/external/tensorflow/tensorflow/python/keras/layers/ |
D | recurrent_v2.py | 152 recurrent_activation='sigmoid', argument 182 recurrent_activation=recurrent_activation, 207 activation == 'tanh' and recurrent_activation == 'sigmoid' and 294 recurrent_activation=self.recurrent_activation, 311 recurrent_activation=self.recurrent_activation, 322 recurrent_activation, time_major): argument 374 z = recurrent_activation(x_z + recurrent_z) 375 r = recurrent_activation(x_r + recurrent_r) 521 recurrent_activation='sigmoid', argument 551 recurrent_activation=recurrent_activation, [all …]
|
D | recurrent.py | 1572 recurrent_activation='hard_sigmoid', argument 1591 self.recurrent_activation = activations.get(recurrent_activation) 1696 z = self.recurrent_activation(x_z + recurrent_z) 1697 r = self.recurrent_activation(x_r + recurrent_r) 1739 z = self.recurrent_activation(x_z + recurrent_z) 1740 r = self.recurrent_activation(x_r + recurrent_r) 1758 activations.serialize(self.recurrent_activation), 1873 recurrent_activation='hard_sigmoid', argument 1902 recurrent_activation=recurrent_activation, 1943 def recurrent_activation(self): member in GRU [all …]
|
D | convolutional_recurrent.py | 557 recurrent_activation='hard_sigmoid', argument 581 self.recurrent_activation = activations.get(recurrent_activation) 701 i = self.recurrent_activation(x_i + h_i) 702 f = self.recurrent_activation(x_f + h_f) 704 o = self.recurrent_activation(x_o + h_o) 733 self.recurrent_activation), 885 recurrent_activation='hard_sigmoid', argument 911 recurrent_activation=recurrent_activation, 969 def recurrent_activation(self): member in ConvLSTM2D 970 return self.cell.recurrent_activation [all …]
|
D | gru_v2_test.py | 69 def test_could_use_defun_backend(self, activation, recurrent_activation, argument 74 recurrent_activation=recurrent_activation, 158 recurrent_activation='sigmoid', 170 recurrent_activation='sigmoid', 250 recurrent_activation='sigmoid', 279 recurrent_activation='sigmoid', 517 recurrent_activation='sigmoid',
|
D | lstm_v2_test.py | 69 def test_could_use_defun_backend(self, activation, recurrent_activation, argument 74 recurrent_activation=recurrent_activation, 326 recurrent_activation='sigmoid') 422 recurrent_activation='sigmoid', 539 layer = rnn_v1.LSTM(rnn_state_size, recurrent_activation='sigmoid')
|
D | recurrent_test.py | 1197 recurrent_activation='sigmoid', 1202 recurrent_activation='sigmoid', 1207 recurrent_activation='sigmoid',
|
/external/libopus/scripts/ |
D | rnn_train.py | 30 x = GRU(12, dropout=0.1, recurrent_dropout=0.1, activation='tanh', recurrent_activation='sigmoid', …
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt | 122 name: "recurrent_activation" 179 …'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bi…
|
D | tensorflow.keras.layers.-g-r-u.pbtxt | 107 name: "recurrent_activation" 164 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-l-s-t-m.pbtxt | 107 name: "recurrent_activation" 164 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-g-r-u-cell.pbtxt | 90 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-l-s-t-m-cell.pbtxt | 90 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxt | 91 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.layers.-g-r-u.pbtxt | 105 name: "recurrent_activation" 162 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-l-s-t-m.pbtxt | 105 name: "recurrent_activation" 162 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt | 122 name: "recurrent_activation" 179 …'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bi…
|
D | tensorflow.keras.layers.-g-r-u-cell.pbtxt | 90 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-l-s-t-m-cell.pbtxt | 90 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxt | 91 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
/external/tensorflow/tensorflow/contrib/seq2seq/python/kernel_tests/ |
D | attention_wrapper_v2_test.py | 308 recurrent_activation="sigmoid", 408 cell = keras.layers.LSTMCell(self.units, recurrent_activation="sigmoid") 435 cell = keras.layers.LSTMCell(self.units, recurrent_activation="sigmoid")
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/nmt_with_attention/ |
D | nmt_with_attention.ipynb | 401 " recurrent_activation='sigmoid', \n",
|
/external/tensorflow/ |
D | RELEASE.md | 55 … 1.x pre-trained checkpoint, please construct the layer with LSTM(recurrent_activation='hard_sigmo…
|