
11792 {
11793 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11794 BFD_RELOC_MIPS_HIGHEST);
11795 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11796 BFD_RELOC_HI16_S);
11797 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11798 tempreg, BFD_RELOC_MIPS_HIGHER);
11799 if (breg != 0)
11800 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11801 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11802 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11803 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11804 tempreg);
11805 used_at = 1;
11806 }
11807 else
11808 {
11809 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11810 BFD_RELOC_MIPS_HIGHEST);
11811 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11812 tempreg, BFD_RELOC_MIPS_HIGHER);
11813 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11814 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11815 tempreg, BFD_RELOC_HI16_S);
11816 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11817 if (breg != 0)
11818 macro_build (NULL, "daddu", "d,v,t",
11819 tempreg, tempreg, breg);
11820 macro_build (&offset_expr, s, fmt, op[0],
11821 BFD_RELOC_LO16, tempreg);
11822 }
11823
11824 if (mips_relax.sequence)
11825 relax_end ();
11826 break;
11827 }
11828
11829 if (breg == 0)
11830 {
11831 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11832 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11833 {
11834 relax_start (offset_expr.X_add_symbol);
11835 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11836 mips_gp_register);
11837 relax_switch ();
11838 }
11839 macro_build_lui (&offset_expr, tempreg);
11840 macro_build (&offset_expr, s, fmt, op[0],
11841 BFD_RELOC_LO16, tempreg);
11842 if (mips_relax.sequence)
11843 relax_end ();
11844 }
11845 else
11846 {
11847 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11848 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11849 {
11850 relax_start (offset_expr.X_add_symbol);
11851 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11852 tempreg, breg, mips_gp_register);
11853 macro_build (&offset_expr, s, fmt, op[0],
11854 BFD_RELOC_GPREL16, tempreg);
11855 relax_switch ();
11856 }
11857 macro_build_lui (&offset_expr, tempreg);
11858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11859 tempreg, tempreg, breg);
11860 macro_build (&offset_expr, s, fmt, op[0],
11861 BFD_RELOC_LO16, tempreg);
11862 if (mips_relax.sequence)
11863 relax_end ();
11864 }
11865 }
11866 else if (!mips_big_got)
11867 {
11868 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11869
11870 /* If this is a reference to an external symbol, we want
11871 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11872 nop
11873 <op> op[0],0($tempreg)
11874 Otherwise we want
11875 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11876 nop
11877 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11878 <op> op[0],0($tempreg)
11879
11880 For NewABI, we want
11881 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11882 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11883
11884 If there is a base register, we add it to $tempreg before
11885 the <op>. If there is a constant, we stick it in the
11886 <op> instruction. We don't handle constants larger than
11887 16 bits, because we have no way to load the upper 16 bits
11888 (actually, we could handle them for the subset of cases
11889 in which we are not using $at). */
11890 gas_assert (offset_expr.X_op == O_symbol);
11891 if (HAVE_NEWABI)
11892 {
11893 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11894 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11895 if (breg != 0)
11896 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11897 tempreg, tempreg, breg);
11898 macro_build (&offset_expr, s, fmt, op[0],
11899 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11900 break;
11901 }
11902 expr1.X_add_number = offset_expr.X_add_number;
11903 offset_expr.X_add_number = 0;
11904 if (expr1.X_add_number < -0x8000
11905 || expr1.X_add_number >= 0x8000)
11906 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11907 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11908 lw_reloc_type, mips_gp_register);
11909 load_delay_nop ();
11910 relax_start (offset_expr.X_add_symbol);
11911 relax_switch ();
11912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11913 tempreg, BFD_RELOC_LO16);
11914 relax_end ();
11915 if (breg != 0)
11916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11917 tempreg, tempreg, breg);
11918 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11919 }
11920 else if (mips_big_got && !HAVE_NEWABI)
11921 {
11922 int gpdelay;
11923
11924 /* If this is a reference to an external symbol, we want
11925 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11926 addu $tempreg,$tempreg,$gp
11927 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11928 <op> op[0],0($tempreg)
11929 Otherwise we want
11930 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11931 nop
11932 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11933 <op> op[0],0($tempreg)
11934 If there is a base register, we add it to $tempreg before
11935 the <op>. If there is a constant, we stick it in the
11936 <op> instruction. We don't handle constants larger than
11937 16 bits, because we have no way to load the upper 16 bits
11938 (actually, we could handle them for the subset of cases
11939 in which we are not using $at). */
11940 gas_assert (offset_expr.X_op == O_symbol);
11941 expr1.X_add_number = offset_expr.X_add_number;
11942 offset_expr.X_add_number = 0;
11943 if (expr1.X_add_number < -0x8000
11944 || expr1.X_add_number >= 0x8000)
11945 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11946 gpdelay = reg_needs_delay (mips_gp_register);
11947 relax_start (offset_expr.X_add_symbol);
11948 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11949 BFD_RELOC_MIPS_GOT_HI16);
11950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11951 mips_gp_register);
11952 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11953 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11954 relax_switch ();
11955 if (gpdelay)
11956 macro_build (NULL, "nop", "");
11957 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11958 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11959 load_delay_nop ();
11960 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11961 tempreg, BFD_RELOC_LO16);
11962 relax_end ();
11963
11964 if (breg != 0)
11965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11966 tempreg, tempreg, breg);
11967 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11968 }
11969 else if (mips_big_got && HAVE_NEWABI)
11970 {
11971 /* If this is a reference to an external symbol, we want
11972 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11973 add $tempreg,$tempreg,$gp
11974 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11975 <op> op[0],<ofst>($tempreg)
11976 Otherwise, for local symbols, we want:
11977 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11978 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11979 gas_assert (offset_expr.X_op == O_symbol);
11980 expr1.X_add_number = offset_expr.X_add_number;
11981 offset_expr.X_add_number = 0;
11982 if (expr1.X_add_number < -0x8000
11983 || expr1.X_add_number >= 0x8000)
11984 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11985 relax_start (offset_expr.X_add_symbol);
11986 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11987 BFD_RELOC_MIPS_GOT_HI16);
11988 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11989 mips_gp_register);
11990 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11991 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11992 if (breg != 0)
11993 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11994 tempreg, tempreg, breg);
11995 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11996
11997 relax_switch ();
11998 offset_expr.X_add_number = expr1.X_add_number;
11999 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12000 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12001 if (breg != 0)
12002 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12003 tempreg, tempreg, breg);
12004 macro_build (&offset_expr, s, fmt, op[0],
12005 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12006 relax_end ();
12007 }
12008 else
12009 abort ();
12010
12011 break;
12012
12013 case M_JRADDIUSP:
12014 gas_assert (mips_opts.micromips);
12015 gas_assert (mips_opts.insn32);
12016 start_noreorder ();
12017 macro_build (NULL, "jr", "s", RA);
12018 expr1.X_add_number = op[0] << 2;
12019 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12020 end_noreorder ();
12021 break;
12022
12023 case M_JRC:
12024 gas_assert (mips_opts.micromips);
12025 gas_assert (mips_opts.insn32);
12026 macro_build (NULL, "jr", "s", op[0]);
12027 if (mips_opts.noreorder)
12028 macro_build (NULL, "nop", "");
12029 break;
12030
12031 case M_LI:
12032 case M_LI_S:
12033 load_register (op[0], &imm_expr, 0);
12034 break;
12035
12036 case M_DLI:
12037 load_register (op[0], &imm_expr, 1);
12038 break;
12039
12040 case M_LI_SS:
12041 if (imm_expr.X_op == O_constant)
12042 {
12043 used_at = 1;
12044 load_register (AT, &imm_expr, 0);
12045 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12046 break;
12047 }
12048 else
12049 {
12050 gas_assert (imm_expr.X_op == O_absent
12051 && offset_expr.X_op == O_symbol
12052 && strcmp (segment_name (S_GET_SEGMENT
12053 (offset_expr.X_add_symbol)),
12054 ".lit4") == 0
12055 && offset_expr.X_add_number == 0);
12056 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12057 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12058 break;
12059 }
12060
12061 case M_LI_D:
12062 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12063 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12064 order 32 bits of the value and the low order 32 bits are either
12065 zero or in OFFSET_EXPR. */
12066 if (imm_expr.X_op == O_constant)
12067 {
12068 if (GPR_SIZE == 64)
12069 load_register (op[0], &imm_expr, 1);
12070 else
12071 {
12072 int hreg, lreg;
12073
12074 if (target_big_endian)
12075 {
12076 hreg = op[0];
12077 lreg = op[0] + 1;
12078 }
12079 else
12080 {
12081 hreg = op[0] + 1;
12082 lreg = op[0];
12083 }
12084
12085 if (hreg <= 31)
12086 load_register (hreg, &imm_expr, 0);
12087 if (lreg <= 31)
12088 {
12089 if (offset_expr.X_op == O_absent)
12090 move_register (lreg, 0);
12091 else
12092 {
12093 gas_assert (offset_expr.X_op == O_constant);
12094 load_register (lreg, &offset_expr, 0);
12095 }
12096 }
12097 }
12098 break;
12099 }
12100 gas_assert (imm_expr.X_op == O_absent);
12101
12102 /* We know that sym is in the .rdata section. First we get the
12103 upper 16 bits of the address. */
12104 if (mips_pic == NO_PIC)
12105 {
12106 macro_build_lui (&offset_expr, AT);
12107 used_at = 1;
12108 }
12109 else
12110 {
12111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12112 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12113 used_at = 1;
12114 }
12115
12116 /* Now we load the register(s). */
12117 if (GPR_SIZE == 64)
12118 {
12119 used_at = 1;
12120 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12121 BFD_RELOC_LO16, AT);
12122 }
12123 else
12124 {
12125 used_at = 1;
12126 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12127 BFD_RELOC_LO16, AT);
12128 if (op[0] != RA)
12129 {
12130 /* FIXME: How in the world do we deal with the possible
12131 overflow here? */
12132 offset_expr.X_add_number += 4;
12133 macro_build (&offset_expr, "lw", "t,o(b)",
12134 op[0] + 1, BFD_RELOC_LO16, AT);
12135 }
12136 }
12137 break;
12138
12139 case M_LI_DD:
12140 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12141 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12142 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12143 the value and the low order 32 bits are either zero or in
12144 OFFSET_EXPR. */
12145 if (imm_expr.X_op == O_constant)
12146 {
12147 used_at = 1;
12148 load_register (AT, &imm_expr, FPR_SIZE == 64);
12149 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12150 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12151 else
12152 {
12153 if (ISA_HAS_MXHC1 (mips_opts.isa))
12154 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12155 else if (FPR_SIZE != 32)
12156 as_bad (_("Unable to generate `%s' compliant code "
12157 "without mthc1"),
12158 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12159 else
12160 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12161 if (offset_expr.X_op == O_absent)
12162 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12163 else
12164 {
12165 gas_assert (offset_expr.X_op == O_constant);
12166 load_register (AT, &offset_expr, 0);
12167 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12168 }
12169 }
12170 break;
12171 }
12172
12173 gas_assert (imm_expr.X_op == O_absent
12174 && offset_expr.X_op == O_symbol
12175 && offset_expr.X_add_number == 0);
12176 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12177 if (strcmp (s, ".lit8") == 0)
12178 {
12179 op[2] = mips_gp_register;
12180 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12181 offset_reloc[1] = BFD_RELOC_UNUSED;
12182 offset_reloc[2] = BFD_RELOC_UNUSED;
12183 }
12184 else
12185 {
12186 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12187 used_at = 1;
12188 if (mips_pic != NO_PIC)
12189 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12190 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12191 else
12192 {
12193 /* FIXME: This won't work for a 64 bit address. */
12194 macro_build_lui (&offset_expr, AT);
12195 }
12196
12197 op[2] = AT;
12198 offset_reloc[0] = BFD_RELOC_LO16;
12199 offset_reloc[1] = BFD_RELOC_UNUSED;
12200 offset_reloc[2] = BFD_RELOC_UNUSED;
12201 }
12202 align = 8;
12203 /* Fall through */
12204
12205 case M_L_DAB:
12206 /*
12207 * The MIPS assembler seems to check for X_add_number not
12208 * being double aligned and generating:
12209 * lui at,%hi(foo+1)
12210 * addu at,at,v1
12211 * addiu at,at,%lo(foo+1)
12212 * lwc1 f2,0(at)
12213 * lwc1 f3,4(at)
12214 * But, the resulting address is the same after relocation so why
12215 * generate the extra instruction?
12216 */
12217 /* Itbl support may require additional care here. */
12218 coproc = 1;
12219 fmt = "T,o(b)";
12220 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12221 {
12222 s = "ldc1";
12223 goto ld_st;
12224 }
12225 s = "lwc1";
12226 goto ldd_std;
12227
12228 case M_S_DAB:
12229 gas_assert (!mips_opts.micromips);
12230 /* Itbl support may require additional care here. */
12231 coproc = 1;
12232 fmt = "T,o(b)";
12233 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12234 {
12235 s = "sdc1";
12236 goto ld_st;
12237 }
12238 s = "swc1";
12239 goto ldd_std;
12240
12241 case M_LQ_AB:
12242 fmt = "t,o(b)";
12243 s = "lq";
12244 goto ld;
12245
12246 case M_SQ_AB:
12247 fmt = "t,o(b)";
12248 s = "sq";
12249 goto ld_st;
12250
12251 case M_LD_AB:
12252 fmt = "t,o(b)";
12253 if (GPR_SIZE == 64)
12254 {
12255 s = "ld";
12256 goto ld;
12257 }
12258 s = "lw";
12259 goto ldd_std;
12260
12261 case M_SD_AB:
12262 fmt = "t,o(b)";
12263 if (GPR_SIZE == 64)
12264 {
12265 s = "sd";
12266 goto ld_st;
12267 }
12268 s = "sw";
12269
12270 ldd_std:
12271 /* Even on a big endian machine $fn comes before $fn+1. We have
12272 to adjust when loading from memory. We set coproc if we must
12273 load $fn+1 first. */
12274 /* Itbl support may require additional care here. */
12275 if (!target_big_endian)
12276 coproc = 0;
12277
12278 breg = op[2];
12279 if (small_offset_p (0, align, 16))
12280 {
12281 ep = &offset_expr;
12282 if (!small_offset_p (4, align, 16))
12283 {
12284 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12285 -1, offset_reloc[0], offset_reloc[1],
12286 offset_reloc[2]);
12287 expr1.X_add_number = 0;
12288 ep = &expr1;
12289 breg = AT;
12290 used_at = 1;
12291 offset_reloc[0] = BFD_RELOC_LO16;
12292 offset_reloc[1] = BFD_RELOC_UNUSED;
12293 offset_reloc[2] = BFD_RELOC_UNUSED;
12294 }
12295 if (strcmp (s, "lw") == 0 && op[0] == breg)
12296 {
12297 ep->X_add_number += 4;
12298 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12299 offset_reloc[1], offset_reloc[2], breg);
12300 ep->X_add_number -= 4;
12301 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12302 offset_reloc[1], offset_reloc[2], breg);
12303 }
12304 else
12305 {
12306 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12307 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12308 breg);
12309 ep->X_add_number += 4;
12310 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12311 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12312 breg);
12313 }
12314 break;
12315 }
12316
12317 if (offset_expr.X_op != O_symbol
12318 && offset_expr.X_op != O_constant)
12319 {
12320 as_bad (_("expression too complex"));
12321 offset_expr.X_op = O_constant;
12322 }
12323
12324 if (HAVE_32BIT_ADDRESSES
12325 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12326 {
12327 char value [32];
12328
12329 sprintf_vma (value, offset_expr.X_add_number);
12330 as_bad (_("number (0x%s) larger than 32 bits"), value);
12331 }
12332
12333 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12334 {
12335 /* If this is a reference to a GP relative symbol, we want
12336 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12337 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12338 If we have a base register, we use this
12339 addu $at,$breg,$gp
12340 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12341 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12342 If this is not a GP relative symbol, we want
12343 lui $at,<sym> (BFD_RELOC_HI16_S)
12344 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12345 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12346 If there is a base register, we add it to $at after the
12347 lui instruction. If there is a constant, we always use
12348 the last case. */
12349 if (offset_expr.X_op == O_symbol
12350 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12351 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12352 {
12353 relax_start (offset_expr.X_add_symbol);
12354 if (breg == 0)
12355 {
12356 tempreg = mips_gp_register;
12357 }
12358 else
12359 {
12360 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12361 AT, breg, mips_gp_register);
12362 tempreg = AT;
12363 used_at = 1;
12364 }
12365
12366 /* Itbl support may require additional care here. */
12367 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12368 BFD_RELOC_GPREL16, tempreg);
12369 offset_expr.X_add_number += 4;
12370
12371 /* Set mips_optimize to 2 to avoid inserting an
12372 undesired nop. */
12373 hold_mips_optimize = mips_optimize;
12374 mips_optimize = 2;
12375 /* Itbl support may require additional care here. */
12376 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12377 BFD_RELOC_GPREL16, tempreg);
12378 mips_optimize = hold_mips_optimize;
12379
12380 relax_switch ();
12381
12382 offset_expr.X_add_number -= 4;
12383 }
12384 used_at = 1;
12385 if (offset_high_part (offset_expr.X_add_number, 16)
12386 != offset_high_part (offset_expr.X_add_number + 4, 16))
12387 {
12388 load_address (AT, &offset_expr, &used_at);
12389 offset_expr.X_op = O_constant;
12390 offset_expr.X_add_number = 0;
12391 }
12392 else
12393 macro_build_lui (&offset_expr, AT);
12394 if (breg != 0)
12395 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12396 /* Itbl support may require additional care here. */
12397 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12398 BFD_RELOC_LO16, AT);
12399 /* FIXME: How do we handle overflow here? */
12400 offset_expr.X_add_number += 4;
12401 /* Itbl support may require additional care here. */
12402 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12403 BFD_RELOC_LO16, AT);
12404 if (mips_relax.sequence)
12405 relax_end ();
12406 }
12407 else if (!mips_big_got)
12408 {
12409 /* If this is a reference to an external symbol, we want
12410 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12411 nop
12412 <op> op[0],0($at)
12413 <op> op[0]+1,4($at)
12414 Otherwise we want
12415 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12416 nop
12417 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12418 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12419 If there is a base register we add it to $at before the
12420 lwc1 instructions. If there is a constant we include it
12421 in the lwc1 instructions. */
12422 used_at = 1;
12423 expr1.X_add_number = offset_expr.X_add_number;
12424 if (expr1.X_add_number < -0x8000
12425 || expr1.X_add_number >= 0x8000 - 4)
12426 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12427 load_got_offset (AT, &offset_expr);
12428 load_delay_nop ();
12429 if (breg != 0)
12430 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12431
12432 /* Set mips_optimize to 2 to avoid inserting an undesired
12433 nop. */
12434 hold_mips_optimize = mips_optimize;
12435 mips_optimize = 2;
12436
12437 /* Itbl support may require additional care here. */
12438 relax_start (offset_expr.X_add_symbol);
12439 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12440 BFD_RELOC_LO16, AT);
12441 expr1.X_add_number += 4;
12442 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12443 BFD_RELOC_LO16, AT);
12444 relax_switch ();
12445 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12446 BFD_RELOC_LO16, AT);
12447 offset_expr.X_add_number += 4;
12448 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12449 BFD_RELOC_LO16, AT);
12450 relax_end ();
12451
12452 mips_optimize = hold_mips_optimize;
12453 }
12454 else if (mips_big_got)
12455 {
12456 int gpdelay;
12457
12458 /* If this is a reference to an external symbol, we want
12459 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12460 addu $at,$at,$gp
12461 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12462 nop
12463 <op> op[0],0($at)
12464 <op> op[0]+1,4($at)
12465 Otherwise we want
12466 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12467 nop
12468 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12469 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12470 If there is a base register we add it to $at before the
12471 lwc1 instructions. If there is a constant we include it
12472 in the lwc1 instructions. */
12473 used_at = 1;
12474 expr1.X_add_number = offset_expr.X_add_number;
12475 offset_expr.X_add_number = 0;
12476 if (expr1.X_add_number < -0x8000
12477 || expr1.X_add_number >= 0x8000 - 4)
12478 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12479 gpdelay = reg_needs_delay (mips_gp_register);
12480 relax_start (offset_expr.X_add_symbol);
12481 macro_build (&offset_expr, "lui", LUI_FMT,
12482 AT, BFD_RELOC_MIPS_GOT_HI16);
12483 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12484 AT, AT, mips_gp_register);
12485 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12486 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12487 load_delay_nop ();
12488 if (breg != 0)
12489 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12490 /* Itbl support may require additional care here. */
12491 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12492 BFD_RELOC_LO16, AT);
12493 expr1.X_add_number += 4;
12494
12495 /* Set mips_optimize to 2 to avoid inserting an undesired
12496 nop. */
12497 hold_mips_optimize = mips_optimize;
12498 mips_optimize = 2;
12499 /* Itbl support may require additional care here. */
12500 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12501 BFD_RELOC_LO16, AT);
12502 mips_optimize = hold_mips_optimize;
12503 expr1.X_add_number -= 4;
12504
12505 relax_switch ();
12506 offset_expr.X_add_number = expr1.X_add_number;
12507 if (gpdelay)
12508 macro_build (NULL, "nop", "");
12509 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12510 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12511 load_delay_nop ();
12512 if (breg != 0)
12513 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12514 /* Itbl support may require additional care here. */
12515 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12516 BFD_RELOC_LO16, AT);
12517 offset_expr.X_add_number += 4;
12518
12519 /* Set mips_optimize to 2 to avoid inserting an undesired
12520 nop. */
12521 hold_mips_optimize = mips_optimize;
12522 mips_optimize = 2;
12523 /* Itbl support may require additional care here. */
12524 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12525 BFD_RELOC_LO16, AT);
12526 mips_optimize = hold_mips_optimize;
12527 relax_end ();
12528 }
12529 else
12530 abort ();
12531
12532 break;
12533
12534 case M_SAA_AB:
12535 s = "saa";
12536 goto saa_saad;
12537 case M_SAAD_AB:
12538 s = "saad";
12539 saa_saad:
12540 gas_assert (!mips_opts.micromips);
12541 offbits = 0;
12542 fmt = "t,(b)";
12543 goto ld_st;
12544
12545 /* New code added to support COPZ instructions.
12546 This code builds table entries out of the macros in mip_opcodes.
12547 R4000 uses interlocks to handle coproc delays.
12548 Other chips (like the R3000) require nops to be inserted for delays.
12549
12550 FIXME: Currently, we require that the user handle delays.
12551 In order to fill delay slots for non-interlocked chips,
12552 we must have a way to specify delays based on the coprocessor.
12553 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12554 What are the side-effects of the cop instruction?
12555 What cache support might we have and what are its effects?
12556 Both coprocessor & memory require delays. how long???
12557 What registers are read/set/modified?
12558
12559 If an itbl is provided to interpret cop instructions,
12560 this knowledge can be encoded in the itbl spec. */
12561
12562 case M_COP0:
12563 s = "c0";
12564 goto copz;
12565 case M_COP1:
12566 s = "c1";
12567 goto copz;
12568 case M_COP2:
12569 s = "c2";
12570 goto copz;
12571 case M_COP3:
12572 s = "c3";
12573 copz:
12574 gas_assert (!mips_opts.micromips);
12575 /* For now we just do C (same as Cz). The parameter will be
12576 stored in insn_opcode by mips_ip. */
12577 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12578 break;
12579
12580 case M_MOVE:
12581 move_register (op[0], op[1]);
12582 break;
12583
12584 case M_MOVEP:
12585 gas_assert (mips_opts.micromips);
12586 gas_assert (mips_opts.insn32);
12587 move_register (micromips_to_32_reg_h_map1[op[0]],
12588 micromips_to_32_reg_m_map[op[1]]);
12589 move_register (micromips_to_32_reg_h_map2[op[0]],
12590 micromips_to_32_reg_n_map[op[2]]);
12591 break;
12592
12593 case M_DMUL:
12594 dbl = 1;
12595 case M_MUL:
12596 if (mips_opts.arch == CPU_R5900)
12597 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12598 op[2]);
12599 else
12600 {
12601 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12602 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12603 }
12604 break;
12605
12606 case M_DMUL_I:
12607 dbl = 1;
12608 case M_MUL_I:
12609 /* The MIPS assembler some times generates shifts and adds. I'm
12610 not trying to be that fancy. GCC should do this for us
12611 anyway. */
12612 used_at = 1;
12613 load_register (AT, &imm_expr, dbl);
12614 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12615 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12616 break;
12617
12618 case M_DMULO_I:
12619 dbl = 1;
12620 case M_MULO_I:
12621 imm = 1;
12622 goto do_mulo;
12623
12624 case M_DMULO:
12625 dbl = 1;
12626 case M_MULO:
12627 do_mulo:
12628 start_noreorder ();
12629 used_at = 1;
12630 if (imm)
12631 load_register (AT, &imm_expr, dbl);
12632 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12633 op[1], imm ? AT : op[2]);
12634 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12635 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12636 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12637 if (mips_trap)
12638 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12639 else
12640 {
12641 if (mips_opts.micromips)
12642 micromips_label_expr (&label_expr);
12643 else
12644 label_expr.X_add_number = 8;
12645 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12646 macro_build (NULL, "nop", "");
12647 macro_build (NULL, "break", BRK_FMT, 6);
12648 if (mips_opts.micromips)
12649 micromips_add_label ();
12650 }
12651 end_noreorder ();
12652 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12653 break;
12654
12655 case M_DMULOU_I:
12656 dbl = 1;
12657 case M_MULOU_I:
12658 imm = 1;
12659 goto do_mulou;
12660
12661 case M_DMULOU:
12662 dbl = 1;
12663 case M_MULOU:
12664 do_mulou:
12665 start_noreorder ();
12666 used_at = 1;
12667 if (imm)
12668 load_register (AT, &imm_expr, dbl);
12669 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12670 op[1], imm ? AT : op[2]);
12671 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12672 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12673 if (mips_trap)
12674 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12675 else
12676 {
12677 if (mips_opts.micromips)
12678 micromips_label_expr (&label_expr);
12679 else
12680 label_expr.X_add_number = 8;
12681 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12682 macro_build (NULL, "nop", "");
12683 macro_build (NULL, "break", BRK_FMT, 6);
12684 if (mips_opts.micromips)
12685 micromips_add_label ();
12686 }
12687 end_noreorder ();
12688 break;
12689
12690 case M_DROL:
12691 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12692 {
12693 if (op[0] == op[1])
12694 {
12695 tempreg = AT;
12696 used_at = 1;
12697 }
12698 else
12699 tempreg = op[0];
12700 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12701 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12702 break;
12703 }
12704 used_at = 1;
12705 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12706 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12707 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12708 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12709 break;
12710
12711 case M_ROL:
12712 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12713 {
12714 if (op[0] == op[1])
12715 {
12716 tempreg = AT;
12717 used_at = 1;
12718 }
12719 else
12720 tempreg = op[0];
12721 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12722 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12723 break;
12724 }
12725 used_at = 1;
12726 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12727 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12728 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12729 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12730 break;
12731
12732 case M_DROL_I:
12733 {
12734 unsigned int rot;
12735 const char *l;
12736 const char *rr;
12737
12738 rot = imm_expr.X_add_number & 0x3f;
12739 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12740 {
12741 rot = (64 - rot) & 0x3f;
12742 if (rot >= 32)
12743 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12744 else
12745 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12746 break;
12747 }
12748 if (rot == 0)
12749 {
12750 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12751 break;
12752 }
12753 l = (rot < 0x20) ? "dsll" : "dsll32";
12754 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12755 rot &= 0x1f;
12756 used_at = 1;
12757 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12758 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12759 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12760 }
12761 break;
12762
12763 case M_ROL_I:
12764 {
12765 unsigned int rot;
12766
12767 rot = imm_expr.X_add_number & 0x1f;
12768 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12769 {
12770 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12771 (32 - rot) & 0x1f);
12772 break;
12773 }
12774 if (rot == 0)
12775 {
12776 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12777 break;
12778 }
12779 used_at = 1;
12780 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12781 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12782 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12783 }
12784 break;
12785
12786 case M_DROR:
12787 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12788 {
12789 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12790 break;
12791 }
12792 used_at = 1;
12793 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12794 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12795 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12796 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12797 break;
12798
12799 case M_ROR:
12800 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12801 {
12802 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12803 break;
12804 }
12805 used_at = 1;
12806 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12807 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12808 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12809 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12810 break;
12811
12812 case M_DROR_I:
12813 {
12814 unsigned int rot;
12815 const char *l;
12816 const char *rr;
12817
12818 rot = imm_expr.X_add_number & 0x3f;
12819 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12820 {
12821 if (rot >= 32)
12822 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12823 else
12824 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12825 break;
12826 }
12827 if (rot == 0)
12828 {
12829 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12830 break;
12831 }
12832 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12833 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12834 rot &= 0x1f;
12835 used_at = 1;
12836 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12837 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12838 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12839 }
12840 break;
12841
12842 case M_ROR_I:
12843 {
12844 unsigned int rot;
12845
12846 rot = imm_expr.X_add_number & 0x1f;
12847 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12848 {
12849 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12850 break;
12851 }
12852 if (rot == 0)
12853 {
12854 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12855 break;
12856 }
12857 used_at = 1;
12858 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12859 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12860 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12861 }
12862 break;
12863
12864 case M_SEQ:
12865 if (op[1] == 0)
12866 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12867 else if (op[2] == 0)
12868 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12869 else
12870 {
12871 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12872 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12873 }
12874 break;
12875
12876 case M_SEQ_I:
12877 if (imm_expr.X_add_number == 0)
12878 {
12879 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12880 break;
12881 }
12882 if (op[1] == 0)
12883 {
12884 as_warn (_("instruction %s: result is always false"),
12885 ip->insn_mo->name);
12886 move_register (op[0], 0);
12887 break;
12888 }
12889 if (CPU_HAS_SEQ (mips_opts.arch)
12890 && -512 <= imm_expr.X_add_number
12891 && imm_expr.X_add_number < 512)
12892 {
12893 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12894 (int) imm_expr.X_add_number);
12895 break;
12896 }
12897 if (imm_expr.X_add_number >= 0
12898 && imm_expr.X_add_number < 0x10000)
12899 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12900 else if (imm_expr.X_add_number > -0x8000
12901 && imm_expr.X_add_number < 0)
12902 {
12903 imm_expr.X_add_number = -imm_expr.X_add_number;
12904 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12905 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12906 }
12907 else if (CPU_HAS_SEQ (mips_opts.arch))
12908 {
12909 used_at = 1;
12910 load_register (AT, &imm_expr, GPR_SIZE == 64);
12911 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12912 break;
12913 }
12914 else
12915 {
12916 load_register (AT, &imm_expr, GPR_SIZE == 64);
12917 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12918 used_at = 1;
12919 }
12920 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12921 break;
12922
12923 case M_SGE: /* X >= Y <==> not (X < Y) */
12924 s = "slt";
12925 goto sge;
12926 case M_SGEU:
12927 s = "sltu";
12928 sge:
12929 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12930 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12931 break;
12932
12933 case M_SGE_I: /* X >= I <==> not (X < I) */
12934 case M_SGEU_I:
12935 if (imm_expr.X_add_number >= -0x8000
12936 && imm_expr.X_add_number < 0x8000)
12937 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12938 op[0], op[1], BFD_RELOC_LO16);
12939 else
12940 {
12941 load_register (AT, &imm_expr, GPR_SIZE == 64);
12942 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12943 op[0], op[1], AT);
12944 used_at = 1;
12945 }
12946 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12947 break;
12948
12949 case M_SGT: /* X > Y <==> Y < X */
12950 s = "slt";
12951 goto sgt;
12952 case M_SGTU:
12953 s = "sltu";
12954 sgt:
12955 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12956 break;
12957
12958 case M_SGT_I: /* X > I <==> I < X */
12959 s = "slt";
12960 goto sgti;
12961 case M_SGTU_I:
12962 s = "sltu";
12963 sgti:
12964 used_at = 1;
12965 load_register (AT, &imm_expr, GPR_SIZE == 64);
12966 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12967 break;
12968
12969 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12970 s = "slt";
12971 goto sle;
12972 case M_SLEU:
12973 s = "sltu";
12974 sle:
12975 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12976 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12977 break;
12978
12979 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12980 s = "slt";
12981 goto slei;
12982 case M_SLEU_I:
12983 s = "sltu";
12984 slei:
12985 used_at = 1;
12986 load_register (AT, &imm_expr, GPR_SIZE == 64);
12987 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12988 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12989 break;
12990
12991 case M_SLT_I:
12992 if (imm_expr.X_add_number >= -0x8000
12993 && imm_expr.X_add_number < 0x8000)
12994 {
12995 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12996 BFD_RELOC_LO16);
12997 break;
12998 }
12999 used_at = 1;
13000 load_register (AT, &imm_expr, GPR_SIZE == 64);
13001 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13002 break;
13003
13004 case M_SLTU_I:
13005 if (imm_expr.X_add_number >= -0x8000
13006 && imm_expr.X_add_number < 0x8000)
13007 {
13008 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13009 BFD_RELOC_LO16);
13010 break;
13011 }
13012 used_at = 1;
13013 load_register (AT, &imm_expr, GPR_SIZE == 64);
13014 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13015 break;
13016
13017 case M_SNE:
13018 if (op[1] == 0)
13019 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13020 else if (op[2] == 0)
13021 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13022 else
13023 {
13024 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13025 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13026 }
13027 break;
13028
13029 case M_SNE_I:
13030 if (imm_expr.X_add_number == 0)
13031 {
13032 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13033 break;
13034 }
13035 if (op[1] == 0)
13036 {
13037 as_warn (_("instruction %s: result is always true"),
13038 ip->insn_mo->name);
13039 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13040 op[0], 0, BFD_RELOC_LO16);
13041 break;
13042 }
13043 if (CPU_HAS_SEQ (mips_opts.arch)
13044 && -512 <= imm_expr.X_add_number
13045 && imm_expr.X_add_number < 512)
13046 {
13047 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13048 (int) imm_expr.X_add_number);
13049 break;
13050 }
13051 if (imm_expr.X_add_number >= 0
13052 && imm_expr.X_add_number < 0x10000)
13053 {
13054 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13055 BFD_RELOC_LO16);
13056 }
13057 else if (imm_expr.X_add_number > -0x8000
13058 && imm_expr.X_add_number < 0)
13059 {
13060 imm_expr.X_add_number = -imm_expr.X_add_number;
13061 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13062 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13063 }
13064 else if (CPU_HAS_SEQ (mips_opts.arch))
13065 {
13066 used_at = 1;
13067 load_register (AT, &imm_expr, GPR_SIZE == 64);
13068 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13069 break;
13070 }
13071 else
13072 {
13073 load_register (AT, &imm_expr, GPR_SIZE == 64);
13074 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13075 used_at = 1;
13076 }
13077 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13078 break;
13079
13080 case M_SUB_I:
13081 s = "addi";
13082 s2 = "sub";
13083 goto do_subi;
13084 case M_SUBU_I:
13085 s = "addiu";
13086 s2 = "subu";
13087 goto do_subi;
13088 case M_DSUB_I:
13089 dbl = 1;
13090 s = "daddi";
13091 s2 = "dsub";
13092 if (!mips_opts.micromips)
13093 goto do_subi;
13094 if (imm_expr.X_add_number > -0x200
13095 && imm_expr.X_add_number <= 0x200)
13096 {
13097 macro_build (NULL, s, "t,r,.", op[0], op[1],
13098 (int) -imm_expr.X_add_number);
13099 break;
13100 }
13101 goto do_subi_i;
13102 case M_DSUBU_I:
13103 dbl = 1;
13104 s = "daddiu";
13105 s2 = "dsubu";
13106 do_subi:
13107 if (imm_expr.X_add_number > -0x8000
13108 && imm_expr.X_add_number <= 0x8000)
13109 {
13110 imm_expr.X_add_number = -imm_expr.X_add_number;
13111 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13112 break;
13113 }
13114 do_subi_i:
13115 used_at = 1;
13116 load_register (AT, &imm_expr, dbl);
13117 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13118 break;
13119
13120 case M_TEQ_I:
13121 s = "teq";
13122 goto trap;
13123 case M_TGE_I:
13124 s = "tge";
13125 goto trap;
13126 case M_TGEU_I:
13127 s = "tgeu";
13128 goto trap;
13129 case M_TLT_I:
13130 s = "tlt";
13131 goto trap;
13132 case M_TLTU_I:
13133 s = "tltu";
13134 goto trap;
13135 case M_TNE_I:
13136 s = "tne";
13137 trap:
13138 used_at = 1;
13139 load_register (AT, &imm_expr, GPR_SIZE == 64);
13140 macro_build (NULL, s, "s,t", op[0], AT);
13141 break;
13142
13143 case M_TRUNCWS:
13144 case M_TRUNCWD:
13145 gas_assert (!mips_opts.micromips);
13146 gas_assert (mips_opts.isa == ISA_MIPS1);
13147 used_at = 1;
13148
13149 /*
13150 * Is the double cfc1 instruction a bug in the mips assembler;
13151 * or is there a reason for it?
13152 */
13153 start_noreorder ();
13154 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13155 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13156 macro_build (NULL, "nop", "");
13157 expr1.X_add_number = 3;
13158 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13159 expr1.X_add_number = 2;
13160 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13161 macro_build (NULL, "ctc1", "t,G", AT, RA);
13162 macro_build (NULL, "nop", "");
13163 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13164 op[0], op[1]);
13165 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13166 macro_build (NULL, "nop", "");
13167 end_noreorder ();
13168 break;
13169
13170 case M_ULH_AB:
13171 s = "lb";
13172 s2 = "lbu";
13173 off = 1;
13174 goto uld_st;
13175 case M_ULHU_AB:
13176 s = "lbu";
13177 s2 = "lbu";
13178 off = 1;
13179 goto uld_st;
13180 case M_ULW_AB:
13181 s = "lwl";
13182 s2 = "lwr";
13183 offbits = (mips_opts.micromips ? 12 : 16);
13184 off = 3;
13185 goto uld_st;
13186 case M_ULD_AB:
13187 s = "ldl";
13188 s2 = "ldr";
13189 offbits = (mips_opts.micromips ? 12 : 16);
13190 off = 7;
13191 goto uld_st;
13192 case M_USH_AB:
13193 s = "sb";
13194 s2 = "sb";
13195 off = 1;
13196 ust = 1;
13197 goto uld_st;
13198 case M_USW_AB:
13199 s = "swl";
13200 s2 = "swr";
13201 offbits = (mips_opts.micromips ? 12 : 16);
13202 off = 3;
13203 ust = 1;
13204 goto uld_st;
13205 case M_USD_AB:
13206 s = "sdl";
13207 s2 = "sdr";
13208 offbits = (mips_opts.micromips ? 12 : 16);
13209 off = 7;
13210 ust = 1;
13211
13212 uld_st:
13213 breg = op[2];
13214 large_offset = !small_offset_p (off, align, offbits);
13215 ep = &offset_expr;
13216 expr1.X_add_number = 0;
13217 if (large_offset)
13218 {
13219 used_at = 1;
13220 tempreg = AT;
13221 if (small_offset_p (0, align, 16))
13222 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13223 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13224 else
13225 {
13226 load_address (tempreg, ep, &used_at);
13227 if (breg != 0)
13228 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13229 tempreg, tempreg, breg);
13230 }
13231 offset_reloc[0] = BFD_RELOC_LO16;
13232 offset_reloc[1] = BFD_RELOC_UNUSED;
13233 offset_reloc[2] = BFD_RELOC_UNUSED;
13234 breg = tempreg;
13235 tempreg = op[0];
13236 ep = &expr1;
13237 }
13238 else if (!ust && op[0] == breg)
13239 {
13240 used_at = 1;
13241 tempreg = AT;
13242 }
13243 else
13244 tempreg = op[0];
13245
13246 if (off == 1)
13247 goto ulh_sh;
13248
13249 if (!target_big_endian)
13250 ep->X_add_number += off;
13251 if (offbits == 12)
13252 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13253 else
13254 macro_build (ep, s, "t,o(b)", tempreg, -1,
13255 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13256
13257 if (!target_big_endian)
13258 ep->X_add_number -= off;
13259 else
13260 ep->X_add_number += off;
13261 if (offbits == 12)
13262 macro_build (NULL, s2, "t,~(b)",
13263 tempreg, (int) ep->X_add_number, breg);
13264 else
13265 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13266 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13267
13268 /* If necessary, move the result in tempreg to the final destination. */
13269 if (!ust && op[0] != tempreg)
13270 {
13271 /* Protect second load's delay slot. */
13272 load_delay_nop ();
13273 move_register (op[0], tempreg);
13274 }
13275 break;
13276
13277 ulh_sh:
13278 used_at = 1;
13279 if (target_big_endian == ust)
13280 ep->X_add_number += off;
13281 tempreg = ust || large_offset ? op[0] : AT;
13282 macro_build (ep, s, "t,o(b)", tempreg, -1,
13283 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13284
13285 /* For halfword transfers we need a temporary register to shuffle
13286 bytes. Unfortunately for M_USH_A we have none available before
13287 the next store as AT holds the base address. We deal with this
13288 case by clobbering TREG and then restoring it as with ULH. */
13289 tempreg = ust == large_offset ? op[0] : AT;
13290 if (ust)
13291 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13292
13293 if (target_big_endian == ust)
13294 ep->X_add_number -= off;
13295 else
13296 ep->X_add_number += off;
13297 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13298 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13299
13300 /* For M_USH_A re-retrieve the LSB. */
13301 if (ust && large_offset)
13302 {
13303 if (target_big_endian)
13304 ep->X_add_number += off;
13305 else
13306 ep->X_add_number -= off;
13307 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13308 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13309 }
13310 /* For ULH and M_USH_A OR the LSB in. */
13311 if (!ust || large_offset)
13312 {
13313 tempreg = !large_offset ? AT : op[0];
13314 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13315 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13316 }
13317 break;
13318
13319 default:
13320 /* FIXME: Check if this is one of the itbl macros, since they
13321 are added dynamically. */
13322 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13323 break;
13324 }
13325 if (!mips_opts.at && used_at)
13326 as_bad (_("macro used $at after \".set noat\""));
13327 }
13328
13329 /* Implement macros in mips16 mode. */
13330
13331 static void
mips16_macro(struct mips_cl_insn * ip)13332 mips16_macro (struct mips_cl_insn *ip)
13333 {
13334 const struct mips_operand_array *operands;
13335 int mask;
13336 int tmp;
13337 expressionS expr1;
13338 int dbl;
13339 const char *s, *s2, *s3;
13340 unsigned int op[MAX_OPERANDS];
13341 unsigned int i;
13342
13343 mask = ip->insn_mo->mask;
13344
13345 operands = insn_operands (ip);
13346 for (i = 0; i < MAX_OPERANDS; i++)
13347 if (operands->operand[i])
13348 op[i] = insn_extract_operand (ip, operands->operand[i]);
13349 else
13350 op[i] = -1;
13351
13352 expr1.X_op = O_constant;
13353 expr1.X_op_symbol = NULL;
13354 expr1.X_add_symbol = NULL;
13355 expr1.X_add_number = 1;
13356
13357 dbl = 0;
13358
13359 switch (mask)
13360 {
13361 default:
13362 abort ();
13363
13364 case M_DDIV_3:
13365 dbl = 1;
13366 case M_DIV_3:
13367 s = "mflo";
13368 goto do_div3;
13369 case M_DREM_3:
13370 dbl = 1;
13371 case M_REM_3:
13372 s = "mfhi";
13373 do_div3:
13374 start_noreorder ();
13375 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13376 expr1.X_add_number = 2;
13377 macro_build (&expr1, "bnez", "x,p", op[2]);
13378 macro_build (NULL, "break", "6", 7);
13379
13380 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13381 since that causes an overflow. We should do that as well,
13382 but I don't see how to do the comparisons without a temporary
13383 register. */
13384 end_noreorder ();
13385 macro_build (NULL, s, "x", op[0]);
13386 break;
13387
13388 case M_DIVU_3:
13389 s = "divu";
13390 s2 = "mflo";
13391 goto do_divu3;
13392 case M_REMU_3:
13393 s = "divu";
13394 s2 = "mfhi";
13395 goto do_divu3;
13396 case M_DDIVU_3:
13397 s = "ddivu";
13398 s2 = "mflo";
13399 goto do_divu3;
13400 case M_DREMU_3:
13401 s = "ddivu";
13402 s2 = "mfhi";
13403 do_divu3:
13404 start_noreorder ();
13405 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13406 expr1.X_add_number = 2;
13407 macro_build (&expr1, "bnez", "x,p", op[2]);
13408 macro_build (NULL, "break", "6", 7);
13409 end_noreorder ();
13410 macro_build (NULL, s2, "x", op[0]);
13411 break;
13412
13413 case M_DMUL:
13414 dbl = 1;
13415 case M_MUL:
13416 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13417 macro_build (NULL, "mflo", "x", op[0]);
13418 break;
13419
13420 case M_DSUBU_I:
13421 dbl = 1;
13422 goto do_subu;
13423 case M_SUBU_I:
13424 do_subu:
13425 imm_expr.X_add_number = -imm_expr.X_add_number;
13426 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13427 break;
13428
13429 case M_SUBU_I_2:
13430 imm_expr.X_add_number = -imm_expr.X_add_number;
13431 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13432 break;
13433
13434 case M_DSUBU_I_2:
13435 imm_expr.X_add_number = -imm_expr.X_add_number;
13436 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13437 break;
13438
13439 case M_BEQ:
13440 s = "cmp";
13441 s2 = "bteqz";
13442 goto do_branch;
13443 case M_BNE:
13444 s = "cmp";
13445 s2 = "btnez";
13446 goto do_branch;
13447 case M_BLT:
13448 s = "slt";
13449 s2 = "btnez";
13450 goto do_branch;
13451 case M_BLTU:
13452 s = "sltu";
13453 s2 = "btnez";
13454 goto do_branch;
13455 case M_BLE:
13456 s = "slt";
13457 s2 = "bteqz";
13458 goto do_reverse_branch;
13459 case M_BLEU:
13460 s = "sltu";
13461 s2 = "bteqz";
13462 goto do_reverse_branch;
13463 case M_BGE:
13464 s = "slt";
13465 s2 = "bteqz";
13466 goto do_branch;
13467 case M_BGEU:
13468 s = "sltu";
13469 s2 = "bteqz";
13470 goto do_branch;
13471 case M_BGT:
13472 s = "slt";
13473 s2 = "btnez";
13474 goto do_reverse_branch;
13475 case M_BGTU:
13476 s = "sltu";
13477 s2 = "btnez";
13478
13479 do_reverse_branch:
13480 tmp = op[1];
13481 op[1] = op[0];
13482 op[0] = tmp;
13483
13484 do_branch:
13485 macro_build (NULL, s, "x,y", op[0], op[1]);
13486 macro_build (&offset_expr, s2, "p");
13487 break;
13488
13489 case M_BEQ_I:
13490 s = "cmpi";
13491 s2 = "bteqz";
13492 s3 = "x,U";
13493 goto do_branch_i;
13494 case M_BNE_I:
13495 s = "cmpi";
13496 s2 = "btnez";
13497 s3 = "x,U";
13498 goto do_branch_i;
13499 case M_BLT_I:
13500 s = "slti";
13501 s2 = "btnez";
13502 s3 = "x,8";
13503 goto do_branch_i;
13504 case M_BLTU_I:
13505 s = "sltiu";
13506 s2 = "btnez";
13507 s3 = "x,8";
13508 goto do_branch_i;
13509 case M_BLE_I:
13510 s = "slti";
13511 s2 = "btnez";
13512 s3 = "x,8";
13513 goto do_addone_branch_i;
13514 case M_BLEU_I:
13515 s = "sltiu";
13516 s2 = "btnez";
13517 s3 = "x,8";
13518 goto do_addone_branch_i;
13519 case M_BGE_I:
13520 s = "slti";
13521 s2 = "bteqz";
13522 s3 = "x,8";
13523 goto do_branch_i;
13524 case M_BGEU_I:
13525 s = "sltiu";
13526 s2 = "bteqz";
13527 s3 = "x,8";
13528 goto do_branch_i;
13529 case M_BGT_I:
13530 s = "slti";
13531 s2 = "bteqz";
13532 s3 = "x,8";
13533 goto do_addone_branch_i;
13534 case M_BGTU_I:
13535 s = "sltiu";
13536 s2 = "bteqz";
13537 s3 = "x,8";
13538
13539 do_addone_branch_i:
13540 ++imm_expr.X_add_number;
13541
13542 do_branch_i:
13543 macro_build (&imm_expr, s, s3, op[0]);
13544 macro_build (&offset_expr, s2, "p");
13545 break;
13546
13547 case M_ABS:
13548 expr1.X_add_number = 0;
13549 macro_build (&expr1, "slti", "x,8", op[1]);
13550 if (op[0] != op[1])
13551 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13552 expr1.X_add_number = 2;
13553 macro_build (&expr1, "bteqz", "p");
13554 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13555 break;
13556 }
13557 }
13558
13559 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13560 opcode bits in *OPCODE_EXTRA. */
13561
13562 static struct mips_opcode *
mips_lookup_insn(struct hash_control * hash,const char * start,ssize_t length,unsigned int * opcode_extra)13563 mips_lookup_insn (struct hash_control *hash, const char *start,
13564 ssize_t length, unsigned int *opcode_extra)
13565 {
13566 char *name, *dot, *p;
13567 unsigned int mask, suffix;
13568 ssize_t opend;
13569 struct mips_opcode *insn;
13570
13571 /* Make a copy of the instruction so that we can fiddle with it. */
13572 name = xstrndup (start, length);
13573
13574 /* Look up the instruction as-is. */
13575 insn = (struct mips_opcode *) hash_find (hash, name);
13576 if (insn)
13577 goto end;
13578
13579 dot = strchr (name, '.');
13580 if (dot && dot[1])
13581 {
13582 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13583 p = mips_parse_vu0_channels (dot + 1, &mask);
13584 if (*p == 0 && mask != 0)
13585 {
13586 *dot = 0;
13587 insn = (struct mips_opcode *) hash_find (hash, name);
13588 *dot = '.';
13589 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13590 {
13591 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13592 goto end;
13593 }
13594 }
13595 }
13596
13597 if (mips_opts.micromips)
13598 {
13599 /* See if there's an instruction size override suffix,
13600 either `16' or `32', at the end of the mnemonic proper,
13601 that defines the operation, i.e. before the first `.'
13602 character if any. Strip it and retry. */
13603 opend = dot != NULL ? dot - name : length;
13604 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13605 suffix = 2;
13606 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13607 suffix = 4;
13608 else
13609 suffix = 0;
13610 if (suffix)
13611 {
13612 memcpy (name + opend - 2, name + opend, length - opend + 1);
13613 insn = (struct mips_opcode *) hash_find (hash, name);
13614 if (insn)
13615 {
13616 forced_insn_length = suffix;
13617 goto end;
13618 }
13619 }
13620 }
13621
13622 insn = NULL;
13623 end:
13624 free (name);
13625 return insn;
13626 }
13627
13628 /* Assemble an instruction into its binary format. If the instruction
13629 is a macro, set imm_expr and offset_expr to the values associated
13630 with "I" and "A" operands respectively. Otherwise store the value
13631 of the relocatable field (if any) in offset_expr. In both cases
13632 set offset_reloc to the relocation operators applied to offset_expr. */
13633
13634 static void
mips_ip(char * str,struct mips_cl_insn * insn)13635 mips_ip (char *str, struct mips_cl_insn *insn)
13636 {
13637 const struct mips_opcode *first, *past;
13638 struct hash_control *hash;
13639 char format;
13640 size_t end;
13641 struct mips_operand_token *tokens;
13642 unsigned int opcode_extra;
13643
13644 if (mips_opts.micromips)
13645 {
13646 hash = micromips_op_hash;
13647 past = µmips_opcodes[bfd_micromips_num_opcodes];
13648 }
13649 else
13650 {
13651 hash = op_hash;
13652 past = &mips_opcodes[NUMOPCODES];
13653 }
13654 forced_insn_length = 0;
13655 opcode_extra = 0;
13656
13657 /* We first try to match an instruction up to a space or to the end. */
13658 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13659 continue;
13660
13661 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13662 if (first == NULL)
13663 {
13664 set_insn_error (0, _("unrecognized opcode"));
13665 return;
13666 }
13667
13668 if (strcmp (first->name, "li.s") == 0)
13669 format = 'f';
13670 else if (strcmp (first->name, "li.d") == 0)
13671 format = 'd';
13672 else
13673 format = 0;
13674 tokens = mips_parse_arguments (str + end, format);
13675 if (!tokens)
13676 return;
13677
13678 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13679 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13680 set_insn_error (0, _("invalid operands"));
13681
13682 obstack_free (&mips_operand_tokens, tokens);
13683 }
13684
13685 /* As for mips_ip, but used when assembling MIPS16 code.
13686 Also set forced_insn_length to the resulting instruction size in
13687 bytes if the user explicitly requested a small or extended instruction. */
13688
13689 static void
mips16_ip(char * str,struct mips_cl_insn * insn)13690 mips16_ip (char *str, struct mips_cl_insn *insn)
13691 {
13692 char *end, *s, c;
13693 struct mips_opcode *first;
13694 struct mips_operand_token *tokens;
13695
13696 forced_insn_length = 0;
13697
13698 for (s = str; ISLOWER (*s); ++s)
13699 ;
13700 end = s;
13701 c = *end;
13702 switch (c)
13703 {
13704 case '\0':
13705 break;
13706
13707 case ' ':
13708 s++;
13709 break;
13710
13711 case '.':
13712 if (s[1] == 't' && s[2] == ' ')
13713 {
13714 forced_insn_length = 2;
13715 s += 3;
13716 break;
13717 }
13718 else if (s[1] == 'e' && s[2] == ' ')
13719 {
13720 forced_insn_length = 4;
13721 s += 3;
13722 break;
13723 }
13724 /* Fall through. */
13725 default:
13726 set_insn_error (0, _("unrecognized opcode"));
13727 return;
13728 }
13729
13730 if (mips_opts.noautoextend && !forced_insn_length)
13731 forced_insn_length = 2;
13732
13733 *end = 0;
13734 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13735 *end = c;
13736
13737 if (!first)
13738 {
13739 set_insn_error (0, _("unrecognized opcode"));
13740 return;
13741 }
13742
13743 tokens = mips_parse_arguments (s, 0);
13744 if (!tokens)
13745 return;
13746
13747 if (!match_mips16_insns (insn, first, tokens))
13748 set_insn_error (0, _("invalid operands"));
13749
13750 obstack_free (&mips_operand_tokens, tokens);
13751 }
13752
13753 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13754 NBITS is the number of significant bits in VAL. */
13755
13756 static unsigned long
mips16_immed_extend(offsetT val,unsigned int nbits)13757 mips16_immed_extend (offsetT val, unsigned int nbits)
13758 {
13759 int extval;
13760 if (nbits == 16)
13761 {
13762 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13763 val &= 0x1f;
13764 }
13765 else if (nbits == 15)
13766 {
13767 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13768 val &= 0xf;
13769 }
13770 else
13771 {
13772 extval = ((val & 0x1f) << 6) | (val & 0x20);
13773 val = 0;
13774 }
13775 return (extval << 16) | val;
13776 }
13777
13778 /* Like decode_mips16_operand, but require the operand to be defined and
13779 require it to be an integer. */
13780
13781 static const struct mips_int_operand *
mips16_immed_operand(int type,bfd_boolean extended_p)13782 mips16_immed_operand (int type, bfd_boolean extended_p)
13783 {
13784 const struct mips_operand *operand;
13785
13786 operand = decode_mips16_operand (type, extended_p);
13787 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13788 abort ();
13789 return (const struct mips_int_operand *) operand;
13790 }
13791
13792 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13793
13794 static bfd_boolean
mips16_immed_in_range_p(const struct mips_int_operand * operand,bfd_reloc_code_real_type reloc,offsetT sval)13795 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13796 bfd_reloc_code_real_type reloc, offsetT sval)
13797 {
13798 int min_val, max_val;
13799
13800 min_val = mips_int_operand_min (operand);
13801 max_val = mips_int_operand_max (operand);
13802 if (reloc != BFD_RELOC_UNUSED)
13803 {
13804 if (min_val < 0)
13805 sval = SEXT_16BIT (sval);
13806 else
13807 sval &= 0xffff;
13808 }
13809
13810 return (sval >= min_val
13811 && sval <= max_val
13812 && (sval & ((1 << operand->shift) - 1)) == 0);
13813 }
13814
13815 /* Install immediate value VAL into MIPS16 instruction *INSN,
13816 extending it if necessary. The instruction in *INSN may
13817 already be extended.
13818
13819 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13820 if none. In the former case, VAL is a 16-bit number with no
13821 defined signedness.
13822
13823 TYPE is the type of the immediate field. USER_INSN_LENGTH
13824 is the length that the user requested, or 0 if none. */
13825
13826 static void
mips16_immed(const char * file,unsigned int line,int type,bfd_reloc_code_real_type reloc,offsetT val,unsigned int user_insn_length,unsigned long * insn)13827 mips16_immed (const char *file, unsigned int line, int type,
13828 bfd_reloc_code_real_type reloc, offsetT val,
13829 unsigned int user_insn_length, unsigned long *insn)
13830 {
13831 const struct mips_int_operand *operand;
13832 unsigned int uval, length;
13833
13834 operand = mips16_immed_operand (type, FALSE);
13835 if (!mips16_immed_in_range_p (operand, reloc, val))
13836 {
13837 /* We need an extended instruction. */
13838 if (user_insn_length == 2)
13839 as_bad_where (file, line, _("invalid unextended operand value"));
13840 else
13841 *insn |= MIPS16_EXTEND;
13842 }
13843 else if (user_insn_length == 4)
13844 {
13845 /* The operand doesn't force an unextended instruction to be extended.
13846 Warn if the user wanted an extended instruction anyway. */
13847 *insn |= MIPS16_EXTEND;
13848 as_warn_where (file, line,
13849 _("extended operand requested but not required"));
13850 }
13851
13852 length = mips16_opcode_length (*insn);
13853 if (length == 4)
13854 {
13855 operand = mips16_immed_operand (type, TRUE);
13856 if (!mips16_immed_in_range_p (operand, reloc, val))
13857 as_bad_where (file, line,
13858 _("operand value out of range for instruction"));
13859 }
13860 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13861 if (length == 2)
13862 *insn = mips_insert_operand (&operand->root, *insn, uval);
13863 else
13864 *insn |= mips16_immed_extend (uval, operand->root.size);
13865 }
13866
13867 struct percent_op_match
13868 {
13869 const char *str;
13870 bfd_reloc_code_real_type reloc;
13871 };
13872
13873 static const struct percent_op_match mips_percent_op[] =
13874 {
13875 {"%lo", BFD_RELOC_LO16},
13876 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13877 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13878 {"%call16", BFD_RELOC_MIPS_CALL16},
13879 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13880 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13881 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13882 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13883 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13884 {"%got", BFD_RELOC_MIPS_GOT16},
13885 {"%gp_rel", BFD_RELOC_GPREL16},
13886 {"%half", BFD_RELOC_16},
13887 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13888 {"%higher", BFD_RELOC_MIPS_HIGHER},
13889 {"%neg", BFD_RELOC_MIPS_SUB},
13890 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13891 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13892 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13893 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13894 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13895 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13896 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13897 {"%hi", BFD_RELOC_HI16_S},
13898 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13899 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13900 };
13901
13902 static const struct percent_op_match mips16_percent_op[] =
13903 {
13904 {"%lo", BFD_RELOC_MIPS16_LO16},
13905 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13906 {"%got", BFD_RELOC_MIPS16_GOT16},
13907 {"%call16", BFD_RELOC_MIPS16_CALL16},
13908 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13909 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13910 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13911 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13912 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13913 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13914 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13915 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13916 };
13917
13918
13919 /* Return true if *STR points to a relocation operator. When returning true,
13920 move *STR over the operator and store its relocation code in *RELOC.
13921 Leave both *STR and *RELOC alone when returning false. */
13922
13923 static bfd_boolean
parse_relocation(char ** str,bfd_reloc_code_real_type * reloc)13924 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13925 {
13926 const struct percent_op_match *percent_op;
13927 size_t limit, i;
13928
13929 if (mips_opts.mips16)
13930 {
13931 percent_op = mips16_percent_op;
13932 limit = ARRAY_SIZE (mips16_percent_op);
13933 }
13934 else
13935 {
13936 percent_op = mips_percent_op;
13937 limit = ARRAY_SIZE (mips_percent_op);
13938 }
13939
13940 for (i = 0; i < limit; i++)
13941 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13942 {
13943 int len = strlen (percent_op[i].str);
13944
13945 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13946 continue;
13947
13948 *str += strlen (percent_op[i].str);
13949 *reloc = percent_op[i].reloc;
13950
13951 /* Check whether the output BFD supports this relocation.
13952 If not, issue an error and fall back on something safe. */
13953 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13954 {
13955 as_bad (_("relocation %s isn't supported by the current ABI"),
13956 percent_op[i].str);
13957 *reloc = BFD_RELOC_UNUSED;
13958 }
13959 return TRUE;
13960 }
13961 return FALSE;
13962 }
13963
13964
13965 /* Parse string STR as a 16-bit relocatable operand. Store the
13966 expression in *EP and the relocations in the array starting
13967 at RELOC. Return the number of relocation operators used.
13968
13969 On exit, EXPR_END points to the first character after the expression. */
13970
13971 static size_t
my_getSmallExpression(expressionS * ep,bfd_reloc_code_real_type * reloc,char * str)13972 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13973 char *str)
13974 {
13975 bfd_reloc_code_real_type reversed_reloc[3];
13976 size_t reloc_index, i;
13977 int crux_depth, str_depth;
13978 char *crux;
13979
13980 /* Search for the start of the main expression, recoding relocations
13981 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13982 of the main expression and with CRUX_DEPTH containing the number
13983 of open brackets at that point. */
13984 reloc_index = -1;
13985 str_depth = 0;
13986 do
13987 {
13988 reloc_index++;
13989 crux = str;
13990 crux_depth = str_depth;
13991
13992 /* Skip over whitespace and brackets, keeping count of the number
13993 of brackets. */
13994 while (*str == ' ' || *str == '\t' || *str == '(')
13995 if (*str++ == '(')
13996 str_depth++;
13997 }
13998 while (*str == '%'
13999 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14000 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14001
14002 my_getExpression (ep, crux);
14003 str = expr_end;
14004
14005 /* Match every open bracket. */
14006 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14007 if (*str++ == ')')
14008 crux_depth--;
14009
14010 if (crux_depth > 0)
14011 as_bad (_("unclosed '('"));
14012
14013 expr_end = str;
14014
14015 if (reloc_index != 0)
14016 {
14017 prev_reloc_op_frag = frag_now;
14018 for (i = 0; i < reloc_index; i++)
14019 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14020 }
14021
14022 return reloc_index;
14023 }
14024
14025 static void
my_getExpression(expressionS * ep,char * str)14026 my_getExpression (expressionS *ep, char *str)
14027 {
14028 char *save_in;
14029
14030 save_in = input_line_pointer;
14031 input_line_pointer = str;
14032 expression (ep);
14033 expr_end = input_line_pointer;
14034 input_line_pointer = save_in;
14035 }
14036
14037 const char *
md_atof(int type,char * litP,int * sizeP)14038 md_atof (int type, char *litP, int *sizeP)
14039 {
14040 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14041 }
14042
14043 void
md_number_to_chars(char * buf,valueT val,int n)14044 md_number_to_chars (char *buf, valueT val, int n)
14045 {
14046 if (target_big_endian)
14047 number_to_chars_bigendian (buf, val, n);
14048 else
14049 number_to_chars_littleendian (buf, val, n);
14050 }
14051
support_64bit_objects(void)14052 static int support_64bit_objects(void)
14053 {
14054 const char **list, **l;
14055 int yes;
14056
14057 list = bfd_target_list ();
14058 for (l = list; *l != NULL; l++)
14059 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14060 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14061 break;
14062 yes = (*l != NULL);
14063 free (list);
14064 return yes;
14065 }
14066
14067 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14068 NEW_VALUE. Warn if another value was already specified. Note:
14069 we have to defer parsing the -march and -mtune arguments in order
14070 to handle 'from-abi' correctly, since the ABI might be specified
14071 in a later argument. */
14072
14073 static void
mips_set_option_string(const char ** string_ptr,const char * new_value)14074 mips_set_option_string (const char **string_ptr, const char *new_value)
14075 {
14076 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14077 as_warn (_("a different %s was already specified, is now %s"),
14078 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14079 new_value);
14080
14081 *string_ptr = new_value;
14082 }
14083
14084 int
md_parse_option(int c,const char * arg)14085 md_parse_option (int c, const char *arg)
14086 {
14087 unsigned int i;
14088
14089 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14090 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14091 {
14092 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14093 c == mips_ases[i].option_on);
14094 return 1;
14095 }
14096
14097 switch (c)
14098 {
14099 case OPTION_CONSTRUCT_FLOATS:
14100 mips_disable_float_construction = 0;
14101 break;
14102
14103 case OPTION_NO_CONSTRUCT_FLOATS:
14104 mips_disable_float_construction = 1;
14105 break;
14106
14107 case OPTION_TRAP:
14108 mips_trap = 1;
14109 break;
14110
14111 case OPTION_BREAK:
14112 mips_trap = 0;
14113 break;
14114
14115 case OPTION_EB:
14116 target_big_endian = 1;
14117 break;
14118
14119 case OPTION_EL:
14120 target_big_endian = 0;
14121 break;
14122
14123 case 'O':
14124 if (arg == NULL)
14125 mips_optimize = 1;
14126 else if (arg[0] == '0')
14127 mips_optimize = 0;
14128 else if (arg[0] == '1')
14129 mips_optimize = 1;
14130 else
14131 mips_optimize = 2;
14132 break;
14133
14134 case 'g':
14135 if (arg == NULL)
14136 mips_debug = 2;
14137 else
14138 mips_debug = atoi (arg);
14139 break;
14140
14141 case OPTION_MIPS1:
14142 file_mips_opts.isa = ISA_MIPS1;
14143 break;
14144
14145 case OPTION_MIPS2:
14146 file_mips_opts.isa = ISA_MIPS2;
14147 break;
14148
14149 case OPTION_MIPS3:
14150 file_mips_opts.isa = ISA_MIPS3;
14151 break;
14152
14153 case OPTION_MIPS4:
14154 file_mips_opts.isa = ISA_MIPS4;
14155 break;
14156
14157 case OPTION_MIPS5:
14158 file_mips_opts.isa = ISA_MIPS5;
14159 break;
14160
14161 case OPTION_MIPS32:
14162 file_mips_opts.isa = ISA_MIPS32;
14163 break;
14164
14165 case OPTION_MIPS32R2:
14166 file_mips_opts.isa = ISA_MIPS32R2;
14167 break;
14168
14169 case OPTION_MIPS32R3:
14170 file_mips_opts.isa = ISA_MIPS32R3;
14171 break;
14172
14173 case OPTION_MIPS32R5:
14174 file_mips_opts.isa = ISA_MIPS32R5;
14175 break;
14176
14177 case OPTION_MIPS32R6:
14178 file_mips_opts.isa = ISA_MIPS32R6;
14179 break;
14180
14181 case OPTION_MIPS64R2:
14182 file_mips_opts.isa = ISA_MIPS64R2;
14183 break;
14184
14185 case OPTION_MIPS64R3:
14186 file_mips_opts.isa = ISA_MIPS64R3;
14187 break;
14188
14189 case OPTION_MIPS64R5:
14190 file_mips_opts.isa = ISA_MIPS64R5;
14191 break;
14192
14193 case OPTION_MIPS64R6:
14194 file_mips_opts.isa = ISA_MIPS64R6;
14195 break;
14196
14197 case OPTION_MIPS64:
14198 file_mips_opts.isa = ISA_MIPS64;
14199 break;
14200
14201 case OPTION_MTUNE:
14202 mips_set_option_string (&mips_tune_string, arg);
14203 break;
14204
14205 case OPTION_MARCH:
14206 mips_set_option_string (&mips_arch_string, arg);
14207 break;
14208
14209 case OPTION_M4650:
14210 mips_set_option_string (&mips_arch_string, "4650");
14211 mips_set_option_string (&mips_tune_string, "4650");
14212 break;
14213
14214 case OPTION_NO_M4650:
14215 break;
14216
14217 case OPTION_M4010:
14218 mips_set_option_string (&mips_arch_string, "4010");
14219 mips_set_option_string (&mips_tune_string, "4010");
14220 break;
14221
14222 case OPTION_NO_M4010:
14223 break;
14224
14225 case OPTION_M4100:
14226 mips_set_option_string (&mips_arch_string, "4100");
14227 mips_set_option_string (&mips_tune_string, "4100");
14228 break;
14229
14230 case OPTION_NO_M4100:
14231 break;
14232
14233 case OPTION_M3900:
14234 mips_set_option_string (&mips_arch_string, "3900");
14235 mips_set_option_string (&mips_tune_string, "3900");
14236 break;
14237
14238 case OPTION_NO_M3900:
14239 break;
14240
14241 case OPTION_MICROMIPS:
14242 if (file_mips_opts.mips16 == 1)
14243 {
14244 as_bad (_("-mmicromips cannot be used with -mips16"));
14245 return 0;
14246 }
14247 file_mips_opts.micromips = 1;
14248 mips_no_prev_insn ();
14249 break;
14250
14251 case OPTION_NO_MICROMIPS:
14252 file_mips_opts.micromips = 0;
14253 mips_no_prev_insn ();
14254 break;
14255
14256 case OPTION_MIPS16:
14257 if (file_mips_opts.micromips == 1)
14258 {
14259 as_bad (_("-mips16 cannot be used with -micromips"));
14260 return 0;
14261 }
14262 file_mips_opts.mips16 = 1;
14263 mips_no_prev_insn ();
14264 break;
14265
14266 case OPTION_NO_MIPS16:
14267 file_mips_opts.mips16 = 0;
14268 mips_no_prev_insn ();
14269 break;
14270
14271 case OPTION_FIX_24K:
14272 mips_fix_24k = 1;
14273 break;
14274
14275 case OPTION_NO_FIX_24K:
14276 mips_fix_24k = 0;
14277 break;
14278
14279 case OPTION_FIX_RM7000:
14280 mips_fix_rm7000 = 1;
14281 break;
14282
14283 case OPTION_NO_FIX_RM7000:
14284 mips_fix_rm7000 = 0;
14285 break;
14286
14287 case OPTION_FIX_LOONGSON2F_JUMP:
14288 mips_fix_loongson2f_jump = TRUE;
14289 break;
14290
14291 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14292 mips_fix_loongson2f_jump = FALSE;
14293 break;
14294
14295 case OPTION_FIX_LOONGSON2F_NOP:
14296 mips_fix_loongson2f_nop = TRUE;
14297 break;
14298
14299 case OPTION_NO_FIX_LOONGSON2F_NOP:
14300 mips_fix_loongson2f_nop = FALSE;
14301 break;
14302
14303 case OPTION_FIX_VR4120:
14304 mips_fix_vr4120 = 1;
14305 break;
14306
14307 case OPTION_NO_FIX_VR4120:
14308 mips_fix_vr4120 = 0;
14309 break;
14310
14311 case OPTION_FIX_VR4130:
14312 mips_fix_vr4130 = 1;
14313 break;
14314
14315 case OPTION_NO_FIX_VR4130:
14316 mips_fix_vr4130 = 0;
14317 break;
14318
14319 case OPTION_FIX_CN63XXP1:
14320 mips_fix_cn63xxp1 = TRUE;
14321 break;
14322
14323 case OPTION_NO_FIX_CN63XXP1:
14324 mips_fix_cn63xxp1 = FALSE;
14325 break;
14326
14327 case OPTION_RELAX_BRANCH:
14328 mips_relax_branch = 1;
14329 break;
14330
14331 case OPTION_NO_RELAX_BRANCH:
14332 mips_relax_branch = 0;
14333 break;
14334
14335 case OPTION_INSN32:
14336 file_mips_opts.insn32 = TRUE;
14337 break;
14338
14339 case OPTION_NO_INSN32:
14340 file_mips_opts.insn32 = FALSE;
14341 break;
14342
14343 case OPTION_MSHARED:
14344 mips_in_shared = TRUE;
14345 break;
14346
14347 case OPTION_MNO_SHARED:
14348 mips_in_shared = FALSE;
14349 break;
14350
14351 case OPTION_MSYM32:
14352 file_mips_opts.sym32 = TRUE;
14353 break;
14354
14355 case OPTION_MNO_SYM32:
14356 file_mips_opts.sym32 = FALSE;
14357 break;
14358
14359 /* When generating ELF code, we permit -KPIC and -call_shared to
14360 select SVR4_PIC, and -non_shared to select no PIC. This is
14361 intended to be compatible with Irix 5. */
14362 case OPTION_CALL_SHARED:
14363 mips_pic = SVR4_PIC;
14364 mips_abicalls = TRUE;
14365 break;
14366
14367 case OPTION_CALL_NONPIC:
14368 mips_pic = NO_PIC;
14369 mips_abicalls = TRUE;
14370 break;
14371
14372 case OPTION_NON_SHARED:
14373 mips_pic = NO_PIC;
14374 mips_abicalls = FALSE;
14375 break;
14376
14377 /* The -xgot option tells the assembler to use 32 bit offsets
14378 when accessing the got in SVR4_PIC mode. It is for Irix
14379 compatibility. */
14380 case OPTION_XGOT:
14381 mips_big_got = 1;
14382 break;
14383
14384 case 'G':
14385 g_switch_value = atoi (arg);
14386 g_switch_seen = 1;
14387 break;
14388
14389 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14390 and -mabi=64. */
14391 case OPTION_32:
14392 mips_abi = O32_ABI;
14393 break;
14394
14395 case OPTION_N32:
14396 mips_abi = N32_ABI;
14397 break;
14398
14399 case OPTION_64:
14400 mips_abi = N64_ABI;
14401 if (!support_64bit_objects())
14402 as_fatal (_("no compiled in support for 64 bit object file format"));
14403 break;
14404
14405 case OPTION_GP32:
14406 file_mips_opts.gp = 32;
14407 break;
14408
14409 case OPTION_GP64:
14410 file_mips_opts.gp = 64;
14411 break;
14412
14413 case OPTION_FP32:
14414 file_mips_opts.fp = 32;
14415 break;
14416
14417 case OPTION_FPXX:
14418 file_mips_opts.fp = 0;
14419 break;
14420
14421 case OPTION_FP64:
14422 file_mips_opts.fp = 64;
14423 break;
14424
14425 case OPTION_ODD_SPREG:
14426 file_mips_opts.oddspreg = 1;
14427 break;
14428
14429 case OPTION_NO_ODD_SPREG:
14430 file_mips_opts.oddspreg = 0;
14431 break;
14432
14433 case OPTION_SINGLE_FLOAT:
14434 file_mips_opts.single_float = 1;
14435 break;
14436
14437 case OPTION_DOUBLE_FLOAT:
14438 file_mips_opts.single_float = 0;
14439 break;
14440
14441 case OPTION_SOFT_FLOAT:
14442 file_mips_opts.soft_float = 1;
14443 break;
14444
14445 case OPTION_HARD_FLOAT:
14446 file_mips_opts.soft_float = 0;
14447 break;
14448
14449 case OPTION_MABI:
14450 if (strcmp (arg, "32") == 0)
14451 mips_abi = O32_ABI;
14452 else if (strcmp (arg, "o64") == 0)
14453 mips_abi = O64_ABI;
14454 else if (strcmp (arg, "n32") == 0)
14455 mips_abi = N32_ABI;
14456 else if (strcmp (arg, "64") == 0)
14457 {
14458 mips_abi = N64_ABI;
14459 if (! support_64bit_objects())
14460 as_fatal (_("no compiled in support for 64 bit object file "
14461 "format"));
14462 }
14463 else if (strcmp (arg, "eabi") == 0)
14464 mips_abi = EABI_ABI;
14465 else
14466 {
14467 as_fatal (_("invalid abi -mabi=%s"), arg);
14468 return 0;
14469 }
14470 break;
14471
14472 case OPTION_M7000_HILO_FIX:
14473 mips_7000_hilo_fix = TRUE;
14474 break;
14475
14476 case OPTION_MNO_7000_HILO_FIX:
14477 mips_7000_hilo_fix = FALSE;
14478 break;
14479
14480 case OPTION_MDEBUG:
14481 mips_flag_mdebug = TRUE;
14482 break;
14483
14484 case OPTION_NO_MDEBUG:
14485 mips_flag_mdebug = FALSE;
14486 break;
14487
14488 case OPTION_PDR:
14489 mips_flag_pdr = TRUE;
14490 break;
14491
14492 case OPTION_NO_PDR:
14493 mips_flag_pdr = FALSE;
14494 break;
14495
14496 case OPTION_MVXWORKS_PIC:
14497 mips_pic = VXWORKS_PIC;
14498 break;
14499
14500 case OPTION_NAN:
14501 if (strcmp (arg, "2008") == 0)
14502 mips_nan2008 = 1;
14503 else if (strcmp (arg, "legacy") == 0)
14504 mips_nan2008 = 0;
14505 else
14506 {
14507 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14508 return 0;
14509 }
14510 break;
14511
14512 default:
14513 return 0;
14514 }
14515
14516 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14517
14518 return 1;
14519 }
14520
14521 /* Set up globals to tune for the ISA or processor described by INFO. */
14522
14523 static void
mips_set_tune(const struct mips_cpu_info * info)14524 mips_set_tune (const struct mips_cpu_info *info)
14525 {
14526 if (info != 0)
14527 mips_tune = info->cpu;
14528 }
14529
14530
14531 void
mips_after_parse_args(void)14532 mips_after_parse_args (void)
14533 {
14534 const struct mips_cpu_info *arch_info = 0;
14535 const struct mips_cpu_info *tune_info = 0;
14536
14537 /* GP relative stuff not working for PE */
14538 if (strncmp (TARGET_OS, "pe", 2) == 0)
14539 {
14540 if (g_switch_seen && g_switch_value != 0)
14541 as_bad (_("-G not supported in this configuration"));
14542 g_switch_value = 0;
14543 }
14544
14545 if (mips_abi == NO_ABI)
14546 mips_abi = MIPS_DEFAULT_ABI;
14547
14548 /* The following code determines the architecture.
14549 Similar code was added to GCC 3.3 (see override_options() in
14550 config/mips/mips.c). The GAS and GCC code should be kept in sync
14551 as much as possible. */
14552
14553 if (mips_arch_string != 0)
14554 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14555
14556 if (file_mips_opts.isa != ISA_UNKNOWN)
14557 {
14558 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14559 ISA level specified by -mipsN, while arch_info->isa contains
14560 the -march selection (if any). */
14561 if (arch_info != 0)
14562 {
14563 /* -march takes precedence over -mipsN, since it is more descriptive.
14564 There's no harm in specifying both as long as the ISA levels
14565 are the same. */
14566 if (file_mips_opts.isa != arch_info->isa)
14567 as_bad (_("-%s conflicts with the other architecture options,"
14568 " which imply -%s"),
14569 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14570 mips_cpu_info_from_isa (arch_info->isa)->name);
14571 }
14572 else
14573 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14574 }
14575
14576 if (arch_info == 0)
14577 {
14578 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14579 gas_assert (arch_info);
14580 }
14581
14582 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14583 as_bad (_("-march=%s is not compatible with the selected ABI"),
14584 arch_info->name);
14585
14586 file_mips_opts.arch = arch_info->cpu;
14587 file_mips_opts.isa = arch_info->isa;
14588
14589 /* Set up initial mips_opts state. */
14590 mips_opts = file_mips_opts;
14591
14592 /* The register size inference code is now placed in
14593 file_mips_check_options. */
14594
14595 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14596 processor. */
14597 if (mips_tune_string != 0)
14598 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14599
14600 if (tune_info == 0)
14601 mips_set_tune (arch_info);
14602 else
14603 mips_set_tune (tune_info);
14604
14605 if (mips_flag_mdebug < 0)
14606 mips_flag_mdebug = 0;
14607 }
14608
14609 void
mips_init_after_args(void)14610 mips_init_after_args (void)
14611 {
14612 /* initialize opcodes */
14613 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14614 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14615 }
14616
14617 long
md_pcrel_from(fixS * fixP)14618 md_pcrel_from (fixS *fixP)
14619 {
14620 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14621 switch (fixP->fx_r_type)
14622 {
14623 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14624 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14625 /* Return the address of the delay slot. */
14626 return addr + 2;
14627
14628 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14629 case BFD_RELOC_MICROMIPS_JMP:
14630 case BFD_RELOC_MIPS16_16_PCREL_S1:
14631 case BFD_RELOC_16_PCREL_S2:
14632 case BFD_RELOC_MIPS_21_PCREL_S2:
14633 case BFD_RELOC_MIPS_26_PCREL_S2:
14634 case BFD_RELOC_MIPS_JMP:
14635 /* Return the address of the delay slot. */
14636 return addr + 4;
14637
14638 case BFD_RELOC_MIPS_18_PCREL_S3:
14639 /* Return the aligned address of the doubleword containing
14640 the instruction. */
14641 return addr & ~7;
14642
14643 default:
14644 return addr;
14645 }
14646 }
14647
14648 /* This is called before the symbol table is processed. In order to
14649 work with gcc when using mips-tfile, we must keep all local labels.
14650 However, in other cases, we want to discard them. If we were
14651 called with -g, but we didn't see any debugging information, it may
14652 mean that gcc is smuggling debugging information through to
14653 mips-tfile, in which case we must generate all local labels. */
14654
14655 void
mips_frob_file_before_adjust(void)14656 mips_frob_file_before_adjust (void)
14657 {
14658 #ifndef NO_ECOFF_DEBUGGING
14659 if (ECOFF_DEBUGGING
14660 && mips_debug != 0
14661 && ! ecoff_debugging_seen)
14662 flag_keep_locals = 1;
14663 #endif
14664 }
14665
14666 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14667 the corresponding LO16 reloc. This is called before md_apply_fix and
14668 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14669 relocation operators.
14670
14671 For our purposes, a %lo() expression matches a %got() or %hi()
14672 expression if:
14673
14674 (a) it refers to the same symbol; and
14675 (b) the offset applied in the %lo() expression is no lower than
14676 the offset applied in the %got() or %hi().
14677
14678 (b) allows us to cope with code like:
14679
14680 lui $4,%hi(foo)
14681 lh $4,%lo(foo+2)($4)
14682
14683 ...which is legal on RELA targets, and has a well-defined behaviour
14684 if the user knows that adding 2 to "foo" will not induce a carry to
14685 the high 16 bits.
14686
14687 When several %lo()s match a particular %got() or %hi(), we use the
14688 following rules to distinguish them:
14689
14690 (1) %lo()s with smaller offsets are a better match than %lo()s with
14691 higher offsets.
14692
14693 (2) %lo()s with no matching %got() or %hi() are better than those
14694 that already have a matching %got() or %hi().
14695
14696 (3) later %lo()s are better than earlier %lo()s.
14697
14698 These rules are applied in order.
14699
14700 (1) means, among other things, that %lo()s with identical offsets are
14701 chosen if they exist.
14702
14703 (2) means that we won't associate several high-part relocations with
14704 the same low-part relocation unless there's no alternative. Having
14705 several high parts for the same low part is a GNU extension; this rule
14706 allows careful users to avoid it.
14707
14708 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14709 with the last high-part relocation being at the front of the list.
14710 It therefore makes sense to choose the last matching low-part
14711 relocation, all other things being equal. It's also easier
14712 to code that way. */
14713
14714 void
mips_frob_file(void)14715 mips_frob_file (void)
14716 {
14717 struct mips_hi_fixup *l;
14718 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14719
14720 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14721 {
14722 segment_info_type *seginfo;
14723 bfd_boolean matched_lo_p;
14724 fixS **hi_pos, **lo_pos, **pos;
14725
14726 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14727
14728 /* If a GOT16 relocation turns out to be against a global symbol,
14729 there isn't supposed to be a matching LO. Ignore %gots against
14730 constants; we'll report an error for those later. */
14731 if (got16_reloc_p (l->fixp->fx_r_type)
14732 && !(l->fixp->fx_addsy
14733 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14734 continue;
14735
14736 /* Check quickly whether the next fixup happens to be a matching %lo. */
14737 if (fixup_has_matching_lo_p (l->fixp))
14738 continue;
14739
14740 seginfo = seg_info (l->seg);
14741
14742 /* Set HI_POS to the position of this relocation in the chain.
14743 Set LO_POS to the position of the chosen low-part relocation.
14744 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14745 relocation that matches an immediately-preceding high-part
14746 relocation. */
14747 hi_pos = NULL;
14748 lo_pos = NULL;
14749 matched_lo_p = FALSE;
14750 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14751
14752 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14753 {
14754 if (*pos == l->fixp)
14755 hi_pos = pos;
14756
14757 if ((*pos)->fx_r_type == looking_for_rtype
14758 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14759 && (*pos)->fx_offset >= l->fixp->fx_offset
14760 && (lo_pos == NULL
14761 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14762 || (!matched_lo_p
14763 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14764 lo_pos = pos;
14765
14766 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14767 && fixup_has_matching_lo_p (*pos));
14768 }
14769
14770 /* If we found a match, remove the high-part relocation from its
14771 current position and insert it before the low-part relocation.
14772 Make the offsets match so that fixup_has_matching_lo_p()
14773 will return true.
14774
14775 We don't warn about unmatched high-part relocations since some
14776 versions of gcc have been known to emit dead "lui ...%hi(...)"
14777 instructions. */
14778 if (lo_pos != NULL)
14779 {
14780 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14781 if (l->fixp->fx_next != *lo_pos)
14782 {
14783 *hi_pos = l->fixp->fx_next;
14784 l->fixp->fx_next = *lo_pos;
14785 *lo_pos = l->fixp;
14786 }
14787 }
14788 }
14789 }
14790
14791 int
mips_force_relocation(fixS * fixp)14792 mips_force_relocation (fixS *fixp)
14793 {
14794 if (generic_force_reloc (fixp))
14795 return 1;
14796
14797 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14798 so that the linker relaxation can update targets. */
14799 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14800 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14801 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14802 return 1;
14803
14804 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14805 if (ISA_IS_R6 (file_mips_opts.isa)
14806 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14807 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14808 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14809 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14810 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14811 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14812 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14813 return 1;
14814
14815 return 0;
14816 }
14817
14818 /* Read the instruction associated with RELOC from BUF. */
14819
14820 static unsigned int
read_reloc_insn(char * buf,bfd_reloc_code_real_type reloc)14821 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14822 {
14823 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14824 return read_compressed_insn (buf, 4);
14825 else
14826 return read_insn (buf);
14827 }
14828
14829 /* Write instruction INSN to BUF, given that it has been relocated
14830 by RELOC. */
14831
14832 static void
write_reloc_insn(char * buf,bfd_reloc_code_real_type reloc,unsigned long insn)14833 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14834 unsigned long insn)
14835 {
14836 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14837 write_compressed_insn (buf, insn, 4);
14838 else
14839 write_insn (buf, insn);
14840 }
14841
14842 /* Apply a fixup to the object file. */
14843
14844 void
md_apply_fix(fixS * fixP,valueT * valP,segT seg ATTRIBUTE_UNUSED)14845 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14846 {
14847 char *buf;
14848 unsigned long insn;
14849 reloc_howto_type *howto;
14850
14851 if (fixP->fx_pcrel)
14852 switch (fixP->fx_r_type)
14853 {
14854 case BFD_RELOC_16_PCREL_S2:
14855 case BFD_RELOC_MIPS16_16_PCREL_S1:
14856 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14857 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14858 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14859 case BFD_RELOC_32_PCREL:
14860 case BFD_RELOC_MIPS_21_PCREL_S2:
14861 case BFD_RELOC_MIPS_26_PCREL_S2:
14862 case BFD_RELOC_MIPS_18_PCREL_S3:
14863 case BFD_RELOC_MIPS_19_PCREL_S2:
14864 case BFD_RELOC_HI16_S_PCREL:
14865 case BFD_RELOC_LO16_PCREL:
14866 break;
14867
14868 case BFD_RELOC_32:
14869 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14870 break;
14871
14872 default:
14873 as_bad_where (fixP->fx_file, fixP->fx_line,
14874 _("PC-relative reference to a different section"));
14875 break;
14876 }
14877
14878 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14879 that have no MIPS ELF equivalent. */
14880 if (fixP->fx_r_type != BFD_RELOC_8)
14881 {
14882 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14883 if (!howto)
14884 return;
14885 }
14886
14887 gas_assert (fixP->fx_size == 2
14888 || fixP->fx_size == 4
14889 || fixP->fx_r_type == BFD_RELOC_8
14890 || fixP->fx_r_type == BFD_RELOC_16
14891 || fixP->fx_r_type == BFD_RELOC_64
14892 || fixP->fx_r_type == BFD_RELOC_CTOR
14893 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14894 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14895 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14896 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14897 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14898 || fixP->fx_r_type == BFD_RELOC_NONE);
14899
14900 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14901
14902 /* Don't treat parts of a composite relocation as done. There are two
14903 reasons for this:
14904
14905 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14906 should nevertheless be emitted if the first part is.
14907
14908 (2) In normal usage, composite relocations are never assembly-time
14909 constants. The easiest way of dealing with the pathological
14910 exceptions is to generate a relocation against STN_UNDEF and
14911 leave everything up to the linker. */
14912 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14913 fixP->fx_done = 1;
14914
14915 switch (fixP->fx_r_type)
14916 {
14917 case BFD_RELOC_MIPS_TLS_GD:
14918 case BFD_RELOC_MIPS_TLS_LDM:
14919 case BFD_RELOC_MIPS_TLS_DTPREL32:
14920 case BFD_RELOC_MIPS_TLS_DTPREL64:
14921 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14922 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14923 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14924 case BFD_RELOC_MIPS_TLS_TPREL32:
14925 case BFD_RELOC_MIPS_TLS_TPREL64:
14926 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14927 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14928 case BFD_RELOC_MICROMIPS_TLS_GD:
14929 case BFD_RELOC_MICROMIPS_TLS_LDM:
14930 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14931 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14932 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14933 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14934 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14935 case BFD_RELOC_MIPS16_TLS_GD:
14936 case BFD_RELOC_MIPS16_TLS_LDM:
14937 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14938 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14939 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14940 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14941 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14942 if (fixP->fx_addsy)
14943 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14944 else
14945 as_bad_where (fixP->fx_file, fixP->fx_line,
14946 _("TLS relocation against a constant"));
14947 break;
14948
14949 case BFD_RELOC_MIPS_JMP:
14950 case BFD_RELOC_MIPS_SHIFT5:
14951 case BFD_RELOC_MIPS_SHIFT6:
14952 case BFD_RELOC_MIPS_GOT_DISP:
14953 case BFD_RELOC_MIPS_GOT_PAGE:
14954 case BFD_RELOC_MIPS_GOT_OFST:
14955 case BFD_RELOC_MIPS_SUB:
14956 case BFD_RELOC_MIPS_INSERT_A:
14957 case BFD_RELOC_MIPS_INSERT_B:
14958 case BFD_RELOC_MIPS_DELETE:
14959 case BFD_RELOC_MIPS_HIGHEST:
14960 case BFD_RELOC_MIPS_HIGHER:
14961 case BFD_RELOC_MIPS_SCN_DISP:
14962 case BFD_RELOC_MIPS_REL16:
14963 case BFD_RELOC_MIPS_RELGOT:
14964 case BFD_RELOC_MIPS_JALR:
14965 case BFD_RELOC_HI16:
14966 case BFD_RELOC_HI16_S:
14967 case BFD_RELOC_LO16:
14968 case BFD_RELOC_GPREL16:
14969 case BFD_RELOC_MIPS_LITERAL:
14970 case BFD_RELOC_MIPS_CALL16:
14971 case BFD_RELOC_MIPS_GOT16:
14972 case BFD_RELOC_GPREL32:
14973 case BFD_RELOC_MIPS_GOT_HI16:
14974 case BFD_RELOC_MIPS_GOT_LO16:
14975 case BFD_RELOC_MIPS_CALL_HI16:
14976 case BFD_RELOC_MIPS_CALL_LO16:
14977 case BFD_RELOC_HI16_S_PCREL:
14978 case BFD_RELOC_LO16_PCREL:
14979 case BFD_RELOC_MIPS16_GPREL:
14980 case BFD_RELOC_MIPS16_GOT16:
14981 case BFD_RELOC_MIPS16_CALL16:
14982 case BFD_RELOC_MIPS16_HI16:
14983 case BFD_RELOC_MIPS16_HI16_S:
14984 case BFD_RELOC_MIPS16_LO16:
14985 case BFD_RELOC_MIPS16_JMP:
14986 case BFD_RELOC_MICROMIPS_JMP:
14987 case BFD_RELOC_MICROMIPS_GOT_DISP:
14988 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14989 case BFD_RELOC_MICROMIPS_GOT_OFST:
14990 case BFD_RELOC_MICROMIPS_SUB:
14991 case BFD_RELOC_MICROMIPS_HIGHEST:
14992 case BFD_RELOC_MICROMIPS_HIGHER:
14993 case BFD_RELOC_MICROMIPS_SCN_DISP:
14994 case BFD_RELOC_MICROMIPS_JALR:
14995 case BFD_RELOC_MICROMIPS_HI16:
14996 case BFD_RELOC_MICROMIPS_HI16_S:
14997 case BFD_RELOC_MICROMIPS_LO16:
14998 case BFD_RELOC_MICROMIPS_GPREL16:
14999 case BFD_RELOC_MICROMIPS_LITERAL:
15000 case BFD_RELOC_MICROMIPS_CALL16:
15001 case BFD_RELOC_MICROMIPS_GOT16:
15002 case BFD_RELOC_MICROMIPS_GOT_HI16:
15003 case BFD_RELOC_MICROMIPS_GOT_LO16:
15004 case BFD_RELOC_MICROMIPS_CALL_HI16:
15005 case BFD_RELOC_MICROMIPS_CALL_LO16:
15006 case BFD_RELOC_MIPS_EH:
15007 if (fixP->fx_done)
15008 {
15009 offsetT value;
15010
15011 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15012 {
15013 insn = read_reloc_insn (buf, fixP->fx_r_type);
15014 if (mips16_reloc_p (fixP->fx_r_type))
15015 insn |= mips16_immed_extend (value, 16);
15016 else
15017 insn |= (value & 0xffff);
15018 write_reloc_insn (buf, fixP->fx_r_type, insn);
15019 }
15020 else
15021 as_bad_where (fixP->fx_file, fixP->fx_line,
15022 _("unsupported constant in relocation"));
15023 }
15024 break;
15025
15026 case BFD_RELOC_64:
15027 /* This is handled like BFD_RELOC_32, but we output a sign
15028 extended value if we are only 32 bits. */
15029 if (fixP->fx_done)
15030 {
15031 if (8 <= sizeof (valueT))
15032 md_number_to_chars (buf, *valP, 8);
15033 else
15034 {
15035 valueT hiv;
15036
15037 if ((*valP & 0x80000000) != 0)
15038 hiv = 0xffffffff;
15039 else
15040 hiv = 0;
15041 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15042 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15043 }
15044 }
15045 break;
15046
15047 case BFD_RELOC_RVA:
15048 case BFD_RELOC_32:
15049 case BFD_RELOC_32_PCREL:
15050 case BFD_RELOC_16:
15051 case BFD_RELOC_8:
15052 /* If we are deleting this reloc entry, we must fill in the
15053 value now. This can happen if we have a .word which is not
15054 resolved when it appears but is later defined. */
15055 if (fixP->fx_done)
15056 md_number_to_chars (buf, *valP, fixP->fx_size);
15057 break;
15058
15059 case BFD_RELOC_MIPS_21_PCREL_S2:
15060 if ((*valP & 0x3) != 0)
15061 as_bad_where (fixP->fx_file, fixP->fx_line,
15062 _("branch to misaligned address (%lx)"), (long) *valP);
15063 if (!fixP->fx_done)
15064 break;
15065
15066 if (*valP + 0x400000 <= 0x7fffff)
15067 {
15068 insn = read_insn (buf);
15069 insn |= (*valP >> 2) & 0x1fffff;
15070 write_insn (buf, insn);
15071 }
15072 else
15073 as_bad_where (fixP->fx_file, fixP->fx_line,
15074 _("branch out of range"));
15075 break;
15076
15077 case BFD_RELOC_MIPS_26_PCREL_S2:
15078 if ((*valP & 0x3) != 0)
15079 as_bad_where (fixP->fx_file, fixP->fx_line,
15080 _("branch to misaligned address (%lx)"), (long) *valP);
15081 if (!fixP->fx_done)
15082 break;
15083
15084 if (*valP + 0x8000000 <= 0xfffffff)
15085 {
15086 insn = read_insn (buf);
15087 insn |= (*valP >> 2) & 0x3ffffff;
15088 write_insn (buf, insn);
15089 }
15090 else
15091 as_bad_where (fixP->fx_file, fixP->fx_line,
15092 _("branch out of range"));
15093 break;
15094
15095 case BFD_RELOC_MIPS_18_PCREL_S3:
15096 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15097 as_bad_where (fixP->fx_file, fixP->fx_line,
15098 _("PC-relative access using misaligned symbol (%lx)"),
15099 (long) S_GET_VALUE (fixP->fx_addsy));
15100 if ((fixP->fx_offset & 0x7) != 0)
15101 as_bad_where (fixP->fx_file, fixP->fx_line,
15102 _("PC-relative access using misaligned offset (%lx)"),
15103 (long) fixP->fx_offset);
15104 if (!fixP->fx_done)
15105 break;
15106
15107 if (*valP + 0x100000 <= 0x1fffff)
15108 {
15109 insn = read_insn (buf);
15110 insn |= (*valP >> 3) & 0x3ffff;
15111 write_insn (buf, insn);
15112 }
15113 else
15114 as_bad_where (fixP->fx_file, fixP->fx_line,
15115 _("PC-relative access out of range"));
15116 break;
15117
15118 case BFD_RELOC_MIPS_19_PCREL_S2:
15119 if ((*valP & 0x3) != 0)
15120 as_bad_where (fixP->fx_file, fixP->fx_line,
15121 _("PC-relative access to misaligned address (%lx)"),
15122 (long) *valP);
15123 if (!fixP->fx_done)
15124 break;
15125
15126 if (*valP + 0x100000 <= 0x1fffff)
15127 {
15128 insn = read_insn (buf);
15129 insn |= (*valP >> 2) & 0x7ffff;
15130 write_insn (buf, insn);
15131 }
15132 else
15133 as_bad_where (fixP->fx_file, fixP->fx_line,
15134 _("PC-relative access out of range"));
15135 break;
15136
15137 case BFD_RELOC_16_PCREL_S2:
15138 if ((*valP & 0x3) != 0)
15139 as_bad_where (fixP->fx_file, fixP->fx_line,
15140 _("branch to misaligned address (%lx)"), (long) *valP);
15141
15142 /* We need to save the bits in the instruction since fixup_segment()
15143 might be deleting the relocation entry (i.e., a branch within
15144 the current segment). */
15145 if (! fixP->fx_done)
15146 break;
15147
15148 /* Update old instruction data. */
15149 insn = read_insn (buf);
15150
15151 if (*valP + 0x20000 <= 0x3ffff)
15152 {
15153 insn |= (*valP >> 2) & 0xffff;
15154 write_insn (buf, insn);
15155 }
15156 else if (mips_pic == NO_PIC
15157 && fixP->fx_done
15158 && fixP->fx_frag->fr_address >= text_section->vma
15159 && (fixP->fx_frag->fr_address
15160 < text_section->vma + bfd_get_section_size (text_section))
15161 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15162 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15163 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15164 {
15165 /* The branch offset is too large. If this is an
15166 unconditional branch, and we are not generating PIC code,
15167 we can convert it to an absolute jump instruction. */
15168 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15169 insn = 0x0c000000; /* jal */
15170 else
15171 insn = 0x08000000; /* j */
15172 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15173 fixP->fx_done = 0;
15174 fixP->fx_addsy = section_symbol (text_section);
15175 *valP += md_pcrel_from (fixP);
15176 write_insn (buf, insn);
15177 }
15178 else
15179 {
15180 /* If we got here, we have branch-relaxation disabled,
15181 and there's nothing we can do to fix this instruction
15182 without turning it into a longer sequence. */
15183 as_bad_where (fixP->fx_file, fixP->fx_line,
15184 _("branch out of range"));
15185 }
15186 break;
15187
15188 case BFD_RELOC_MIPS16_16_PCREL_S1:
15189 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15190 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15191 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15192 /* We adjust the offset back to even. */
15193 if ((*valP & 0x1) != 0)
15194 --(*valP);
15195
15196 if (! fixP->fx_done)
15197 break;
15198
15199 /* Should never visit here, because we keep the relocation. */
15200 abort ();
15201 break;
15202
15203 case BFD_RELOC_VTABLE_INHERIT:
15204 fixP->fx_done = 0;
15205 if (fixP->fx_addsy
15206 && !S_IS_DEFINED (fixP->fx_addsy)
15207 && !S_IS_WEAK (fixP->fx_addsy))
15208 S_SET_WEAK (fixP->fx_addsy);
15209 break;
15210
15211 case BFD_RELOC_NONE:
15212 case BFD_RELOC_VTABLE_ENTRY:
15213 fixP->fx_done = 0;
15214 break;
15215
15216 default:
15217 abort ();
15218 }
15219
15220 /* Remember value for tc_gen_reloc. */
15221 fixP->fx_addnumber = *valP;
15222 }
15223
15224 static symbolS *
get_symbol(void)15225 get_symbol (void)
15226 {
15227 int c;
15228 char *name;
15229 symbolS *p;
15230
15231 c = get_symbol_name (&name);
15232 p = (symbolS *) symbol_find_or_make (name);
15233 (void) restore_line_pointer (c);
15234 return p;
15235 }
15236
15237 /* Align the current frag to a given power of two. If a particular
15238 fill byte should be used, FILL points to an integer that contains
15239 that byte, otherwise FILL is null.
15240
15241 This function used to have the comment:
15242
15243 The MIPS assembler also automatically adjusts any preceding label.
15244
15245 The implementation therefore applied the adjustment to a maximum of
15246 one label. However, other label adjustments are applied to batches
15247 of labels, and adjusting just one caused problems when new labels
15248 were added for the sake of debugging or unwind information.
15249 We therefore adjust all preceding labels (given as LABELS) instead. */
15250
15251 static void
mips_align(int to,int * fill,struct insn_label_list * labels)15252 mips_align (int to, int *fill, struct insn_label_list *labels)
15253 {
15254 mips_emit_delays ();
15255 mips_record_compressed_mode ();
15256 if (fill == NULL && subseg_text_p (now_seg))
15257 frag_align_code (to, 0);
15258 else
15259 frag_align (to, fill ? *fill : 0, 0);
15260 record_alignment (now_seg, to);
15261 mips_move_labels (labels, FALSE);
15262 }
15263
15264 /* Align to a given power of two. .align 0 turns off the automatic
15265 alignment used by the data creating pseudo-ops. */
15266
15267 static void
s_align(int x ATTRIBUTE_UNUSED)15268 s_align (int x ATTRIBUTE_UNUSED)
15269 {
15270 int temp, fill_value, *fill_ptr;
15271 long max_alignment = 28;
15272
15273 /* o Note that the assembler pulls down any immediately preceding label
15274 to the aligned address.
15275 o It's not documented but auto alignment is reinstated by
15276 a .align pseudo instruction.
15277 o Note also that after auto alignment is turned off the mips assembler
15278 issues an error on attempt to assemble an improperly aligned data item.
15279 We don't. */
15280
15281 temp = get_absolute_expression ();
15282 if (temp > max_alignment)
15283 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15284 else if (temp < 0)
15285 {
15286 as_warn (_("alignment negative, 0 assumed"));
15287 temp = 0;
15288 }
15289 if (*input_line_pointer == ',')
15290 {
15291 ++input_line_pointer;
15292 fill_value = get_absolute_expression ();
15293 fill_ptr = &fill_value;
15294 }
15295 else
15296 fill_ptr = 0;
15297 if (temp)
15298 {
15299 segment_info_type *si = seg_info (now_seg);
15300 struct insn_label_list *l = si->label_list;
15301 /* Auto alignment should be switched on by next section change. */
15302 auto_align = 1;
15303 mips_align (temp, fill_ptr, l);
15304 }
15305 else
15306 {
15307 auto_align = 0;
15308 }
15309
15310 demand_empty_rest_of_line ();
15311 }
15312
15313 static void
s_change_sec(int sec)15314 s_change_sec (int sec)
15315 {
15316 segT seg;
15317
15318 /* The ELF backend needs to know that we are changing sections, so
15319 that .previous works correctly. We could do something like check
15320 for an obj_section_change_hook macro, but that might be confusing
15321 as it would not be appropriate to use it in the section changing
15322 functions in read.c, since obj-elf.c intercepts those. FIXME:
15323 This should be cleaner, somehow. */
15324 obj_elf_section_change_hook ();
15325
15326 mips_emit_delays ();
15327
15328 switch (sec)
15329 {
15330 case 't':
15331 s_text (0);
15332 break;
15333 case 'd':
15334 s_data (0);
15335 break;
15336 case 'b':
15337 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15338 demand_empty_rest_of_line ();
15339 break;
15340
15341 case 'r':
15342 seg = subseg_new (RDATA_SECTION_NAME,
15343 (subsegT) get_absolute_expression ());
15344 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15345 | SEC_READONLY | SEC_RELOC
15346 | SEC_DATA));
15347 if (strncmp (TARGET_OS, "elf", 3) != 0)
15348 record_alignment (seg, 4);
15349 demand_empty_rest_of_line ();
15350 break;
15351
15352 case 's':
15353 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15354 bfd_set_section_flags (stdoutput, seg,
15355 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15356 if (strncmp (TARGET_OS, "elf", 3) != 0)
15357 record_alignment (seg, 4);
15358 demand_empty_rest_of_line ();
15359 break;
15360
15361 case 'B':
15362 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15363 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15364 if (strncmp (TARGET_OS, "elf", 3) != 0)
15365 record_alignment (seg, 4);
15366 demand_empty_rest_of_line ();
15367 break;
15368 }
15369
15370 auto_align = 1;
15371 }
15372
15373 void
s_change_section(int ignore ATTRIBUTE_UNUSED)15374 s_change_section (int ignore ATTRIBUTE_UNUSED)
15375 {
15376 char *saved_ilp;
15377 char *section_name;
15378 char c, endc;
15379 char next_c = 0;
15380 int section_type;
15381 int section_flag;
15382 int section_entry_size;
15383 int section_alignment;
15384
15385 saved_ilp = input_line_pointer;
15386 endc = get_symbol_name (§ion_name);
15387 c = (endc == '"' ? input_line_pointer[1] : endc);
15388 if (c)
15389 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15390
15391 /* Do we have .section Name<,"flags">? */
15392 if (c != ',' || (c == ',' && next_c == '"'))
15393 {
15394 /* Just after name is now '\0'. */
15395 (void) restore_line_pointer (endc);
15396 input_line_pointer = saved_ilp;
15397 obj_elf_section (ignore);
15398 return;
15399 }
15400
15401 section_name = xstrdup (section_name);
15402 c = restore_line_pointer (endc);
15403
15404 input_line_pointer++;
15405
15406 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15407 if (c == ',')
15408 section_type = get_absolute_expression ();
15409 else
15410 section_type = 0;
15411
15412 if (*input_line_pointer++ == ',')
15413 section_flag = get_absolute_expression ();
15414 else
15415 section_flag = 0;
15416
15417 if (*input_line_pointer++ == ',')
15418 section_entry_size = get_absolute_expression ();
15419 else
15420 section_entry_size = 0;
15421
15422 if (*input_line_pointer++ == ',')
15423 section_alignment = get_absolute_expression ();
15424 else
15425 section_alignment = 0;
15426
15427 /* FIXME: really ignore? */
15428 (void) section_alignment;
15429
15430 /* When using the generic form of .section (as implemented by obj-elf.c),
15431 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15432 traditionally had to fall back on the more common @progbits instead.
15433
15434 There's nothing really harmful in this, since bfd will correct
15435 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15436 means that, for backwards compatibility, the special_section entries
15437 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15438
15439 Even so, we shouldn't force users of the MIPS .section syntax to
15440 incorrectly label the sections as SHT_PROGBITS. The best compromise
15441 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15442 generic type-checking code. */
15443 if (section_type == SHT_MIPS_DWARF)
15444 section_type = SHT_PROGBITS;
15445
15446 obj_elf_change_section (section_name, section_type, section_flag,
15447 section_entry_size, 0, 0, 0);
15448
15449 if (now_seg->name != section_name)
15450 free (section_name);
15451 }
15452
15453 void
mips_enable_auto_align(void)15454 mips_enable_auto_align (void)
15455 {
15456 auto_align = 1;
15457 }
15458
15459 static void
s_cons(int log_size)15460 s_cons (int log_size)
15461 {
15462 segment_info_type *si = seg_info (now_seg);
15463 struct insn_label_list *l = si->label_list;
15464
15465 mips_emit_delays ();
15466 if (log_size > 0 && auto_align)
15467 mips_align (log_size, 0, l);
15468 cons (1 << log_size);
15469 mips_clear_insn_labels ();
15470 }
15471
15472 static void
s_float_cons(int type)15473 s_float_cons (int type)
15474 {
15475 segment_info_type *si = seg_info (now_seg);
15476 struct insn_label_list *l = si->label_list;
15477
15478 mips_emit_delays ();
15479
15480 if (auto_align)
15481 {
15482 if (type == 'd')
15483 mips_align (3, 0, l);
15484 else
15485 mips_align (2, 0, l);
15486 }
15487
15488 float_cons (type);
15489 mips_clear_insn_labels ();
15490 }
15491
15492 /* Handle .globl. We need to override it because on Irix 5 you are
15493 permitted to say
15494 .globl foo .text
15495 where foo is an undefined symbol, to mean that foo should be
15496 considered to be the address of a function. */
15497
15498 static void
s_mips_globl(int x ATTRIBUTE_UNUSED)15499 s_mips_globl (int x ATTRIBUTE_UNUSED)
15500 {
15501 char *name;
15502 int c;
15503 symbolS *symbolP;
15504 flagword flag;
15505
15506 do
15507 {
15508 c = get_symbol_name (&name);
15509 symbolP = symbol_find_or_make (name);
15510 S_SET_EXTERNAL (symbolP);
15511
15512 *input_line_pointer = c;
15513 SKIP_WHITESPACE_AFTER_NAME ();
15514
15515 /* On Irix 5, every global symbol that is not explicitly labelled as
15516 being a function is apparently labelled as being an object. */
15517 flag = BSF_OBJECT;
15518
15519 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15520 && (*input_line_pointer != ','))
15521 {
15522 char *secname;
15523 asection *sec;
15524
15525 c = get_symbol_name (&secname);
15526 sec = bfd_get_section_by_name (stdoutput, secname);
15527 if (sec == NULL)
15528 as_bad (_("%s: no such section"), secname);
15529 (void) restore_line_pointer (c);
15530
15531 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15532 flag = BSF_FUNCTION;
15533 }
15534
15535 symbol_get_bfdsym (symbolP)->flags |= flag;
15536
15537 c = *input_line_pointer;
15538 if (c == ',')
15539 {
15540 input_line_pointer++;
15541 SKIP_WHITESPACE ();
15542 if (is_end_of_line[(unsigned char) *input_line_pointer])
15543 c = '\n';
15544 }
15545 }
15546 while (c == ',');
15547
15548 demand_empty_rest_of_line ();
15549 }
15550
15551 static void
s_option(int x ATTRIBUTE_UNUSED)15552 s_option (int x ATTRIBUTE_UNUSED)
15553 {
15554 char *opt;
15555 char c;
15556
15557 c = get_symbol_name (&opt);
15558
15559 if (*opt == 'O')
15560 {
15561 /* FIXME: What does this mean? */
15562 }
15563 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15564 {
15565 int i;
15566
15567 i = atoi (opt + 3);
15568 if (i != 0 && i != 2)
15569 as_bad (_(".option pic%d not supported"), i);
15570 else if (mips_pic == VXWORKS_PIC)
15571 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15572 else if (i == 0)
15573 mips_pic = NO_PIC;
15574 else if (i == 2)
15575 {
15576 mips_pic = SVR4_PIC;
15577 mips_abicalls = TRUE;
15578 }
15579
15580 if (mips_pic == SVR4_PIC)
15581 {
15582 if (g_switch_seen && g_switch_value != 0)
15583 as_warn (_("-G may not be used with SVR4 PIC code"));
15584 g_switch_value = 0;
15585 bfd_set_gp_size (stdoutput, 0);
15586 }
15587 }
15588 else
15589 as_warn (_("unrecognized option \"%s\""), opt);
15590
15591 (void) restore_line_pointer (c);
15592 demand_empty_rest_of_line ();
15593 }
15594
15595 /* This structure is used to hold a stack of .set values. */
15596
15597 struct mips_option_stack
15598 {
15599 struct mips_option_stack *next;
15600 struct mips_set_options options;
15601 };
15602
15603 static struct mips_option_stack *mips_opts_stack;
15604
15605 /* Return status for .set/.module option handling. */
15606
15607 enum code_option_type
15608 {
15609 /* Unrecognized option. */
15610 OPTION_TYPE_BAD = -1,
15611
15612 /* Ordinary option. */
15613 OPTION_TYPE_NORMAL,
15614
15615 /* ISA changing option. */
15616 OPTION_TYPE_ISA
15617 };
15618
15619 /* Handle common .set/.module options. Return status indicating option
15620 type. */
15621
15622 static enum code_option_type
parse_code_option(char * name)15623 parse_code_option (char * name)
15624 {
15625 bfd_boolean isa_set = FALSE;
15626 const struct mips_ase *ase;
15627
15628 if (strncmp (name, "at=", 3) == 0)
15629 {
15630 char *s = name + 3;
15631
15632 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15633 as_bad (_("unrecognized register name `%s'"), s);
15634 }
15635 else if (strcmp (name, "at") == 0)
15636 mips_opts.at = ATREG;
15637 else if (strcmp (name, "noat") == 0)
15638 mips_opts.at = ZERO;
15639 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15640 mips_opts.nomove = 0;
15641 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15642 mips_opts.nomove = 1;
15643 else if (strcmp (name, "bopt") == 0)
15644 mips_opts.nobopt = 0;
15645 else if (strcmp (name, "nobopt") == 0)
15646 mips_opts.nobopt = 1;
15647 else if (strcmp (name, "gp=32") == 0)
15648 mips_opts.gp = 32;
15649 else if (strcmp (name, "gp=64") == 0)
15650 mips_opts.gp = 64;
15651 else if (strcmp (name, "fp=32") == 0)
15652 mips_opts.fp = 32;
15653 else if (strcmp (name, "fp=xx") == 0)
15654 mips_opts.fp = 0;
15655 else if (strcmp (name, "fp=64") == 0)
15656 mips_opts.fp = 64;
15657 else if (strcmp (name, "softfloat") == 0)
15658 mips_opts.soft_float = 1;
15659 else if (strcmp (name, "hardfloat") == 0)
15660 mips_opts.soft_float = 0;
15661 else if (strcmp (name, "singlefloat") == 0)
15662 mips_opts.single_float = 1;
15663 else if (strcmp (name, "doublefloat") == 0)
15664 mips_opts.single_float = 0;
15665 else if (strcmp (name, "nooddspreg") == 0)
15666 mips_opts.oddspreg = 0;
15667 else if (strcmp (name, "oddspreg") == 0)
15668 mips_opts.oddspreg = 1;
15669 else if (strcmp (name, "mips16") == 0
15670 || strcmp (name, "MIPS-16") == 0)
15671 mips_opts.mips16 = 1;
15672 else if (strcmp (name, "nomips16") == 0
15673 || strcmp (name, "noMIPS-16") == 0)
15674 mips_opts.mips16 = 0;
15675 else if (strcmp (name, "micromips") == 0)
15676 mips_opts.micromips = 1;
15677 else if (strcmp (name, "nomicromips") == 0)
15678 mips_opts.micromips = 0;
15679 else if (name[0] == 'n'
15680 && name[1] == 'o'
15681 && (ase = mips_lookup_ase (name + 2)))
15682 mips_set_ase (ase, &mips_opts, FALSE);
15683 else if ((ase = mips_lookup_ase (name)))
15684 mips_set_ase (ase, &mips_opts, TRUE);
15685 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15686 {
15687 /* Permit the user to change the ISA and architecture on the fly.
15688 Needless to say, misuse can cause serious problems. */
15689 if (strncmp (name, "arch=", 5) == 0)
15690 {
15691 const struct mips_cpu_info *p;
15692
15693 p = mips_parse_cpu ("internal use", name + 5);
15694 if (!p)
15695 as_bad (_("unknown architecture %s"), name + 5);
15696 else
15697 {
15698 mips_opts.arch = p->cpu;
15699 mips_opts.isa = p->isa;
15700 isa_set = TRUE;
15701 }
15702 }
15703 else if (strncmp (name, "mips", 4) == 0)
15704 {
15705 const struct mips_cpu_info *p;
15706
15707 p = mips_parse_cpu ("internal use", name);
15708 if (!p)
15709 as_bad (_("unknown ISA level %s"), name + 4);
15710 else
15711 {
15712 mips_opts.arch = p->cpu;
15713 mips_opts.isa = p->isa;
15714 isa_set = TRUE;
15715 }
15716 }
15717 else
15718 as_bad (_("unknown ISA or architecture %s"), name);
15719 }
15720 else if (strcmp (name, "autoextend") == 0)
15721 mips_opts.noautoextend = 0;
15722 else if (strcmp (name, "noautoextend") == 0)
15723 mips_opts.noautoextend = 1;
15724 else if (strcmp (name, "insn32") == 0)
15725 mips_opts.insn32 = TRUE;
15726 else if (strcmp (name, "noinsn32") == 0)
15727 mips_opts.insn32 = FALSE;
15728 else if (strcmp (name, "sym32") == 0)
15729 mips_opts.sym32 = TRUE;
15730 else if (strcmp (name, "nosym32") == 0)
15731 mips_opts.sym32 = FALSE;
15732 else
15733 return OPTION_TYPE_BAD;
15734
15735 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15736 }
15737
15738 /* Handle the .set pseudo-op. */
15739
15740 static void
s_mipsset(int x ATTRIBUTE_UNUSED)15741 s_mipsset (int x ATTRIBUTE_UNUSED)
15742 {
15743 enum code_option_type type = OPTION_TYPE_NORMAL;
15744 char *name = input_line_pointer, ch;
15745
15746 file_mips_check_options ();
15747
15748 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15749 ++input_line_pointer;
15750 ch = *input_line_pointer;
15751 *input_line_pointer = '\0';
15752
15753 if (strchr (name, ','))
15754 {
15755 /* Generic ".set" directive; use the generic handler. */
15756 *input_line_pointer = ch;
15757 input_line_pointer = name;
15758 s_set (0);
15759 return;
15760 }
15761
15762 if (strcmp (name, "reorder") == 0)
15763 {
15764 if (mips_opts.noreorder)
15765 end_noreorder ();
15766 }
15767 else if (strcmp (name, "noreorder") == 0)
15768 {
15769 if (!mips_opts.noreorder)
15770 start_noreorder ();
15771 }
15772 else if (strcmp (name, "macro") == 0)
15773 mips_opts.warn_about_macros = 0;
15774 else if (strcmp (name, "nomacro") == 0)
15775 {
15776 if (mips_opts.noreorder == 0)
15777 as_bad (_("`noreorder' must be set before `nomacro'"));
15778 mips_opts.warn_about_macros = 1;
15779 }
15780 else if (strcmp (name, "gp=default") == 0)
15781 mips_opts.gp = file_mips_opts.gp;
15782 else if (strcmp (name, "fp=default") == 0)
15783 mips_opts.fp = file_mips_opts.fp;
15784 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15785 {
15786 mips_opts.isa = file_mips_opts.isa;
15787 mips_opts.arch = file_mips_opts.arch;
15788 mips_opts.gp = file_mips_opts.gp;
15789 mips_opts.fp = file_mips_opts.fp;
15790 }
15791 else if (strcmp (name, "push") == 0)
15792 {
15793 struct mips_option_stack *s;
15794
15795 s = XNEW (struct mips_option_stack);
15796 s->next = mips_opts_stack;
15797 s->options = mips_opts;
15798 mips_opts_stack = s;
15799 }
15800 else if (strcmp (name, "pop") == 0)
15801 {
15802 struct mips_option_stack *s;
15803
15804 s = mips_opts_stack;
15805 if (s == NULL)
15806 as_bad (_(".set pop with no .set push"));
15807 else
15808 {
15809 /* If we're changing the reorder mode we need to handle
15810 delay slots correctly. */
15811 if (s->options.noreorder && ! mips_opts.noreorder)
15812 start_noreorder ();
15813 else if (! s->options.noreorder && mips_opts.noreorder)
15814 end_noreorder ();
15815
15816 mips_opts = s->options;
15817 mips_opts_stack = s->next;
15818 free (s);
15819 }
15820 }
15821 else
15822 {
15823 type = parse_code_option (name);
15824 if (type == OPTION_TYPE_BAD)
15825 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15826 }
15827
15828 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15829 registers based on what is supported by the arch/cpu. */
15830 if (type == OPTION_TYPE_ISA)
15831 {
15832 switch (mips_opts.isa)
15833 {
15834 case 0:
15835 break;
15836 case ISA_MIPS1:
15837 /* MIPS I cannot support FPXX. */
15838 mips_opts.fp = 32;
15839 /* fall-through. */
15840 case ISA_MIPS2:
15841 case ISA_MIPS32:
15842 case ISA_MIPS32R2:
15843 case ISA_MIPS32R3:
15844 case ISA_MIPS32R5:
15845 mips_opts.gp = 32;
15846 if (mips_opts.fp != 0)
15847 mips_opts.fp = 32;
15848 break;
15849 case ISA_MIPS32R6:
15850 mips_opts.gp = 32;
15851 mips_opts.fp = 64;
15852 break;
15853 case ISA_MIPS3:
15854 case ISA_MIPS4:
15855 case ISA_MIPS5:
15856 case ISA_MIPS64:
15857 case ISA_MIPS64R2:
15858 case ISA_MIPS64R3:
15859 case ISA_MIPS64R5:
15860 case ISA_MIPS64R6:
15861 mips_opts.gp = 64;
15862 if (mips_opts.fp != 0)
15863 {
15864 if (mips_opts.arch == CPU_R5900)
15865 mips_opts.fp = 32;
15866 else
15867 mips_opts.fp = 64;
15868 }
15869 break;
15870 default:
15871 as_bad (_("unknown ISA level %s"), name + 4);
15872 break;
15873 }
15874 }
15875
15876 mips_check_options (&mips_opts, FALSE);
15877
15878 mips_check_isa_supports_ases ();
15879 *input_line_pointer = ch;
15880 demand_empty_rest_of_line ();
15881 }
15882
15883 /* Handle the .module pseudo-op. */
15884
15885 static void
s_module(int ignore ATTRIBUTE_UNUSED)15886 s_module (int ignore ATTRIBUTE_UNUSED)
15887 {
15888 char *name = input_line_pointer, ch;
15889
15890 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15891 ++input_line_pointer;
15892 ch = *input_line_pointer;
15893 *input_line_pointer = '\0';
15894
15895 if (!file_mips_opts_checked)
15896 {
15897 if (parse_code_option (name) == OPTION_TYPE_BAD)
15898 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15899
15900 /* Update module level settings from mips_opts. */
15901 file_mips_opts = mips_opts;
15902 }
15903 else
15904 as_bad (_(".module is not permitted after generating code"));
15905
15906 *input_line_pointer = ch;
15907 demand_empty_rest_of_line ();
15908 }
15909
15910 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15911 .option pic2. It means to generate SVR4 PIC calls. */
15912
15913 static void
s_abicalls(int ignore ATTRIBUTE_UNUSED)15914 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15915 {
15916 mips_pic = SVR4_PIC;
15917 mips_abicalls = TRUE;
15918
15919 if (g_switch_seen && g_switch_value != 0)
15920 as_warn (_("-G may not be used with SVR4 PIC code"));
15921 g_switch_value = 0;
15922
15923 bfd_set_gp_size (stdoutput, 0);
15924 demand_empty_rest_of_line ();
15925 }
15926
15927 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15928 PIC code. It sets the $gp register for the function based on the
15929 function address, which is in the register named in the argument.
15930 This uses a relocation against _gp_disp, which is handled specially
15931 by the linker. The result is:
15932 lui $gp,%hi(_gp_disp)
15933 addiu $gp,$gp,%lo(_gp_disp)
15934 addu $gp,$gp,.cpload argument
15935 The .cpload argument is normally $25 == $t9.
15936
15937 The -mno-shared option changes this to:
15938 lui $gp,%hi(__gnu_local_gp)
15939 addiu $gp,$gp,%lo(__gnu_local_gp)
15940 and the argument is ignored. This saves an instruction, but the
15941 resulting code is not position independent; it uses an absolute
15942 address for __gnu_local_gp. Thus code assembled with -mno-shared
15943 can go into an ordinary executable, but not into a shared library. */
15944
15945 static void
s_cpload(int ignore ATTRIBUTE_UNUSED)15946 s_cpload (int ignore ATTRIBUTE_UNUSED)
15947 {
15948 expressionS ex;
15949 int reg;
15950 int in_shared;
15951
15952 file_mips_check_options ();
15953
15954 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15955 .cpload is ignored. */
15956 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15957 {
15958 s_ignore (0);
15959 return;
15960 }
15961
15962 if (mips_opts.mips16)
15963 {
15964 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15965 ignore_rest_of_line ();
15966 return;
15967 }
15968
15969 /* .cpload should be in a .set noreorder section. */
15970 if (mips_opts.noreorder == 0)
15971 as_warn (_(".cpload not in noreorder section"));
15972
15973 reg = tc_get_register (0);
15974
15975 /* If we need to produce a 64-bit address, we are better off using
15976 the default instruction sequence. */
15977 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15978
15979 ex.X_op = O_symbol;
15980 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15981 "__gnu_local_gp");
15982 ex.X_op_symbol = NULL;
15983 ex.X_add_number = 0;
15984
15985 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15986 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15987
15988 mips_mark_labels ();
15989 mips_assembling_insn = TRUE;
15990
15991 macro_start ();
15992 macro_build_lui (&ex, mips_gp_register);
15993 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15994 mips_gp_register, BFD_RELOC_LO16);
15995 if (in_shared)
15996 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15997 mips_gp_register, reg);
15998 macro_end ();
15999
16000 mips_assembling_insn = FALSE;
16001 demand_empty_rest_of_line ();
16002 }
16003
16004 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16005 .cpsetup $reg1, offset|$reg2, label
16006
16007 If offset is given, this results in:
16008 sd $gp, offset($sp)
16009 lui $gp, %hi(%neg(%gp_rel(label)))
16010 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16011 daddu $gp, $gp, $reg1
16012
16013 If $reg2 is given, this results in:
16014 or $reg2, $gp, $0
16015 lui $gp, %hi(%neg(%gp_rel(label)))
16016 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16017 daddu $gp, $gp, $reg1
16018 $reg1 is normally $25 == $t9.
16019
16020 The -mno-shared option replaces the last three instructions with
16021 lui $gp,%hi(_gp)
16022 addiu $gp,$gp,%lo(_gp) */
16023
16024 static void
s_cpsetup(int ignore ATTRIBUTE_UNUSED)16025 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16026 {
16027 expressionS ex_off;
16028 expressionS ex_sym;
16029 int reg1;
16030
16031 file_mips_check_options ();
16032
16033 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16034 We also need NewABI support. */
16035 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16036 {
16037 s_ignore (0);
16038 return;
16039 }
16040
16041 if (mips_opts.mips16)
16042 {
16043 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16044 ignore_rest_of_line ();
16045 return;
16046 }
16047
16048 reg1 = tc_get_register (0);
16049 SKIP_WHITESPACE ();
16050 if (*input_line_pointer != ',')
16051 {
16052 as_bad (_("missing argument separator ',' for .cpsetup"));
16053 return;
16054 }
16055 else
16056 ++input_line_pointer;
16057 SKIP_WHITESPACE ();
16058 if (*input_line_pointer == '$')
16059 {
16060 mips_cpreturn_register = tc_get_register (0);
16061 mips_cpreturn_offset = -1;
16062 }
16063 else
16064 {
16065 mips_cpreturn_offset = get_absolute_expression ();
16066 mips_cpreturn_register = -1;
16067 }
16068 SKIP_WHITESPACE ();
16069 if (*input_line_pointer != ',')
16070 {
16071 as_bad (_("missing argument separator ',' for .cpsetup"));
16072 return;
16073 }
16074 else
16075 ++input_line_pointer;
16076 SKIP_WHITESPACE ();
16077 expression (&ex_sym);
16078
16079 mips_mark_labels ();
16080 mips_assembling_insn = TRUE;
16081
16082 macro_start ();
16083 if (mips_cpreturn_register == -1)
16084 {
16085 ex_off.X_op = O_constant;
16086 ex_off.X_add_symbol = NULL;
16087 ex_off.X_op_symbol = NULL;
16088 ex_off.X_add_number = mips_cpreturn_offset;
16089
16090 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16091 BFD_RELOC_LO16, SP);
16092 }
16093 else
16094 move_register (mips_cpreturn_register, mips_gp_register);
16095
16096 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16097 {
16098 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16099 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16100 BFD_RELOC_HI16_S);
16101
16102 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16103 mips_gp_register, -1, BFD_RELOC_GPREL16,
16104 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16105
16106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16107 mips_gp_register, reg1);
16108 }
16109 else
16110 {
16111 expressionS ex;
16112
16113 ex.X_op = O_symbol;
16114 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16115 ex.X_op_symbol = NULL;
16116 ex.X_add_number = 0;
16117
16118 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16119 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16120
16121 macro_build_lui (&ex, mips_gp_register);
16122 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16123 mips_gp_register, BFD_RELOC_LO16);
16124 }
16125
16126 macro_end ();
16127
16128 mips_assembling_insn = FALSE;
16129 demand_empty_rest_of_line ();
16130 }
16131
16132 static void
s_cplocal(int ignore ATTRIBUTE_UNUSED)16133 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16134 {
16135 file_mips_check_options ();
16136
16137 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16138 .cplocal is ignored. */
16139 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16140 {
16141 s_ignore (0);
16142 return;
16143 }
16144
16145 if (mips_opts.mips16)
16146 {
16147 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16148 ignore_rest_of_line ();
16149 return;
16150 }
16151
16152 mips_gp_register = tc_get_register (0);
16153 demand_empty_rest_of_line ();
16154 }
16155
16156 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16157 offset from $sp. The offset is remembered, and after making a PIC
16158 call $gp is restored from that location. */
16159
16160 static void
s_cprestore(int ignore ATTRIBUTE_UNUSED)16161 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16162 {
16163 expressionS ex;
16164
16165 file_mips_check_options ();
16166
16167 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16168 .cprestore is ignored. */
16169 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16170 {
16171 s_ignore (0);
16172 return;
16173 }
16174
16175 if (mips_opts.mips16)
16176 {
16177 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16178 ignore_rest_of_line ();
16179 return;
16180 }
16181
16182 mips_cprestore_offset = get_absolute_expression ();
16183 mips_cprestore_valid = 1;
16184
16185 ex.X_op = O_constant;
16186 ex.X_add_symbol = NULL;
16187 ex.X_op_symbol = NULL;
16188 ex.X_add_number = mips_cprestore_offset;
16189
16190 mips_mark_labels ();
16191 mips_assembling_insn = TRUE;
16192
16193 macro_start ();
16194 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16195 SP, HAVE_64BIT_ADDRESSES);
16196 macro_end ();
16197
16198 mips_assembling_insn = FALSE;
16199 demand_empty_rest_of_line ();
16200 }
16201
16202 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16203 was given in the preceding .cpsetup, it results in:
16204 ld $gp, offset($sp)
16205
16206 If a register $reg2 was given there, it results in:
16207 or $gp, $reg2, $0 */
16208
16209 static void
s_cpreturn(int ignore ATTRIBUTE_UNUSED)16210 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16211 {
16212 expressionS ex;
16213
16214 file_mips_check_options ();
16215
16216 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16217 We also need NewABI support. */
16218 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16219 {
16220 s_ignore (0);
16221 return;
16222 }
16223
16224 if (mips_opts.mips16)
16225 {
16226 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16227 ignore_rest_of_line ();
16228 return;
16229 }
16230
16231 mips_mark_labels ();
16232 mips_assembling_insn = TRUE;
16233
16234 macro_start ();
16235 if (mips_cpreturn_register == -1)
16236 {
16237 ex.X_op = O_constant;
16238 ex.X_add_symbol = NULL;
16239 ex.X_op_symbol = NULL;
16240 ex.X_add_number = mips_cpreturn_offset;
16241
16242 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16243 }
16244 else
16245 move_register (mips_gp_register, mips_cpreturn_register);
16246
16247 macro_end ();
16248
16249 mips_assembling_insn = FALSE;
16250 demand_empty_rest_of_line ();
16251 }
16252
16253 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16254 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16255 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16256 debug information or MIPS16 TLS. */
16257
16258 static void
s_tls_rel_directive(const size_t bytes,const char * dirstr,bfd_reloc_code_real_type rtype)16259 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16260 bfd_reloc_code_real_type rtype)
16261 {
16262 expressionS ex;
16263 char *p;
16264
16265 expression (&ex);
16266
16267 if (ex.X_op != O_symbol)
16268 {
16269 as_bad (_("unsupported use of %s"), dirstr);
16270 ignore_rest_of_line ();
16271 }
16272
16273 p = frag_more (bytes);
16274 md_number_to_chars (p, 0, bytes);
16275 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16276 demand_empty_rest_of_line ();
16277 mips_clear_insn_labels ();
16278 }
16279
16280 /* Handle .dtprelword. */
16281
16282 static void
s_dtprelword(int ignore ATTRIBUTE_UNUSED)16283 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16284 {
16285 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16286 }
16287
16288 /* Handle .dtpreldword. */
16289
16290 static void
s_dtpreldword(int ignore ATTRIBUTE_UNUSED)16291 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16292 {
16293 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16294 }
16295
16296 /* Handle .tprelword. */
16297
16298 static void
s_tprelword(int ignore ATTRIBUTE_UNUSED)16299 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16300 {
16301 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16302 }
16303
16304 /* Handle .tpreldword. */
16305
16306 static void
s_tpreldword(int ignore ATTRIBUTE_UNUSED)16307 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16308 {
16309 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16310 }
16311
16312 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16313 code. It sets the offset to use in gp_rel relocations. */
16314
16315 static void
s_gpvalue(int ignore ATTRIBUTE_UNUSED)16316 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16317 {
16318 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16319 We also need NewABI support. */
16320 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16321 {
16322 s_ignore (0);
16323 return;
16324 }
16325
16326 mips_gprel_offset = get_absolute_expression ();
16327
16328 demand_empty_rest_of_line ();
16329 }
16330
16331 /* Handle the .gpword pseudo-op. This is used when generating PIC
16332 code. It generates a 32 bit GP relative reloc. */
16333
16334 static void
s_gpword(int ignore ATTRIBUTE_UNUSED)16335 s_gpword (int ignore ATTRIBUTE_UNUSED)
16336 {
16337 segment_info_type *si;
16338 struct insn_label_list *l;
16339 expressionS ex;
16340 char *p;
16341
16342 /* When not generating PIC code, this is treated as .word. */
16343 if (mips_pic != SVR4_PIC)
16344 {
16345 s_cons (2);
16346 return;
16347 }
16348
16349 si = seg_info (now_seg);
16350 l = si->label_list;
16351 mips_emit_delays ();
16352 if (auto_align)
16353 mips_align (2, 0, l);
16354
16355 expression (&ex);
16356 mips_clear_insn_labels ();
16357
16358 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16359 {
16360 as_bad (_("unsupported use of .gpword"));
16361 ignore_rest_of_line ();
16362 }
16363
16364 p = frag_more (4);
16365 md_number_to_chars (p, 0, 4);
16366 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16367 BFD_RELOC_GPREL32);
16368
16369 demand_empty_rest_of_line ();
16370 }
16371
16372 static void
s_gpdword(int ignore ATTRIBUTE_UNUSED)16373 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16374 {
16375 segment_info_type *si;
16376 struct insn_label_list *l;
16377 expressionS ex;
16378 char *p;
16379
16380 /* When not generating PIC code, this is treated as .dword. */
16381 if (mips_pic != SVR4_PIC)
16382 {
16383 s_cons (3);
16384 return;
16385 }
16386
16387 si = seg_info (now_seg);
16388 l = si->label_list;
16389 mips_emit_delays ();
16390 if (auto_align)
16391 mips_align (3, 0, l);
16392
16393 expression (&ex);
16394 mips_clear_insn_labels ();
16395
16396 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16397 {
16398 as_bad (_("unsupported use of .gpdword"));
16399 ignore_rest_of_line ();
16400 }
16401
16402 p = frag_more (8);
16403 md_number_to_chars (p, 0, 8);
16404 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16405 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16406
16407 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16408 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16409 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16410
16411 demand_empty_rest_of_line ();
16412 }
16413
16414 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16415 tables. It generates a R_MIPS_EH reloc. */
16416
16417 static void
s_ehword(int ignore ATTRIBUTE_UNUSED)16418 s_ehword (int ignore ATTRIBUTE_UNUSED)
16419 {
16420 expressionS ex;
16421 char *p;
16422
16423 mips_emit_delays ();
16424
16425 expression (&ex);
16426 mips_clear_insn_labels ();
16427
16428 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16429 {
16430 as_bad (_("unsupported use of .ehword"));
16431 ignore_rest_of_line ();
16432 }
16433
16434 p = frag_more (4);
16435 md_number_to_chars (p, 0, 4);
16436 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16437 BFD_RELOC_32_PCREL);
16438
16439 demand_empty_rest_of_line ();
16440 }
16441
16442 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16443 tables in SVR4 PIC code. */
16444
16445 static void
s_cpadd(int ignore ATTRIBUTE_UNUSED)16446 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16447 {
16448 int reg;
16449
16450 file_mips_check_options ();
16451
16452 /* This is ignored when not generating SVR4 PIC code. */
16453 if (mips_pic != SVR4_PIC)
16454 {
16455 s_ignore (0);
16456 return;
16457 }
16458
16459 mips_mark_labels ();
16460 mips_assembling_insn = TRUE;
16461
16462 /* Add $gp to the register named as an argument. */
16463 macro_start ();
16464 reg = tc_get_register (0);
16465 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16466 macro_end ();
16467
16468 mips_assembling_insn = FALSE;
16469 demand_empty_rest_of_line ();
16470 }
16471
16472 /* Handle the .insn pseudo-op. This marks instruction labels in
16473 mips16/micromips mode. This permits the linker to handle them specially,
16474 such as generating jalx instructions when needed. We also make
16475 them odd for the duration of the assembly, in order to generate the
16476 right sort of code. We will make them even in the adjust_symtab
16477 routine, while leaving them marked. This is convenient for the
16478 debugger and the disassembler. The linker knows to make them odd
16479 again. */
16480
16481 static void
s_insn(int ignore ATTRIBUTE_UNUSED)16482 s_insn (int ignore ATTRIBUTE_UNUSED)
16483 {
16484 file_mips_check_options ();
16485 file_ase_mips16 |= mips_opts.mips16;
16486 file_ase_micromips |= mips_opts.micromips;
16487
16488 mips_mark_labels ();
16489
16490 demand_empty_rest_of_line ();
16491 }
16492
16493 /* Handle the .nan pseudo-op. */
16494
16495 static void
s_nan(int ignore ATTRIBUTE_UNUSED)16496 s_nan (int ignore ATTRIBUTE_UNUSED)
16497 {
16498 static const char str_legacy[] = "legacy";
16499 static const char str_2008[] = "2008";
16500 size_t i;
16501
16502 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16503
16504 if (i == sizeof (str_2008) - 1
16505 && memcmp (input_line_pointer, str_2008, i) == 0)
16506 mips_nan2008 = 1;
16507 else if (i == sizeof (str_legacy) - 1
16508 && memcmp (input_line_pointer, str_legacy, i) == 0)
16509 {
16510 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16511 mips_nan2008 = 0;
16512 else
16513 as_bad (_("`%s' does not support legacy NaN"),
16514 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16515 }
16516 else
16517 as_bad (_("bad .nan directive"));
16518
16519 input_line_pointer += i;
16520 demand_empty_rest_of_line ();
16521 }
16522
16523 /* Handle a .stab[snd] directive. Ideally these directives would be
16524 implemented in a transparent way, so that removing them would not
16525 have any effect on the generated instructions. However, s_stab
16526 internally changes the section, so in practice we need to decide
16527 now whether the preceding label marks compressed code. We do not
16528 support changing the compression mode of a label after a .stab*
16529 directive, such as in:
16530
16531 foo:
16532 .stabs ...
16533 .set mips16
16534
16535 so the current mode wins. */
16536
16537 static void
s_mips_stab(int type)16538 s_mips_stab (int type)
16539 {
16540 mips_mark_labels ();
16541 s_stab (type);
16542 }
16543
16544 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16545
16546 static void
s_mips_weakext(int ignore ATTRIBUTE_UNUSED)16547 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16548 {
16549 char *name;
16550 int c;
16551 symbolS *symbolP;
16552 expressionS exp;
16553
16554 c = get_symbol_name (&name);
16555 symbolP = symbol_find_or_make (name);
16556 S_SET_WEAK (symbolP);
16557 *input_line_pointer = c;
16558
16559 SKIP_WHITESPACE_AFTER_NAME ();
16560
16561 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16562 {
16563 if (S_IS_DEFINED (symbolP))
16564 {
16565 as_bad (_("ignoring attempt to redefine symbol %s"),
16566 S_GET_NAME (symbolP));
16567 ignore_rest_of_line ();
16568 return;
16569 }
16570
16571 if (*input_line_pointer == ',')
16572 {
16573 ++input_line_pointer;
16574 SKIP_WHITESPACE ();
16575 }
16576
16577 expression (&exp);
16578 if (exp.X_op != O_symbol)
16579 {
16580 as_bad (_("bad .weakext directive"));
16581 ignore_rest_of_line ();
16582 return;
16583 }
16584 symbol_set_value_expression (symbolP, &exp);
16585 }
16586
16587 demand_empty_rest_of_line ();
16588 }
16589
16590 /* Parse a register string into a number. Called from the ECOFF code
16591 to parse .frame. The argument is non-zero if this is the frame
16592 register, so that we can record it in mips_frame_reg. */
16593
16594 int
tc_get_register(int frame)16595 tc_get_register (int frame)
16596 {
16597 unsigned int reg;
16598
16599 SKIP_WHITESPACE ();
16600 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
16601 reg = 0;
16602 if (frame)
16603 {
16604 mips_frame_reg = reg != 0 ? reg : SP;
16605 mips_frame_reg_valid = 1;
16606 mips_cprestore_valid = 0;
16607 }
16608 return reg;
16609 }
16610
16611 valueT
md_section_align(asection * seg,valueT addr)16612 md_section_align (asection *seg, valueT addr)
16613 {
16614 int align = bfd_get_section_alignment (stdoutput, seg);
16615
16616 /* We don't need to align ELF sections to the full alignment.
16617 However, Irix 5 may prefer that we align them at least to a 16
16618 byte boundary. We don't bother to align the sections if we
16619 are targeted for an embedded system. */
16620 if (strncmp (TARGET_OS, "elf", 3) == 0)
16621 return addr;
16622 if (align > 4)
16623 align = 4;
16624
16625 return ((addr + (1 << align) - 1) & -(1 << align));
16626 }
16627
16628 /* Utility routine, called from above as well. If called while the
16629 input file is still being read, it's only an approximation. (For
16630 example, a symbol may later become defined which appeared to be
16631 undefined earlier.) */
16632
16633 static int
nopic_need_relax(symbolS * sym,int before_relaxing)16634 nopic_need_relax (symbolS *sym, int before_relaxing)
16635 {
16636 if (sym == 0)
16637 return 0;
16638
16639 if (g_switch_value > 0)
16640 {
16641 const char *symname;
16642 int change;
16643
16644 /* Find out whether this symbol can be referenced off the $gp
16645 register. It can be if it is smaller than the -G size or if
16646 it is in the .sdata or .sbss section. Certain symbols can
16647 not be referenced off the $gp, although it appears as though
16648 they can. */
16649 symname = S_GET_NAME (sym);
16650 if (symname != (const char *) NULL
16651 && (strcmp (symname, "eprol") == 0
16652 || strcmp (symname, "etext") == 0
16653 || strcmp (symname, "_gp") == 0
16654 || strcmp (symname, "edata") == 0
16655 || strcmp (symname, "_fbss") == 0
16656 || strcmp (symname, "_fdata") == 0
16657 || strcmp (symname, "_ftext") == 0
16658 || strcmp (symname, "end") == 0
16659 || strcmp (symname, "_gp_disp") == 0))
16660 change = 1;
16661 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16662 && (0
16663 #ifndef NO_ECOFF_DEBUGGING
16664 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16665 && (symbol_get_obj (sym)->ecoff_extern_size
16666 <= g_switch_value))
16667 #endif
16668 /* We must defer this decision until after the whole
16669 file has been read, since there might be a .extern
16670 after the first use of this symbol. */
16671 || (before_relaxing
16672 #ifndef NO_ECOFF_DEBUGGING
16673 && symbol_get_obj (sym)->ecoff_extern_size == 0
16674 #endif
16675 && S_GET_VALUE (sym) == 0)
16676 || (S_GET_VALUE (sym) != 0
16677 && S_GET_VALUE (sym) <= g_switch_value)))
16678 change = 0;
16679 else
16680 {
16681 const char *segname;
16682
16683 segname = segment_name (S_GET_SEGMENT (sym));
16684 gas_assert (strcmp (segname, ".lit8") != 0
16685 && strcmp (segname, ".lit4") != 0);
16686 change = (strcmp (segname, ".sdata") != 0
16687 && strcmp (segname, ".sbss") != 0
16688 && strncmp (segname, ".sdata.", 7) != 0
16689 && strncmp (segname, ".sbss.", 6) != 0
16690 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16691 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16692 }
16693 return change;
16694 }
16695 else
16696 /* We are not optimizing for the $gp register. */
16697 return 1;
16698 }
16699
16700
16701 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16702
16703 static bfd_boolean
pic_need_relax(symbolS * sym,asection * segtype)16704 pic_need_relax (symbolS *sym, asection *segtype)
16705 {
16706 asection *symsec;
16707
16708 /* Handle the case of a symbol equated to another symbol. */
16709 while (symbol_equated_reloc_p (sym))
16710 {
16711 symbolS *n;
16712
16713 /* It's possible to get a loop here in a badly written program. */
16714 n = symbol_get_value_expression (sym)->X_add_symbol;
16715 if (n == sym)
16716 break;
16717 sym = n;
16718 }
16719
16720 if (symbol_section_p (sym))
16721 return TRUE;
16722
16723 symsec = S_GET_SEGMENT (sym);
16724
16725 /* This must duplicate the test in adjust_reloc_syms. */
16726 return (!bfd_is_und_section (symsec)
16727 && !bfd_is_abs_section (symsec)
16728 && !bfd_is_com_section (symsec)
16729 && !s_is_linkonce (sym, segtype)
16730 /* A global or weak symbol is treated as external. */
16731 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16732 }
16733
16734
16735 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16736 extended opcode. SEC is the section the frag is in. */
16737
16738 static int
mips16_extended_frag(fragS * fragp,asection * sec,long stretch)16739 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16740 {
16741 int type;
16742 const struct mips_int_operand *operand;
16743 offsetT val;
16744 segT symsec;
16745 fragS *sym_frag;
16746
16747 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16748 return 0;
16749 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16750 return 1;
16751
16752 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16753 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16754 operand = mips16_immed_operand (type, FALSE);
16755 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
16756 || (operand->root.type == OP_PCREL
16757 ? sec != symsec
16758 : !bfd_is_abs_section (symsec)))
16759 return 1;
16760
16761 sym_frag = symbol_get_frag (fragp->fr_symbol);
16762 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16763
16764 if (operand->root.type == OP_PCREL)
16765 {
16766 const struct mips_pcrel_operand *pcrel_op;
16767 addressT addr;
16768 offsetT maxtiny;
16769
16770 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16771 return 1;
16772
16773 pcrel_op = (const struct mips_pcrel_operand *) operand;
16774
16775 /* If the relax_marker of the symbol fragment differs from the
16776 relax_marker of this fragment, we have not yet adjusted the
16777 symbol fragment fr_address. We want to add in STRETCH in
16778 order to get a better estimate of the address. This
16779 particularly matters because of the shift bits. */
16780 if (stretch != 0
16781 && sym_frag->relax_marker != fragp->relax_marker)
16782 {
16783 fragS *f;
16784
16785 /* Adjust stretch for any alignment frag. Note that if have
16786 been expanding the earlier code, the symbol may be
16787 defined in what appears to be an earlier frag. FIXME:
16788 This doesn't handle the fr_subtype field, which specifies
16789 a maximum number of bytes to skip when doing an
16790 alignment. */
16791 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16792 {
16793 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16794 {
16795 if (stretch < 0)
16796 stretch = - ((- stretch)
16797 & ~ ((1 << (int) f->fr_offset) - 1));
16798 else
16799 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16800 if (stretch == 0)
16801 break;
16802 }
16803 }
16804 if (f != NULL)
16805 val += stretch;
16806 }
16807
16808 addr = fragp->fr_address + fragp->fr_fix;
16809
16810 /* The base address rules are complicated. The base address of
16811 a branch is the following instruction. The base address of a
16812 PC relative load or add is the instruction itself, but if it
16813 is in a delay slot (in which case it can not be extended) use
16814 the address of the instruction whose delay slot it is in. */
16815 if (pcrel_op->include_isa_bit)
16816 {
16817 addr += 2;
16818
16819 /* If we are currently assuming that this frag should be
16820 extended, then, the current address is two bytes
16821 higher. */
16822 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16823 addr += 2;
16824
16825 /* Ignore the low bit in the target, since it will be set
16826 for a text label. */
16827 val &= -2;
16828 }
16829 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16830 addr -= 4;
16831 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16832 addr -= 2;
16833
16834 val -= addr & -(1 << pcrel_op->align_log2);
16835
16836 /* If any of the shifted bits are set, we must use an extended
16837 opcode. If the address depends on the size of this
16838 instruction, this can lead to a loop, so we arrange to always
16839 use an extended opcode. */
16840 if ((val & ((1 << operand->shift) - 1)) != 0)
16841 {
16842 fragp->fr_subtype =
16843 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16844 return 1;
16845 }
16846
16847 /* If we are about to mark a frag as extended because the value
16848 is precisely the next value above maxtiny, then there is a
16849 chance of an infinite loop as in the following code:
16850 la $4,foo
16851 .skip 1020
16852 .align 2
16853 foo:
16854 In this case when the la is extended, foo is 0x3fc bytes
16855 away, so the la can be shrunk, but then foo is 0x400 away, so
16856 the la must be extended. To avoid this loop, we mark the
16857 frag as extended if it was small, and is about to become
16858 extended with the next value above maxtiny. */
16859 maxtiny = mips_int_operand_max (operand);
16860 if (val == maxtiny + (1 << operand->shift)
16861 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16862 {
16863 fragp->fr_subtype =
16864 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16865 return 1;
16866 }
16867 }
16868
16869 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16870 }
16871
16872 /* Compute the length of a branch sequence, and adjust the
16873 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16874 worst-case length is computed, with UPDATE being used to indicate
16875 whether an unconditional (-1), branch-likely (+1) or regular (0)
16876 branch is to be computed. */
16877 static int
relaxed_branch_length(fragS * fragp,asection * sec,int update)16878 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16879 {
16880 bfd_boolean toofar;
16881 int length;
16882
16883 if (fragp
16884 && S_IS_DEFINED (fragp->fr_symbol)
16885 && !S_IS_WEAK (fragp->fr_symbol)
16886 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16887 {
16888 addressT addr;
16889 offsetT val;
16890
16891 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16892
16893 addr = fragp->fr_address + fragp->fr_fix + 4;
16894
16895 val -= addr;
16896
16897 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16898 }
16899 else
16900 /* If the symbol is not defined or it's in a different segment,
16901 we emit the long sequence. */
16902 toofar = TRUE;
16903
16904 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16905 fragp->fr_subtype
16906 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16907 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16908 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16909 RELAX_BRANCH_LINK (fragp->fr_subtype),
16910 toofar);
16911
16912 length = 4;
16913 if (toofar)
16914 {
16915 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16916 length += 8;
16917
16918 if (mips_pic != NO_PIC)
16919 {
16920 /* Additional space for PIC loading of target address. */
16921 length += 8;
16922 if (mips_opts.isa == ISA_MIPS1)
16923 /* Additional space for $at-stabilizing nop. */
16924 length += 4;
16925 }
16926
16927 /* If branch is conditional. */
16928 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16929 length += 8;
16930 }
16931
16932 return length;
16933 }
16934
16935 /* Compute the length of a branch sequence, and adjust the
16936 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16937 worst-case length is computed, with UPDATE being used to indicate
16938 whether an unconditional (-1), or regular (0) branch is to be
16939 computed. */
16940
16941 static int
relaxed_micromips_32bit_branch_length(fragS * fragp,asection * sec,int update)16942 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16943 {
16944 bfd_boolean toofar;
16945 int length;
16946
16947 if (fragp
16948 && S_IS_DEFINED (fragp->fr_symbol)
16949 && !S_IS_WEAK (fragp->fr_symbol)
16950 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16951 {
16952 addressT addr;
16953 offsetT val;
16954
16955 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16956 /* Ignore the low bit in the target, since it will be set
16957 for a text label. */
16958 if ((val & 1) != 0)
16959 --val;
16960
16961 addr = fragp->fr_address + fragp->fr_fix + 4;
16962
16963 val -= addr;
16964
16965 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16966 }
16967 else
16968 /* If the symbol is not defined or it's in a different segment,
16969 we emit the long sequence. */
16970 toofar = TRUE;
16971
16972 if (fragp && update
16973 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16974 fragp->fr_subtype = (toofar
16975 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16976 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16977
16978 length = 4;
16979 if (toofar)
16980 {
16981 bfd_boolean compact_known = fragp != NULL;
16982 bfd_boolean compact = FALSE;
16983 bfd_boolean uncond;
16984
16985 if (compact_known)
16986 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16987 if (fragp)
16988 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16989 else
16990 uncond = update < 0;
16991
16992 /* If label is out of range, we turn branch <br>:
16993
16994 <br> label # 4 bytes
16995 0:
16996
16997 into:
16998
16999 j label # 4 bytes
17000 nop # 2 bytes if compact && !PIC
17001 0:
17002 */
17003 if (mips_pic == NO_PIC && (!compact_known || compact))
17004 length += 2;
17005
17006 /* If assembling PIC code, we further turn:
17007
17008 j label # 4 bytes
17009
17010 into:
17011
17012 lw/ld at, %got(label)(gp) # 4 bytes
17013 d/addiu at, %lo(label) # 4 bytes
17014 jr/c at # 2 bytes
17015 */
17016 if (mips_pic != NO_PIC)
17017 length += 6;
17018
17019 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17020
17021 <brneg> 0f # 4 bytes
17022 nop # 2 bytes if !compact
17023 */
17024 if (!uncond)
17025 length += (compact_known && compact) ? 4 : 6;
17026 }
17027
17028 return length;
17029 }
17030
17031 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17032 bit accordingly. */
17033
17034 static int
relaxed_micromips_16bit_branch_length(fragS * fragp,asection * sec,int update)17035 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17036 {
17037 bfd_boolean toofar;
17038
17039 if (fragp
17040 && S_IS_DEFINED (fragp->fr_symbol)
17041 && !S_IS_WEAK (fragp->fr_symbol)
17042 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17043 {
17044 addressT addr;
17045 offsetT val;
17046 int type;
17047
17048 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17049 /* Ignore the low bit in the target, since it will be set
17050 for a text label. */
17051 if ((val & 1) != 0)
17052 --val;
17053
17054 /* Assume this is a 2-byte branch. */
17055 addr = fragp->fr_address + fragp->fr_fix + 2;
17056
17057 /* We try to avoid the infinite loop by not adding 2 more bytes for
17058 long branches. */
17059
17060 val -= addr;
17061
17062 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17063 if (type == 'D')
17064 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17065 else if (type == 'E')
17066 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17067 else
17068 abort ();
17069 }
17070 else
17071 /* If the symbol is not defined or it's in a different segment,
17072 we emit a normal 32-bit branch. */
17073 toofar = TRUE;
17074
17075 if (fragp && update
17076 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17077 fragp->fr_subtype
17078 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17079 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17080
17081 if (toofar)
17082 return 4;
17083
17084 return 2;
17085 }
17086
17087 /* Estimate the size of a frag before relaxing. Unless this is the
17088 mips16, we are not really relaxing here, and the final size is
17089 encoded in the subtype information. For the mips16, we have to
17090 decide whether we are using an extended opcode or not. */
17091
17092 int
md_estimate_size_before_relax(fragS * fragp,asection * segtype)17093 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17094 {
17095 int change;
17096
17097 if (RELAX_BRANCH_P (fragp->fr_subtype))
17098 {
17099
17100 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17101
17102 return fragp->fr_var;
17103 }
17104
17105 if (RELAX_MIPS16_P (fragp->fr_subtype))
17106 /* We don't want to modify the EXTENDED bit here; it might get us
17107 into infinite loops. We change it only in mips_relax_frag(). */
17108 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17109
17110 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17111 {
17112 int length = 4;
17113
17114 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17115 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17116 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17117 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17118 fragp->fr_var = length;
17119
17120 return length;
17121 }
17122
17123 if (mips_pic == NO_PIC)
17124 change = nopic_need_relax (fragp->fr_symbol, 0);
17125 else if (mips_pic == SVR4_PIC)
17126 change = pic_need_relax (fragp->fr_symbol, segtype);
17127 else if (mips_pic == VXWORKS_PIC)
17128 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17129 change = 0;
17130 else
17131 abort ();
17132
17133 if (change)
17134 {
17135 fragp->fr_subtype |= RELAX_USE_SECOND;
17136 return -RELAX_FIRST (fragp->fr_subtype);
17137 }
17138 else
17139 return -RELAX_SECOND (fragp->fr_subtype);
17140 }
17141
17142 /* This is called to see whether a reloc against a defined symbol
17143 should be converted into a reloc against a section. */
17144
17145 int
mips_fix_adjustable(fixS * fixp)17146 mips_fix_adjustable (fixS *fixp)
17147 {
17148 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17149 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17150 return 0;
17151
17152 if (fixp->fx_addsy == NULL)
17153 return 1;
17154
17155 /* Allow relocs used for EH tables. */
17156 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17157 return 1;
17158
17159 /* If symbol SYM is in a mergeable section, relocations of the form
17160 SYM + 0 can usually be made section-relative. The mergeable data
17161 is then identified by the section offset rather than by the symbol.
17162
17163 However, if we're generating REL LO16 relocations, the offset is split
17164 between the LO16 and parterning high part relocation. The linker will
17165 need to recalculate the complete offset in order to correctly identify
17166 the merge data.
17167
17168 The linker has traditionally not looked for the parterning high part
17169 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17170 placed anywhere. Rather than break backwards compatibility by changing
17171 this, it seems better not to force the issue, and instead keep the
17172 original symbol. This will work with either linker behavior. */
17173 if ((lo16_reloc_p (fixp->fx_r_type)
17174 || reloc_needs_lo_p (fixp->fx_r_type))
17175 && HAVE_IN_PLACE_ADDENDS
17176 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17177 return 0;
17178
17179 /* There is no place to store an in-place offset for JALR relocations. */
17180 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17181 return 0;
17182
17183 /* Likewise an in-range offset of limited PC-relative relocations may
17184 overflow the in-place relocatable field if recalculated against the
17185 start address of the symbol's containing section.
17186
17187 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17188 section relative to allow linker relaxations to be performed later on. */
17189 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17190 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17191 return 0;
17192
17193 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17194 to a floating-point stub. The same is true for non-R_MIPS16_26
17195 relocations against MIPS16 functions; in this case, the stub becomes
17196 the function's canonical address.
17197
17198 Floating-point stubs are stored in unique .mips16.call.* or
17199 .mips16.fn.* sections. If a stub T for function F is in section S,
17200 the first relocation in section S must be against F; this is how the
17201 linker determines the target function. All relocations that might
17202 resolve to T must also be against F. We therefore have the following
17203 restrictions, which are given in an intentionally-redundant way:
17204
17205 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17206 symbols.
17207
17208 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17209 if that stub might be used.
17210
17211 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17212 symbols.
17213
17214 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17215 that stub might be used.
17216
17217 There is a further restriction:
17218
17219 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17220 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17221 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17222 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17223 against MIPS16 or microMIPS symbols because we need to keep the
17224 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17225 detection and JAL to JALX instruction conversion in the linker.
17226
17227 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17228 against a MIPS16 symbol. We deal with (5) by additionally leaving
17229 alone any jump and branch relocations against a microMIPS symbol.
17230
17231 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17232 relocation against some symbol R, no relocation against R may be
17233 reduced. (Note that this deals with (2) as well as (1) because
17234 relocations against global symbols will never be reduced on ELF
17235 targets.) This approach is a little simpler than trying to detect
17236 stub sections, and gives the "all or nothing" per-symbol consistency
17237 that we have for MIPS16 symbols. */
17238 if (fixp->fx_subsy == NULL
17239 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17240 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17241 && (jmp_reloc_p (fixp->fx_r_type)
17242 || b_reloc_p (fixp->fx_r_type)))
17243 || *symbol_get_tc (fixp->fx_addsy)))
17244 return 0;
17245
17246 return 1;
17247 }
17248
17249 /* Translate internal representation of relocation info to BFD target
17250 format. */
17251
17252 arelent **
tc_gen_reloc(asection * section ATTRIBUTE_UNUSED,fixS * fixp)17253 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17254 {
17255 static arelent *retval[4];
17256 arelent *reloc;
17257 bfd_reloc_code_real_type code;
17258
17259 memset (retval, 0, sizeof(retval));
17260 reloc = retval[0] = XCNEW (arelent);
17261 reloc->sym_ptr_ptr = XNEW (asymbol *);
17262 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17263 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17264
17265 if (fixp->fx_pcrel)
17266 {
17267 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17268 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17269 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17270 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17271 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17272 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17273 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17274 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17275 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17276 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17277 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17278 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17279
17280 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17281 Relocations want only the symbol offset. */
17282 switch (fixp->fx_r_type)
17283 {
17284 case BFD_RELOC_MIPS_18_PCREL_S3:
17285 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17286 break;
17287 default:
17288 reloc->addend = fixp->fx_addnumber + reloc->address;
17289 break;
17290 }
17291 }
17292 else if (HAVE_IN_PLACE_ADDENDS
17293 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17294 && (read_compressed_insn (fixp->fx_frag->fr_literal
17295 + fixp->fx_where, 4) >> 26) == 0x3c)
17296 {
17297 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17298 addend accordingly. */
17299 reloc->addend = fixp->fx_addnumber >> 1;
17300 }
17301 else
17302 reloc->addend = fixp->fx_addnumber;
17303
17304 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17305 entry to be used in the relocation's section offset. */
17306 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17307 {
17308 reloc->address = reloc->addend;
17309 reloc->addend = 0;
17310 }
17311
17312 code = fixp->fx_r_type;
17313
17314 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17315 if (reloc->howto == NULL)
17316 {
17317 as_bad_where (fixp->fx_file, fixp->fx_line,
17318 _("cannot represent %s relocation in this object file"
17319 " format"),
17320 bfd_get_reloc_code_name (code));
17321 retval[0] = NULL;
17322 }
17323
17324 return retval;
17325 }
17326
17327 /* Relax a machine dependent frag. This returns the amount by which
17328 the current size of the frag should change. */
17329
17330 int
mips_relax_frag(asection * sec,fragS * fragp,long stretch)17331 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17332 {
17333 if (RELAX_BRANCH_P (fragp->fr_subtype))
17334 {
17335 offsetT old_var = fragp->fr_var;
17336
17337 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17338
17339 return fragp->fr_var - old_var;
17340 }
17341
17342 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17343 {
17344 offsetT old_var = fragp->fr_var;
17345 offsetT new_var = 4;
17346
17347 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17348 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17349 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17350 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17351 fragp->fr_var = new_var;
17352
17353 return new_var - old_var;
17354 }
17355
17356 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17357 return 0;
17358
17359 if (mips16_extended_frag (fragp, sec, stretch))
17360 {
17361 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17362 return 0;
17363 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17364 return 2;
17365 }
17366 else
17367 {
17368 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17369 return 0;
17370 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17371 return -2;
17372 }
17373
17374 return 0;
17375 }
17376
17377 /* Convert a machine dependent frag. */
17378
17379 void
md_convert_frag(bfd * abfd ATTRIBUTE_UNUSED,segT asec,fragS * fragp)17380 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17381 {
17382 if (RELAX_BRANCH_P (fragp->fr_subtype))
17383 {
17384 char *buf;
17385 unsigned long insn;
17386 expressionS exp;
17387 fixS *fixp;
17388
17389 buf = fragp->fr_literal + fragp->fr_fix;
17390 insn = read_insn (buf);
17391
17392 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17393 {
17394 /* We generate a fixup instead of applying it right now
17395 because, if there are linker relaxations, we're going to
17396 need the relocations. */
17397 exp.X_op = O_symbol;
17398 exp.X_add_symbol = fragp->fr_symbol;
17399 exp.X_add_number = fragp->fr_offset;
17400
17401 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17402 BFD_RELOC_16_PCREL_S2);
17403 fixp->fx_file = fragp->fr_file;
17404 fixp->fx_line = fragp->fr_line;
17405
17406 buf = write_insn (buf, insn);
17407 }
17408 else
17409 {
17410 int i;
17411
17412 as_warn_where (fragp->fr_file, fragp->fr_line,
17413 _("relaxed out-of-range branch into a jump"));
17414
17415 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17416 goto uncond;
17417
17418 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17419 {
17420 /* Reverse the branch. */
17421 switch ((insn >> 28) & 0xf)
17422 {
17423 case 4:
17424 if ((insn & 0xff000000) == 0x47000000
17425 || (insn & 0xff600000) == 0x45600000)
17426 {
17427 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17428 reversed by tweaking bit 23. */
17429 insn ^= 0x00800000;
17430 }
17431 else
17432 {
17433 /* bc[0-3][tf]l? instructions can have the condition
17434 reversed by tweaking a single TF bit, and their
17435 opcodes all have 0x4???????. */
17436 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17437 insn ^= 0x00010000;
17438 }
17439 break;
17440
17441 case 0:
17442 /* bltz 0x04000000 bgez 0x04010000
17443 bltzal 0x04100000 bgezal 0x04110000 */
17444 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17445 insn ^= 0x00010000;
17446 break;
17447
17448 case 1:
17449 /* beq 0x10000000 bne 0x14000000
17450 blez 0x18000000 bgtz 0x1c000000 */
17451 insn ^= 0x04000000;
17452 break;
17453
17454 default:
17455 abort ();
17456 }
17457 }
17458
17459 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17460 {
17461 /* Clear the and-link bit. */
17462 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17463
17464 /* bltzal 0x04100000 bgezal 0x04110000
17465 bltzall 0x04120000 bgezall 0x04130000 */
17466 insn &= ~0x00100000;
17467 }
17468
17469 /* Branch over the branch (if the branch was likely) or the
17470 full jump (not likely case). Compute the offset from the
17471 current instruction to branch to. */
17472 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17473 i = 16;
17474 else
17475 {
17476 /* How many bytes in instructions we've already emitted? */
17477 i = buf - fragp->fr_literal - fragp->fr_fix;
17478 /* How many bytes in instructions from here to the end? */
17479 i = fragp->fr_var - i;
17480 }
17481 /* Convert to instruction count. */
17482 i >>= 2;
17483 /* Branch counts from the next instruction. */
17484 i--;
17485 insn |= i;
17486 /* Branch over the jump. */
17487 buf = write_insn (buf, insn);
17488
17489 /* nop */
17490 buf = write_insn (buf, 0);
17491
17492 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17493 {
17494 /* beql $0, $0, 2f */
17495 insn = 0x50000000;
17496 /* Compute the PC offset from the current instruction to
17497 the end of the variable frag. */
17498 /* How many bytes in instructions we've already emitted? */
17499 i = buf - fragp->fr_literal - fragp->fr_fix;
17500 /* How many bytes in instructions from here to the end? */
17501 i = fragp->fr_var - i;
17502 /* Convert to instruction count. */
17503 i >>= 2;
17504 /* Don't decrement i, because we want to branch over the
17505 delay slot. */
17506 insn |= i;
17507
17508 buf = write_insn (buf, insn);
17509 buf = write_insn (buf, 0);
17510 }
17511
17512 uncond:
17513 if (mips_pic == NO_PIC)
17514 {
17515 /* j or jal. */
17516 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17517 ? 0x0c000000 : 0x08000000);
17518 exp.X_op = O_symbol;
17519 exp.X_add_symbol = fragp->fr_symbol;
17520 exp.X_add_number = fragp->fr_offset;
17521
17522 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17523 FALSE, BFD_RELOC_MIPS_JMP);
17524 fixp->fx_file = fragp->fr_file;
17525 fixp->fx_line = fragp->fr_line;
17526
17527 buf = write_insn (buf, insn);
17528 }
17529 else
17530 {
17531 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17532
17533 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17534 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17535 insn |= at << OP_SH_RT;
17536 exp.X_op = O_symbol;
17537 exp.X_add_symbol = fragp->fr_symbol;
17538 exp.X_add_number = fragp->fr_offset;
17539
17540 if (fragp->fr_offset)
17541 {
17542 exp.X_add_symbol = make_expr_symbol (&exp);
17543 exp.X_add_number = 0;
17544 }
17545
17546 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17547 FALSE, BFD_RELOC_MIPS_GOT16);
17548 fixp->fx_file = fragp->fr_file;
17549 fixp->fx_line = fragp->fr_line;
17550
17551 buf = write_insn (buf, insn);
17552
17553 if (mips_opts.isa == ISA_MIPS1)
17554 /* nop */
17555 buf = write_insn (buf, 0);
17556
17557 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17558 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17559 insn |= at << OP_SH_RS | at << OP_SH_RT;
17560
17561 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17562 FALSE, BFD_RELOC_LO16);
17563 fixp->fx_file = fragp->fr_file;
17564 fixp->fx_line = fragp->fr_line;
17565
17566 buf = write_insn (buf, insn);
17567
17568 /* j(al)r $at. */
17569 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17570 insn = 0x0000f809;
17571 else
17572 insn = 0x00000008;
17573 insn |= at << OP_SH_RS;
17574
17575 buf = write_insn (buf, insn);
17576 }
17577 }
17578
17579 fragp->fr_fix += fragp->fr_var;
17580 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17581 return;
17582 }
17583
17584 /* Relax microMIPS branches. */
17585 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17586 {
17587 char *buf = fragp->fr_literal + fragp->fr_fix;
17588 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17589 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17590 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17591 bfd_boolean short_ds;
17592 unsigned long insn;
17593 expressionS exp;
17594 fixS *fixp;
17595
17596 exp.X_op = O_symbol;
17597 exp.X_add_symbol = fragp->fr_symbol;
17598 exp.X_add_number = fragp->fr_offset;
17599
17600 fragp->fr_fix += fragp->fr_var;
17601
17602 /* Handle 16-bit branches that fit or are forced to fit. */
17603 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17604 {
17605 /* We generate a fixup instead of applying it right now,
17606 because if there is linker relaxation, we're going to
17607 need the relocations. */
17608 if (type == 'D')
17609 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17610 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17611 else if (type == 'E')
17612 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17613 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17614 else
17615 abort ();
17616
17617 fixp->fx_file = fragp->fr_file;
17618 fixp->fx_line = fragp->fr_line;
17619
17620 /* These relocations can have an addend that won't fit in
17621 2 octets. */
17622 fixp->fx_no_overflow = 1;
17623
17624 return;
17625 }
17626
17627 /* Handle 32-bit branches that fit or are forced to fit. */
17628 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17629 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17630 {
17631 /* We generate a fixup instead of applying it right now,
17632 because if there is linker relaxation, we're going to
17633 need the relocations. */
17634 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17635 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17636 fixp->fx_file = fragp->fr_file;
17637 fixp->fx_line = fragp->fr_line;
17638
17639 if (type == 0)
17640 return;
17641 }
17642
17643 /* Relax 16-bit branches to 32-bit branches. */
17644 if (type != 0)
17645 {
17646 insn = read_compressed_insn (buf, 2);
17647
17648 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17649 insn = 0x94000000; /* beq */
17650 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17651 {
17652 unsigned long regno;
17653
17654 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17655 regno = micromips_to_32_reg_d_map [regno];
17656 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17657 insn |= regno << MICROMIPSOP_SH_RS;
17658 }
17659 else
17660 abort ();
17661
17662 /* Nothing else to do, just write it out. */
17663 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17664 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17665 {
17666 buf = write_compressed_insn (buf, insn, 4);
17667 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17668 return;
17669 }
17670 }
17671 else
17672 insn = read_compressed_insn (buf, 4);
17673
17674 /* Relax 32-bit branches to a sequence of instructions. */
17675 as_warn_where (fragp->fr_file, fragp->fr_line,
17676 _("relaxed out-of-range branch into a jump"));
17677
17678 /* Set the short-delay-slot bit. */
17679 short_ds = al && (insn & 0x02000000) != 0;
17680
17681 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17682 {
17683 symbolS *l;
17684
17685 /* Reverse the branch. */
17686 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17687 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17688 insn ^= 0x20000000;
17689 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17690 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17691 || (insn & 0xffe00000) == 0x40800000 /* blez */
17692 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17693 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17694 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17695 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17696 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17697 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17698 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17699 insn ^= 0x00400000;
17700 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17701 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17702 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17703 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17704 insn ^= 0x00200000;
17705 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17706 BNZ.df */
17707 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17708 BNZ.V */
17709 insn ^= 0x00800000;
17710 else
17711 abort ();
17712
17713 if (al)
17714 {
17715 /* Clear the and-link and short-delay-slot bits. */
17716 gas_assert ((insn & 0xfda00000) == 0x40200000);
17717
17718 /* bltzal 0x40200000 bgezal 0x40600000 */
17719 /* bltzals 0x42200000 bgezals 0x42600000 */
17720 insn &= ~0x02200000;
17721 }
17722
17723 /* Make a label at the end for use with the branch. */
17724 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17725 micromips_label_inc ();
17726 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17727
17728 /* Refer to it. */
17729 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17730 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17731 fixp->fx_file = fragp->fr_file;
17732 fixp->fx_line = fragp->fr_line;
17733
17734 /* Branch over the jump. */
17735 buf = write_compressed_insn (buf, insn, 4);
17736 if (!compact)
17737 /* nop */
17738 buf = write_compressed_insn (buf, 0x0c00, 2);
17739 }
17740
17741 if (mips_pic == NO_PIC)
17742 {
17743 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17744
17745 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17746 insn = al ? jal : 0xd4000000;
17747
17748 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17749 BFD_RELOC_MICROMIPS_JMP);
17750 fixp->fx_file = fragp->fr_file;
17751 fixp->fx_line = fragp->fr_line;
17752
17753 buf = write_compressed_insn (buf, insn, 4);
17754 if (compact)
17755 /* nop */
17756 buf = write_compressed_insn (buf, 0x0c00, 2);
17757 }
17758 else
17759 {
17760 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17761 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17762 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17763
17764 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17765 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17766 insn |= at << MICROMIPSOP_SH_RT;
17767
17768 if (exp.X_add_number)
17769 {
17770 exp.X_add_symbol = make_expr_symbol (&exp);
17771 exp.X_add_number = 0;
17772 }
17773
17774 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17775 BFD_RELOC_MICROMIPS_GOT16);
17776 fixp->fx_file = fragp->fr_file;
17777 fixp->fx_line = fragp->fr_line;
17778
17779 buf = write_compressed_insn (buf, insn, 4);
17780
17781 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17782 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17783 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17784
17785 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17786 BFD_RELOC_MICROMIPS_LO16);
17787 fixp->fx_file = fragp->fr_file;
17788 fixp->fx_line = fragp->fr_line;
17789
17790 buf = write_compressed_insn (buf, insn, 4);
17791
17792 /* jr/jrc/jalr/jalrs $at */
17793 insn = al ? jalr : jr;
17794 insn |= at << MICROMIPSOP_SH_MJ;
17795
17796 buf = write_compressed_insn (buf, insn, 2);
17797 }
17798
17799 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17800 return;
17801 }
17802
17803 if (RELAX_MIPS16_P (fragp->fr_subtype))
17804 {
17805 int type;
17806 const struct mips_int_operand *operand;
17807 offsetT val;
17808 char *buf;
17809 unsigned int user_length, length;
17810 unsigned long insn;
17811 bfd_boolean ext;
17812 segT symsec;
17813
17814 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17815 operand = mips16_immed_operand (type, FALSE);
17816
17817 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17818 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
17819 if (operand->root.type == OP_PCREL)
17820 {
17821 const struct mips_pcrel_operand *pcrel_op;
17822 addressT addr;
17823
17824 pcrel_op = (const struct mips_pcrel_operand *) operand;
17825 addr = fragp->fr_address + fragp->fr_fix;
17826
17827 /* The rules for the base address of a PC relative reloc are
17828 complicated; see mips16_extended_frag. */
17829 if (pcrel_op->include_isa_bit)
17830 {
17831 addr += 2;
17832 if (ext)
17833 addr += 2;
17834 /* Ignore the low bit in the target, since it will be
17835 set for a text label. */
17836 val &= -2;
17837 }
17838 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17839 addr -= 4;
17840 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17841 addr -= 2;
17842
17843 addr &= -(1 << pcrel_op->align_log2);
17844 val -= addr;
17845
17846 /* Make sure the section winds up with the alignment we have
17847 assumed. */
17848 if (operand->shift > 0)
17849 record_alignment (asec, operand->shift);
17850 }
17851
17852 if (ext
17853 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17854 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17855 as_warn_where (fragp->fr_file, fragp->fr_line,
17856 _("extended instruction in delay slot"));
17857
17858 buf = fragp->fr_literal + fragp->fr_fix;
17859
17860 insn = read_compressed_insn (buf, 2);
17861 if (ext)
17862 insn |= MIPS16_EXTEND;
17863
17864 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17865 user_length = 4;
17866 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17867 user_length = 2;
17868 else
17869 user_length = 0;
17870
17871 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17872 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17873 || (operand->root.type == OP_PCREL
17874 ? asec != symsec
17875 : !bfd_is_abs_section (symsec)))
17876 {
17877 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
17878 expressionS exp;
17879 fixS *fixp;
17880
17881 switch (type)
17882 {
17883 case 'p':
17884 case 'q':
17885 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
17886 break;
17887 default:
17888 as_bad_where (fragp->fr_file, fragp->fr_line,
17889 _("unsupported relocation"));
17890 break;
17891 }
17892 if (reloc != BFD_RELOC_NONE)
17893 {
17894 gas_assert (ext);
17895
17896 exp.X_op = O_symbol;
17897 exp.X_add_symbol = fragp->fr_symbol;
17898 exp.X_add_number = fragp->fr_offset;
17899
17900 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
17901 TRUE, reloc);
17902
17903 fixp->fx_file = fragp->fr_file;
17904 fixp->fx_line = fragp->fr_line;
17905
17906 /* These relocations can have an addend that won't fit
17907 in 2 octets. */
17908 fixp->fx_no_overflow = 1;
17909 }
17910 }
17911 else
17912 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17913 BFD_RELOC_UNUSED, val, user_length, &insn);
17914
17915 length = (ext ? 4 : 2);
17916 gas_assert (mips16_opcode_length (insn) == length);
17917 write_compressed_insn (buf, insn, length);
17918 fragp->fr_fix += length;
17919 }
17920 else
17921 {
17922 relax_substateT subtype = fragp->fr_subtype;
17923 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17924 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17925 int first, second;
17926 fixS *fixp;
17927
17928 first = RELAX_FIRST (subtype);
17929 second = RELAX_SECOND (subtype);
17930 fixp = (fixS *) fragp->fr_opcode;
17931
17932 /* If the delay slot chosen does not match the size of the instruction,
17933 then emit a warning. */
17934 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17935 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17936 {
17937 relax_substateT s;
17938 const char *msg;
17939
17940 s = subtype & (RELAX_DELAY_SLOT_16BIT
17941 | RELAX_DELAY_SLOT_SIZE_FIRST
17942 | RELAX_DELAY_SLOT_SIZE_SECOND);
17943 msg = macro_warning (s);
17944 if (msg != NULL)
17945 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17946 subtype &= ~s;
17947 }
17948
17949 /* Possibly emit a warning if we've chosen the longer option. */
17950 if (use_second == second_longer)
17951 {
17952 relax_substateT s;
17953 const char *msg;
17954
17955 s = (subtype
17956 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17957 msg = macro_warning (s);
17958 if (msg != NULL)
17959 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17960 subtype &= ~s;
17961 }
17962
17963 /* Go through all the fixups for the first sequence. Disable them
17964 (by marking them as done) if we're going to use the second
17965 sequence instead. */
17966 while (fixp
17967 && fixp->fx_frag == fragp
17968 && fixp->fx_where < fragp->fr_fix - second)
17969 {
17970 if (subtype & RELAX_USE_SECOND)
17971 fixp->fx_done = 1;
17972 fixp = fixp->fx_next;
17973 }
17974
17975 /* Go through the fixups for the second sequence. Disable them if
17976 we're going to use the first sequence, otherwise adjust their
17977 addresses to account for the relaxation. */
17978 while (fixp && fixp->fx_frag == fragp)
17979 {
17980 if (subtype & RELAX_USE_SECOND)
17981 fixp->fx_where -= first;
17982 else
17983 fixp->fx_done = 1;
17984 fixp = fixp->fx_next;
17985 }
17986
17987 /* Now modify the frag contents. */
17988 if (subtype & RELAX_USE_SECOND)
17989 {
17990 char *start;
17991
17992 start = fragp->fr_literal + fragp->fr_fix - first - second;
17993 memmove (start, start + first, second);
17994 fragp->fr_fix -= first;
17995 }
17996 else
17997 fragp->fr_fix -= second;
17998 }
17999 }
18000
18001 /* This function is called after the relocs have been generated.
18002 We've been storing mips16 text labels as odd. Here we convert them
18003 back to even for the convenience of the debugger. */
18004
18005 void
mips_frob_file_after_relocs(void)18006 mips_frob_file_after_relocs (void)
18007 {
18008 asymbol **syms;
18009 unsigned int count, i;
18010
18011 syms = bfd_get_outsymbols (stdoutput);
18012 count = bfd_get_symcount (stdoutput);
18013 for (i = 0; i < count; i++, syms++)
18014 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18015 && ((*syms)->value & 1) != 0)
18016 {
18017 (*syms)->value &= ~1;
18018 /* If the symbol has an odd size, it was probably computed
18019 incorrectly, so adjust that as well. */
18020 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18021 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18022 }
18023 }
18024
18025 /* This function is called whenever a label is defined, including fake
18026 labels instantiated off the dot special symbol. It is used when
18027 handling branch delays; if a branch has a label, we assume we cannot
18028 move it. This also bumps the value of the symbol by 1 in compressed
18029 code. */
18030
18031 static void
mips_record_label(symbolS * sym)18032 mips_record_label (symbolS *sym)
18033 {
18034 segment_info_type *si = seg_info (now_seg);
18035 struct insn_label_list *l;
18036
18037 if (free_insn_labels == NULL)
18038 l = XNEW (struct insn_label_list);
18039 else
18040 {
18041 l = free_insn_labels;
18042 free_insn_labels = l->next;
18043 }
18044
18045 l->label = sym;
18046 l->next = si->label_list;
18047 si->label_list = l;
18048 }
18049
18050 /* This function is called as tc_frob_label() whenever a label is defined
18051 and adds a DWARF-2 record we only want for true labels. */
18052
18053 void
mips_define_label(symbolS * sym)18054 mips_define_label (symbolS *sym)
18055 {
18056 mips_record_label (sym);
18057 dwarf2_emit_label (sym);
18058 }
18059
18060 /* This function is called by tc_new_dot_label whenever a new dot symbol
18061 is defined. */
18062
18063 void
mips_add_dot_label(symbolS * sym)18064 mips_add_dot_label (symbolS *sym)
18065 {
18066 mips_record_label (sym);
18067 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18068 mips_compressed_mark_label (sym);
18069 }
18070
18071 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18072 static unsigned int
mips_convert_ase_flags(int ase)18073 mips_convert_ase_flags (int ase)
18074 {
18075 unsigned int ext_ases = 0;
18076
18077 if (ase & ASE_DSP)
18078 ext_ases |= AFL_ASE_DSP;
18079 if (ase & ASE_DSPR2)
18080 ext_ases |= AFL_ASE_DSPR2;
18081 if (ase & ASE_DSPR3)
18082 ext_ases |= AFL_ASE_DSPR3;
18083 if (ase & ASE_EVA)
18084 ext_ases |= AFL_ASE_EVA;
18085 if (ase & ASE_MCU)
18086 ext_ases |= AFL_ASE_MCU;
18087 if (ase & ASE_MDMX)
18088 ext_ases |= AFL_ASE_MDMX;
18089 if (ase & ASE_MIPS3D)
18090 ext_ases |= AFL_ASE_MIPS3D;
18091 if (ase & ASE_MT)
18092 ext_ases |= AFL_ASE_MT;
18093 if (ase & ASE_SMARTMIPS)
18094 ext_ases |= AFL_ASE_SMARTMIPS;
18095 if (ase & ASE_VIRT)
18096 ext_ases |= AFL_ASE_VIRT;
18097 if (ase & ASE_MSA)
18098 ext_ases |= AFL_ASE_MSA;
18099 if (ase & ASE_XPA)
18100 ext_ases |= AFL_ASE_XPA;
18101
18102 return ext_ases;
18103 }
18104 /* Some special processing for a MIPS ELF file. */
18105
18106 void
mips_elf_final_processing(void)18107 mips_elf_final_processing (void)
18108 {
18109 int fpabi;
18110 Elf_Internal_ABIFlags_v0 flags;
18111
18112 flags.version = 0;
18113 flags.isa_rev = 0;
18114 switch (file_mips_opts.isa)
18115 {
18116 case INSN_ISA1:
18117 flags.isa_level = 1;
18118 break;
18119 case INSN_ISA2:
18120 flags.isa_level = 2;
18121 break;
18122 case INSN_ISA3:
18123 flags.isa_level = 3;
18124 break;
18125 case INSN_ISA4:
18126 flags.isa_level = 4;
18127 break;
18128 case INSN_ISA5:
18129 flags.isa_level = 5;
18130 break;
18131 case INSN_ISA32:
18132 flags.isa_level = 32;
18133 flags.isa_rev = 1;
18134 break;
18135 case INSN_ISA32R2:
18136 flags.isa_level = 32;
18137 flags.isa_rev = 2;
18138 break;
18139 case INSN_ISA32R3:
18140 flags.isa_level = 32;
18141 flags.isa_rev = 3;
18142 break;
18143 case INSN_ISA32R5:
18144 flags.isa_level = 32;
18145 flags.isa_rev = 5;
18146 break;
18147 case INSN_ISA32R6:
18148 flags.isa_level = 32;
18149 flags.isa_rev = 6;
18150 break;
18151 case INSN_ISA64:
18152 flags.isa_level = 64;
18153 flags.isa_rev = 1;
18154 break;
18155 case INSN_ISA64R2:
18156 flags.isa_level = 64;
18157 flags.isa_rev = 2;
18158 break;
18159 case INSN_ISA64R3:
18160 flags.isa_level = 64;
18161 flags.isa_rev = 3;
18162 break;
18163 case INSN_ISA64R5:
18164 flags.isa_level = 64;
18165 flags.isa_rev = 5;
18166 break;
18167 case INSN_ISA64R6:
18168 flags.isa_level = 64;
18169 flags.isa_rev = 6;
18170 break;
18171 }
18172
18173 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18174 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18175 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18176 : (file_mips_opts.fp == 64) ? AFL_REG_64
18177 : AFL_REG_32;
18178 flags.cpr2_size = AFL_REG_NONE;
18179 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18180 Tag_GNU_MIPS_ABI_FP);
18181 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18182 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18183 if (file_ase_mips16)
18184 flags.ases |= AFL_ASE_MIPS16;
18185 if (file_ase_micromips)
18186 flags.ases |= AFL_ASE_MICROMIPS;
18187 flags.flags1 = 0;
18188 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18189 || file_mips_opts.fp == 64)
18190 && file_mips_opts.oddspreg)
18191 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18192 flags.flags2 = 0;
18193
18194 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18195 ((Elf_External_ABIFlags_v0 *)
18196 mips_flags_frag));
18197
18198 /* Write out the register information. */
18199 if (mips_abi != N64_ABI)
18200 {
18201 Elf32_RegInfo s;
18202
18203 s.ri_gprmask = mips_gprmask;
18204 s.ri_cprmask[0] = mips_cprmask[0];
18205 s.ri_cprmask[1] = mips_cprmask[1];
18206 s.ri_cprmask[2] = mips_cprmask[2];
18207 s.ri_cprmask[3] = mips_cprmask[3];
18208 /* The gp_value field is set by the MIPS ELF backend. */
18209
18210 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18211 ((Elf32_External_RegInfo *)
18212 mips_regmask_frag));
18213 }
18214 else
18215 {
18216 Elf64_Internal_RegInfo s;
18217
18218 s.ri_gprmask = mips_gprmask;
18219 s.ri_pad = 0;
18220 s.ri_cprmask[0] = mips_cprmask[0];
18221 s.ri_cprmask[1] = mips_cprmask[1];
18222 s.ri_cprmask[2] = mips_cprmask[2];
18223 s.ri_cprmask[3] = mips_cprmask[3];
18224 /* The gp_value field is set by the MIPS ELF backend. */
18225
18226 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18227 ((Elf64_External_RegInfo *)
18228 mips_regmask_frag));
18229 }
18230
18231 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18232 sort of BFD interface for this. */
18233 if (mips_any_noreorder)
18234 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18235 if (mips_pic != NO_PIC)
18236 {
18237 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18238 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18239 }
18240 if (mips_abicalls)
18241 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18242
18243 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18244 defined at present; this might need to change in future. */
18245 if (file_ase_mips16)
18246 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18247 if (file_ase_micromips)
18248 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18249 if (file_mips_opts.ase & ASE_MDMX)
18250 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18251
18252 /* Set the MIPS ELF ABI flags. */
18253 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18254 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18255 else if (mips_abi == O64_ABI)
18256 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18257 else if (mips_abi == EABI_ABI)
18258 {
18259 if (file_mips_opts.gp == 64)
18260 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18261 else
18262 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18263 }
18264 else if (mips_abi == N32_ABI)
18265 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18266
18267 /* Nothing to do for N64_ABI. */
18268
18269 if (mips_32bitmode)
18270 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18271
18272 if (mips_nan2008 == 1)
18273 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18274
18275 /* 32 bit code with 64 bit FP registers. */
18276 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18277 Tag_GNU_MIPS_ABI_FP);
18278 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18279 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18280 }
18281
18282 typedef struct proc {
18283 symbolS *func_sym;
18284 symbolS *func_end_sym;
18285 unsigned long reg_mask;
18286 unsigned long reg_offset;
18287 unsigned long fpreg_mask;
18288 unsigned long fpreg_offset;
18289 unsigned long frame_offset;
18290 unsigned long frame_reg;
18291 unsigned long pc_reg;
18292 } procS;
18293
18294 static procS cur_proc;
18295 static procS *cur_proc_ptr;
18296 static int numprocs;
18297
18298 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18299 as "2", and a normal nop as "0". */
18300
18301 #define NOP_OPCODE_MIPS 0
18302 #define NOP_OPCODE_MIPS16 1
18303 #define NOP_OPCODE_MICROMIPS 2
18304
18305 char
mips_nop_opcode(void)18306 mips_nop_opcode (void)
18307 {
18308 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18309 return NOP_OPCODE_MICROMIPS;
18310 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18311 return NOP_OPCODE_MIPS16;
18312 else
18313 return NOP_OPCODE_MIPS;
18314 }
18315
18316 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18317 32-bit microMIPS NOPs here (if applicable). */
18318
18319 void
mips_handle_align(fragS * fragp)18320 mips_handle_align (fragS *fragp)
18321 {
18322 char nop_opcode;
18323 char *p;
18324 int bytes, size, excess;
18325 valueT opcode;
18326
18327 if (fragp->fr_type != rs_align_code)
18328 return;
18329
18330 p = fragp->fr_literal + fragp->fr_fix;
18331 nop_opcode = *p;
18332 switch (nop_opcode)
18333 {
18334 case NOP_OPCODE_MICROMIPS:
18335 opcode = micromips_nop32_insn.insn_opcode;
18336 size = 4;
18337 break;
18338 case NOP_OPCODE_MIPS16:
18339 opcode = mips16_nop_insn.insn_opcode;
18340 size = 2;
18341 break;
18342 case NOP_OPCODE_MIPS:
18343 default:
18344 opcode = nop_insn.insn_opcode;
18345 size = 4;
18346 break;
18347 }
18348
18349 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18350 excess = bytes % size;
18351
18352 /* Handle the leading part if we're not inserting a whole number of
18353 instructions, and make it the end of the fixed part of the frag.
18354 Try to fit in a short microMIPS NOP if applicable and possible,
18355 and use zeroes otherwise. */
18356 gas_assert (excess < 4);
18357 fragp->fr_fix += excess;
18358 switch (excess)
18359 {
18360 case 3:
18361 *p++ = '\0';
18362 /* Fall through. */
18363 case 2:
18364 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18365 {
18366 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18367 break;
18368 }
18369 *p++ = '\0';
18370 /* Fall through. */
18371 case 1:
18372 *p++ = '\0';
18373 /* Fall through. */
18374 case 0:
18375 break;
18376 }
18377
18378 md_number_to_chars (p, opcode, size);
18379 fragp->fr_var = size;
18380 }
18381
18382 static long
get_number(void)18383 get_number (void)
18384 {
18385 int negative = 0;
18386 long val = 0;
18387
18388 if (*input_line_pointer == '-')
18389 {
18390 ++input_line_pointer;
18391 negative = 1;
18392 }
18393 if (!ISDIGIT (*input_line_pointer))
18394 as_bad (_("expected simple number"));
18395 if (input_line_pointer[0] == '0')
18396 {
18397 if (input_line_pointer[1] == 'x')
18398 {
18399 input_line_pointer += 2;
18400 while (ISXDIGIT (*input_line_pointer))
18401 {
18402 val <<= 4;
18403 val |= hex_value (*input_line_pointer++);
18404 }
18405 return negative ? -val : val;
18406 }
18407 else
18408 {
18409 ++input_line_pointer;
18410 while (ISDIGIT (*input_line_pointer))
18411 {
18412 val <<= 3;
18413 val |= *input_line_pointer++ - '0';
18414 }
18415 return negative ? -val : val;
18416 }
18417 }
18418 if (!ISDIGIT (*input_line_pointer))
18419 {
18420 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18421 *input_line_pointer, *input_line_pointer);
18422 as_warn (_("invalid number"));
18423 return -1;
18424 }
18425 while (ISDIGIT (*input_line_pointer))
18426 {
18427 val *= 10;
18428 val += *input_line_pointer++ - '0';
18429 }
18430 return negative ? -val : val;
18431 }
18432
18433 /* The .file directive; just like the usual .file directive, but there
18434 is an initial number which is the ECOFF file index. In the non-ECOFF
18435 case .file implies DWARF-2. */
18436
18437 static void
s_mips_file(int x ATTRIBUTE_UNUSED)18438 s_mips_file (int x ATTRIBUTE_UNUSED)
18439 {
18440 static int first_file_directive = 0;
18441
18442 if (ECOFF_DEBUGGING)
18443 {
18444 get_number ();
18445 s_app_file (0);
18446 }
18447 else
18448 {
18449 char *filename;
18450
18451 filename = dwarf2_directive_file (0);
18452
18453 /* Versions of GCC up to 3.1 start files with a ".file"
18454 directive even for stabs output. Make sure that this
18455 ".file" is handled. Note that you need a version of GCC
18456 after 3.1 in order to support DWARF-2 on MIPS. */
18457 if (filename != NULL && ! first_file_directive)
18458 {
18459 (void) new_logical_line (filename, -1);
18460 s_app_file_string (filename, 0);
18461 }
18462 first_file_directive = 1;
18463 }
18464 }
18465
18466 /* The .loc directive, implying DWARF-2. */
18467
18468 static void
s_mips_loc(int x ATTRIBUTE_UNUSED)18469 s_mips_loc (int x ATTRIBUTE_UNUSED)
18470 {
18471 if (!ECOFF_DEBUGGING)
18472 dwarf2_directive_loc (0);
18473 }
18474
18475 /* The .end directive. */
18476
18477 static void
s_mips_end(int x ATTRIBUTE_UNUSED)18478 s_mips_end (int x ATTRIBUTE_UNUSED)
18479 {
18480 symbolS *p;
18481
18482 /* Following functions need their own .frame and .cprestore directives. */
18483 mips_frame_reg_valid = 0;
18484 mips_cprestore_valid = 0;
18485
18486 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18487 {
18488 p = get_symbol ();
18489 demand_empty_rest_of_line ();
18490 }
18491 else
18492 p = NULL;
18493
18494 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18495 as_warn (_(".end not in text section"));
18496
18497 if (!cur_proc_ptr)
18498 {
18499 as_warn (_(".end directive without a preceding .ent directive"));
18500 demand_empty_rest_of_line ();
18501 return;
18502 }
18503
18504 if (p != NULL)
18505 {
18506 gas_assert (S_GET_NAME (p));
18507 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18508 as_warn (_(".end symbol does not match .ent symbol"));
18509
18510 if (debug_type == DEBUG_STABS)
18511 stabs_generate_asm_endfunc (S_GET_NAME (p),
18512 S_GET_NAME (p));
18513 }
18514 else
18515 as_warn (_(".end directive missing or unknown symbol"));
18516
18517 /* Create an expression to calculate the size of the function. */
18518 if (p && cur_proc_ptr)
18519 {
18520 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18521 expressionS *exp = XNEW (expressionS);
18522
18523 obj->size = exp;
18524 exp->X_op = O_subtract;
18525 exp->X_add_symbol = symbol_temp_new_now ();
18526 exp->X_op_symbol = p;
18527 exp->X_add_number = 0;
18528
18529 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18530 }
18531
18532 /* Generate a .pdr section. */
18533 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18534 {
18535 segT saved_seg = now_seg;
18536 subsegT saved_subseg = now_subseg;
18537 expressionS exp;
18538 char *fragp;
18539
18540 #ifdef md_flush_pending_output
18541 md_flush_pending_output ();
18542 #endif
18543
18544 gas_assert (pdr_seg);
18545 subseg_set (pdr_seg, 0);
18546
18547 /* Write the symbol. */
18548 exp.X_op = O_symbol;
18549 exp.X_add_symbol = p;
18550 exp.X_add_number = 0;
18551 emit_expr (&exp, 4);
18552
18553 fragp = frag_more (7 * 4);
18554
18555 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18556 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18557 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18558 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18559 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18560 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18561 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18562
18563 subseg_set (saved_seg, saved_subseg);
18564 }
18565
18566 cur_proc_ptr = NULL;
18567 }
18568
18569 /* The .aent and .ent directives. */
18570
18571 static void
s_mips_ent(int aent)18572 s_mips_ent (int aent)
18573 {
18574 symbolS *symbolP;
18575
18576 symbolP = get_symbol ();
18577 if (*input_line_pointer == ',')
18578 ++input_line_pointer;
18579 SKIP_WHITESPACE ();
18580 if (ISDIGIT (*input_line_pointer)
18581 || *input_line_pointer == '-')
18582 get_number ();
18583
18584 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18585 as_warn (_(".ent or .aent not in text section"));
18586
18587 if (!aent && cur_proc_ptr)
18588 as_warn (_("missing .end"));
18589
18590 if (!aent)
18591 {
18592 /* This function needs its own .frame and .cprestore directives. */
18593 mips_frame_reg_valid = 0;
18594 mips_cprestore_valid = 0;
18595
18596 cur_proc_ptr = &cur_proc;
18597 memset (cur_proc_ptr, '\0', sizeof (procS));
18598
18599 cur_proc_ptr->func_sym = symbolP;
18600
18601 ++numprocs;
18602
18603 if (debug_type == DEBUG_STABS)
18604 stabs_generate_asm_func (S_GET_NAME (symbolP),
18605 S_GET_NAME (symbolP));
18606 }
18607
18608 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18609
18610 demand_empty_rest_of_line ();
18611 }
18612
18613 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18614 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18615 s_mips_frame is used so that we can set the PDR information correctly.
18616 We can't use the ecoff routines because they make reference to the ecoff
18617 symbol table (in the mdebug section). */
18618
18619 static void
s_mips_frame(int ignore ATTRIBUTE_UNUSED)18620 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18621 {
18622 if (ECOFF_DEBUGGING)
18623 s_ignore (ignore);
18624 else
18625 {
18626 long val;
18627
18628 if (cur_proc_ptr == (procS *) NULL)
18629 {
18630 as_warn (_(".frame outside of .ent"));
18631 demand_empty_rest_of_line ();
18632 return;
18633 }
18634
18635 cur_proc_ptr->frame_reg = tc_get_register (1);
18636
18637 SKIP_WHITESPACE ();
18638 if (*input_line_pointer++ != ','
18639 || get_absolute_expression_and_terminator (&val) != ',')
18640 {
18641 as_warn (_("bad .frame directive"));
18642 --input_line_pointer;
18643 demand_empty_rest_of_line ();
18644 return;
18645 }
18646
18647 cur_proc_ptr->frame_offset = val;
18648 cur_proc_ptr->pc_reg = tc_get_register (0);
18649
18650 demand_empty_rest_of_line ();
18651 }
18652 }
18653
18654 /* The .fmask and .mask directives. If the mdebug section is present
18655 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18656 embedded targets, s_mips_mask is used so that we can set the PDR
18657 information correctly. We can't use the ecoff routines because they
18658 make reference to the ecoff symbol table (in the mdebug section). */
18659
18660 static void
s_mips_mask(int reg_type)18661 s_mips_mask (int reg_type)
18662 {
18663 if (ECOFF_DEBUGGING)
18664 s_ignore (reg_type);
18665 else
18666 {
18667 long mask, off;
18668
18669 if (cur_proc_ptr == (procS *) NULL)
18670 {
18671 as_warn (_(".mask/.fmask outside of .ent"));
18672 demand_empty_rest_of_line ();
18673 return;
18674 }
18675
18676 if (get_absolute_expression_and_terminator (&mask) != ',')
18677 {
18678 as_warn (_("bad .mask/.fmask directive"));
18679 --input_line_pointer;
18680 demand_empty_rest_of_line ();
18681 return;
18682 }
18683
18684 off = get_absolute_expression ();
18685
18686 if (reg_type == 'F')
18687 {
18688 cur_proc_ptr->fpreg_mask = mask;
18689 cur_proc_ptr->fpreg_offset = off;
18690 }
18691 else
18692 {
18693 cur_proc_ptr->reg_mask = mask;
18694 cur_proc_ptr->reg_offset = off;
18695 }
18696
18697 demand_empty_rest_of_line ();
18698 }
18699 }
18700
18701 /* A table describing all the processors gas knows about. Names are
18702 matched in the order listed.
18703
18704 To ease comparison, please keep this table in the same order as
18705 gcc's mips_cpu_info_table[]. */
18706 static const struct mips_cpu_info mips_cpu_info_table[] =
18707 {
18708 /* Entries for generic ISAs */
18709 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18710 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18711 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18712 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18713 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18714 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18715 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18716 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18717 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18718 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18719 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18720 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18721 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18722 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18723 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18724
18725 /* MIPS I */
18726 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18727 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18728 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18729
18730 /* MIPS II */
18731 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18732
18733 /* MIPS III */
18734 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18735 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18736 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18737 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18738 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18739 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18740 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18741 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18742 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18743 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18744 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18745 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18746 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18747 /* ST Microelectronics Loongson 2E and 2F cores */
18748 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18749 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18750
18751 /* MIPS IV */
18752 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18753 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18754 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18755 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18756 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18757 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18758 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18759 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18760 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18761 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18762 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18763 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18764 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18765 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18766 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18767
18768 /* MIPS 32 */
18769 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18770 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18771 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18772 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18773
18774 /* MIPS 32 Release 2 */
18775 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18776 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18777 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18778 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18779 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18780 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18781 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18782 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18783 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18784 ISA_MIPS32R2, CPU_MIPS32R2 },
18785 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18786 ISA_MIPS32R2, CPU_MIPS32R2 },
18787 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18788 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18789 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18790 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18791 /* Deprecated forms of the above. */
18792 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18793 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18794 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18795 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18796 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18797 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18798 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18799 /* Deprecated forms of the above. */
18800 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18801 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18802 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18803 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18804 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18805 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18806 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18807 /* Deprecated forms of the above. */
18808 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18809 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18810 /* 34Kn is a 34kc without DSP. */
18811 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18812 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18813 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18814 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18815 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18816 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18817 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18818 /* Deprecated forms of the above. */
18819 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18820 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18821 /* 1004K cores are multiprocessor versions of the 34K. */
18822 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18823 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18824 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18825 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18826 /* interaptiv is the new name for 1004kf */
18827 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18828 /* M5100 family */
18829 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18830 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18831 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18832 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18833
18834 /* MIPS 64 */
18835 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18836 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18837 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18838 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18839
18840 /* Broadcom SB-1 CPU core */
18841 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18842 /* Broadcom SB-1A CPU core */
18843 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18844
18845 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18846
18847 /* MIPS 64 Release 2 */
18848
18849 /* Cavium Networks Octeon CPU core */
18850 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18851 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18852 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18853 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18854
18855 /* RMI Xlr */
18856 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18857
18858 /* Broadcom XLP.
18859 XLP is mostly like XLR, with the prominent exception that it is
18860 MIPS64R2 rather than MIPS64. */
18861 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18862
18863 /* MIPS 64 Release 6 */
18864 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18865 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18866
18867 /* End marker */
18868 { NULL, 0, 0, 0, 0 }
18869 };
18870
18871
18872 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18873 with a final "000" replaced by "k". Ignore case.
18874
18875 Note: this function is shared between GCC and GAS. */
18876
18877 static bfd_boolean
mips_strict_matching_cpu_name_p(const char * canonical,const char * given)18878 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18879 {
18880 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18881 given++, canonical++;
18882
18883 return ((*given == 0 && *canonical == 0)
18884 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18885 }
18886
18887
18888 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18889 CPU name. We've traditionally allowed a lot of variation here.
18890
18891 Note: this function is shared between GCC and GAS. */
18892
18893 static bfd_boolean
mips_matching_cpu_name_p(const char * canonical,const char * given)18894 mips_matching_cpu_name_p (const char *canonical, const char *given)
18895 {
18896 /* First see if the name matches exactly, or with a final "000"
18897 turned into "k". */
18898 if (mips_strict_matching_cpu_name_p (canonical, given))
18899 return TRUE;
18900
18901 /* If not, try comparing based on numerical designation alone.
18902 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18903 if (TOLOWER (*given) == 'r')
18904 given++;
18905 if (!ISDIGIT (*given))
18906 return FALSE;
18907
18908 /* Skip over some well-known prefixes in the canonical name,
18909 hoping to find a number there too. */
18910 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18911 canonical += 2;
18912 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18913 canonical += 2;
18914 else if (TOLOWER (canonical[0]) == 'r')
18915 canonical += 1;
18916
18917 return mips_strict_matching_cpu_name_p (canonical, given);
18918 }
18919
18920
18921 /* Parse an option that takes the name of a processor as its argument.
18922 OPTION is the name of the option and CPU_STRING is the argument.
18923 Return the corresponding processor enumeration if the CPU_STRING is
18924 recognized, otherwise report an error and return null.
18925
18926 A similar function exists in GCC. */
18927
18928 static const struct mips_cpu_info *
mips_parse_cpu(const char * option,const char * cpu_string)18929 mips_parse_cpu (const char *option, const char *cpu_string)
18930 {
18931 const struct mips_cpu_info *p;
18932
18933 /* 'from-abi' selects the most compatible architecture for the given
18934 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18935 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18936 version. Look first at the -mgp options, if given, otherwise base
18937 the choice on MIPS_DEFAULT_64BIT.
18938
18939 Treat NO_ABI like the EABIs. One reason to do this is that the
18940 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18941 architecture. This code picks MIPS I for 'mips' and MIPS III for
18942 'mips64', just as we did in the days before 'from-abi'. */
18943 if (strcasecmp (cpu_string, "from-abi") == 0)
18944 {
18945 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18946 return mips_cpu_info_from_isa (ISA_MIPS1);
18947
18948 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18949 return mips_cpu_info_from_isa (ISA_MIPS3);
18950
18951 if (file_mips_opts.gp >= 0)
18952 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18953 ? ISA_MIPS1 : ISA_MIPS3);
18954
18955 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18956 ? ISA_MIPS3
18957 : ISA_MIPS1);
18958 }
18959
18960 /* 'default' has traditionally been a no-op. Probably not very useful. */
18961 if (strcasecmp (cpu_string, "default") == 0)
18962 return 0;
18963
18964 for (p = mips_cpu_info_table; p->name != 0; p++)
18965 if (mips_matching_cpu_name_p (p->name, cpu_string))
18966 return p;
18967
18968 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18969 return 0;
18970 }
18971
18972 /* Return the canonical processor information for ISA (a member of the
18973 ISA_MIPS* enumeration). */
18974
18975 static const struct mips_cpu_info *
mips_cpu_info_from_isa(int isa)18976 mips_cpu_info_from_isa (int isa)
18977 {
18978 int i;
18979
18980 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18981 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18982 && isa == mips_cpu_info_table[i].isa)
18983 return (&mips_cpu_info_table[i]);
18984
18985 return NULL;
18986 }
18987
18988 static const struct mips_cpu_info *
mips_cpu_info_from_arch(int arch)18989 mips_cpu_info_from_arch (int arch)
18990 {
18991 int i;
18992
18993 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18994 if (arch == mips_cpu_info_table[i].cpu)
18995 return (&mips_cpu_info_table[i]);
18996
18997 return NULL;
18998 }
18999
19000 static void
show(FILE * stream,const char * string,int * col_p,int * first_p)19001 show (FILE *stream, const char *string, int *col_p, int *first_p)
19002 {
19003 if (*first_p)
19004 {
19005 fprintf (stream, "%24s", "");
19006 *col_p = 24;
19007 }
19008 else
19009 {
19010 fprintf (stream, ", ");
19011 *col_p += 2;
19012 }
19013
19014 if (*col_p + strlen (string) > 72)
19015 {
19016 fprintf (stream, "\n%24s", "");
19017 *col_p = 24;
19018 }
19019
19020 fprintf (stream, "%s", string);
19021 *col_p += strlen (string);
19022
19023 *first_p = 0;
19024 }
19025
19026 void
md_show_usage(FILE * stream)19027 md_show_usage (FILE *stream)
19028 {
19029 int column, first;
19030 size_t i;
19031
19032 fprintf (stream, _("\
19033 MIPS options:\n\
19034 -EB generate big endian output\n\
19035 -EL generate little endian output\n\
19036 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19037 -G NUM allow referencing objects up to NUM bytes\n\
19038 implicitly with the gp register [default 8]\n"));
19039 fprintf (stream, _("\
19040 -mips1 generate MIPS ISA I instructions\n\
19041 -mips2 generate MIPS ISA II instructions\n\
19042 -mips3 generate MIPS ISA III instructions\n\
19043 -mips4 generate MIPS ISA IV instructions\n\
19044 -mips5 generate MIPS ISA V instructions\n\
19045 -mips32 generate MIPS32 ISA instructions\n\
19046 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19047 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19048 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19049 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19050 -mips64 generate MIPS64 ISA instructions\n\
19051 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19052 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19053 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19054 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19055 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19056
19057 first = 1;
19058
19059 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19060 show (stream, mips_cpu_info_table[i].name, &column, &first);
19061 show (stream, "from-abi", &column, &first);
19062 fputc ('\n', stream);
19063
19064 fprintf (stream, _("\
19065 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19066 -no-mCPU don't generate code specific to CPU.\n\
19067 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19068
19069 first = 1;
19070
19071 show (stream, "3900", &column, &first);
19072 show (stream, "4010", &column, &first);
19073 show (stream, "4100", &column, &first);
19074 show (stream, "4650", &column, &first);
19075 fputc ('\n', stream);
19076
19077 fprintf (stream, _("\
19078 -mips16 generate mips16 instructions\n\
19079 -no-mips16 do not generate mips16 instructions\n"));
19080 fprintf (stream, _("\
19081 -mmicromips generate microMIPS instructions\n\
19082 -mno-micromips do not generate microMIPS instructions\n"));
19083 fprintf (stream, _("\
19084 -msmartmips generate smartmips instructions\n\
19085 -mno-smartmips do not generate smartmips instructions\n"));
19086 fprintf (stream, _("\
19087 -mdsp generate DSP instructions\n\
19088 -mno-dsp do not generate DSP instructions\n"));
19089 fprintf (stream, _("\
19090 -mdspr2 generate DSP R2 instructions\n\
19091 -mno-dspr2 do not generate DSP R2 instructions\n"));
19092 fprintf (stream, _("\
19093 -mdspr3 generate DSP R3 instructions\n\
19094 -mno-dspr3 do not generate DSP R3 instructions\n"));
19095 fprintf (stream, _("\
19096 -mmt generate MT instructions\n\
19097 -mno-mt do not generate MT instructions\n"));
19098 fprintf (stream, _("\
19099 -mmcu generate MCU instructions\n\
19100 -mno-mcu do not generate MCU instructions\n"));
19101 fprintf (stream, _("\
19102 -mmsa generate MSA instructions\n\
19103 -mno-msa do not generate MSA instructions\n"));
19104 fprintf (stream, _("\
19105 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19106 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19107 fprintf (stream, _("\
19108 -mvirt generate Virtualization instructions\n\
19109 -mno-virt do not generate Virtualization instructions\n"));
19110 fprintf (stream, _("\
19111 -minsn32 only generate 32-bit microMIPS instructions\n\
19112 -mno-insn32 generate all microMIPS instructions\n"));
19113 fprintf (stream, _("\
19114 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19115 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19116 -mfix-vr4120 work around certain VR4120 errata\n\
19117 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19118 -mfix-24k insert a nop after ERET and DERET instructions\n\
19119 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19120 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19121 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19122 -msym32 assume all symbols have 32-bit values\n\
19123 -O0 remove unneeded NOPs, do not swap branches\n\
19124 -O remove unneeded NOPs and swap branches\n\
19125 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19126 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19127 fprintf (stream, _("\
19128 -mhard-float allow floating-point instructions\n\
19129 -msoft-float do not allow floating-point instructions\n\
19130 -msingle-float only allow 32-bit floating-point operations\n\
19131 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19132 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19133 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19134 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19135
19136 first = 1;
19137
19138 show (stream, "legacy", &column, &first);
19139 show (stream, "2008", &column, &first);
19140
19141 fputc ('\n', stream);
19142
19143 fprintf (stream, _("\
19144 -KPIC, -call_shared generate SVR4 position independent code\n\
19145 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19146 -mvxworks-pic generate VxWorks position independent code\n\
19147 -non_shared do not generate code that can operate with DSOs\n\
19148 -xgot assume a 32 bit GOT\n\
19149 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19150 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19151 position dependent (non shared) code\n\
19152 -mabi=ABI create ABI conformant object file for:\n"));
19153
19154 first = 1;
19155
19156 show (stream, "32", &column, &first);
19157 show (stream, "o64", &column, &first);
19158 show (stream, "n32", &column, &first);
19159 show (stream, "64", &column, &first);
19160 show (stream, "eabi", &column, &first);
19161
19162 fputc ('\n', stream);
19163
19164 fprintf (stream, _("\
19165 -32 create o32 ABI object file (default)\n\
19166 -n32 create n32 ABI object file\n\
19167 -64 create 64 ABI object file\n"));
19168 }
19169
19170 #ifdef TE_IRIX
19171 enum dwarf2_format
mips_dwarf2_format(asection * sec ATTRIBUTE_UNUSED)19172 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19173 {
19174 if (HAVE_64BIT_SYMBOLS)
19175 return dwarf2_format_64bit_irix;
19176 else
19177 return dwarf2_format_32bit;
19178 }
19179 #endif
19180
19181 int
mips_dwarf2_addr_size(void)19182 mips_dwarf2_addr_size (void)
19183 {
19184 if (HAVE_64BIT_OBJECTS)
19185 return 8;
19186 else
19187 return 4;
19188 }
19189
19190 /* Standard calling conventions leave the CFA at SP on entry. */
19191 void
mips_cfi_frame_initial_instructions(void)19192 mips_cfi_frame_initial_instructions (void)
19193 {
19194 cfi_add_CFA_def_cfa_register (SP);
19195 }
19196
19197 int
tc_mips_regname_to_dw2regnum(char * regname)19198 tc_mips_regname_to_dw2regnum (char *regname)
19199 {
19200 unsigned int regnum = -1;
19201 unsigned int reg;
19202
19203 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
19204 regnum = reg;
19205
19206 return regnum;
19207 }
19208
19209 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19210 Given a symbolic attribute NAME, return the proper integer value.
19211 Returns -1 if the attribute is not known. */
19212
19213 int
mips_convert_symbolic_attribute(const char * name)19214 mips_convert_symbolic_attribute (const char *name)
19215 {
19216 static const struct
19217 {
19218 const char * name;
19219 const int tag;
19220 }
19221 attribute_table[] =
19222 {
19223 #define T(tag) {#tag, tag}
19224 T (Tag_GNU_MIPS_ABI_FP),
19225 T (Tag_GNU_MIPS_ABI_MSA),
19226 #undef T
19227 };
19228 unsigned int i;
19229
19230 if (name == NULL)
19231 return -1;
19232
19233 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19234 if (streq (name, attribute_table[i].name))
19235 return attribute_table[i].tag;
19236
19237 return -1;
19238 }
19239
19240 void
md_mips_end(void)19241 md_mips_end (void)
19242 {
19243 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19244
19245 mips_emit_delays ();
19246 if (cur_proc_ptr)
19247 as_warn (_("missing .end at end of assembly"));
19248
19249 /* Just in case no code was emitted, do the consistency check. */
19250 file_mips_check_options ();
19251
19252 /* Set a floating-point ABI if the user did not. */
19253 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19254 {
19255 /* Perform consistency checks on the floating-point ABI. */
19256 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19257 Tag_GNU_MIPS_ABI_FP);
19258 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19259 check_fpabi (fpabi);
19260 }
19261 else
19262 {
19263 /* Soft-float gets precedence over single-float, the two options should
19264 not be used together so this should not matter. */
19265 if (file_mips_opts.soft_float == 1)
19266 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19267 /* Single-float gets precedence over all double_float cases. */
19268 else if (file_mips_opts.single_float == 1)
19269 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19270 else
19271 {
19272 switch (file_mips_opts.fp)
19273 {
19274 case 32:
19275 if (file_mips_opts.gp == 32)
19276 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19277 break;
19278 case 0:
19279 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19280 break;
19281 case 64:
19282 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19283 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19284 else if (file_mips_opts.gp == 32)
19285 fpabi = Val_GNU_MIPS_ABI_FP_64;
19286 else
19287 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19288 break;
19289 }
19290 }
19291
19292 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19293 Tag_GNU_MIPS_ABI_FP, fpabi);
19294 }
19295 }
19296
19297 /* Returns the relocation type required for a particular CFI encoding. */
19298
19299 bfd_reloc_code_real_type
mips_cfi_reloc_for_encoding(int encoding)19300 mips_cfi_reloc_for_encoding (int encoding)
19301 {
19302 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19303 return BFD_RELOC_32_PCREL;
19304 else return BFD_RELOC_NONE;
19305 }
19306