Home
last modified time | relevance | path

Searched refs:Poisson (Results 1 – 25 of 31) sorted by relevance

12

/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.losses.-poisson.pbtxt1 path: "tensorflow.losses.Poisson"
3 is_instance: "<class \'tensorflow.python.keras.losses.Poisson\'>"
Dtensorflow.keras.losses.-poisson.pbtxt1 path: "tensorflow.keras.losses.Poisson"
3 is_instance: "<class \'tensorflow.python.keras.losses.Poisson\'>"
Dtensorflow.metrics.-poisson.pbtxt1 path: "tensorflow.metrics.Poisson"
3 is_instance: "<class \'tensorflow.python.keras.metrics.Poisson\'>"
Dtensorflow.keras.metrics.-poisson.pbtxt1 path: "tensorflow.keras.metrics.Poisson"
3 is_instance: "<class \'tensorflow.python.keras.metrics.Poisson\'>"
Dtensorflow.keras.losses.pbtxt56 name: "Poisson"
Dtensorflow.losses.pbtxt56 name: "Poisson"
Dtensorflow.metrics.pbtxt92 name: "Poisson"
Dtensorflow.keras.metrics.pbtxt92 name: "Poisson"
/external/tensorflow/tensorflow/tools/api/golden/v1/
Dtensorflow.keras.losses.-poisson.pbtxt1 path: "tensorflow.keras.losses.Poisson"
3 is_instance: "<class \'tensorflow.python.keras.losses.Poisson\'>"
Dtensorflow.keras.metrics.-poisson.pbtxt1 path: "tensorflow.keras.metrics.Poisson"
3 is_instance: "<class \'tensorflow.python.keras.metrics.Poisson\'>"
Dtensorflow.keras.losses.pbtxt56 name: "Poisson"
Dtensorflow.keras.metrics.pbtxt92 name: "Poisson"
/external/grpc-grpc/src/ruby/qps/
Dclient.rb28 class Poisson class
89 waiter = Poisson.new(config.load_params.poisson.offered_load /
/external/tensorflow/tensorflow/contrib/distributions/python/ops/
Dpoisson.py51 class Poisson(distribution.Distribution): class
125 super(Poisson, self).__init__(
Dpoisson_lognormal.py300 self._distribution = poisson_lib.Poisson(
/external/grpc-grpc/src/csharp/Grpc.IntegrationTesting/
DControl.cs436 case LoadOneofCase.Poisson: in LoadParams()
437 Poisson = other.Poisson.Clone(); in LoadParams()
463 public global::Grpc.Testing.PoissonParams Poisson { property in Grpc.Testing.LoadParams
464 …get { return loadCase_ == LoadOneofCase.Poisson ? (global::Grpc.Testing.PoissonParams) load_ : nul…
467 loadCase_ = value == null ? LoadOneofCase.None : LoadOneofCase.Poisson;
476 Poisson = 2, enumerator
504 if (!object.Equals(Poisson, other.Poisson)) return false; in Equals()
513 if (loadCase_ == LoadOneofCase.Poisson) hash ^= Poisson.GetHashCode(); in GetHashCode()
532 if (loadCase_ == LoadOneofCase.Poisson) { in WriteTo()
534 output.WriteMessage(Poisson); in WriteTo()
[all …]
DClientRunners.cs357 case LoadParams.LoadOneofCase.Poisson: in CreateTimer()
358 … return new PoissonInterarrivalTimer(loadParams.Poisson.OfferedLoad * loadMultiplier); in CreateTimer()
/external/tensorflow/tensorflow/contrib/boosted_trees/lib/utils/
Drandom_test.cc23 TEST(RandomTest, Poisson) { in TEST() argument
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_RandomPoissonV2.pbtxt39 summary: "Outputs random values from the Poisson distribution(s) described by rate."
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/
Dpoisson_test.py35 return poisson_lib.Poisson(rate=rate, validate_args=validate_args)
254 return poisson_lib.Poisson(
/external/tensorflow/tensorflow/python/keras/
Dlosses.py536 class Poisson(LossFunctionWrapper): class
560 super(Poisson, self).__init__(poisson, name=name, reduction=reduction)
Dlosses_test.py1292 poisson_obj = keras.losses.Poisson(
1299 poisson_obj = keras.losses.Poisson()
1307 poisson_obj = keras.losses.Poisson()
1322 poisson_obj = keras.losses.Poisson()
1335 poisson_obj = keras.losses.Poisson()
1353 poisson_obj = keras.losses.Poisson()
Dmetrics_test.py996 poisson_obj = metrics.Poisson(name='poisson', dtype=dtypes.int32)
1000 poisson_obj2 = metrics.Poisson.from_config(poisson_obj.get_config())
1006 poisson_obj = metrics.Poisson()
1017 poisson_obj = metrics.Poisson()
/external/tensorflow/tensorflow/contrib/linear_optimizer/kernels/g3doc/
Dreadme.md202 ### Poisson log loss
204 Poisson log loss is defined as $$ \l(u) = e^u - uy $$ for label $$y \geq 0.$$
/external/eigen/doc/
DSparseLinearSystems.dox24 <td>Recommended for very sparse and not too large problems (e.g., 2D Poisson eq.)</td></tr>
46 <td>Recommended for large symmetric problems (e.g., 3D Poisson eq.)</td></tr>

12