1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.view.math;
18 
19 public class Math3DHelper {
20 
21     private static final float EPSILON = 0.0000001f;
22 
Math3DHelper()23     private Math3DHelper() { }
24 
25     /**
26      * Calculates [p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2];
27      *
28      * @param d - dimension in which the poly is represented (supports 2 or 3D)
29      * @return float[]{t2, t, p1} or float[]{Float.NaN}
30      */
rayIntersectPoly(float[] poly, int polyLength, float px, float py, float dx, float dy, int d)31     public static float[] rayIntersectPoly(float[] poly, int polyLength, float px, float py,
32             float dx, float dy, int d) {
33         int p1 = polyLength - 1;
34         for (int p2 = 0; p2 < polyLength; p2++) {
35             float p1x = poly[p1 * d + 0];
36             float p1y = poly[p1 * d + 1];
37             float p2x = poly[p2 * d + 0];
38             float p2y = poly[p2 * d + 1];
39             float div = (dx * (p1y - p2y) + dy * (p2x - p1x));
40             if (div != 0) {
41                 float t = (dx * (p1y - py) + dy * (px - p1x)) / div;
42                 if (t >= 0 && t <= 1) {
43                     float t2 = (p1x * (py - p2y)
44                             + p2x * (p1y - py)
45                             + px * (p2y - p1y))
46                             / div;
47                     if (t2 > 0) {
48                         return new float[]{t2, t, p1};
49                     }
50                 }
51             }
52             p1 = p2;
53         }
54         return new float[]{Float.NaN};
55     }
56 
centroid2d(float[] poly, int len, float[] ret)57     public static void centroid2d(float[] poly, int len, float[] ret) {
58         float sumx = 0;
59         float sumy = 0;
60         int p1 = len - 1;
61         float area = 0;
62         for (int p2 = 0; p2 < len; p2++) {
63             float x1 = poly[p1 * 2 + 0];
64             float y1 = poly[p1 * 2 + 1];
65             float x2 = poly[p2 * 2 + 0];
66             float y2 = poly[p2 * 2 + 1];
67             float a = (x1 * y2 - x2 * y1);
68             sumx += (x1 + x2) * a;
69             sumy += (y1 + y2) * a;
70             area += a;
71             p1 = p2;
72         }
73         float centroidx = sumx / (3 * area);
74         float centroidy = sumy / (3 * area);
75         ret[0] = centroidx;
76         ret[1] = centroidy;
77     }
78 
centroid3d(float[] poly, int len, float[] ret)79     public static void centroid3d(float[] poly, int len, float[] ret) {
80         int n = len - 1;
81         double area = 0;
82         double cx = 0;
83         double cy = 0;
84         double cz = 0;
85         for (int i = 1; i < n; i++) {
86             int k = i + 1;
87             float a0 = poly[i * 3 + 0] - poly[0 * 3 + 0];
88             float a1 = poly[i * 3 + 1] - poly[0 * 3 + 1];
89             float a2 = poly[i * 3 + 2] - poly[0 * 3 + 2];
90             float b0 = poly[k * 3 + 0] - poly[0 * 3 + 0];
91             float b1 = poly[k * 3 + 1] - poly[0 * 3 + 1];
92             float b2 = poly[k * 3 + 2] - poly[0 * 3 + 2];
93             float c0 = a1 * b2 - b1 * a2;
94             float c1 = a2 * b0 - b2 * a0;
95             float c2 = a0 * b1 - b0 * a1;
96             double areaOfTriangle = Math.sqrt(c0 * c0 + c1 * c1 + c2 * c2);
97             area += areaOfTriangle;
98             cx += areaOfTriangle * (poly[i * 3 + 0] + poly[k * 3 + 0] + poly[0 * 3 + 0]);
99             cy += areaOfTriangle * (poly[i * 3 + 1] + poly[k * 3 + 1] + poly[0 * 3 + 1]);
100             cz += areaOfTriangle * (poly[i * 3 + 2] + poly[k * 3 + 2] + poly[0 * 3 + 2]);
101         }
102         ret[0] = (float) (cx / (3 * area));
103         ret[1] = (float) (cy / (3 * area));
104         ret[2] = (float) (cz / (3 * area));
105     }
106 
min(int x1, int x2, int x3)107     public final static int min(int x1, int x2, int x3) {
108         return (x1 > x2) ? ((x2 > x3) ? x3 : x2) : ((x1 > x3) ? x3 : x1);
109     }
110 
max(int x1, int x2, int x3)111     public final static int max(int x1, int x2, int x3) {
112         return (x1 < x2) ? ((x2 < x3) ? x3 : x2) : ((x1 < x3) ? x3 : x1);
113     }
114 
xsort(float[] points, int pointsLength)115     private static void xsort(float[] points, int pointsLength) {
116         quicksortX(points, 0, pointsLength - 1);
117     }
118 
hull(float[] points, int pointsLength, float[] retPoly)119     public static int hull(float[] points, int pointsLength, float[] retPoly) {
120         xsort(points, pointsLength);
121         int n = pointsLength;
122         float[] lUpper = new float[n * 2];
123         lUpper[0] = points[0];
124         lUpper[1] = points[1];
125         lUpper[2] = points[2];
126         lUpper[3] = points[3];
127 
128         int lUpperSize = 2;
129 
130         for (int i = 2; i < n; i++) {
131             lUpper[lUpperSize * 2 + 0] = points[i * 2 + 0];
132             lUpper[lUpperSize * 2 + 1] = points[i * 2 + 1];
133             lUpperSize++;
134 
135             while (lUpperSize > 2 && !rightTurn(
136                     lUpper[(lUpperSize - 3) * 2], lUpper[(lUpperSize - 3) * 2 + 1],
137                     lUpper[(lUpperSize - 2) * 2], lUpper[(lUpperSize - 2) * 2 + 1],
138                     lUpper[(lUpperSize - 1) * 2], lUpper[(lUpperSize - 1) * 2 + 1])) {
139                 // Remove the middle point of the three last
140                 lUpper[(lUpperSize - 2) * 2 + 0] = lUpper[(lUpperSize - 1) * 2 + 0];
141                 lUpper[(lUpperSize - 2) * 2 + 1] = lUpper[(lUpperSize - 1) * 2 + 1];
142                 lUpperSize--;
143             }
144         }
145 
146         float[] lLower = new float[n * 2];
147         lLower[0] = points[(n - 1) * 2 + 0];
148         lLower[1] = points[(n - 1) * 2 + 1];
149         lLower[2] = points[(n - 2) * 2 + 0];
150         lLower[3] = points[(n - 2) * 2 + 1];
151 
152         int lLowerSize = 2;
153 
154         for (int i = n - 3; i >= 0; i--) {
155             lLower[lLowerSize * 2 + 0] = points[i * 2 + 0];
156             lLower[lLowerSize * 2 + 1] = points[i * 2 + 1];
157             lLowerSize++;
158 
159             while (lLowerSize > 2 && !rightTurn(
160                     lLower[(lLowerSize - 3) * 2], lLower[(lLowerSize - 3) * 2 + 1],
161                     lLower[(lLowerSize - 2) * 2], lLower[(lLowerSize - 2) * 2 + 1],
162                     lLower[(lLowerSize - 1) * 2], lLower[(lLowerSize - 1) * 2 + 1])) {
163                 // Remove the middle point of the three last
164                 lLower[(lLowerSize - 2) * 2 + 0] = lLower[(lLowerSize - 1) * 2 + 0];
165                 lLower[(lLowerSize - 2) * 2 + 1] = lLower[(lLowerSize - 1) * 2 + 1];
166                 lLowerSize--;
167             }
168         }
169         int count = 0;
170 
171         for (int i = 0; i < lUpperSize; i++) {
172             retPoly[count * 2 + 0] = lUpper[i * 2 + 0];
173             retPoly[count * 2 + 1] = lUpper[i * 2 + 1];
174             count++;
175         }
176 
177         for (int i = 1; i < lLowerSize - 1; i++) {
178             retPoly[count * 2 + 0] = lLower[i * 2 + 0];
179             retPoly[count * 2 + 1] = lLower[i * 2 + 1];
180             count++;
181         }
182 
183         return count;
184     }
185 
rightTurn(float ax, float ay, float bx, float by, float cx, float cy)186     private static boolean rightTurn(float ax, float ay, float bx, float by, float cx, float cy) {
187         return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > 0.00001;
188     }
189 
190     /**
191      * Calculates the intersection of poly1 with poly2 and puts in poly2
192      * @return number of point in poly2
193      */
intersection( float[] poly1, int poly1length, float[] poly2, int poly2length)194     public static int intersection(
195             float[] poly1, int poly1length, float[] poly2, int poly2length) {
196         makeClockwise(poly1, poly1length);
197         makeClockwise(poly2, poly2length);
198         float[] poly = new float[(poly1length * poly2length + 2) * 2];
199         int count = 0;
200         int pcount = 0;
201         for (int i = 0; i < poly1length; i++) {
202             if (pointInsidePolygon(poly1[i * 2], poly1[i * 2 + 1], poly2, poly2length)) {
203                 poly[count * 2] = poly1[i * 2];
204                 poly[count * 2 + 1] = poly1[i * 2 + 1];
205                 count++;
206                 pcount++;
207             }
208         }
209         int fromP1 = pcount;
210         for (int i = 0; i < poly2length; i++) {
211             if (pointInsidePolygon(poly2[i * 2], poly2[i * 2 + 1], poly1, poly1length)) {
212                 poly[count * 2] = poly2[i * 2];
213                 poly[count * 2 + 1] = poly2[i * 2 + 1];
214                 count++;
215             }
216         }
217         int fromP2 = count - fromP1;
218         if (fromP1 == poly1length) { // use p1
219             for (int i = 0; i < poly1length; i++) {
220                 poly2[i * 2] = poly1[i * 2];
221                 poly2[i * 2 + 1] = poly1[i * 2 + 1];
222             }
223             return poly1length;
224         }
225         if (fromP2 == poly2length) { // use p2
226             return poly2length;
227         }
228         float[] intersection = new float[2];
229         for (int i = 0; i < poly2length; i++) {
230             for (int j = 0; j < poly1length; j++) {
231                 int i1_by_2 = i * 2;
232                 int i2_by_2 = ((i + 1) % poly2length) * 2;
233                 int j1_by_2 = j * 2;
234                 int j2_by_2 = ((j + 1) % poly1length) * 2;
235                 boolean found = lineIntersection(
236                         poly2[i1_by_2], poly2[i1_by_2 + 1],
237                         poly2[i2_by_2], poly2[i2_by_2 + 1],
238                         poly1[j1_by_2], poly1[j1_by_2 + 1],
239                         poly1[j2_by_2], poly1[j2_by_2 + 1], intersection);
240                 if (found) {
241                     poly[count * 2] = intersection[0];
242                     poly[count * 2 + 1] = intersection[1];
243                     count++;
244                 } else {
245                     float dx = poly2[i * 2] - poly1[j * 2];
246                     float dy = poly2[i * 2 + 1] - poly1[j * 2 + 1];
247 
248                     if (dx * dx + dy * dy < 0.01) {
249                         poly[count * 2] = poly2[i * 2];
250                         poly[count * 2 + 1] = poly2[i * 2 + 1];
251                         count++;
252                     }
253                 }
254             }
255         }
256         if (count == 0) {
257             return 0;
258         }
259         float avgx = 0;
260         float avgy = 0;
261         for (int i = 0; i < count; i++) {
262             avgx += poly[i * 2];
263             avgy += poly[i * 2 + 1];
264         }
265         avgx /= count;
266         avgy /= count;
267 
268         float[] ctr = new float[] { avgx, avgy };
269         sort(poly, count, ctr);
270         int size = count;
271 
272         poly2[0] = poly[0];
273         poly2[1] = poly[1];
274 
275         count = 1;
276         for (int i = 1; i < size; i++) {
277             float dx = poly[i * 2] - poly[(i - 1) * 2];
278             float dy = poly[i * 2 + 1] - poly[(i - 1) * 2 + 1];
279             if (dx * dx + dy * dy >= 0.01) {
280                 poly2[count * 2] = poly[i * 2];
281                 poly2[count * 2 + 1] = poly[i * 2 + 1];
282                 count++;
283             }
284         }
285         return count;
286     }
287 
sort(float[] poly, int polyLength, float[] ctr)288     public static void sort(float[] poly, int polyLength, float[] ctr) {
289         quicksortCirc(poly, 0, polyLength - 1, ctr);
290     }
291 
angle(float x1, float y1, float[] ctr)292     public static float angle(float x1, float y1, float[] ctr) {
293         return -(float) Math.atan2(x1 - ctr[0], y1 - ctr[1]);
294     }
295 
swap(float[] points, int i, int j)296     private static void swap(float[] points, int i, int j) {
297         float x = points[i * 2];
298         float y = points[i * 2 + 1];
299         points[i * 2] = points[j * 2];
300         points[i * 2 + 1] = points[j * 2 + 1];
301         points[j * 2] = x;
302         points[j * 2 + 1] = y;
303     }
304 
quicksortCirc(float[] points, int low, int high, float[] ctr)305     private static void quicksortCirc(float[] points, int low, int high, float[] ctr) {
306         int i = low, j = high;
307         int p = low + (high - low) / 2;
308         float pivot = angle(points[p * 2], points[p * 2 + 1], ctr);
309         while (i <= j) {
310             while (angle(points[i * 2], points[i * 2 + 1], ctr) < pivot) {
311                 i++;
312             }
313             while (angle(points[j * 2], points[j * 2 + 1], ctr) > pivot) {
314                 j--;
315             }
316 
317             if (i <= j) {
318                 swap(points, i, j);
319                 i++;
320                 j--;
321             }
322         }
323         if (low < j) {
324             quicksortCirc(points, low, j, ctr);
325         }
326         if (i < high) {
327             quicksortCirc(points, i, high, ctr);
328         }
329     }
330 
quicksortX(float[] points, int low, int high)331     private static void quicksortX(float[] points, int low, int high) {
332         int i = low, j = high;
333         int p = low + (high - low) / 2;
334         float pivot = points[p * 2];
335         while (i <= j) {
336             while (points[i * 2] < pivot) {
337                 i++;
338             }
339             while (points[j * 2] > pivot) {
340                 j--;
341             }
342 
343             if (i <= j) {
344                 swap(points, i, j);
345                 i++;
346                 j--;
347             }
348         }
349         if (low < j) {
350             quicksortX(points, low, j);
351         }
352         if (i < high) {
353             quicksortX(points, i, high);
354         }
355     }
356 
pointInsidePolygon(float x, float y, float[] poly, int len)357     private static boolean pointInsidePolygon(float x, float y, float[] poly, int len) {
358         boolean c = false;
359         float testx = x;
360         float testy = y;
361         for (int i = 0, j = len - 1; i < len; j = i++) {
362             if (((poly[i * 2 + 1] > testy) != (poly[j * 2 + 1] > testy)) &&
363                     (testx < (poly[j * 2] - poly[i * 2]) * (testy - poly[i * 2 + 1])
364                             / (poly[j * 2 + 1] - poly[i * 2 + 1]) + poly[i * 2])) {
365                 c = !c;
366             }
367         }
368         return c;
369     }
370 
makeClockwise(float[] polygon, int len)371     private static void makeClockwise(float[] polygon, int len) {
372         if (polygon == null || len == 0) {
373             return;
374         }
375         if (!isClockwise(polygon, len)) {
376             reverse(polygon, len);
377         }
378     }
379 
isClockwise(float[] polygon, int len)380     private static boolean isClockwise(float[] polygon, int len) {
381         float sum = 0;
382         float p1x = polygon[(len - 1) * 2];
383         float p1y = polygon[(len - 1) * 2 + 1];
384         for (int i = 0; i < len; i++) {
385 
386             float p2x = polygon[i * 2];
387             float p2y = polygon[i * 2 + 1];
388             sum += p1x * p2y - p2x * p1y;
389             p1x = p2x;
390             p1y = p2y;
391         }
392         return sum < 0;
393     }
394 
reverse(float[] polygon, int len)395     private static void reverse(float[] polygon, int len) {
396         int n = len / 2;
397         for (int i = 0; i < n; i++) {
398             float tmp0 = polygon[i * 2];
399             float tmp1 = polygon[i * 2 + 1];
400             int k = len - 1 - i;
401             polygon[i * 2] = polygon[k * 2];
402             polygon[i * 2 + 1] = polygon[k * 2 + 1];
403             polygon[k * 2] = tmp0;
404             polygon[k * 2 + 1] = tmp1;
405         }
406     }
407 
408     /**
409      * Intersects two lines in parametric form.
410      */
lineIntersection( float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, float[] ret)411     private static final boolean lineIntersection(
412             float x1, float y1,
413             float x2, float y2,
414             float x3, float y3,
415             float x4, float y4,
416             float[] ret) {
417 
418         float d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
419         if (d == 0.000f) {
420             return false;
421         }
422 
423         float dx = (x1 * y2 - y1 * x2);
424         float dy = (x3 * y4 - y3 * x4);
425         float x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
426         float y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
427 
428         if (((x - x1) * (x - x2) > EPSILON)
429                 || ((x - x3) * (x - x4) > EPSILON)
430                 || ((y - y1) * (y - y2) > EPSILON)
431                 || ((y - y3) * (y - y4) > EPSILON)) {
432 
433             return false;
434         }
435         ret[0] = x;
436         ret[1] = y;
437         return true;
438     }
439 
440     /**
441      * Imagine a donut shaped image and trying to create triangles from its centroid (like
442      * cutting a pie). This function performs such action (and also edge-case triangle strips
443      * generation) then returns the resulting triangle strips.
444      *
445      * @param retstrips - the resulting triangle strips
446      */
donutPie2(float[] penumbra, int penumbraLength, float[] umbra, int umbraLength, int rays, int layers, float strength, float[] retstrips)447     public static void donutPie2(float[] penumbra, int penumbraLength,
448             float[] umbra, int umbraLength, int rays, int layers, float strength,
449             float[] retstrips) {
450         int rings = layers + 1;
451 
452         double step = Math.PI * 2 / rays;
453         float[] retxy = new float[2];
454         centroid2d(umbra, umbraLength, retxy);
455         float cx = retxy[0];
456         float cy = retxy[1];
457 
458         float[] t1 = new float[rays];
459         float[] t2 = new float[rays];
460 
461         for (int i = 0; i < rays; i++) {
462             float dx = (float) Math.sin(Math.PI / 4 + step * i);
463             float dy = (float) Math.cos(Math.PI / 4 + step * i);
464             t2[i] = rayIntersectPoly(umbra, umbraLength, cx, cy, dx, dy, 2)[0];
465             t1[i] = rayIntersectPoly(penumbra, penumbraLength, cx, cy, dx, dy, 2)[0];
466         }
467 
468         int p = 0;
469         // Calc the vertex
470         for (int r = 0; r < layers; r++) {
471             int startp = p;
472             for (int i = 0; i < rays; i++) {
473                 float dx = (float) Math.sin(Math.PI / 4 + step * i);
474                 float dy = (float) Math.cos(Math.PI / 4 + step * i);
475 
476                 for (int j = r; j < (r + 2); j++) {
477                     float jf = j / (float) (rings - 1);
478                     float t = t1[i] + jf * (t2[i] - t1[i]);
479                     float op = (jf + 1 - 1 / (1 + (t - t1[i]) * (t - t1[i]))) / 2;
480 
481                     retstrips[p * 3] = dx * t + cx;
482                     retstrips[p * 3 + 1] = dy * t + cy;
483                     retstrips[p * 3 + 2] = jf * op * strength;
484 
485                     p++;
486                 }
487             }
488             retstrips[p * 3] = retstrips[startp * 3];
489             retstrips[p * 3 + 1] = retstrips[startp * 3 + 1];
490             retstrips[p * 3 + 2] = retstrips[startp * 3 + 2];
491             p++;
492             startp++;
493             retstrips[p * 3] = retstrips[startp * 3];
494             retstrips[p * 3 + 1] = retstrips[startp * 3 + 1];
495             retstrips[p * 3 + 2] = retstrips[startp * 3 + 2];
496             p++;
497         }
498         int oldp = p - 1;
499         retstrips[p * 3] = retstrips[oldp * 3];
500         retstrips[p * 3 + 1] = retstrips[oldp * 3 + 1];
501         retstrips[p * 3 + 2] = retstrips[oldp * 3 + 2];
502         p+=2;
503 
504         oldp = p;
505         for (int k = 0; k < rays; k++) {
506             int i = k / 2;
507             if ((k & 1) == 1) { // traverse the inside in a zig zag pattern
508                 // for strips
509                 i = rays - i - 1;
510             }
511             float dx = (float) Math.sin(Math.PI / 4 + step * i);
512             float dy = (float) Math.cos(Math.PI / 4 + step * i);
513 
514             float jf = 1;
515 
516             float t = t1[i] + jf * (t2[i] - t1[i]);
517             float op = (jf + 1 - 1 / (1 + (t - t1[i]) * (t - t1[i]))) / 2;
518 
519             retstrips[p * 3] = dx * t + cx;
520             retstrips[p * 3 + 1] = dy * t + cy;
521             retstrips[p * 3 + 2] = jf * op * strength;
522             p++;
523         }
524         p = oldp - 1;
525         retstrips[p * 3] = retstrips[oldp * 3];
526         retstrips[p * 3 + 1] = retstrips[oldp * 3 + 1];
527         retstrips[p * 3 + 2] = retstrips[oldp * 3 + 2];
528     }
529 
530     /**
531      * @return Rect bound of flattened (ignoring z). LTRB
532      * @param dimension - 2D or 3D
533      */
flatBound(float[] poly, int dimension)534     public static float[] flatBound(float[] poly, int dimension) {
535         int polySize = poly.length/dimension;
536         float left = poly[0];
537         float right = poly[0];
538         float top = poly[1];
539         float bottom = poly[1];
540 
541         for (int i = 0; i < polySize; i++) {
542             float x = poly[i * dimension + 0];
543             float y = poly[i * dimension + 1];
544 
545             if (left > x) {
546                 left = x;
547             } else if (right < x) {
548                 right = x;
549             }
550 
551             if (top > y) {
552                 top = y;
553             } else if (bottom < y) {
554                 bottom = y;
555             }
556         }
557         return new float[]{left, top, right, bottom};
558     }
559 
560     /**
561      * Translate the polygon to x and y
562      * @param dimension in what dimension is polygon represented (supports 2 or 3D).
563      */
translate(float[] poly, float translateX, float translateY, int dimension)564     public static void translate(float[] poly, float translateX, float translateY, int dimension) {
565         int polySize = poly.length/dimension;
566 
567         for (int i = 0; i < polySize; i++) {
568             poly[i * dimension + 0] += translateX;
569             poly[i * dimension + 1] += translateY;
570         }
571     }
572 
573 }
574 
575