1path: "tensorflow.keras.metrics" 2tf_module { 3 member { 4 name: "AUC" 5 mtype: "<type \'type\'>" 6 } 7 member { 8 name: "Accuracy" 9 mtype: "<type \'type\'>" 10 } 11 member { 12 name: "BinaryAccuracy" 13 mtype: "<type \'type\'>" 14 } 15 member { 16 name: "BinaryCrossentropy" 17 mtype: "<type \'type\'>" 18 } 19 member { 20 name: "CategoricalAccuracy" 21 mtype: "<type \'type\'>" 22 } 23 member { 24 name: "CategoricalCrossentropy" 25 mtype: "<type \'type\'>" 26 } 27 member { 28 name: "CategoricalHinge" 29 mtype: "<type \'type\'>" 30 } 31 member { 32 name: "CosineSimilarity" 33 mtype: "<type \'type\'>" 34 } 35 member { 36 name: "FalseNegatives" 37 mtype: "<type \'type\'>" 38 } 39 member { 40 name: "FalsePositives" 41 mtype: "<type \'type\'>" 42 } 43 member { 44 name: "Hinge" 45 mtype: "<type \'type\'>" 46 } 47 member { 48 name: "KLDivergence" 49 mtype: "<type \'type\'>" 50 } 51 member { 52 name: "LogCoshError" 53 mtype: "<type \'type\'>" 54 } 55 member { 56 name: "Mean" 57 mtype: "<type \'type\'>" 58 } 59 member { 60 name: "MeanAbsoluteError" 61 mtype: "<type \'type\'>" 62 } 63 member { 64 name: "MeanAbsolutePercentageError" 65 mtype: "<type \'type\'>" 66 } 67 member { 68 name: "MeanIoU" 69 mtype: "<type \'type\'>" 70 } 71 member { 72 name: "MeanRelativeError" 73 mtype: "<type \'type\'>" 74 } 75 member { 76 name: "MeanSquaredError" 77 mtype: "<type \'type\'>" 78 } 79 member { 80 name: "MeanSquaredLogarithmicError" 81 mtype: "<type \'type\'>" 82 } 83 member { 84 name: "MeanTensor" 85 mtype: "<type \'type\'>" 86 } 87 member { 88 name: "Metric" 89 mtype: "<type \'type\'>" 90 } 91 member { 92 name: "Poisson" 93 mtype: "<type \'type\'>" 94 } 95 member { 96 name: "Precision" 97 mtype: "<type \'type\'>" 98 } 99 member { 100 name: "Recall" 101 mtype: "<type \'type\'>" 102 } 103 member { 104 name: "RootMeanSquaredError" 105 mtype: "<type \'type\'>" 106 } 107 member { 108 name: "SensitivityAtSpecificity" 109 mtype: "<type \'type\'>" 110 } 111 member { 112 name: "SparseCategoricalAccuracy" 113 mtype: "<type \'type\'>" 114 } 115 member { 116 name: "SparseCategoricalCrossentropy" 117 mtype: "<type \'type\'>" 118 } 119 member { 120 name: "SparseTopKCategoricalAccuracy" 121 mtype: "<type \'type\'>" 122 } 123 member { 124 name: "SpecificityAtSensitivity" 125 mtype: "<type \'type\'>" 126 } 127 member { 128 name: "SquaredHinge" 129 mtype: "<type \'type\'>" 130 } 131 member { 132 name: "Sum" 133 mtype: "<type \'type\'>" 134 } 135 member { 136 name: "TopKCategoricalAccuracy" 137 mtype: "<type \'type\'>" 138 } 139 member { 140 name: "TrueNegatives" 141 mtype: "<type \'type\'>" 142 } 143 member { 144 name: "TruePositives" 145 mtype: "<type \'type\'>" 146 } 147 member_method { 148 name: "KLD" 149 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 150 } 151 member_method { 152 name: "MAE" 153 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 154 } 155 member_method { 156 name: "MAPE" 157 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 158 } 159 member_method { 160 name: "MSE" 161 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 162 } 163 member_method { 164 name: "MSLE" 165 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 166 } 167 member_method { 168 name: "binary_accuracy" 169 argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.5\'], " 170 } 171 member_method { 172 name: "binary_crossentropy" 173 argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], " 174 } 175 member_method { 176 name: "categorical_accuracy" 177 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 178 } 179 member_method { 180 name: "categorical_crossentropy" 181 argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], " 182 } 183 member_method { 184 name: "cosine" 185 argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " 186 } 187 member_method { 188 name: "cosine_proximity" 189 argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " 190 } 191 member_method { 192 name: "deserialize" 193 argspec: "args=[\'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " 194 } 195 member_method { 196 name: "get" 197 argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" 198 } 199 member_method { 200 name: "hinge" 201 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 202 } 203 member_method { 204 name: "kld" 205 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 206 } 207 member_method { 208 name: "kullback_leibler_divergence" 209 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 210 } 211 member_method { 212 name: "mae" 213 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 214 } 215 member_method { 216 name: "mape" 217 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 218 } 219 member_method { 220 name: "mean_absolute_error" 221 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 222 } 223 member_method { 224 name: "mean_absolute_percentage_error" 225 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 226 } 227 member_method { 228 name: "mean_squared_error" 229 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 230 } 231 member_method { 232 name: "mean_squared_logarithmic_error" 233 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 234 } 235 member_method { 236 name: "mse" 237 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 238 } 239 member_method { 240 name: "msle" 241 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 242 } 243 member_method { 244 name: "poisson" 245 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 246 } 247 member_method { 248 name: "serialize" 249 argspec: "args=[\'metric\'], varargs=None, keywords=None, defaults=None" 250 } 251 member_method { 252 name: "sparse_categorical_accuracy" 253 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 254 } 255 member_method { 256 name: "sparse_categorical_crossentropy" 257 argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\'], " 258 } 259 member_method { 260 name: "sparse_top_k_categorical_accuracy" 261 argspec: "args=[\'y_true\', \'y_pred\', \'k\'], varargs=None, keywords=None, defaults=[\'5\'], " 262 } 263 member_method { 264 name: "squared_hinge" 265 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 266 } 267 member_method { 268 name: "top_k_categorical_accuracy" 269 argspec: "args=[\'y_true\', \'y_pred\', \'k\'], varargs=None, keywords=None, defaults=[\'5\'], " 270 } 271} 272