1# Release 1.13.0
2
3## Major Features and Improvements
4
5* TensorFlow Lite has moved from contrib to core. This means that Python modules are under `tf.lite` and source code is now under `tensorflow/lite` rather than `tensorflow/contrib/lite`.
6* TensorFlow GPU binaries are now built against CUDA 10 and TensorRT 5.0.
7* Support for Python3.7 on all operating systems.
8* Moved NCCL to core.
9
10## Behavioral changes
11
12* Disallow conversion of python floating types to uint32/64 (matching behavior of other integer types) in `tf.constant`.
13* Make the `gain` argument of convolutional orthogonal initializers (`convolutional_delta_orthogonal`, `convolutional_orthogonal_1D`, `convolutional_orthogonal_2D`, `convolutional_orthogonal_3D`) have consistent behavior with the `tf.initializers.orthogonal` initializer, i.e. scale the output l2-norm by `gain` and NOT by `sqrt(gain)`. (Note that these functions are currently in `tf.contrib` which is not guaranteed backward compatible).
14
15## Bug Fixes and Other Changes
16
17* Documentation
18  * Update the doc with the details about the rounding mode used in quantize_and_dequantize_v2.
19  * Clarify that tensorflow::port::InitMain() _should_ be called before using the TensorFlow library.  Programs failing to do this are not portable to all platforms.
20* Deprecations and Symbol renames.
21   * Removing deprecations for the following endpoints: `tf.acos`, `tf.acosh`, `tf.add`, `tf.as_string`, `tf.asin`, `tf.asinh`, `tf.atan`, `tf.atan2`, `tf.atanh`, `tf.cos`, `tf.cosh`, `tf.equal`, `tf.exp`, `tf.floor`, `tf.greater`, `tf.greater_equal`, `tf.less`, `tf.less_equal`, `tf.log`, `tf.logp1`, `tf.logical_and`, `tf.logical_not`, `tf.logical_or`, `tf.maximum`, `tf.minimum`, `tf.not_equal`, `tf.sin`, `tf.sinh`, `tf.tan`
22  * Deprecate `tf.data.Dataset.shard`.
23  * Deprecate `saved_model.loader.load` which is replaced by `saved_model.load` and `saved_model.main_op`, which will be replaced by `saved_model.main_op` in V2.
24  * Deprecate tf.QUANTIZED_DTYPES. The official new symbol is tf.dtypes.QUANTIZED_DTYPES.
25  * Update sklearn imports for deprecated packages.
26  * Deprecate `Variable.count_up_to` and `tf.count_up_to` in favor of `Dataset.range`.
27  * Export `confusion_matrix` op as `tf.math.confusion_matrix` instead of `tf.train.confusion_matrix`.
28  * Add `tf.dtypes.` endpoint for every constant in dtypes.py; moving endpoints in versions.py to corresponding endpoints in `tf.sysconfig.` and `tf.version.`; moving all constants under `tf.saved_model` submodules to `tf.saved_model` module. New endpoints are added in V1 and V2 but existing endpoint removals are only applied in V2.
29  * Deprecates behavior where device assignment overrides collocation constraints inside a collocation context manager.
30* Keras & Python API
31  * Add to Keras functionality analogous to `tf.register_tensor_conversion_function`.
32  * Subclassed Keras models can now be saved through `tf.contrib.saved_model.save_keras_model`.
33  * `LinearOperator.matmul` now returns a new `LinearOperator`.
34* New ops and improved op functionality
35  * Add a Nearest Neighbor Resize op.
36  * Add an `ignore_unknown` argument to `parse_values` which suppresses ValueError for unknown hyperparameter types. Such * Add `tf.linalg.matvec` convenience function.
37  * `tf.einsum()`raises `ValueError` for unsupported equations like `"ii->"`.
38  * Add DCT-I and IDCT-I in `tf.signal.dct` and `tf.signal.idct`.
39  * Add LU decomposition op.
40  * Add quantile loss to gradient boosted trees in estimator.
41  * Add `round_mode` to `QuantizeAndDequantizeV2` op to select rounding algorithm.
42  * Add `unicode_encode`, `unicode_decode`, `unicode_decode_with_offsets`, `unicode_split`, `unicode_split_with_offset`, and `unicode_transcode` ops. Amongst other things, this Op adds the ability to encode, decode, and transcode a variety of input text encoding formats into the main Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE)
43  * Add "unit" attribute to the substr op, which allows obtaining the substring of a string containing unicode characters.
44  * Broadcasting support for Ragged Tensors.
45  * `SpaceToDepth` supports uint8 data type.
46  * Support multi-label quantile regression in estimator.
47  * We now use "div" as the default partition_strategy in `tf.nn.safe_embedding_lookup_sparse`, `tf.nn.sampled_softmax` and `tf.nn.nce_loss`.
48  hyperparameter are ignored.
49* Performance
50  * Improve performance of GPU cumsum/cumprod by up to 300x.
51  * Added support for weight decay in most TPU embedding optimizers, including AdamW and MomentumW.
52* TensorFlow 2.0 Development
53  * Add a command line tool to convert to TF2.0, tf_upgrade_v2
54  * Merge `tf.spectral` into `tf.signal` for TensorFlow 2.0.
55  * Change the default recurrent activation function for LSTM from 'hard_sigmoid' to 'sigmoid' in 2.0. Historically recurrent activation is 'hard_sigmoid' since it is fast than 'sigmoid'. With new unified backend between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we change the default for CPU mode to sigmoid as well. With that, the default LSTM will be compatible with both CPU and GPU kernel. This will enable user with GPU to use CuDNN kernel by default and get a 10x performance boost in training. Note that this is checkpoint breaking change. If user want to use their 1.x pre-trained checkpoint, please construct the layer with LSTM(recurrent_activation='hard_sigmoid') to fallback to 1.x behavior.
56* TensorFlow Lite
57  * Move from `tensorflow/contrib/lite` to `tensorflow/lite`.
58  * Add experimental Java API for injecting TensorFlow Lite delegates
59  * Add support for strings in TensorFlow Lite Java API.
60* `tf.contrib`:
61  * Add Apache Ignite Filesystem plugin to support accessing Apache IGFS.
62  * Dropout now takes `rate` argument, `keep_prob` is deprecated.
63  * Estimator occurrences references `tf.contrib.estimator` were changed to `tf.estimator`:
64    * `tf.contrib.estimator.BaselineEstimator` with `tf.estimator.BaselineEstimator`
65    * `tf.contrib.estimator.DNNLinearCombinedEstimator` with `tf.estimator.DNNLinearCombinedEstimator`
66    * `tf.contrib.estimator.DNNEstimator` with `tf.estimator.DNNEstimator`
67    * `tf.contrib.estimator.LinearEstimator` with `tf.estimator.LinearEstimator`
68    * `tf.contrib.estimator.InMemoryEvaluatorHook` and tf.estimator.experimental.InMemoryEvaluatorHook`.
69    * `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with `tf.estimator.experimental.make_stop_at_checkpoint_step_hook`.
70  * Expose `tf.distribute.Strategy as the new name for tf.contrib.distribute.DistributionStrategy.
71  * Migrate linear optimizer from contrib to core.
72  * Move `tf.contrib.signal` to `tf.signal` (preserving aliases in tf.contrib.signal).
73  * Users of `tf.contrib.estimator.export_all_saved_models` and related should switch to `tf.estimator.Estimator.experimental_export_all_saved_models`.
74* tf.data:
75  * Add `tf.data.experimental.StatsOptions()`, to configure options to collect statistics from `tf.data.Dataset` pipeline using `StatsAggregator`. Add nested option, `experimental_stats` (which takes a `tf.data.experimen tal.StatsOptions` object), to `tf.data.Options`. Deprecates `tf.data.experimental.set_stats_agregator`.
76  * Performance optimizations:
77    * Add `tf.data.experimental.OptimizationOptions()`, to configure options to enable `tf.data` performance optimizations. Add nested option, `experimental_optimization` (which takes a `tf.data.experimental.OptimizationOptions` object), to `tf.data.Options`. Remove performance optimization options from `tf.data.Options`, and add them under `tf.data.experimental.OptimizationOptions` instead.
78    * Enable `map_and_batch_fusion` and `noop_elimination` optimizations by default. They can be disabled by configuring `tf.data.experimental.OptimizationOptions` to set `map_and_batch = False` or `noop_elimination = False` respectively. To disable all default optimizations, set `apply_default_optimizations = False`.
79    * Support parallel map in `map_and_filter_fusion`.
80    * Disable static optimizations for input pipelines that use non-resource `tf.Variable`s.
81  * Add NUMA-aware MapAndBatch dataset.
82  * Deprecate `tf.data.Dataset.make_one_shot_iterator()` in V1, removed it from V2, and added tf.compat.v1.data.make_one_shot_iterator()`.
83  * Deprecate `tf.data.Dataset.make_initializable_iterator()` in V1, removed it from V2, and added `tf.compat.v1.data.make_initializable_iterator()`.
84  * Enable nested dataset support in core `tf.data` transformations.
85  * For `tf.data.Dataset` implementers: Added `tf.data.Dataset._element_structured property` to replace `Dataset.output_{types,shapes,classes}`.
86  * Make `num_parallel_calls` of `tf.data.Dataset.interleave` and `tf.data.Dataset.map` work in Eager mode.
87* Toolchains
88  * Fixed OpenSSL compatibility by avoiding `EVP_MD_CTX_destroy`.
89  * Added bounds checking to printing deprecation warnings.
90  * Upgraded CUDA dependency to 10.0
91  * To build with Android NDK r14b, add "#include <linux/compiler.h>" to android-ndk-r14b/platforms/android-14/arch-*/usr/include/linux/futex.h
92  * Removed `:android_tensorflow_lib_selective_registration*` targets, use `:android_tensorflow_lib_lite*` targets instead.
93* XLA
94  * Move `RoundToEven` function to xla/client/lib/math.h.
95  * A new environment variable `TF_XLA_DEBUG_OPTIONS_PASSTHROUGH` set to "1" or "true" allows the debug options passed within an XRTCompile op to be passed directly to the XLA compilation backend. If such variable is not set (service side), only a restricted set will be passed through.
96  * Allow the XRTCompile op to return the ProgramShape resulted form the XLA compilation as a second return argument.
97  * XLA HLO graphs can now be rendered as SVG/HTML.
98* Estimator
99  * Replace all occurences of `tf.contrib.estimator.BaselineEstimator` with `tf.estimator.BaselineEstimator`
100  * Replace all occurences of `tf.contrib.estimator.DNNLinearCombinedEstimator` with `tf.estimator.DNNLinearCombinedEstimator`
101  * Replace all occurrences of `tf.contrib.estimator.DNNEstimator` with `tf.estimator.DNNEstimator`
102  * Replace all occurrences of `tf.contrib.estimator.LinearEstimator` with `tf.estimator.LinearEstimator`
103  * Users of `tf.contrib.estimator.export_all_saved_models` and related should switch to `tf.estimator.Estimator.experimental_export_all_saved_models`.
104  * Update `regression_head` to the new Head API for Canned Estimator V2.
105  * Switch `multi_class_head` to Head API for Canned Estimator V2.
106  * Replace all occurences of `tf.contrib.estimator.InMemoryEvaluatorHook` and `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with `tf.estimator.experimental.InMemoryEvaluatorHook` and `tf.estimator.experimental.make_stop_at_checkpoint_step_hook`
107  * Migrate linear optimizer from contrib to core.
108
109
110## Thanks to our Contributors
111
112This release contains contributions from many people at Google, as well as:
113
114Abhinav Upadhyay, Ag Ramesh, akikaaa, Alexis Louis, Anders Huss, Andreas Madsen, Andrew Banchich, Andy Craze, Anton Dmitriev, Artem Malykh, Avijit-Nervana, Balint Cristian, Benjamin Tan Wei Hao, Bhavani Subramanian, Brendan Finan, Brian Nemsick, Bryan Cutler, By Shen, Cao Zongyan, Castiel, Chris Antaki, Christian Goll, Cibifang, Clayne Robison, Codrut Grosu, Cong Xu, Dalmo Cirne, Daniel Hunter, Dougal J. Sutherland, Edvard Fagerholm, EFanZh, Erik Smistad, Evgeniy Polyakov, Feiyang Chen, franklin5, Fred Reiss, Gautam, gehring, Geoffrey Irving, George Sterpu, Gitea, Grzegorz George Pawelczak, Guozhong Zhuang, himkt, Hoeseong Kim, Huan Li (李卓桓), HuiyangFei, hyunyoung, Isaac Burbank, jackonan, Jacky Ko, Jason Furmanek, Jason Zaman, Javier Luraschi, Jiang,Zhoulong, joaak, John Lin, Jonathan Wyatt Hoech, josephyearsley, Josh Gordon, Julian Niedermeier, Karl Lessard, Keno Fischer, lanhin, Leon Graser, leondgarse, Li, Guizi, Li, Yiqiang, lxl910915, Mahmoud Abuzaina, manhyuk, Marcela Morales Quispe, margaretmz, Matt Conley, Max Pumperla, mbhuiyan, mdfaijul, Meng, Peng, Michael, Michael Gielda, mrTsjolder, Muhammad Wildan, neargye, Nehal J Wani, NEWPLAN, Niranjan Hasabnis, Nutti, olicht, Pan Daoxin, Pedro Monreal, Peng Yu, pillarpond, Pooya Davoodi, qiezi, Rholais Lii, Richard Yu, Rin Arakaki, Roger Iyengar, sahilbadyal, Sami Kama, Sandip Giri, Scott Leishman, Serge Panev, Seunghoon Park, Shafi Dayatar, shengfuintel, Shimin Guo, Siju, silent567, Stefan Dyulgerov, steven, Tao Wei, Thor Johnsen, Tingbo Lu, tomguluson92, Tongxuan Liu, Trevor Morris, Ubuntu, Vadim Borisov, vanderliang, wangsiyu, Wen Yun, Wen-Heng (Jack) Chung, wenxizhu, William D. Irons, Xiaoming (Jason) Cui, Yan Facai (颜发才), Yanbo Liang, Yaniv Blumenfeld, Yash Gaurkar, Yicheng Fan, Yong Tang, Yongjoon Lee, Yuan (Terry) Tang, Yuxin Wu, zldrobit
115
116# Release 1.12.0
117
118## Major Features and Improvements
119
120*   Keras models can now be directly exported to the SavedModel
121    format(`tf.contrib.saved_model.save_keras_model()`) and used with Tensorflow
122    Serving.
123*   Keras models now support evaluating with a `tf.data.Dataset`.
124*   TensorFlow binaries are built with XLA support linked in by default.
125*   Ignite Dataset added to contrib/ignite that allows to work with Apache
126    Ignite.
127
128## Bug Fixes and Other Changes
129
130*   tf.data:
131    *   tf.data users can now represent, get, and set options of TensorFlow
132        input pipelines using `tf.data.Options()`, `tf.data.Dataset.options()`,
133        and `tf.data.Dataset.with_options()` respectively.
134    *   New `tf.data.Dataset.reduce()` API allows users to reduce a finite
135        dataset to a single element using a user-provided reduce function.
136    *   New `tf.data.Dataset.window()` API allows users to create finite windows
137        of input dataset; when combined with the `tf.data.Dataset.reduce()` API,
138        this allows users to implement customized batching.
139    *   All C++ code moves to the `tensorflow::data` namespace.
140    *   Add support for `num_parallel_calls` to `tf.data.Dataset.interleave`.
141*   `tf.contrib`:
142    *   Remove `tf.contrib.linalg`. `tf.linalg` should be used instead.
143    *   Replace any calls to `tf.contrib.get_signature_def_by_key(metagraph_def,
144        signature_def_key)` with
145        `meta_graph_def.signature_def[signature_def_key]`. Catching a ValueError
146        exception thrown by `tf.contrib.get_signature_def_by_key` should be
147        replaced by catching a KeyError exception.
148*   `tf.contrib.data`
149    *   Deprecate, and replace by tf.data.experimental.
150*   Other:
151    *   Instead of jemalloc, revert back to using system malloc since it
152        simplifies build and has comparable performance.
153    *   Remove integer types from `tf.nn.softplus` and `tf.nn.softsign` OpDefs.
154        This is a bugfix; these ops were never meant to support integers.
155    *   Allow subslicing Tensors with a single dimension.
156    *   Add option to calculate string length in Unicode characters
157    *   Add functionality to SubSlice a tensor.
158    *   Add searchsorted (ie lower/upper_bound) op.
159    *   Add model explainability to Boosted Trees.
160    *   Support negative positions for tf.substr
161    *   There was previously a bug in the bijector_impl where the
162        _reduce_jacobian_det_over_event does not handle scalar ILDJ
163        implementations properly.
164    *   In tf eager execution, allow re-entering a GradientTape context
165    *   Add tf_api_version flag. If --define=tf_api_version=2 flag is passed in,
166        then bazel will build TensorFlow API version 2.0. Note that TensorFlow
167        2.0 is under active development and has no guarantees at this point.
168    *   Add additional compression options to TfRecordWriter
169    *   Performance improvements for regex full match operations.
170    *   Replace tf.GraphKeys.VARIABLES with `tf.GraphKeys.GLOBAL_VARIABLES`
171    *   Remove unused dynamic learning rate support.
172
173## Thanks to our Contributors
174
175This release contains contributions from many people at Google, as well as:
176
177(David) Siu-Kei Muk, Ag Ramesh, Anton Dmitriev, Artem Sobolev, Avijit-Nervana,
178Bairen Yi, Bruno Goncalves, By Shen, candy.dc, Cheng Chen, Clayne Robison,
179coder3101, Dao Zhang, Elms, Fei Hu, feiquan, Geoffrey Irving, Guozhong Zhuang,
180hellcom, Hoeseong Kim, imsheridan, Jason Furmanek, Jason Zaman, Jenny Sahng,
181jiefangxuanyan, Johannes Bannhofer, Jonathan Homer, Koan-Sin Tan, kouml, Loo
182Rong Jie, Lukas Geiger, manipopopo, Ming Li, Moritz KröGer, Naurril, Niranjan
183Hasabnis, Pan Daoxin, Peng Yu, pengwa, rasmi, Roger Xin, Roland Fernandez, Sami
184Kama, Samuel Matzek, Sangjung Woo, Sergei Lebedev, Sergii Khomenko, shaohua,
185Shaohua Zhang, Shujian2015, Sunitha Kambhampati, tomguluson92, ViníCius Camargo,
186wangsiyu, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Xin Jin, Yan
187Facai (颜发才), Yanbo Liang, Yash Katariya, Yong Tang, 在原佐为
188
189# Release 1.11.0
190
191## Major Features and Improvements
192
193* Nvidia GPU:
194  * Prebuilt binaries are now (as of TensorFlow 1.11) built against cuDNN 7.2 and TensorRT 4. See updated install guides: [Installing TensorFlow on Ubuntu](https://www.tensorflow.org/install/install_linux#tensorflow_gpu_support)
195* Google Cloud TPU:
196  * Experimental tf.data integration for Keras on Google Cloud TPUs.
197  * Experimental / preview support for eager execution on Google Cloud TPUs.
198* DistributionStrategy:
199  * Add multi-GPU DistributionStrategy support in tf.keras. Users can now use `fit`, `evaluate` and `predict` to distribute their model on multiple GPUs.
200  * Add multi-worker DistributionStrategy and standalone client support in Estimator. See [README] (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute) for more details.
201* Add C, C++, and Python functions for querying kernels
202
203## Breaking Changes
204
205* Keras:
206  * The default values for tf.keras `RandomUniform`, `RandomNormal`, and `TruncatedNormal` initializers have been changed to match those in external Keras.
207  * Breaking change: `model.get_config()` on a Sequential model now returns a config dictionary (consistent with other Model instances) instead of a list of configs for the underlying layers.
208
209## Bug Fixes and Other Changes
210
211*   C++:
212    *   Changed the signature of SessionFactory::NewSession so that it can
213        return a meaningful error message on failure.
214*   tf.data:
215    *   Remove `num_parallel_parser_calls` argument from
216        `tf.contrib.data.make_csv_dataset()`. [tf.data] Remove
217        `num_parallel_parser_calls` argument from
218        `tf.contrib.data.make_csv_dataset()`.
219    *   `tf.data.Dataset.list_files()` raises an exception at initialization
220        time if the argument matches no files.
221    *   Renamed BigTable class to BigtableTable for clarity
222    *   Document use of the Cloud Bigtable API
223    *   Add `tf.contrib.data.reduce_dataset` which can be used to reduce a
224        dataset to a single element.
225    *   Generalization of `tf.contrib.data.sliding_window_batch`.
226*   INC:
227    *   Runtime improvements to triangular solve.
228*   `tf.contrib`:
229    *   Add an `implementation` argument to `tf.keras.layers.LocallyConnected2D`
230        and `tf.keras.layers.LocallyConnected1D`. The new mode
231        (`implementation=2`) performs forward pass as a single dense matrix
232        multiplication, allowing dramatic speedups in certain scenarios (but
233        worse performance in others - see docstring). The option also allows to
234        use `padding=same`.
235    *   Add documentation clarifying the differences between tf.fill and
236        tf.constant.
237    *   Add experimental IndexedDatasets.
238    *   Add selective registration target using the lite proto runtime.
239    *   Add simple Tensor and DataType classes to TensorFlow Lite Java
240    *   Add support for bitcasting to/from uint32 and uint64.
241    *   Added a subclass of Estimator that can be created from a SavedModel
242        (SavedModelEstimator).
243    *   Adds leaf index modes as an argument.
244    *   Allow a different output shape from the input in
245        tf.contrib.image.transform.
246    *   Change the state_size order of the StackedRNNCell to be natural order.
247        To keep the existing behavior, user can add reverse_state_order=True
248        when constructing the StackedRNNCells.
249    *   Deprecate self.test_session() in favor of self.session() or
250        self.cached_session().
251    *   Directly import tensor.proto.h (the transitive import will be removed
252        from tensor.h soon)
253    *   Estimator.train() now supports tf.contrib.summary.\* summaries out of
254        the box; each call to .train() will now create a separate tfevents file
255        rather than re-using a shared one.
256    *   Fix FTRL L2-shrinkage behavior: the gradient from the L2 shrinkage term
257        should not end up in the accumulator.
258    *   Fix toco compilation/execution on Windows
259    *   GoogleZoneProvider class added to detect which Google Cloud Engine zone
260        tensorflow is running in.
261    *   It is now safe to call any of the C API's TF_Delete\* functions on
262        nullptr
263    *   Log some errors on Android to logcat
264    *   Match FakeQuant numerics in TFLite to improve accuracy of TFLite
265        quantized inference models.
266    *   Optional bucket location check for the GCS Filesystem.
267    *   Performance enhancements for StringSplitOp & StringSplitV2Op.
268    *   Performance improvements for regex replace operations.
269    *   TFRecordWriter now raises an error if .write() fails.
270    *   TPU: More helpful error messages in TPUClusterResolvers.
271    *   The legacy_init_op argument to SavedModelBuilder methods for adding
272        MetaGraphs has been deprecated. Please use the equivalent main_op
273        argument instead. As part of this, we now explicitly check for a single
274        main_op or legacy_init_op at the time of SavedModel building, whereas
275        the check on main_op was previously only done at load time.
276    *   The protocol used for Estimator training is now configurable in
277        RunConfig.
278    *   Triangular solve performance improvements.
279    *   Unify RNN cell interface between TF and Keras. Add new
280        get_initial_state() to Keras and TF RNN cell, which will use to replace
281        the existing zero_state() method.
282    *   Update initialization of variables in Keras.
283    *   Updates to "constrained_optimization" in tensorflow/contrib.
284    *   boosted trees: adding pruning mode
285    *   tf.train.Checkpoint does not delete old checkpoints by default.
286    *   tfdbg: Limit the total disk space occupied by dumped tensor data to 100
287        GBytes. Add environment variable `TFDBG_DISK_BYTES_LIMIT` to allow
288        adjustment of this upper limit.
289
290## Thanks to our Contributors
291
292This release contains contributions from many people at Google, as well as:
293
294Aapeli, adoda, Ag Ramesh, Amogh Mannekote, Andrew Gibiansky, Andy Craze, Anirudh Koul, Aurelien Geron, Avijit, Avijit-Nervana, Ben, Benjamin H. Myara, bhack, Brett Koonce, Cao Zongyan, cbockman, cheerss, Chikanaga Tomoyuki, Clayne Robison, cosine0, Cui Wei, Dan J, David, David Norman, Dmitry Klimenkov, Eliel Hojman, Florian Courtial, fo40225, formath, Geoffrey Irving, gracehoney, Grzegorz Pawelczak, Guoliang Hua, Guozhong Zhuang, Herman Zvonimir DošIlović, HuiyangFei, Jacker, Jan HüNnemeyer, Jason Taylor, Jason Zaman, Jesse, Jiang,Zhoulong, Jiawei Zhang, Jie, Joe Yearsley, Johannes Schmitz, Jon Perl, Jon Triebenbach, Jonathan, Jonathan Hseu, Jongmin Park, Justin Shenk, karl@kubx.ca, Kate Hodesdon, Kb Sriram, Keishi Hattori, Kenneth Blomqvist, Koan-Sin Tan, Li Liangbin, Li, Yiqiang, Loo Rong Jie, Madiyar, Mahmoud Abuzaina, Mark Ryan, Matt Dodge, mbhuiyan, melvinljy96, Miguel Mota, Nafis Sadat, Nathan Luehr, naurril, Nehal J Wani, Niall Moran, Niranjan Hasabnis, Nishidha Panpaliya, npow, olicht, Pei Zhang, Peng Wang (Simpeng), Peng Yu, Philipp Jund, Pradeep Banavara, Pratik Kalshetti, qwertWZ, Rakesh Chada, Randy West, Ray Kim, Rholais Lii, Robin Richtsfeld, Rodrigo Silveira, Ruizhi, Santosh Kumar, Seb Bro, Sergei Lebedev, sfujiwara, Shaba Abhiram, Shashi, SneakyFish5, Soila Kavulya, Stefan Dyulgerov, Steven Winston, Sunitha Kambhampati, Surry Shome, Taehoon Lee, Thor Johnsen, Tristan Rice, TShapinsky, tucan, tucan9389, Vicente Reyes, Vilmar-Hillow, Vitaly Lavrukhin, wangershi, weidan.kong, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Wim Glenn, XFeiF, Yan Facai (颜发才), Yanbo Liang, Yong Tang, Yoshihiro Yamazaki, Yuan (Terry) Tang, Yuan, Man, zhaoyongke, ÁRon
295Ricardo Perez-Lopez, 张天启, 张晓飞
296
297
298# Release 1.10.1
299## Bug Fixes and Other Changes
300
301* `tf.keras`:
302  * Fixing keras on Cloud TPUs. No new binaries will be built for Windows.
303
304
305# Release 1.10.0
306
307## Major Features And Improvements
308
309* The `tf.lite` runtime now supports `complex64`.
310* Initial [Google Cloud Bigtable integration](https://github.com/tensorflow/tensorflow/tree/r1.10/tensorflow/contrib/bigtable) for `tf.data`.
311* Improved local run behavior in `tf.estimator.train_and_evaluate` which does not reload checkpoints for evaluation.
312* `RunConfig` now sets device_filters to restrict how workers and PS can communicate. This can speed up training and ensure clean shutdowns in some situations. But if you have jobs that require communication between workers, you will have to set custom session_options in your `RunConfig`.
313* Moved Distributions and Bijectors from `tf.contrib.distributions` to [Tensorflow Probability (TFP)](https://github.com/tensorflow/probability). `tf.contrib.distributions` is now deprecated and will be removed by the end of 2018.
314* Adding new endpoints for existing tensorflow symbols. These endpoints are going to be the preferred endpoints going forward and may replace some of the existing endpoints in the future. See below for the complete list. New symbols have been added to the following modules: [`tf.debugging`](https://www.tensorflow.org/versions/master/api_docs/python/tf/debugging), [`tf.dtypes`](https://www.tensorflow.org/versions/master/api_docs/python/tf/dtypes), [`tf.image`](https://www.tensorflow.org/versions/master/api_docs/python/tf/image), [`tf.io`](https://www.tensorflow.org/versions/master/api_docs/python/tf/io), [`tf.linalg`](https://www.tensorflow.org/versions/master/api_docs/python/tf/linalg), [`tf.manip`](https://www.tensorflow.org/versions/master/api_docs/python/tf/manip), [`tf.math`](https://www.tensorflow.org/versions/master/api_docs/python/tf/math), [`tf.quantization`](https://www.tensorflow.org/versions/master/api_docs/python/tf/quantization), [`tf.strings`](https://www.tensorflow.org/versions/master/api_docs/python/tf/strings)
315
316## Breaking Changes
317
318* Prebuilt binaries are now (as of TensorFlow 1.10) built against NCCL 2.2 and no longer include NCCL in the binary install. TensorFlow usage with multiple GPUs and NCCL requires upgrade to [NCCL 2.2](https://developer.nvidia.com/nccl). See updated install guides: [TensorFlow GPU support](https://www.tensorflow.org/install/gpu) and [Build TensorFlow from source](https://www.tensorflow.org/install/source).
319* Starting from TensorFlow 1.11, Windows builds will use Bazel. Therefore, we will drop official support for cmake.
320
321## Bug Fixes and Other Changes
322
323* `tf.data`:
324  * `tf.contrib.data.group_by_reducer()` is now available via the public API.
325  * `tf.contrib.data.choose_from_datasets()` is now available via the public API.
326  * Adding `drop_remainder` argument to `tf.data.Dataset.batch()` and `tf.data.Dataset.padded_batch()`, deprecating `tf.contrib.data.batch_and_drop_remainder()` and `tf.contrib.data.padded_batch_and_drop_remainder()`.
327* `tf.estimator`:
328  * `Estimator`s now use custom savers included in `EstimatorSpec` scaffolds for saving SavedModels during export.
329  * `EstimatorSpec` will now add a default prediction output for export if no `export_output` is provided, eliminating the need to explicitly include a `PredictOutput` object in the `model_fn` for simple use-cases.
330  * Support sparse_combiner in canned Linear Estimators.
331  * Added batch normalization to `DNNClassifier`, `DNNRegressor`, and `DNNEstimator`.
332  * Adding ranking support for boosted trees.
333  * Adding center bias option for boosted trees.
334* Add `synchronization` and `aggregation` args to get_variable(). These args will be used for distributed variables.
335* Add `synchronization` and `aggregation` args to the layer `add_weight()` API. These args will be used for distributed variables.
336* `tf.losses.*` do not add to the global collection when executing eagerly (to avoid leaking memory).
337* Support different summary and checkpoint directories in `tf.train.MonitoredTrainingSession()`.
338* Added IndRNN, IndyGRU, and IndyLSTM cells to `tf.contrib.rnn`.
339* Add safe static factory functions for SparseTensor and convert all CHECKs to DCHECKs. Using the constructor directly is unsafe and deprecated.
340* Make the Bigtable client connection pool configurable & increase the default # of connections for performance.
341* Added derivative of `tf.random_gamma` with respect to the alpha parameter.
342* Added derivative of `tf.igamma(a, x)` and `tf.igammac(a, x)` with respect to a.
343* Modified Bessel functions of order zero and one.
344* Add FillTriangular Bijector to create triangular matrices.
345* Added support for Type III DCT, and `tf.spectral.idct(type=2|3)`.
346* Correctly handle CuDNN RNN weight loaded when nest in `TimeDistributed`.
347* Adding per-element weight support for `WALSComputePartialLhsAndRhsOp`.
348* ZerosLike and OnesLike ops treated as constants by Graph Transform Tool.
349* Gamma distribution and the derived distributions (Beta, Dirichlet, Student's t, inverse Gamma) now fully reparameterized.
350* Java: Experimental wrapper classes to make graph generation easier. Thanks @karllessard and @kbsriram
351* Build & link in secure gRPC components (switch from the insecure grpc dependency to secure grpc dependency).
352* Adding new endpoints for existing tensorflow symbols. These endpoints are going to be the preferred endpoints going forward and may replace some of the existing endpoints in the future. List of new endpoints:
353  * New endpoints in `tf.image` namespace: `tf.image.extract_image_patches`
354  * New endpoints in `tf.debugging` namespace: `tf.debugging.check_numerics`, `tf.debugging.is_finite`, `tf.debugging.is_inf`, `tf.debugging.is_nan`.
355  * New endpoints in `tf.dtypes` namespace: `tf.dtypes.as_string`.
356  * New endpoints in `tf.io` namespace: `tf.io.decode_base64`, `tf.io.decode_compressed`, `tf.io.decode_json_example`, `tf.io.decode_raw`, `tf.io.encode_base64`, `tf.io.matching_files`, `tf.io.parse_tensor`, `tf.io.read_file, `tf.io.write_file`.
357  * New endpoints in tf.linalg namespace: `tf.linalg.cross`, `tf.linalg.tensor_diag` (corresponds to `tf.diag`), `tf.linalg.tensor_diag_part` (corresponds to `tf.diag_part`).
358  * New endpoints in tf.manip namespace: `tf.manip.batch_to_space_nd`, `tf.manip.gather_nd`, `tf.manip.reshape`, `tf.manip.reverse`, `tf.manip.scatter_nd`, `tf.manip.space_to_batch_nd`, `tf.manip.tile`
359  * New endpoints in tf.math namespace: `tf.math.acos`, `tf.math.acosh`, `tf.math.add`, `tf.math.asin`, `tf.math.asinh`, `tf.math.atan`, `tf.math.atan2`, `tf.math.atanh`, `tf.math.betainc`, `tf.math.ceil`, `tf.math.cos`, `tf.math.cosh`, `tf.math.digamma`, `tf.math.equal`, `tf.math.erfc`, `tf.math.exp`, `tf.math.expm1`, `tf.math.floor`, `tf.math.greater`, `tf.math.greater_equal`, `tf.math.igamma`, `tf.math.igammac`, `tf.math.invert_permutation`, `tf.math.less`, `tf.math.less_equal`, `tf.math.lgamma`, `tf.math.log`, `tf.math.log1p`, `tf.math.logical_and`, `tf.math.logical_not`, `tf.math.logical_or`, `tf.math.maximum`, `tf.math.minimum`, `tf.math.not_equal`, `tf.math.polygamma`, `tf.math.reciprocal`, `tf.math.rint`, `tf.math.rsqrt`, `tf.math.segment_max`, `tf.math.segment_mean`, `tf.math.segment_min`, `tf.math.segment_prod`, `tf.math.segment_sum`, `tf.math.sin`, `tf.math.sinh`, `tf.math.softplus`, `tf.math.softsign`, `tf.math.squared_difference`, `tf.math.tan`, `tf.math.unsorted_segment_max`, `tf.math.unsorted_segment_min`, `tf.math.unsorted_segment_prod`, `tf.math.unsorted_segment_sum`, `tf.math.zeta`.
360  * New endpoints in `tf.quantization` namespace: `tf.quantization.dequantize`, `tf.quantization.fake_quant_with_min_max_args`, `tf.quantization.fake_quant_with_min_max_args_gradient`, `tf.quantization.fake_quant_with_min_max_vars`,  `tf.quantization.fake_quant_with_min_max_vars_gradient`, `tf.quantization.fake_quant_with_min_max_vars_per_channel`,  `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient`.
361  * New endpoints in tf.strings namespace: `tf.strings.join` (corresponds to `tf.string_join`), `tf.strings.regex_replace`, `tf.strings.to_number` (corresponds to `tf.string_to_number`), `tf.strings.strip` (corresponds to `tf.string_strip`), `tf.strings.substr`, `tf.strings.to_hash_bucket` (corresponds to `tf.string_to_hash_bucket`), `tf.strings.to_hash_bucket_fast` (corresponds to `tf.string_to_hash_bucket_fast`), `tf.strings.to_hash_bucket_strong` (corresponds to `tf.string_to_hash_bucket_strong`).
362
363
364## Thanks to our Contributors
365
366This release contains contributions from many people at Google, as well as:
367
368Ag Ramesh, Alex Wiltschko, Alexander Pantyukhin, Amogh Mannekote, An Jiaoyang, Andrei Nigmatulin, Andrew Ginns, BjøRn Moholt, Brett Koonce, Chengzhi Chen, Chinmay Das, Christian Ertler, Christoph Boeddeker, Clayne Robison, Courtial Florian, ctiijima, Dan Douthit, Dan J, Dan Ringwalt, EFanZh, Emanuele Ballarin, eqy, Evgeniy Zheltonozhskiy, Freedom" Koan-Sin Tan, FréDéRic Branchaud-Charron, G K, gracehoney, Guillaume Klein, Guozhong Zhuang, Hsien-Yang Li, hsm207, ImSheridan, Jayaram Bobba, Jiandong Ruan, Jie, Joel Shor, Jonas Rauber, Jongmin Baek, jsawruk, Karan Kaw, Karl Lessard, karl@kubx.ca, Kb Sriram, KinmanLam, leiiwang, Li, Yiqiang, Loo Rong Jie, Mahmoud Abuzaina, Mahmoud Aslan, ManHyuk, Martin Patz, Martin Zeitler, mktozk, Mohammad Ashraf Bhuiyan, mrTsjolder, Naman Bhalla, Nick Felt, Nicolas Lopez, Niranjan Hasabnis, Nishidha Panpaliya, Nitish, nrstott, Nutti, Parag Jain, PeterLee, Philipp Jund, Rach L, Rafal Wojdyla, Roland Zimmermann, Sergei Lebedev, SneakyFish5, Soila Kavulya, Sriram Veturi, Steven Schmatz, Taehoon Lee, Tang, Wenyi, Taras Sereda, Ted Chang, Tim Zaman, Tristan Rice, tucan, vchigrin, Vikram Tiwari, Vincent, WeberXie, William D. Irons, Yan Facai (颜发才), Yong Tang, Yu Yi, Yuxin Wu, Zé ViníCius
369
370# Release 1.9.0
371
372## Major Features And Improvements
373* Updated docs for `tf.keras`: New Keras-based [get started](http://tensorflow.org/versions/r1.9/get_started),
374  and [programmers guide page](http://tensorflow.org/versions/r1.9/programmers_guide/keras).
375* Update `tf.keras` to the Keras 2.1.6 API.
376* Added [`tf.keras.layers.CuDNNGRU`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/CuDNNGRU) and [`tf.keras.layers.CuDNNLSTM`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/CuDNNLSTM) layers. [Try it](https://colab.sandbox.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb?linkId=53292082).
377* Adding support of core [feature columns](https://www.tensorflow.org/get_started/feature_columns) and [losses](https://www.tensorflow.org/api_docs/python/tf/losses) to [gradient boosted trees estimators](https://github.com/tensorflow/models/tree/master/official/boosted_trees).
378* The [python interface](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/lite)
379  for the [TFLite Optimizing Converter](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/toco/README.md)
380  has been expanded, and the command line interface (AKA: `toco`, `tflite_convert`) is once again
381  included in the standard `pip` installation.
382* Improved data-loading and text processing with:
383    * [`tf.decode_compressed`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/decode_compressed)
384    * [`tf.string_strip`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/string_strip)
385    * [`tf.strings.regex_full_match`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/strings/regex_full_match)
386* Added experimental support for new pre-made Estimators:
387  * [`tf.contrib.estimator.BaselineEstimator`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/BaselineEstimator)
388  * [`tf.contrib.estimator.RNNClassifier`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/RNNEstimator)
389  * [`tf.contrib.estimator.RNNEstimator`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/RNNClassifier)
390* The [distributions.Bijector](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/distributions/bijectors/Bijector)
391  API supports broadcasting for Bijectors with new API changes.
392
393## Breaking Changes
394  * If you're opening empty variable scopes; replace `variable_scope('', ...)` by
395    `variable_scope(tf.get_variable_scope(), ...)`.
396  * Headers used for building custom ops have been moved from site-packages/external into site-packages/tensorflow/include/external.
397
398## Bug Fixes and Other Changes
399
400*   `tfe.Network` is deprecated. Please inherit from `tf.keras.Model`.
401*   Layered variable names have changed in the following conditions:
402    *   Using `tf.keras.layers` with custom variable scopes.
403    *   Using `tf.layers` in a subclassed `tf.keras.Model` class. See
404        [here](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/layers)
405        for more details
406*   `tf.data`:
407    *   `Dataset.from_generator()` now accepts an `args` list, in order to
408        create nested generators.
409    *   `Dataset.list_files()` now produces deterministic results when
410        `shuffle=False` or a `seed` is passed.
411    *   `tf.contrib.data.sample_from_datasets()` and
412        `tf.contrib.data.choose_from_datasets()` make it easier to sample or
413        deterministically choose elements from multiple datasets.
414    *   `tf.contrib.data.make_csv_dataset()` now supports line breaks in quoted
415        strings, and two infrequently used arguments removed.
416    *   (C++) `DatasetBase::DebugString()` is now `const`.
417    *   (C++) `DatasetBase::MakeIterator()` has been renamed to
418        `DatasetBase::MakeIteratorInternal()`.
419    *   (C++) `IteratorBase::Initialize()` method was added to support raising
420        errors during iterator construction.
421*   Eager Execution:
422    *   Added the ability to pause recording operations for gradient computation
423        via `tf.GradientTape.stop_recording`.
424    *   Updated documentation, introductory notebooks.
425*   `tf.keras`:
426    *   Move Keras code out of _impl folder and remove API files.
427    *   `tf.keras.Model.save_weights` now saves in TensorFlow format by default.
428    *   Enable dataset iterators to be passed to `tf.keras.Model` training/eval
429        methods.
430*   TensorFlow Debugger (tfdbg) CLI: fix an issue in which the TensorBoard
431    Debugger Plugin could not handle total source file size exceeding gRPC
432    message size limit (4 MB).
433*   `tf.contrib`:
434    *   `tf.contrib.framework.zero_initializer` supports ResourceVariable.
435    *   Adding "constrained_optimization" to tensorflow/contrib.
436*   Other:
437    *   Add GCS Configuration Ops.
438    *   Changing signature of `MakeIterator` to enable propagating error status.
439    *   KL divergence for two Dirichlet distributions.
440    *   More consistent GcsFileSystem behavior for certain reads past EOF.
441    *   Update benchmark for tf.scan to match ranges across eager and graph
442        modes.
443    *   Fixed bug in `tf.reduce_prod gradient` for complex dtypes.
444    *   Allow the use of '.' in variables (e.g. "hparams.parse('a.b=1.0')"),
445        which would previously raise an error. This will correspond to an
446        attribute name with an embedded '.' symbol (e.g. 'a.b'), which can only
447        be accessed indirectly (e.g. through getattr and setattr). To set this
448        up the user will first need to explicitly add the variable to the hparam
449        object (e.g. "hparams.add_hparam(name='a.b', value=0.0)").
450    *   Benchmark for tf.scan in graph and eager modes.
451    *   Added complex128 support to FFT, FFT2D, FFT3D, IFFT, IFFT2D, and IFFT3D.
452    *   Making ids unique in `nn.embedding_lookup_sparse`. This helps to reduce
453        RPC calls for looking up the embeddings when there are repeated ids in
454        the batch.
455    *   Support indicator column in boosted trees.
456    *   Prevent `tf.gradients()` from backpropagating through integer tensors.
457    *   LinearOperator[1D,2D,3D]Circulant added to `tensorflow.linalg`.
458    *   Conv3D, Conv3DBackpropInput, Conv3DBackpropFilter now supports
459        arbitrary.
460    *   Added `tf.train.Checkpoint` for reading/writing object-based
461        checkpoints.
462    *   Added LinearOperatorKronecker, a dense-free implementation of the
463        Kronecker Product.
464    *   Allow LinearOperator to broadcast.
465    *   SavedModelBuilder will now deduplicate asset names that point to files
466        with the same basename and the same contents. Note that this may result
467        in new asset files included in SavedModels in cases where assets with
468        the same name but different contents were previously overwriting each
469        other.
470
471## Thanks to our Contributors
472
473This release contains contributions from many people at Google, as well as:
474
475Abdullah Alrasheed, Achal Shah, Ad-530, ADiegoCAlonso, Aditya Yogi, Ag Ramesh, akindyakov, Andy Kernahan, Anya Petrova, Aurelien Geron, Ben, Ben Barsdell, Bhavani-Subramanian, braincodercn, Brett Koonce, Brian Nemsick, Brian Zier, Bryan Heden, candy.dc, cclauss, Clayne Robison, ctiijima, Dalmo Cirne, David Norman, David T.H. Kao, DosLin, ekelsen, Elson Rodriguez, Erik Smistad, Felix Abecassis, Fergal Cotter, fo40225, foo0x29a, Freedom" Koan-Sin Tan, FréDéRic Branchaud-Charron, gdh1995, Geoffrey Irving, Giuseppe, gracehoney, Guido Zuidhof, Guillaume Klein, Guozhong Zhuang, Haggai, Harald Husum, imsheridan, Ivan Zhang, Jan Zikes, Jayaram Bobba, Jesse Benson, Jesse Gumz, Jiajia Li, Jie, jinghuangintel, Jingwen, jjsjann123, Joe Yearsley, Joel Hestness, Joel Shor, josephyearsley, Junpeng Lao, Karol M. Langner, Kb Sriram, krantideep95, Krish Ravindranath, Letian Feng, Loo Rong Jie, Lukas Geiger, Maciej, Mahmoud Abuzaina, ManHyuk, Mark Ryan, mbhuiyan, Michal Turek, Mostafa Alaa, Myungsung Kwak, Nand Dalal, Nehal J Wani, Neil Tenenholtz, ngc92, Nicholas Nadeau, P.Eng., Avs, Niranjan Hasabnis, P-Hidringer, Paul Van Eck, Peng Yu, Qing Zhao, Qingying Chen, Quanlong, Rajendra Arora, Rholais Lii, rmanyari, Robin Richtsfeld, Russell Klopfer, Sagi, Sam Sendelbach, Sandeep N Gupta, Sandip Giri, Sarah Edkins, Scott Tseng, Sdalbsoo, Sergii Khomenko, Seungwoo Choi (Biggie), Seyed Majid Azimi, Shaoning Zeng, shengfuintel, Siu Kei, Muk, Smit Shilu, soonson, Stefan Schweter, Sukhwan Kim, Sunitha Kambhampati, Taehoon Lee, tamimaddari82, Tang, Wenyi, Ted Chang, u2takey, Utkarsh Upadhyay, Vadim Markovtsev, voegtlel, Wai Hon Law, wangsiyu, Wenhao Hu, wenhao.hu, William D. Irons, Yan Facai (颜发才), Yanbo Liang, Yihong Wang, Yilei (Dolee) Yang, Yong Tang, Yuan (Terry) Tang
476
477# Release 1.8.0
478
479## Major Features And Improvements
480* Can now pass `tf.contrib.distribute.MirroredStrategy()` to `tf.estimator.RunConfig()` to run an Estimator model on multiple GPUs on one machine.
481* Add `tf.contrib.data.prefetch_to_device()`, which supports prefetching to GPU memory.
482* Added Gradient Boosted Trees as pre-made Estimators: BoostedTreesClassifier, BoostedTreesRegressor.
483* Add 3rd generation pipeline config for Cloud TPUs which improves performance and usability.
484* `tf.contrib.bayesflow` is moving out to it's own repo.
485* Added `tf.contrib.{proto,rpc}` to allow generic proto parsing and RPC communication<sup>[1](#rpc-issue)</sup>.
486
487## Bug Fixes and Other Changes
488* `tf.data`:
489  * Add `tf.contrib.data.prefetch_to_device`, which enables prefetching dataset elements to GPU memory.
490  * Add `tf.contrib.data.AUTOTUNE`, which allows the tf.data runtime to automatically tune the prefetch buffer sizes based on your system and environment.
491  * Add `tf.contrib.data.make_csv_dataset` for building datasets of CSV files.
492* Eager Execution:
493  * With eager execution Datasets can now be used as standard python iterators (`for batch in dataset:`). Both `Dataset.__iter__()` and `Dataset.make_one_shot_iterator()` can now be used to create iterators when eager execution is enabled.
494  * Automatic device placement has been enabled (i.e., use a GPU if available automatically, without requiring an explicit `with tf.device(“/gpu:0”)`) (Fixes #14133)
495  * `tf.GradientTape` has moved out of contrib.
496* `tf.keras`:
497  * Added the fashion mnist dataset.
498  * New data preprocessing functions: `image/random_brightness`, `sequence/TimeseriesGenerator`, and `text/hashing_trick`.
499* Accelerated Linear Algebra (XLA):
500  * Select and scatter in reference util and evaluator now use lexicographical order to break ties.
501* TensorFlow Debugger (tfdbg) CLI:
502  * During tensor-filter operations, allow exclusion of nodes by regular expressions.
503  * Fix spurious background colors in some text terminals.
504* `tf.contrib`:
505  * Add meta-distribution BatchReshape which reshapes batch dimensions.
506  * `tf.contrib.layers.recompute_grad` works for explicit gradient checkpointing on TPU.
507  * Add `tf.contrib.framework.argsort`.
508  * Allow `DNNBoostedTreeCombinedEstimator` to work with core versions of feature columns and losses.
509  * Add non-linear image warping ops: `tf.contrib.image.sparse_image_warp`, `tf.contrib.image.dense_image_warp`, and `tf.contrib.image.interpolate_spline`.
510  * Fix bug in `tf.contrib.opt.MultitaskOptimizerWrapper` where types of tensors were mismatched.
511* Other:
512  * Low-level graph construction now calls the TensorFlow C API. This change should be invisible to most users, but can be disabled by setting the environment variable `TF_C_API_GRAPH_CONSTRUCTION=0` in this release. Future releases will remove the ability to disable this change. Please [file a bug](https://github.com/tensorflow/tensorflow/issues/new) if you find yourself using this escape hatch.
513  * Add description of shapes and a pointer to tutorial notebook in `tf.distributions.Distribution`.
514  * Update scatter operations:
515    * Add `tf.scatter_min` and `tf.scatter_max`
516    * Extend scatter operations to work with a scalar update parameter.
517  * Move cuDNN RNN ops to core for use in TensorFlow codebase only.
518  * Add `float64` support for `Conv2d`, `Conv2dBackpropInput`, and `Conv2dBackpropFilter`.
519  * Add `float64` support for `AvgPool`/`AvgPoolGrad`.
520  * Make graph name scope thread local so that they work correctly in multi-threaded environments.
521  * Update nsync synchronization library to avoid slow primitives on Linux.
522  * Removed need to put nsync/public on C include path when building custom ops.
523  * Add `tf.image.psnr`, `tf.image.ssim`, `tf.image.ssim_multiscale`, `tf.image.image_gradients`, `tf.image.sobel_edges`.
524  * Add links to https://js.tensorflow.org.
525  * Fix non-uniformity of orthogonal matrices.
526  * Fix bug where multi-image Estimator eval summaries were not displayed correctly.
527
528<a name="rpc-issue"><sup>1</sup></a> The cancellation logic of the RPC op contains a concurrency error. A fix has been submitted to master and will be part of the next release.
529
530## Thanks to our Contributors
531
532This release contains contributions from many people at Google, as well as:
533
5344d55397500, Aghasy, Alan Du, Alan Lee, Alan Yee, Alex Wiltschko, Animesh Karnewar, Ankit Gupta, Anton Matosov, Aris L, Ben Barsdell, Brent Yi, Brett Koonce, Carl Thomé, cbockman, Chikanaga Tomoyuki, Chris Tava, CéDric Deltheil, Dahan Gong, Dalmo Cirne, Daniel Erenrich, David Norman, DavidNorman, Edd Wilder-James, Fanjin Zeng, Felix Abecassis, fo40225, George Sterpu, Giovanni Terlingen, Gor Baghdasaryan, Guillaume Klein, Hanchen Li, Ilya Polenov, Jakub Kolodziejczyk, Jason Sadler, Jayaram Bobba, Jerry Liu, jinghuangintel, Jiongyan Zhang (张炯衍), Joel Shor, Jong Wook Kim, Julian Eisenschlos, Karl Lessard, Krish Ravindranath, Loo Rong Jie, Lukas Geiger, Luke Iwanski, Mahmoud Abuzaina, ManHyuk, Marvin Richter, Maximilian Mitchell, Mohammad Ashraf Bhuiyan, msofka, Mustafa Kasap, Nathan Burnham, Nathan Luehr, Naveen Marri, ngc92, nio1814, Oleg Zabluda, Ou Changkun, Panos Ipeirotis, Paul Van Eck, Peter Lee, Piotr Czapla, qjivy, Rholais Lii, Rodrigo Formigone, Russell Klopfer, ryantimjohn, Sang Han, SebastiáN RamíRez, shengfuintel, Siby Jose Plathottam, Silver Chan, Stanislaw Antol, Taehoon Lee, Tarang Chugh, Ted Chang, Thomas Bastiani, Xian Xu, Xiaoming (Jason) Cui, Yan Facai (颜发才), yaox12, Yashal Shakti Kanungo, Yong Tang, Yuan (Terry) Tang, Yuxin Wu, Ziyue(Louis) Lu
535
536# Release 1.7.0
537
538## Major Features And Improvements
539* Eager mode is moving out of contrib, try `tf.enable_eager_execution()`.
540* Graph rewrites emulating fixed-point quantization compatible with TensorFlow Lite, supported by new `tf.contrib.quantize` package.
541* Easily customize gradient computation with `tf.custom_gradient`.
542* [TensorBoard Debugger Plugin](https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/debugger/README.md), the graphical user interface (GUI) of TensorFlow Debugger (tfdbg), is now in alpha.
543* Experimental support for reading a sqlite database as a `Dataset` with new `tf.contrib.data.SqlDataset`.
544* Distributed Mutex / CriticalSection added to `tf.contrib.framework.CriticalSection`.
545* Better text processing with `tf.regex_replace`.
546* Easy, efficient sequence input with `tf.contrib.data.bucket_by_sequence_length`
547* Initial support for `tf.contrib.tensorrt` that enables native TensorRT in
548  TensorFlow.
549
550## Bug Fixes and Other Changes
551* Accelerated Linear Algebra (XLA):
552  * Add `MaxPoolGradGrad` support for XLA
553  * CSE pass from Tensorflow is now disabled in XLA.
554* `tf.data`:
555  * `tf.data.Dataset`
556    * Add support for building C++ Dataset op kernels as external libraries, using the `tf.load_op_library()` mechanism.
557    * `Dataset.list_files()` now shuffles its output by default.
558    * `Dataset.shuffle(..., seed=tf.constant(0, dtype=tf.int64))` now yields the same sequence of elements as `Dataset.shuffle(..., seed=0)`.
559  * Add `num_parallel_reads` argument to `tf.data.TFRecordDataset`.
560* `tf.contrib`:
561  * `tf.contrib.bayesflow.halton_sequence` now supports randomization.
562  * Add support for scalars in `tf.contrib.all_reduce`.
563  * Add `effective_sample_size` to `tf.contrib.bayesflow.mcmc_diagnostics`.
564  * Add `potential_scale_reduction` to `tf.contrib.bayesflow.mcmc_diagnostics`.
565  * Add `BatchNormalization`, `Kumaraswamy` bijectors.
566  * Deprecate `tf.contrib.learn`. Please check contrib/learn/README.md for instructions on how to convert existing code.
567  * `tf.contrib.data`
568    * Remove deprecated `tf.contrib.data.Dataset`, `tf.contrib.data.Iterator`, `tf.contrib.data.FixedLengthRecordDataset`, `tf.contrib.data.TextLineDataset`, and `tf.contrib.data.TFRecordDataset` classes.
569    * Added `bucket_by_sequence_length`, `sliding_window_batch`, and `make_batched_features_dataset`
570  * Remove unmaintained `tf.contrib.ndlstm`. You can find it externally at https://github.com/tmbarchive/tfndlstm.
571  * Moved most of `tf.contrib.bayesflow` to its own repo: `tfp`
572* Other:
573  * tf.py_func now reports the full stack trace if an exception occurs.
574  * Integrate `TPUClusterResolver` with GKE's integration for Cloud TPUs.
575  * Add a library for statistical testing of samplers.
576  * Add Helpers to stream data from the GCE VM to a Cloud TPU.
577  * Integrate ClusterResolvers with TPUEstimator.
578  * Unify metropolis_hastings interface with HMC kernel.
579  * Move LIBXSMM convolutions to a separate --define flag so that they are disabled by default.
580  * Fix `MomentumOptimizer` lambda.
581  * Reduce `tfp.layers` boilerplate via programmable docstrings.
582  * Add `auc_with_confidence_intervals`, a method for computing the AUC and confidence interval with linearithmic time complexity.
583  * `regression_head` now accepts customized link function, to satisfy the usage that user can define their own link function if the `array_ops.identity` does not meet the requirement.
584  * Fix `initialized_value` and `initial_value` behaviors for `ResourceVariables` created from `VariableDef` protos.
585  * Add TensorSpec to represent the specification of Tensors.
586  * Constant folding pass is now deterministic.
587  * Support `float16` `dtype` in `tf.linalg.*`.
588  * Add `tf.estimator.export.TensorServingInputReceiver` that allows `tf.estimator.Estimator.export_savedmodel` to pass raw tensors to model functions.
589
590## Deprecations
591
592* TensorFlow 1.7 may be the last time we support Cuda versions below 8.0.
593  Starting with TensorFlow 1.8 release, 8.0 will be the minimum supported
594  version.
595* TensorFlow 1.7 may be the last time we support cuDNN versions below 6.0.
596  Starting with TensorFlow 1.8 release, 6.0 will be the minimum supported
597  version.
598
599## Thanks to our Contributors
600
601This release contains contributions from many people at Google, as well as:
602
6034d55397500, Abe, Alistair Low, Andy Kernahan, Appledore, Ben, Ben Barsdell, Boris Pfahringer, Brad Wannow, Brett Koonce, Carl Thomé, cclauss, Chengzhi Chen, Chris Drake, Christopher Yeh, Clayne Robison, Codrut Grosu, Daniel Trebbien, Danny Goodman, David Goodwin, David Norman, Deron Eriksson, Donggeon Lim, Donny Viszneki, DosLin, DylanDmitri, Francisco Guerrero, Fred Reiss, gdh1995, Giuseppe, Glenn Weidner, gracehoney, Guozhong Zhuang, Haichen "Hc" Li, Harald Husum, harumitsu.nobuta, Henry Spivey, hsm207, Jekyll Song, Jerome, Jiongyan Zhang, jjsjann123, John Sungjin Park, Johnson145, JoshVarty, Julian Wolff, Jun Wang, June-One, Kamil Sindi, Kb Sriram, Kdavis-Mozilla, Kenji, lazypanda1, Liang-Chi Hsieh, Loo Rong Jie, Mahesh Bhosale, MandarJKulkarni, ManHyuk, Marcus Ong, Marshal Hayes, Martin Pool, matthieudelaro, mdfaijul, mholzel, Michael Zhou, Ming Li, Minmin Sun, Myungjoo Ham, MyungsungKwak, Naman Kamra, Peng Yu, Penghao Cen, Phil, Raghuraman-K, resec, Rohin Mohanadas, Sandeep N Gupta, Scott Tseng, seaotterman, Seo Sanghyeon, Sergei Lebedev, Ted Chang, terrytangyuan, Tim H, tkunic, Tod, vihanjain, Yan Facai (颜发才), Yin Li, Yong Tang, Yukun Chen, Yusuke Yamada
604
605
606
607# Release 1.6.0
608
609## Breaking Changes
610* Prebuilt binaries are now built against CUDA 9.0 and cuDNN 7.
611* Prebuilt binaries will use AVX instructions. This may break TF on older CPUs.
612
613## Major Features And Improvements
614* New Optimizer internal API for non-slot variables. Descendants of AdamOptimizer that access _beta[12]_power will need to be updated.
615* `tf.estimator.{FinalExporter,LatestExporter}` now export stripped SavedModels. This improves forward compatibility of the SavedModel.
616* FFT support added to XLA CPU/GPU.
617
618## Bug Fixes and Other Changes
619* Documentation updates:
620  * Added a second version of Getting Started, which is aimed at ML
621newcomers.
622  * Clarified documentation on `resize_images.align_corners` parameter.
623  * Additional documentation for TPUs.
624* Google Cloud Storage (GCS):
625  * Add client-side throttle.
626  * Add a `FlushCaches()` method to the FileSystem interface, with an implementation for GcsFileSystem.
627* Other:
628  * Add `tf.contrib.distributions.Kumaraswamy`.
629  * `RetryingFileSystem::FlushCaches()` calls the base FileSystem's `FlushCaches()`.
630  * Add `auto_correlation` to distributions.
631  * Add `tf.contrib.distributions.Autoregressive`.
632  * Add SeparableConv1D layer.
633  * Add convolutional Flipout layers.
634  * When both inputs of `tf.matmul` are bfloat16, it returns bfloat16, instead of float32.
635  * Added `tf.contrib.image.connected_components`.
636  * Add `tf.contrib.framework.CriticalSection` that allows atomic variable access.
637  * Output variance over trees predictions for classifications tasks.
638  * For `pt` and `eval` commands, allow writing tensor values to filesystem as numpy files.
639  * gRPC: Propagate truncated errors (instead of returning gRPC internal error).
640  * Augment `parallel_interleave` to support 2 kinds of prefetching.
641  * Improved XLA support for C64-related ops log, pow, atan2, tanh.
642  * Add probabilistic convolutional layers.
643
644## API Changes
645* Introducing `prepare_variance` boolean with default setting to False for backward compatibility.
646* Move `layers_dense_variational_impl.py` to `layers_dense_variational.py`.
647
648## Known Bugs
649* Using XLA:GPU with CUDA 9 and CUDA 9.1 results in garbage results and/or
650  `CUDA_ILLEGAL_ADDRESS` failures.
651
652  Google discovered in mid-December 2017 that the PTX-to-SASS compiler in CUDA 9
653  and CUDA 9.1 sometimes does not properly compute the carry bit when
654  decomposing 64-bit address calculations with large offsets (e.g. `load [x +
655  large_constant]`) into 32-bit arithmetic in SASS.
656
657  As a result, these versions of `ptxas` miscompile most XLA programs which use
658  more than 4GB of temp memory.  This results in garbage results and/or
659  `CUDA_ERROR_ILLEGAL_ADDRESS` failures.
660
661  A fix in CUDA 9.1.121 is expected in late February 2018.  We do not expect a
662  fix for CUDA 9.0.x.  Until the fix is available, the only workaround is to
663  [downgrade](https://developer.nvidia.com/cuda-toolkit-archive) to CUDA 8.0.x
664  or disable XLA:GPU.
665
666  TensorFlow will print a warning if you use XLA:GPU with a known-bad version of
667  CUDA; see e00ba24c4038e7644da417ddc639169b6ea59122.
668
669## Thanks to our Contributors
670
671This release contains contributions from many people at Google, as well as:
672
6734d55397500, Ag Ramesh, Aiden Scandella, Akimasa Kimura, Alex Rothberg, Allen Goodman,
674amilioto, Andrei Costinescu, Andrei Nigmatulin, Anjum Sayed, Anthony Platanios,
675Anush Elangovan, Armando Fandango, Ashish Kumar Ram, Ashwini Shukla, Ben, Bhavani Subramanian,
676Brett Koonce, Carl Thomé, cclauss, Cesc, Changming Sun, Christoph Boeddeker, Clayne Robison,
677Clemens Schulz, Clint (Woonhyuk Baek), codrut3, Cole Gerdemann, Colin Raffel, Daniel Trebbien,
678Daniel Ylitalo, Daniel Zhang, Daniyar, Darjan Salaj, Dave Maclachlan, David Norman, Dong--Jian,
679dongsamb, dssgsra, Edward H, eladweiss, elilienstein, Eric Lilienstein, error.d, Eunji Jeong, fanlu,
680Florian Courtial, fo40225, Fred, Gregg Helt, Guozhong Zhuang, Hanchen Li, hsm207, hyunyoung2,
681ImSheridan, Ishant Mrinal Haloi, Jacky Ko, Jay Young, Jean Flaherty, Jerome, JerrikEph, Jesse
682Kinkead, jfaath, Jian Lin, jinghuangintel, Jiongyan Zhang, Joel Hestness, Joel Shor, Johnny Chan,
683Julian Niedermeier, Julian Wolff, JxKing, K-W-W, Karl Lessard, Kasper Marstal, Keiji Ariyama,
684Koan-Sin Tan, Loki Der Quaeler, Loo Rong Jie, Luke Schaefer, Lynn Jackson, ManHyuk, Matt Basta,
685Matt Smith, Matthew Schulkind, Michael, michaelkhan3, Miguel Piedrafita, Mikalai Drabovich,
686Mike Knapp, mjwen, mktozk, Mohamed Aly, Mohammad Ashraf Bhuiyan, Myungjoo Ham, Naman Bhalla,
687Namrata-Ibm, Nathan Luehr, nathansilberman, Netzeband, Niranjan Hasabnis, Omar Aflak, Ozge
688Yalcinkaya, Parth P Panchal, patrickzzy, Patryk Chrabaszcz, Paul Van Eck, Paweł Kapica, Peng Yu,
689Philip Yang, Pierre Blondeau, Po-Hsien Chu, powderluv, Puyu Wang, Rajendra Arora, Rasmus, Renat
690Idrisov, resec, Robin Richtsfeld, Ronald Eddy Jr, Sahil Singh, Sam Matzek, Sami Kama, sandipmgiri,
691Santiago Castro, Sayed Hadi Hashemi, Scott Tseng, Sergii Khomenko, Shahid, Shengpeng Liu, Shreyash
692Sharma, Shrinidhi Kl, Simone Cirillo, simsicon, Stanislav Levental, starsblinking, Stephen Lumenta,
693Steven Hickson, Su Tang, Taehoon Lee, Takuya Wakisaka, Ted Chang, Ted Ying, Tijmen Verhulsdonck,
694Timofey Kondrashov, vade, vaibhav, Valentin Khrulkov, vchigrin, Victor Costan, Viraj Navkal,
695Vivek Rane, wagonhelm, Yan Facai (颜发才), Yanbo Liang, Yaroslav Bulatov, yegord, Yong Tang,
696Yoni Tsafir, yordun, Yuan (Terry) Tang, Yuxin Wu, zhengdi, Zhengsheng Wei, 田传武
697
698# Release 1.5.0
699
700## Breaking Changes
701* Prebuilt binaries are now built against CUDA 9.0 and cuDNN 7.
702* Starting from 1.6 release, our prebuilt binaries will use AVX instructions.
703  This may break TF on older CPUs.
704
705## Major Features And Improvements
706* [Eager execution](https://github.com/tensorflow/tensorflow/tree/r1.5/tensorflow/contrib/eager)
707  preview version is now available.
708* [TensorFlow Lite](https://github.com/tensorflow/tensorflow/tree/r1.5/tensorflow/lite)
709  dev preview is now available.
710* CUDA 9.0 and cuDNN 7 support.
711* Accelerated Linear Algebra (XLA):
712  * Add `complex64` support to XLA compiler.
713  * `bfloat` support is now added to XLA infrastructure.
714  * Make `ClusterSpec` propagation work with XLA devices.
715  * Use a deterministic executor to generate XLA graph.
716* `tf.contrib`:
717  * `tf.contrib.distributions`:
718    * Add `tf.contrib.distributions.Autoregressive`.
719    * Make `tf.contrib.distributions` QuadratureCompound classes support batch
720    * Infer `tf.contrib.distributions.RelaxedOneHotCategorical` `dtype` from arguments.
721    * Make `tf.contrib.distributions` quadrature family parameterized by
722      `quadrature_grid_and_prob` vs `quadrature_degree`.
723    * `auto_correlation` added to `tf.contrib.distributions`
724  * Add `tf.contrib.bayesflow.layers`, a collection of probabilistic (neural) layers.
725  * Add `tf.contrib.bayesflow.halton_sequence`.
726  * Add `tf.contrib.data.make_saveable_from_iterator.`
727  * Add `tf.contrib.data.shuffle_and_repeat`.
728  * Add new custom transformation: `tf.contrib.data.scan()`.
729  * `tf.contrib.distributions.bijectors`:
730    * Add `tf.contrib.distributions.bijectors.MaskedAutoregressiveFlow`.
731    * Add `tf.contrib.distributions.bijectors.Permute`.
732    * Add `tf.contrib.distributions.bijectors.Gumbel`.
733    * Add `tf.contrib.distributions.bijectors.Reshape`.
734    * Support shape inference (i.e., shapes containing -1) in the Reshape bijector.
735* Add `streaming_precision_recall_at_equal_thresholds,` a method for computing
736  streaming precision and recall with `O(num_thresholds + size of predictions)`
737  time and space complexity.
738* Change `RunConfig` default behavior to not set a random seed, making random
739  behavior independently random on distributed workers. We expect this to
740  generally improve training performance. Models that do rely on determinism
741  should set a random seed explicitly.
742* Replaced the implementation of `tf.flags` with `absl.flags`.
743* Add support for `CUBLAS_TENSOR_OP_MATH` in fp16 GEMM
744* Add support for CUDA on NVIDIA Tegra devices
745
746## Bug Fixes and Other Changes
747* Documentation updates:
748  * Clarified that you can only install TensorFlow on 64-bit machines.
749  * Added a short doc explaining how `Estimator`s save checkpoints.
750  * Add documentation for ops supported by the `tf2xla` bridge.
751  * Fix minor typos in the doc of `SpaceToDepth` and `DepthToSpace`.
752  * Updated documentation comments in `mfcc_mel_filterbank.h` and `mfcc.h` to
753    clarify that the input domain is squared magnitude spectra and the weighting
754    is done on linear magnitude spectra (sqrt of inputs).
755  * Change `tf.contrib.distributions` docstring examples to use `tfd` alias
756    rather than `ds`, `bs`.
757  * Fix docstring typos in `tf.distributions.bijectors.Bijector`.
758  * `tf.assert_equal` no longer raises `ValueError.` It now raises
759    `InvalidArgumentError,` as documented.
760  * Update Getting Started docs and API intro.
761* Google Cloud Storage (GCS):
762  * Add userspace DNS caching for the GCS client.
763  * Customize request timeouts for the GCS filesystem.
764  * Improve GCS filesystem caching.
765* Bug Fixes:
766  * Fix bug where partitioned integer variables got their wrong shapes. Before
767  * Fix correctness bug in CPU and GPU implementations of Adadelta.
768  * Fix a bug in `import_meta_graph`'s handling of partitioned variables when
769    importing into a scope. WARNING: This may break loading checkpoints of
770    graphs with partitioned variables saved after using `import_meta_graph` with
771    a non-empty `import_scope` argument.
772  * Fix bug in offline debugger which prevented viewing events.
773  * Added the `WorkerService.DeleteWorkerSession` method to the gRPC interface,
774    to fix a memory leak. Ensure that your master and worker servers are running
775    the same version of TensorFlow to avoid compatibility issues.
776  * Fix bug in peephole implementation of BlockLSTM cell.
777  * Fix bug by casting dtype of `log_det_jacobian` to match `log_prob` in
778    `TransformedDistribution`.
779  * Fix a bug in `import_meta_graph`'s handling of partitioned variables when
780  * Ensure `tf.distributions.Multinomial` doesn't underflow in `log_prob`.
781    Before this change, all partitions of an integer variable were initialized
782    with the shape of the unpartitioned variable; after this change they are
783    initialized correctly.
784* Other:
785  * Add necessary shape util support for bfloat16.
786  * Add a way to run ops using a step function to MonitoredSession.
787  * Add `DenseFlipout` probabilistic layer.
788  * A new flag `ignore_live_threads` is available on train. If set to `True`, it
789    will ignore threads that remain running when tearing down infrastructure
790    after successfully completing training, instead of throwing a RuntimeError.
791  * Restandardize `DenseVariational` as simpler template for other probabilistic
792    layers.
793  * `tf.data` now supports `tf.SparseTensor` components in dataset elements.
794  * It is now possible to iterate over `Tensor`s.
795  * Allow `SparseSegmentReduction` ops to have missing segment IDs.
796  * Modify custom export strategy to account for multidimensional sparse float
797    splits.
798  * `Conv2D`, `Conv2DBackpropInput`, `Conv2DBackpropFilter` now supports arbitrary
799    dilations with GPU and cuDNNv6 support.
800  * `Estimator` now supports `Dataset`: `input_fn` can return a `Dataset`
801    instead of `Tensor`s.
802  * Add `RevBlock`, a memory-efficient implementation of reversible residual layers.
803  * Reduce BFCAllocator internal fragmentation.
804  * Add `cross_entropy` and `kl_divergence` to `tf.distributions.Distribution`.
805  * Add `tf.nn.softmax_cross_entropy_with_logits_v2` which enables backprop
806    w.r.t. the labels.
807  * GPU back-end now uses `ptxas` to compile generated PTX.
808  * `BufferAssignment`'s protocol buffer dump is now deterministic.
809  * Change embedding op to use parallel version of `DynamicStitch`.
810  * Add support for sparse multidimensional feature columns.
811  * Speed up the case for sparse float columns that have only 1 value.
812  * Allow sparse float splits to support multivalent feature columns.
813  * Add `quantile` to `tf.distributions.TransformedDistribution`.
814  * Add `NCHW_VECT_C` support for `tf.depth_to_space` on GPU.
815  * Add `NCHW_VECT_C` support for `tf.space_to_depth` on GPU.
816
817## API Changes
818* Rename `SqueezeDims` attribute to `Axis` in C++ API for Squeeze op.
819* `Stream::BlockHostUntilDone` now returns Status rather than bool.
820* Minor refactor: move stats files from `stochastic` to `common` and remove
821  `stochastic`.
822
823## Known Bugs
824* Using XLA:GPU with CUDA 9 and CUDA 9.1 results in garbage results and/or
825  `CUDA_ILLEGAL_ADDRESS` failures.
826
827  Google discovered in mid-December 2017 that the PTX-to-SASS compiler in CUDA 9
828  and CUDA 9.1 sometimes does not properly compute the carry bit when
829  decomposing 64-bit address calculations with large offsets (e.g. `load [x +
830  large_constant]`) into 32-bit arithmetic in SASS.
831
832  As a result, these versions of `ptxas` miscompile most XLA programs which use
833  more than 4GB of temp memory.  This results in garbage results and/or
834  `CUDA_ERROR_ILLEGAL_ADDRESS` failures.
835
836  A fix in CUDA 9.1.121 is expected in late February 2018.  We do not expect a
837  fix for CUDA 9.0.x.  Until the fix is available, the only workaround is to
838  [downgrade](https://developer.nvidia.com/cuda-toolkit-archive) to CUDA 8.0.x
839  or disable XLA:GPU.
840
841  TensorFlow will print a warning if you use XLA:GPU with a known-bad version of
842  CUDA; see e00ba24c4038e7644da417ddc639169b6ea59122.
843
844## Thanks to our Contributors
845
846This release contains contributions from many people at Google, as well as:
847
848Adam Zahran, Ag Ramesh, Alan Lee, Alan Yee, Alex Sergeev, Alexander, Amir H. Jadidinejad,
849Amy, Anastasios Doumoulakis, Andrei Costinescu, Andrei Nigmatulin, Anthony Platanios,
850Anush Elangovan, arixlin, Armen Donigian, ArtëM Sobolev, Atlas7, Ben Barsdell, Bill Prin,
851Bo Wang, Brett Koonce, Cameron Thomas, Carl Thomé, Cem Eteke, cglewis, Changming Sun,
852Charles Shenton, Chi-Hung, Chris Donahue, Chris Filo Gorgolewski, Chris Hoyean Song,
853Chris Tava, Christian Grail, Christoph Boeddeker, cinqS, Clayne Robison, codrut3, concerttttt,
854CQY, Dan Becker, Dan Jarvis, Daniel Zhang, David Norman, dmaclach, Dmitry Trifonov,
855Donggeon Lim, dongpilYu, Dr. Kashif Rasul, Edd Wilder-James, Eric Lv, fcharras, Felix Abecassis,
856FirefoxMetzger, formath, FredZhang, Gaojin Cao, Gary Deer, Guenther Schmuelling, Hanchen Li,
857Hanmin Qin, hannesa2, hyunyoung2, Ilya Edrenkin, Jackson Kontny, Jan, Javier Luraschi,
858Jay Young, Jayaram Bobba, Jeff, Jeff Carpenter, Jeremy Sharpe, Jeroen BéDorf, Jimmy Jia,
859Jinze Bai, Jiongyan Zhang, Joe Castagneri, Johan Ju, Josh Varty, Julian Niedermeier,
860JxKing, Karl Lessard, Kb Sriram, Keven Wang, Koan-Sin Tan, Kyle Mills, lanhin, LevineHuang,
861Loki Der Quaeler, Loo Rong Jie, Luke Iwanski, LáSzló Csomor, Mahdi Abavisani, Mahmoud Abuzaina,
862ManHyuk, Marek ŠUppa, MathSquared, Mats Linander, Matt Wytock, Matthew Daley, Maximilian Bachl,
863mdymczyk, melvyniandrag, Michael Case, Mike Traynor, miqlas, Namrata-Ibm, Nathan Luehr,
864Nathan Van Doorn, Noa Ezra, Nolan Liu, Oleg Zabluda, opensourcemattress, Ouwen Huang,
865Paul Van Eck, peisong, Peng Yu, PinkySan, pks, powderluv, Qiao Hai-Jun, Qiao Longfei,
866Rajendra Arora, Ralph Tang, resec, Robin Richtsfeld, Rohan Varma, Ryohei Kuroki, SaintNazaire,
867Samuel He, Sandeep Dcunha, sandipmgiri, Sang Han, scott, Scott Mudge, Se-Won Kim, Simon Perkins,
868Simone Cirillo, Steffen Schmitz, Suvojit Manna, Sylvus, Taehoon Lee, Ted Chang, Thomas Deegan,
869Till Hoffmann, Tim, Toni Kunic, Toon Verstraelen, Tristan Rice, Urs KöSter, Utkarsh Upadhyay,
870Vish (Ishaya) Abrams, Winnie Tsang, Yan Chen, Yan Facai (颜发才), Yi Yang, Yong Tang,
871Youssef Hesham, Yuan (Terry) Tang, Zhengsheng Wei, zxcqwe4906, 张志豪, 田传武
872
873We are also grateful to all who filed issues or helped resolve them, asked and
874answered questions, and were part of inspiring discussions.
875
876# Release 1.4.1
877
878## Bug Fixes and Other Changes
879* `LinearClassifier` fix.
880
881# Release 1.4.0
882
883## Major Features And Improvements
884* `tf.keras` is now part of the core TensorFlow API.
885* [`tf.data`](http://tensorflow.org/guide/datasets) is now part of
886  the core TensorFlow API.
887  * The API is now subject to backwards compatibility guarantees.
888  * For a guide to migrating from the `tf.contrib.data` API, see the
889    [README](https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/contrib/data/README.md).
890  * Major new features include `Dataset.from_generator()` (for building an input
891    pipeline from a Python generator), and the `Dataset.apply()` method for
892    applying custom transformation functions.
893  * Several custom transformation functions have been added, including
894    `tf.contrib.data.batch_and_drop_remainder()` and
895    `tf.contrib.data.sloppy_interleave()`.
896* Add `train_and_evaluate` for simple distributed `Estimator` training.
897* Add `tf.spectral.dct` for computing the DCT-II.
898* Add Mel-Frequency Cepstral Coefficient support to `tf.contrib.signal`
899  (with GPU and gradient support).
900* Add a self-check on `import tensorflow` for Windows DLL issues.
901* Add NCHW support to `tf.depth_to_space` on GPU.
902* TensorFlow Debugger (tfdbg):
903  * Add `eval` command to allow evaluation of arbitrary Python/numpy expressions
904    in tfdbg command-line interface. See
905    [Debugging TensorFlow Programs](https://www.tensorflow.org/guide/debugger)
906    for more details.
907  * Usability improvement: The frequently used tensor filter `has_inf_or_nan` is
908    now added to `Session` wrappers and hooks by default. So there is no need
909    for clients to call `.add_tensor_filter(tf_debug.has_inf_or_nan)` anymore.
910* SinhArcsinh (scalar) distribution added to `contrib.distributions`.
911* Make `GANEstimator` opensource.
912* `Estimator.export_savedmodel()` now includes all valid serving signatures
913  that can be constructed from the Serving Input Receiver and all available
914  ExportOutputs. For instance, a classifier may provide regression- and
915  prediction-flavored outputs, in addition to the classification-flavored one.
916  Building signatures from these allows TF Serving to honor requests using the
917  different APIs (Classify, Regress, and Predict). Furthermore,
918  `serving_input_receiver_fn()` may now specify alternative subsets of nodes
919  that may act as inputs. This allows, for instance, producing a prediction
920  signature for a classifier that accepts raw `Tensors` instead of a serialized
921  `tf.Example`.
922* Add `tf.contrib.bayesflow.hmc`.
923* Add `tf.contrib.distributions.MixtureSameFamily`.
924* Make `Dataset.shuffle()` always reshuffles after each iteration by default.
925* Add `tf.contrib.bayesflow.metropolis_hastings`.
926* Add `log_rate` parameter to `tf.contrib.distributions.Poisson`.
927* Extend `tf.contrib.distributions.bijector` API to handle some non-injective
928  transforms.
929* Java:
930  * Generics (e.g., `Tensor<Integer>`) for improved type-safety
931    (courtesy @andrewcmyers).
932  * Support for multi-dimensional string tensors.
933  * Support loading of custom operations (e.g. many in `tf.contrib`) on Linux
934    and OS X
935* All our prebuilt binaries have been built with CUDA 8 and cuDNN 6.
936  We anticipate releasing TensorFlow 1.5 with CUDA 9 and cuDNN 7.
937
938## Bug Fixes and Other Changes
939* `tf.nn.rnn_cell.DropoutWrapper` is now more careful about dropping out LSTM
940  states.  Specifically, it no longer ever drops the `c` (memory) state of an
941  `LSTMStateTuple`.  The new behavior leads to proper dropout behavior
942  for LSTMs and stacked LSTMs.  This bug fix follows recommendations from
943  published literature, but is a behavioral change.  State dropout behavior
944  may be customized via the new `dropout_state_filter_visitor` argument.
945* Removed `tf.contrib.training.python_input`.  The same behavior, in a more
946  flexible and reproducible package, is available via the new
947  `tf.contrib.data.Dataset.from_generator` method!
948* Fix `tf.contrib.distributions.Affine` incorrectly computing log-det-jacobian.
949* Fix `tf.random_gamma` incorrectly handling non-batch, scalar draws.
950* Resolved a race condition in TensorForest TreePredictionsV4Op.
951* Google Cloud Storage file system, Amazon S3 file system, and Hadoop file
952  system support are now default build options.
953* Custom op libraries must link against libtensorflow_framework.so
954  (installed at `tf.sysconfig.get_lib()`).
955* Change `RunConfig` default behavior to not set a random seed, making random
956  behavior independently random on distributed workers. We expect this to
957  generally improve training performance. Models that do rely on determinism
958  should set a random seed explicitly.
959
960## Breaking Changes to the API
961* The signature of the `tf.contrib.data.rejection_resample()` function has been
962  changed. It now returns a function that can be used as an argument to
963  `Dataset.apply()`.
964* Remove `tf.contrib.data.Iterator.from_dataset()` method. Use
965  `Dataset.make_initializable_iterator()` instead.
966* Remove seldom used and unnecessary `tf.contrib.data.Iterator.dispose_op()`.
967* Reorder some TF-GAN loss functions in a non-backwards compatible way.
968
969## Known Issues
970* In Python 3, `Dataset.from_generator()` does not support Unicode strings.
971  You must convert any strings to bytes objects before yielding them from
972  the generator.
973
974## Thanks to our Contributors
975
976This release contains contributions from many people at Google, as well as:
977
9784d55397500, Abdullah Alrasheed, abenmao, Adam Salvail, Aditya Dhulipala, Ag Ramesh,
979Akimasa Kimura, Alan Du, Alan Yee, Alexander, Amit Kushwaha, Amy, Andrei Costinescu,
980Andrei Nigmatulin, Andrew Erlichson, Andrew Myers, Andrew Stepanov, Androbin, AngryPowman,
981Anish Shah, Anton Daitche, Artsiom Chapialiou, asdf2014, Aseem Raj Baranwal, Ash Hall,
982Bart Kiers, Batchu Venkat Vishal, ben, Ben Barsdell, Bill Piel, Carl Thomé, Catalin Voss,
983Changming Sun, Chengzhi Chen, Chi Zeng, Chris Antaki, Chris Donahue, Chris Oelmueller,
984Chris Tava, Clayne Robison, Codrut, Courtial Florian, Dalmo Cirne, Dan J, Darren Garvey,
985David Kristoffersson, David Norman, David RöThlisberger, DavidNorman, Dhruv, DimanNe,
986Dorokhov, Duncan Mac-Vicar P, EdwardDixon, EMCP, error.d, FAIJUL, Fan Xia,
987Francois Xavier, Fred Reiss, Freedom" Koan-Sin Tan, Fritz Obermeyer, Gao, Xiang,
988Guenther Schmuelling, Guo Yejun (郭叶军), Hans Gaiser, HectorSVC, Hyungsuk Yoon,
989James Pruegsanusak, Jay Young, Jean Wanka, Jeff Carpenter, Jeremy Rutman, Jeroen BéDorf,
990Jett Jones, Jimmy Jia, jinghuangintel, jinze1994, JKurland, Joel Hestness, joetoth,
991John B Nelson, John Impallomeni, John Lawson, Jonas, Jonathan Dekhtiar, joshkyh, Jun Luan,
992Jun Mei, Kai Sasaki, Karl Lessard, karl@kubx.ca, Kb Sriram, Kenichi Ueno, Kevin Slagle,
993Kongsea, Lakshay Garg, lhlmgr, Lin Min, liu.guangcong, Loki Der Quaeler, Louie Helm,
994lucasmoura, Luke Iwanski, Lyndon White, Mahmoud Abuzaina, Marcel Puyat, Mark Aaron Shirley,
995Michele Colombo, MtDersvan, Namrata-Ibm, Nathan Luehr, Naurril, Nayana Thorat, Nicolas Lopez,
996Niranjan Hasabnis, Nolan Liu, Nouce, Oliver Hennigh, osdamv, Patrik Erdes,
997Patryk Chrabaszcz, Pavel Christof, Penghao Cen, postBG, Qingqing Cao, Qingying Chen, qjivy,
998Raphael, Rasmi, raymondxyang, Renze Yu, resec, Roffel, Ruben Vereecken, Ryohei Kuroki,
999sandipmgiri, Santiago Castro, Scott Kirkland, Sean Vig, Sebastian Raschka, Sebastian Weiss,
1000Sergey Kolesnikov, Sergii Khomenko, Shahid, Shivam Kotwalia, Stuart Berg, Sumit Gouthaman,
1001superzerg, Sven Mayer, tetris, Ti Zhou, Tiago Freitas Pereira, Tian Jin, Tomoaki Oiki,
1002Vaibhav Sood, vfdev, Vivek Rane, Vladimir Moskva, wangqr, Weber Xie, Will Frey,
1003Yan Facai (颜发才), yanivbl6, Yaroslav Bulatov, Yixing Lao, Yong Tang, youkaichao,
1004Yuan (Terry) Tang, Yue Zhang, Yuxin Wu, Ziming Dong, ZxYuan, 黄璞
1005
1006We are also grateful to all who filed issues or helped resolve them, asked and
1007answered questions, and were part of inspiring discussions.
1008
1009# Release 1.3.0
1010
1011See also [TensorBoard 0.1.4](https://github.com/tensorflow/tensorboard/releases/tag/0.1.4) release notes.
1012
1013## Major Features and Improvements
1014* Added canned estimators to Tensorflow library. List of added estimators:
1015  * `DNNClassifier`
1016  * `DNNRegressor`
1017  * `LinearClassifier`
1018  * `LinearRegressor`
1019  * `DNNLinearCombinedClassifier`
1020  * `DNNLinearCombinedRegressor`.
1021* All our prebuilt binaries have been built with cuDNN 6. We anticipate releasing TensorFlow 1.4 with cuDNN 7.
1022* `import tensorflow` now goes much faster.
1023* Adds a file cache to the GCS filesystem with configurable max staleness for file contents. This permits caching of file contents across close/open boundaries.
1024* Added an axis parameter to `tf.gather`.
1025* Added a `constant_values` keyword argument to `tf.pad`.
1026* Adds `Dataset.interleave` transformation.
1027* Add `ConcatenateDataset` to concatenate two datasets.
1028* Added Mobilenet support to TensorFlow for Poets training script.
1029* Adds a block cache to the GCS filesystem with configurable block size and count.
1030* SinhArcSinh bijector added.
1031* Added `Dataset.list_files` API.
1032* Introduces new operations and Python bindings for the Cloud TPU.
1033* Adding TensorFlow-iOS CocoaPod for symmetry with tensorflow-android.
1034* Introduces base implementations of ClusterResolvers.
1035* Unify memory representations of TensorShape and PartialTensorShape. As a consequence, tensors now have a maximum of 254 dimensions, not 255.
1036* Changed references to LIBXSMM to use version 1.8.1.
1037* TensorFlow Debugger (tfdbg):
1038  * Display summaries of numeric tensor values with the `-s` flag to command `print_tensor` or `pt`.
1039  * Display feed values with the `print_feed` or `pf` command and clickable links in the curses UI.
1040  * Runtime profiler at the op level and the Python source line level with the `run -p` command.
1041* Initial release of the statistical distribution library `tf.distributions`.
1042* GPU kernels and speed improvements for unary `tf.where` and `tf.nn.top_k`.
1043* Monotonic Attention wrappers added to `tf.contrib.seq2seq`.
1044* Added `tf.contrib.signal`, a library for signal processing primitives.
1045* Added `tf.contrib.resampler`, containing CPU and GPU ops for differentiable resampling of images.
1046
1047## Breaking Changes to the API
1048* `tf.RewriterConfig` was removed from the Python API after being available in 1.2 release candidates (it was never in an actual release). Graph rewriting is still available, just not as `tf.RewriterConfig`. Instead add an explicit import.
1049* Breaking change to `tf.contrib.data.Dataset` APIs that expect a nested structure. Lists are now converted to `tf.Tensor` implicitly. You may need to change uses of lists to tuples in existing code. In addition, dicts are now supported as a nested structure.
1050
1051## Changes to contrib APIs
1052* Adds tf.contrib.nn.rank_sampled_softmax_loss, a sampled-softmax variant that can improve rank loss.
1053* `tf.contrib.metrics`.{streaming_covariance,streaming_pearson_correlation} modified to return nan when they have seen less or equal to 1 unit of weight.
1054* Adds time series models to contrib. See contrib/timeseries/README.md for details.
1055* Adds FULLY_CONNECTED Op to tensorflow/lite/schema.fbs
1056
1057## Known Issues
1058* Tensorflow_gpu compilation fails with Bazel 0.5.3.
1059
1060## Bug Fixes and Other Changes
1061* Fixes `strides` and `begin` dtype mismatch when slicing using int64 Tensor index in python.
1062* Improved convolution padding documentation.
1063* Add a tag constant, gpu, to present graph with GPU support.
1064* `saved_model.utils` now support SparseTensors transparently.
1065* A more efficient implementation of non-max suppression.
1066* Add support for the shrinkage-type L2 to FtrlOptimizer in addition to the online L2 it already supports.
1067* Fix negative variance in moments calculation.
1068* Expand UniqueOp Benchmark Tests to cover more collision cases.
1069* Improves stability of GCS filesystem on Mac.
1070* Add time estimation to HloCostAnalysis.
1071* Fixed the bug in Estimator that params in constructor was not a deepcopy of the user provided one. This bugs inadvertently enabled user to mutate the params after the creation of Estimator, leading to potentially undefined behavior.
1072* Added None check for save_path in `saver.restore`.
1073* Register devices under their legacy names in device_mgr to ease the transition to clusterspec-propagated configurations.
1074* VectorExponential added to distributions.
1075* Add a bitwise module with bitwise_and, bitwise_or, bitwise_xor, and invert functions.
1076* Add fixed-grid ODE integration routines.
1077* Allow passing bounds to ScipyOptimizerInterface.
1078* Correctness fixes for fft_length parameter to `tf.spectral.rfft` & `tf.spectral.irfft`.
1079* Exported model signatures using the 'predict' method will no longer have their input and output keys silently ignored and rewritten to 'inputs' and 'outputs'. If a model was exported with different names before 1.2, and is now served with tensorflow/serving, it will accept requests using 'inputs' and 'outputs'. Starting at 1.2, such a model will accept the keys specified during export. Therefore, inference requests using 'inputs' and 'outputs' may start to fail. To fix this, either update any inference clients to send requests with the actual input and output keys used by the trainer code, or conversely, update the trainer code to name the input and output Tensors 'inputs' and 'outputs', respectively. Signatures using the 'classify' and 'regress' methods are not affected by this change; they will continue to standardize their input and output keys as before.
1080* Add in-memory caching to the Dataset API.
1081* Set default end_of_sequence variable in datasets iterators to false.
1082* [Performance] Increase performance of `tf.layers.conv2d` when setting use_bias=True by 2x by using nn.bias_add.
1083* Update iOS examples to use CocoaPods, and moved to tensorflow/examples/ios.
1084* Adds a family= attribute in `tf.summary` ops to allow controlling the tab name used in Tensorboard for organizing summaries.
1085* When GPU is configured, do not require --config=cuda, instead, automatically build for GPU if this is requested in the configure script.
1086* Fix incorrect sampling of small probabilities in CPU/GPU multinomial.
1087* Add a list_devices() API on sessions to list devices within a cluster. Additionally, this change augment the ListDevices master API to support specifying a session.
1088* Allow uses of over-parameterized separable convolution.
1089* TensorForest multi-regression bug fix.
1090* Framework now supports armv7, cocoapods.org now displays correct page.
1091* Script to create iOS framework for CocoaPods.
1092* Android releases of TensorFlow are now pushed to jcenter for easier integration into apps. See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/android/README.md for more details.
1093* TensorFlow Debugger (tfdbg):
1094  * Fixed a bug that prevented tfdbg from functioning with multi-GPU setups.
1095  * Fixed a bug that prevented tfdbg from working with `tf.Session.make_callable`.
1096
1097## Thanks to our Contributors
1098
1099This release contains contributions from many people at Google, as well as:
1100
11014F2E4A2E, Adriano Carmezim, Adrià Arrufat, Alan Yee, Alex Lattas, Alex Rothberg,
1102Alexandr Baranezky, Ali Siddiqui, Andreas Solleder, Andrei Costinescu, Andrew Hundt,
1103Androbin, Andy Kernahan, Anish Shah, Anthony Platanios, Arvinds-Ds, b1rd, Baptiste
1104Arnaud, Ben Mabey, Benedikt Linse, Beomsu Kim, Bo Wang, Boyuan Deng, Brett Koonce,
1105Bruno Rosa, Carl Thomé, Changming Sun, Chase Roberts, Chirag Bhatia, Chris Antaki,
1106Chris Hoyean Song, Chris Tava, Christos Nikolaou, Croath Liu, cxx, Czxck001, Daniel
1107Ylitalo, Danny Goodman, Darren Garvey, David Brailovsky, David Norman, DavidNorman,
1108davidpham87, ddurham2, Dhruv, DimanNe, Drew Hintz, Dustin Tran, Earthson Lu, ethiraj,
1109Fabian Winnen, Fei Sun, Freedom" Koan-Sin Tan, Fritz Obermeyer, Gao, Xiang, Gautam,
1110Guenther Schmuelling, Gyu-Ho Lee, Hauke Brammer, horance, Humanity123, J Alammar,
1111Jayeol Chun, Jeroen BéDorf, Jianfei Wang, jiefangxuanyan, Jing Jun Yin, Joan Puigcerver,
1112Joel Hestness, Johannes Mayer, John Lawson, Johnson145, Jon Malmaud, Jonathan Alvarez-Gutierrez,
1113Juang, Yi-Lin, Julian Viereck, Kaarthik Sivashanmugam, Karl Lessard, karl@kubx.ca, Kevin
1114Carbone, Kevin Van Der Burgt, Kongsea, ksellesk, lanhin, Lef Ioannidis, Liangliang He,
1115Louis Tiao, Luke Iwanski, LáSzló Csomor, magixsno, Mahmoud Abuzaina, Marcel Hlopko, Mark
1116Neumann, Maxwell Paul Brickner, mdfaijul, MichaëL Defferrard, Michał JastrzęBski, Michele
1117Colombo, Mike Brodie, Mosnoi Ion, mouradmourafiq, myPrecious, Nayana Thorat,
1118Neeraj Kashyap, Nelson Liu, Niranjan Hasabnis, Olivier Moindrot, orome, Pankaj Gupta, Paul
1119Van Eck, peeyush18, Peng Yu, Pierre, preciousdp11, qjivy, Raingo, raoqiyu, ribx, Richard S.
1120Imaoka, Rishabh Patel, Robert Walecki, Rockford Wei, Ryan Kung, Sahil Dua, Sandip Giri, Sayed
1121Hadi Hashemi, sgt101, Shitian Ni, Shuolongbj, Siim PõDer, Simon Perkins, sj6077, SOLARIS,
1122Spotlight0xff, Steffen Eberbach, Stephen Fox, superryanguo, Sven Mayer, Tapan Prakash,
1123Tiago Morais Morgado, Till Hoffmann, Tj Rana, Vadim Markovtsev, vhasanov, Wei Wu,
1124windead, Yan (Asta) Li, Yan Chen, Yann Henon, Yi Wang, Yong Tang, yorkie, Yuan (Terry)
1125Tang, Yuxin Wu, zhengjiajin, zhongzyd, 黄璞
1126
1127We are also grateful to all who filed issues or helped resolve them, asked and
1128answered questions, and were part of inspiring discussions.
1129
1130# Release 1.2.1
1131
1132## Bug Fixes and Other Changes
1133* Updating markdown version required to >= 2.6.8.
1134* Support tensors as dropout rates again, by removing the min(max(..))
1135
1136# Release 1.2.0
1137
1138## Major Features and Improvements
1139* Python 3.6 support on Windows.
1140* Added `tf.layers.conv3d_transpose` layer for spatio temporal deconvolution.
1141* Added `tf.Session.make_callable()`, which provides a lower overhead means of running a similar step multiple times.
1142* Added libverbs-based RDMA support to contrib (courtesy @junshi15 from Yahoo).
1143* Bring `tf.feature_column.*` into the API. Non-deprecated functionality from `tf.contrib.layers.*` is moved to `tf.feature_column.*` with cosmetic changes.
1144* `RNNCell` objects now subclass `tf.layers.Layer`.  The strictness described
1145  in the TensorFlow 1.1 release is gone:  The first time an RNNCell is used,
1146  it caches its scope.  All future uses of the RNNCell will reuse variables from
1147  that same scope.  This is a breaking change from the behavior of RNNCells
1148  in TensorFlow versions <= 1.0.1.  TensorFlow 1.1 had checks in place to
1149  ensure old code works correctly with the new semantics; this version
1150  allows more flexible uses of RNNCell but can lead to subtle errors if
1151  using code meant for TensorFlow <= 1.0.1.  For example, writing:
1152  `MultiRNNCell([lstm] * 5)` will now build a 5-layer LSTM stack where each
1153  layer shares the **same** parameters.  To get 5 layers each with their own
1154  parameters, write: `MultiRNNCell([LSTMCell(...) for _ in range(5)])`.
1155  If at all unsure, first test your code with TF 1.1; ensure it raises no
1156  errors, and then upgrade to TF 1.2.
1157* RNNCells' variable names have been renamed for consistency with Keras layers.
1158  Specifically, the previous variable names "weights" and "biases" have
1159  been changed to "kernel" and "bias", respectively.
1160  This may cause backward incompatibility with regard to your old
1161  checkpoints containing such RNN cells, in which case you can use the tool
1162  [checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
1163  to convert the variable names in your old checkpoints.
1164* Many of the RNN functions and classes that were in the `tf.nn` namespace
1165  before the 1.0 release and which were moved to `tf.contrib.rnn` have now
1166  been moved back to the core namespace.  This includes
1167  `RNNCell`, `LSTMCell`, `GRUCell`, and a number of other cells.  These
1168  now reside in `tf.nn.rnn_cell` (with aliases in `tf.contrib.rnn` for backwards
1169  compatibility).  The original `tf.nn.rnn` function is now `tf.nn.static_rnn`,
1170  and the bidirectional static and state saving static rnn functions are also
1171  now back in the `tf.nn` namespace.
1172
1173  Notable exceptions are the `EmbeddingWrapper`, `InputProjectionWrapper` and
1174  `OutputProjectionWrapper`,  which will slowly be moved to deprecation
1175  in `tf.contrib.rnn`.  These are inefficient wrappers that should often
1176  be replaced by calling `embedding_lookup` or `layers.dense` as pre- or post-
1177  processing of the rnn.  For RNN decoding, this functionality has been replaced
1178  with an alternative API in `tf.contrib.seq2seq`.
1179* Intel MKL Integration (https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture). Intel developed a number of
1180  optimized deep learning primitives: In addition to matrix multiplication and
1181  convolution, these building blocks include:
1182  Direct batched convolution
1183  Pooling: maximum, minimum, average
1184  Normalization: LRN, batch normalization
1185  Activation: rectified linear unit (ReLU)
1186  Data manipulation: multi-dimensional transposition (conversion), split,
1187  concat, sum and scale.
1188* TensorForest Estimator now supports SavedModel export for serving.
1189* Support client-provided ClusterSpec's and propagate them to all workers to enable the creation of dynamic TensorFlow clusters.
1190* TensorFlow C library now available for Windows.
1191* We released a new open-source version of TensorBoard.
1192* [`SavedModel CLI`](https://www.tensorflow.org/versions/master/guide/saved_model_cli) tool available to inspect and execute MetaGraph in SavedModel
1193* Android releases of TensorFlow are now pushed to jcenter for easier
1194  integration into apps. See
1195  https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/android/README.md
1196  for more details.
1197
1198## Deprecations
1199
1200* TensorFlow 1.2 may be the last time we build with cuDNN 5.1. Starting with
1201  TensorFlow 1.3, we will try to build all our prebuilt binaries with cuDNN 6.0.
1202  While we will try to keep our source code compatible with cuDNN 5.1, it will
1203  be best effort.
1204
1205## Breaking Changes to the API
1206* `org.tensorflow.contrib.android.TensorFlowInferenceInterface` now throws exceptions where possible and has simplified method signatures.
1207
1208## Changes to contrib APIs
1209* Added `tf.contrib.util.create_example`.
1210* Added bilinear interpolation to `tf.contrib.image`.
1211* Add `tf.contrib.stateless` for random ops with custom seed control.
1212* MultivariateNormalFullCovariance added to contrib/distributions/
1213* tensorflow/contrib/rnn undergoes RNN cell variable renaming for
1214  consistency with Keras layers. Specifically, the previous variable names
1215  "weights" and "biases" are changed to "kernel" and "bias", respectively.
1216  This may cause backward incompatibility with regard to your old
1217  checkpoints containing such RNN cells, in which case you can use the
1218  [checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
1219  to convert the variable names in your old checkpoints.
1220* Added `tf.contrib.kernel_methods` module with Ops and estimators for primal
1221  (explicit) kernel methods in TensorFlow.
1222
1223## Bug Fixes and Other Changes
1224* In python, `Operation.get_attr` on type attributes returns the Python DType
1225  version of the type to match expected get_attr documentation rather than the
1226  protobuf enum.
1227* tensorflow/contrib/rnn undergoes RNN cell variable renaming for
1228  consistency with Keras layers. Specifically, the previous variable names
1229  "weights" and "biases" are changed to "kernel" and "bias", respectively.
1230* Changed MIN_SDK version to 8.0 when building iOS libraries.
1231* Fixed LIBXSMM integration.
1232* Make decode_jpeg/decode_png/decode_gif handle all formats, since users frequently try to decode an image as the wrong type.
1233* Improve implicit broadcasting lowering.
1234* Improving stability of GCS/BigQuery clients by a faster retrying of stale transmissions.
1235* Remove OpKernelConstruction::op_def() as part of minimizing proto dependencies.
1236* VectorLaplaceDiag distribution added.
1237* Android demo no longer requires libtensorflow_demo.so to run (libtensorflow_inference.so still required)
1238* Added `categorical_column_with_vocabulary_file`.
1239* Introduce ops for batching/unbatching tensors across Session::Run() calls.
1240* Add tf.log_sigmoid(x) = tf.log(tf.sigmoid(x)) = -tf.nn.softplus(-x).
1241* Changed hooks lists to immutable tuples, and now allow any iterable for the associated arguments.
1242* Introduce TFDecorator.
1243* Added an Mfcc op for speech feature generation.
1244* Improved DirectSession::Run() overhead and error checking. Feeding a value of the wrong type will now synchronously raise an INVALID_ARGUMENT error instead of asynchronously raising an INTERNAL error. Code that depends on the (undefined) behavior when feeding a tensor of the wrong type may need to be updated.
1245* Added unreduced NONE, and reduced MEAN options for losses. Removed "WEIGHTED_" prefix from other Reduction constants.
1246* assertAllClose now handles dicts.
1247* Added Gmock matcher for HloInstructions.
1248* Add var name to errors on variable restore.
1249* Added an AudioSpectrogram op for audio feature generation.
1250* Added `reduction` arg to losses.
1251* `tf.placeholder` can represent scalar shapes and partially known.
1252* Remove estimator_spec(mode) argument.
1253* Added an AudioSpectrogram op for audio feature generation.
1254* TensorBoard disables all runs by default if there are more than 40 runs.
1255* Removed old doc generator code.
1256* GCS file system integration now supports domain buckets, e.g gs://bucket.domain.com/path.
1257* Add `tf.summary.text` for outputting text to TensorBoard.
1258* The "run" command of tfdbg's command-line interface now supports filtering of tensors by node name, op type and tensor dtype.
1259* `tf.string_to_number` now supports int64 and float64 outputs.
1260
1261## Thanks to our Contributors
1262
1263This release contains contributions from many people at Google, as well as:
1264
12654F2E4A2E, Aaron Schumacher, Abhi Agg, admcrae, Adriano Carmezim, Adrià Arrufat,
1266agramesh1, Akimitsu Seo, Alan Mosca, Alex Egg, Alex Rothberg, Alexander Heinecke,
1267Alexander Matyasko, Alexandr Baranezky, Alexandre Caulier, Ali Siddiqui, Anand Venkat,
1268Andrew Hundt, Androbin, Anmol Sharma, Arie, Arno Leist, Arron Cao, AuréLien Geron, Bairen Yi,
1269Beomsu Kim, Carl Thomé, cfperez, Changming Sun, Corey Wharton, critiqjo, Dalei Li, Daniel
1270Rasmussen, Daniel Trebbien, DaríO Hereñú, David Eng, David Norman, David Y. Zhang, Davy Song, ddurham2,
1271Deepak Subburam, Dmytro Kyrychuk, Dominic Rossi, Dominik SchlöSser, Dustin Tran,
1272Eduardo Pinho, Egil Martinsson, Elliot Saba, Eric Bigelow, Erik Smistad, Evan Klitzke,
1273Fabrizio Milo, Falcon Dai, Fei Gao, FloopCZ, Fung Lam, Gautam, GBLin5566, Greg Peatfield,
1274Gu Wang, Guenther Schmuelling, Hans Pabst, Harun Gunaydin, Huaizheng, Ido Shamay, Ikaro
1275Silva, Ilya Edrenkin, Immexxx, James Mishra, Jamie Cooke, Jay Young, Jayaram Bobba,
1276Jianfei Wang, jinghua2, Joey Meyer, John Maidens, Jonghoon Jin, Julian Villella,
1277Jun Kim, Jun Shi, Junwei Pan, jyegerlehner, Karan Desai, Karel Van De Plassche,
1278Kb Sriram, KhabarlakKonstantin, Koan-Sin Tan, krivard, Kwotsin, Leandro Gracia Gil,
1279Li Chen, Liangliang He, Louie Helm, lspvic, Luiz Henrique Soares, LáSzló Csomor,
1280Mark Wong, Mathew Wicks, Matthew Rahtz, Maxwell Paul Brickner, Michael Hofmann, Miguel
1281Flores Ruiz De Eguino, MikeTam1021, Mortada Mehyar, Mycosynth, Namnamseo,
1282Nate Harada, Neven Miculinic, Nghia Tran, Nick Lyu, Niranjan Hasabnis, Nishidha, Oleksii
1283Kuchaiev, Oyesh Mann Singh, Panmari, Patrick, Paul Van Eck, Piyush Chaudhary, Quim Llimona,
1284Raingo, Richard Davies, Ruben Vereecken, Sahit Chintalapudi, Sam Abrahams, Santiago Castro,
1285Scott Sievert, Sean O'Keefe, Sebastian Schlecht, Shane, Shubhankar Deshpande, Spencer Schaber,
1286Sunyeop Lee, t13m, td2014, Thomas H. P. Andersen, Toby Petty, Umang Mehta,
1287Vadim Markovtsev, Valentin Iovene, Vincent Zhao, Vit Stepanovs, Vivek Rane, Vu Pham, wannabesrevenge,
1288weipingpku, wuhaixutab, wydwww, Xiang Gao, Xiaolin Lin, xiaoyaozhuzi, Yaroslav Bulatov, Yi Liu,
1289Yoshihiro Sugi, Yuan (Terry) Tang, Yuming Wang, Yuxin Wu, Zader Zheng, Zhaojun Zhang, zhengjiajin,
1290ZhipengShen, Ziming Dong, zjj2wry
1291
1292We are also grateful to all who filed issues or helped resolve them, asked and
1293answered questions, and were part of inspiring discussions.
1294
1295# Release 1.1.0
1296
1297## Major Features and Improvements
1298* Added Java API support for Windows.
1299* Added `tf.spectral` module. Moved existing FFT ops to `tf.spectral` while
1300  keeping an alias in the old location (`tf.*`).
1301* Added 1D, 2D and 3D Fourier transform ops for real signals to `tf.spectral`.
1302* Added a `tf.bincount` function.
1303* Added Keras 2 API to contrib.
1304* Added a new lightweight queue-like object - `RecordInput`.
1305* Added `tf.contrib.image.compose_transforms` function.
1306* Bring `tf.estimator.*` into the API. Non-deprecated functionality from `tf.contrib.learn.Estimator` is moved to `tf.estimator.Estimator` with cosmetic changes.
1307* Docker images: TF images on gcr.io and Docker Hub are upgraded to ubuntu:16.04.
1308* Added the following features to TensorFlow Debugger (tfdbg):
1309  * Ability to inspect Python source file against TF ops and tensors (command `print_source` / `ps`)
1310  * New navigation bar in Curses-based UI
1311  * NodeStepper (command `invoke_stepper`) now uses intermediate tensor dumps. It also uses `TensorHandles` as direct feeds during successive `cont` calls for improved performance and reduced memory consumption.
1312* Initial release of installation guides for Java, C, and Go.
1313* Added Text Dashboard to TensorBoard.
1314
1315## Deprecations
1316
1317* TensorFlow 1.1.0 will be the last time we release a binary with Mac GPU support. Going forward, we will stop testing on Mac GPU systems. We continue to welcome patches that maintain Mac GPU support, and we will try to keep the Mac GPU build working.
1318
1319## Changes to contrib APIs
1320* The behavior of RNNCells is now stricter due to the transition towards making RNNCells act more like Keras layers.
1321  * If an RNNCell is used twice in two different variable scopes, an error is raised describing how to avoid this behavior.
1322  * If an RNNCell is used in a variable scope with existing conflicting variables, an error is raised showing that the RNNCell must be constructed with argument `reuse=True`.
1323* Deprecated contrib/distributions `pmf`, `pdf`, `log_pmf`, `log_pdf`.
1324* Moved `bayesflow.special_math` to distributions.
1325* `tf.contrib.tensor_forest.python.tensor_forest.RandomForestDeviceAssigner` removed.
1326* Changed some MVN classes and parameters:
1327  * `tf.contrib.distributions.MultivariateNormalFull` replaced by `tf.contrib.distributions.MultivariateNormalTriL`.
1328  * `tf.contrib.distributions.MultivariateNormalCholesky` replaced by `tf.contrib.distributions.MultivariateNormalTriL`
1329  * `tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev` replaced
1330    by `tf.contrib.distributions.MultivariateNormalDiagWithSoftplusScale`
1331  * `tf.contrib.distributions.MultivariateNormalDiag` arguments changed from `mu`, `diag_stddev` to `log`, `scale_diag`.
1332  * `tf.contrib.distributions.MultivariateNormalDiagPlusVDVT` removed.
1333  * `tf.contrib.distributions.MultivariateNormalDiagPlusLowRank` added.
1334
1335## Bug Fixes and Other Changes
1336* Java: Support for loading models exported using the SavedModel API (courtesy @EronWright).
1337* Go: Added support for incremental graph execution.
1338* Fix a bug in the WALS solver when single-threaded.
1339* Added support for integer sparse feature values in `tf.contrib.layers.sparse_column_with_keys`.
1340* Fixed `tf.set_random_seed(0)` to be deterministic for all ops.
1341* Stability improvements for the GCS file system support.
1342* Improved TensorForest performance.
1343* Added support for multiple filename globs in `tf.matching_files`.
1344* `LogMessage` now includes a timestamp as beginning of a message.
1345* Added MultiBox person detector example standalone binary.
1346* Android demo: Makefile build functionality added to build.gradle to fully support building TensorFlow demo in Android on Windows.
1347* Android demo: read MultiBox priors from txt file rather than protobuf.
1348* Added colocation constraints to `StagingArea`.
1349* `sparse_matmul_op` reenabled for Android builds.
1350* Restrict weights rank to be the same as the broadcast target, to avoid ambiguity on broadcast rules.
1351* Upgraded libxsmm to 1.7.1 and applied other changes for performance and memory usage.
1352* Fixed bfloat16 integration of LIBXSMM sparse mat-mul.
1353* Improved performance and reduce memory usage by allowing ops to forward input buffers to output buffers and perform computations in-place.
1354* Improved the performance of CPU assignment for strings.
1355* Speed up matrix * vector multiplication and matrix * matrix with unknown shapes.
1356* C API: Graph imports now support input remapping, control dependencies, and returning imported nodes (see `TF_GraphImportGraphDefWithReturnOutputs()`)
1357* Multiple C++ API updates.
1358* Multiple TensorBoard updates including:
1359  * Users can now view image summaries at various sampled steps (instead of just the last step).
1360  * Bugs involving switching runs as well as the image dashboard are fixed.
1361  * Removed data download links from TensorBoard.
1362  * TensorBoard uses a relative data directory, for easier embedding.
1363  * TensorBoard automatically ignores outliers for domain calculation, and formats proportional values consistently.
1364* Multiple tfdbg bug fixes:
1365  * Fixed Windows compatibility issues.
1366  * Command history now persists across runs.
1367  * Bug fix in graph validation related to `tf.while_loops`.
1368* Java Maven fixes for bugs with Windows installation.
1369* Backport fixes and improvements from external keras.
1370* Keras config file handling fix.
1371
1372## Thanks to our Contributors
1373
1374This release contains contributions from many people at Google, as well as:
1375
1376A. Besir Kurtulmus, Adal Chiriliuc, @akash, Alec-Desouza, Alex Rothberg, Alex
1377Sergeev, Alexander Heinecke, Allen Guo, Andreas Madsen, Ankesh Anand, Anton
1378Loss, @Aravind, @Arie, Ashutosh Das, AuréLien Geron, Bairen Yi, @bakunyo, Ben
1379Visser, Brady Zhou, Calpa Liu, Changming Sun, Chih Cheng Liang, Christopher
1380Berner, Clark Zinzow, @Conchylicultor, Dan Ellis, Dan J, Dan Jarvis, Daniel
1381Ylitalo, Darren Garvey, David Norman, David Truong, @DavidNorman, Dimitar
1382Pavlov, Dmitry Persiyanov, @Eddie, @elirex, Erfan Noury, Eron Wright, Evgeny
1383Mazovetskiy, Fabrizio (Misto) Milo, @fanlu, Fisher Coder, Florian Courtial,
1384Franck Dernoncourt, Gagan Goel, Gao, Xiang, @Gautam, Gefu Tang, @guilherme,
1385@guschmue, Hannah Provenza, Hans Pabst, @hartb, Hsiao Yi, Huazuo Gao, Igor
1386ChorążEwicz, Ivan Smirnov, Jakub Kolodziejczyk, Jason Gavris, Jason Morton, Jay
1387Young, Jayaram Bobba, Jeremy Sawruk, Jiaming Liu, Jihun Choi, @jiqiu, Joan Thibault,
1388John C F, Jojy George Varghese, Jon Malmaud, Julian Berman, Julian Niedermeier,
1389Junpeng Lao, Kai Sasaki, @Kankroc, Karl Lessard, Kyle Bostelmann, @Lezcano, Li
1390Yi, Luo Yun, @lurker, Mahmoud-Abuzaina, Mandeep Singh, Marek Kolodziej, Mark
1391Szepieniec, Martial Hue, Medhat Omr, Memo Akten, Michael Gharbi, MichaëL Defferrard,
1392Milan Straka, @MircoT, @mlucool, Muammar Ibn Faisal, Nayana Thorat, @nghiattran,
1393Nicholas Connor, Nikolaas Steenbergen, Niraj Patel, Niranjan Hasabnis, @Panmari,
1394Pavel Bulanov, Philip Pries Henningsen, Philipp Jund, @polonez, Prayag Verma, Rahul
1395Kavi, Raphael Gontijo Lopes, @rasbt, Raven Iqqe, Reid Pryzant, Richard Shin, Rizwan
1396Asif, Russell Kaplan, Ryo Asakura, RüDiger Busche, Saisai Shao, Sam Abrahams, @sanosay,
1397Sean Papay, @seaotterman, @selay01, Shaurya Sharma, Sriram Narayanamoorthy, Stefano
1398Probst, @taknevski, @tbonza, @teldridge11, Tim Anglade, Tomas Reimers, Tomer Gafner,
1399Valentin Iovene, Vamsi Sripathi, Viktor Malyi, Vit Stepanovs, Vivek Rane, Vlad Firoiu,
1400@wangg12, @will, Xiaoyu Tao, Yaroslav Bulatov, Yi Liu, Yuan (Terry) Tang, @Yufeng,
1401Yuming Wang, Yuxin Wu, Zafar Takhirov, Ziming Dong
1402
1403We are also grateful to all who filed issues or helped resolve them, asked and
1404answered questions, and were part of inspiring discussions.
1405
1406
1407# Release 1.0.1
1408
1409## Bug Fixes and Other Changes
1410* Change GraphConstructor to not increase the version when importing, but instead take the min of all versions.
1411* Google Cloud Storage fixes.
1412* Removed `tf.core` and `tf.python` modules from the API. These were never intended to be exposed. Please use the same objects through top-level `tf` module instead.
1413
1414# Release 1.0.0
1415
1416## Major Features and Improvements
1417* XLA (experimental): initial release of [XLA](https://www.tensorflow.org/versions/master/experimental/xla/), a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
1418* TensorFlow Debugger (tfdbg): command-line interface and API.
1419* New python 3 docker images added.
1420* Made pip packages pypi compliant. TensorFlow can now be installed by `pip
1421  install tensorflow` command.
1422* Several python API calls have been changed to resemble NumPy more closely.
1423* Android: person detection + tracking demo implementing Scalable Object
1424  Detection using Deep Neural Networks.
1425* New (experimental) [Java API](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/java).
1426* Add new Android image stylization demo based on "A Learned Representation For Artistic Style", and add YOLO object detector support.
1427
1428## Breaking Changes to the API
1429To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a [conversion script](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/compatibility).
1430* TensorFlow/models have been moved to a separate github repository.
1431* Division and modulus operators (/, //, %) now match Python (flooring)
1432  semantics. This applies to `tf.div` and `tf.mod` as well. To obtain forced
1433  integer truncation based behaviors you can use `tf.truncatediv`
1434  and `tf.truncatemod`.
1435* `tf.divide()` is now the recommended division function. `tf.div()` will
1436  remain, but its semantics do not respond to Python 3 or `from future`
1437  mechanisms.
1438* tf.reverse() now takes indices of axes to be reversed. E.g.
1439  `tf.reverse(a, [True, False, True])` must now be written as
1440  `tf.reverse(a, [0, 2])`. `tf.reverse_v2()` will remain until 1.0 final.
1441* `tf.mul`, `tf.sub` and `tf.neg` are deprecated in favor of `tf.multiply`,
1442  `tf.subtract` and `tf.negative`.
1443* `tf.pack` and `tf.unpack` are deprecated in favor of `tf.stack` and
1444  `tf.unstack`.
1445* `TensorArray.pack` and `TensorArray.unpack` are getting deprecated in favor of
1446  `TensorArray.stack` and `TensorArray.unstack`.
1447* The following Python functions have had their arguments changed to use `axis`
1448  when referring to specific dimensions. We have kept the old keyword arguments
1449  for compatibility currently, but we will be removing them well before the
1450  final 1.0.
1451  * `tf.argmax`: `dimension` becomes `axis`
1452  * `tf.argmin`: `dimension` becomes `axis`
1453  * `tf.count_nonzero`: `reduction_indices` becomes `axis`
1454  * `tf.expand_dims`: `dim` becomes `axis`
1455  * `tf.reduce_all`: `reduction_indices` becomes `axis`
1456  * `tf.reduce_any`: `reduction_indices` becomes `axis`
1457  * `tf.reduce_join`: `reduction_indices` becomes `axis`
1458  * `tf.reduce_logsumexp`: `reduction_indices` becomes `axis`
1459  * `tf.reduce_max`: `reduction_indices` becomes `axis`
1460  * `tf.reduce_mean`: `reduction_indices` becomes `axis`
1461  * `tf.reduce_min`: `reduction_indices` becomes `axis`
1462  * `tf.reduce_prod`: `reduction_indices` becomes `axis`
1463  * `tf.reduce_sum`: `reduction_indices` becomes `axis`
1464  * `tf.reverse_sequence`: `batch_dim` becomes `batch_axis`, `seq_dim` becomes `seq_axis`
1465  * `tf.sparse_concat`: `concat_dim` becomes `axis`
1466  * `tf.sparse_reduce_sum`: `reduction_axes` becomes `axis`
1467  * `tf.sparse_reduce_sum_sparse`: `reduction_axes` becomes `axis`
1468  * `tf.sparse_split`: `split_dim` becomes `axis`
1469* `tf.listdiff` has been renamed to `tf.setdiff1d` to match NumPy naming.
1470* `tf.inv` has been renamed to be `tf.reciprocal` (component-wise reciprocal)
1471  to avoid confusion with `np.inv` which is matrix inversion
1472* tf.round now uses banker's rounding (round to even) semantics to match NumPy.
1473* `tf.split` now takes arguments in a reversed order and with different
1474  keywords. In particular, we now match NumPy order as
1475  `tf.split(value, num_or_size_splits, axis)`.
1476* `tf.sparse_split` now takes arguments in reversed order and with different
1477  keywords. In particular we now match NumPy order as
1478  `tf.sparse_split(sp_input, num_split, axis)`. NOTE: we have temporarily
1479  made `tf.sparse_split` require keyword arguments.
1480* `tf.concat` now takes arguments in reversed order and with different keywords. In particular we now match NumPy order as `tf.concat(values, axis, name)`.
1481* `tf.image.decode_jpeg` by default uses the faster DCT method, sacrificing
1482  a little fidelity for improved speed. One can revert to the old
1483  behavior by specifying the attribute `dct_method='INTEGER_ACCURATE'`.
1484* `tf.complex_abs` has been removed from the Python interface. `tf.abs`
1485  supports complex tensors and should be used instead.
1486* In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
1487  from the tensorflow::ops namespace to tensorflow.
1488* Template.`var_scope` property renamed to `.variable_scope`
1489* SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
1490* `tf.zeros_initializer()` and `tf.ones_initializer()` now return a callable
1491  that must be called with initializer arguments, in your code replace
1492  `tf.zeros_initializer` with `tf.zeros_initializer()`.
1493* `SparseTensor.shape` has been renamed to `SparseTensor.dense_shape`.  Same for
1494  `SparseTensorValue.shape`.
1495* Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
1496* Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
1497* Removes RegisterShape from public API. Use C++ shape function registration
1498  instead.
1499* Deprecated `_ref` dtypes from the python API.
1500* In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
1501  from the tensorflow::ops namespace to tensorflow.
1502* Change arg order for `{softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits` to be (labels, predictions), and force use of named args.
1503* tf.nn.rnn_cell.* and most functions in tf.nn.rnn.* (with the exception of dynamic_rnn and raw_rnn) are temporarily in tf.contrib.rnn.  They will be moved back into core for TF 1.2.
1504* `tf.nn.sampled_softmax_loss` and `tf.nn.nce_loss` have both changed their API such that you need to switch the `inputs, labels` to `labels, inputs` parameters.
1505* The shape keyword argument of the `SparseTensor` constructor changes its name to `dense_shape` between Tensorflow 0.12 and Tensorflow 1.0.
1506
1507## Bug Fixes and Other Changes
1508* Numerous C++ API updates.
1509* New op: `parallel_stack`.
1510* Introducing common tf io compression options constants for
1511  RecordReader/RecordWriter.
1512* Add `sparse_column_with_vocabulary_file`, to specify a feature column that
1513  transform string features to IDs, where the mapping is defined by a vocabulary
1514  file.
1515* Added `index_to_string_table` which returns a lookup table that maps indices to
1516  strings.
1517* Add `string_to_index_table`, which returns a lookup table that matches strings
1518  to indices.
1519* Add a `ParallelForWithWorkerId` function.
1520* Add `string_to_index_table`, which returns a lookup table that matches strings
1521  to indices.
1522* Support restore session from checkpoint files in v2 in `contrib/session_bundle`.
1523* Added a tf.contrib.image.rotate function for arbitrary angles.
1524* Added `tf.contrib.framework.filter_variables` as a convenience function to
1525  filter lists of variables based on regular expressions.
1526* `make_template()` takes an optional `custom_getter_ param`.
1527* Added comment about how existing directories are handled by
1528  `recursive_create_dir`.
1529* Added an op for QR factorizations.
1530* Divides and mods in Python API now use flooring (Python) semantics.
1531* Android: pre-built libs are now built nightly.
1532* Android: cmake/gradle build for TensorFlow Inference library under
1533  `contrib/android/cmake`
1534* Android: Much more robust Session initialization code.
1535* Android: TF stats now exposed directly in demo and log when debug mode is
1536  active
1537* Android: new/better README.md documentation
1538* saved_model is available as `tf.saved_model`.
1539* Empty op is now stateful.
1540* Improve speed of scatter_update on the cpu for ASSIGN operations.
1541* Change `reduce_join` to treat `reduction_indices` in the same way as other `reduce_` ops.
1542* Move `TensorForestEstimator` to `contrib/tensor_forest`.
1543* Enable compiler optimizations by default and allow configuration in configure.
1544* `tf.divide` now honors the name field.
1545* Make metrics weight broadcasting more strict.
1546* Add new queue-like `StagingArea` and new ops: `stage` and `unstage`.
1547* Enable inplace update ops for strings on CPU. Speed up string concat.
1548
1549## Thanks to our Contributors
1550
1551This release contains contributions from many people at Google, as well as:
1552
1553Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
1554Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
1555Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
1556Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
1557@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
1558Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
1559@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @Ian, @Issac, Jacob Israel,
1560Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
1561Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
1562Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
1563Pengfei Ni, Przemyslaw Tredak, @rasbt, @Ronny, Rudolf Rosa, @RustingSword,
1564Sam Abrahams, Sam Putnam, @SeongAhJo, Shi Jiaxin, @skavulya, Steffen MüLler,
1565@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
1566Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
1567Yuan (Terry) Tang, Yuxin Wu
1568
1569We are also grateful to all who filed issues or helped resolve them, asked and
1570answered questions, and were part of inspiring discussions.
1571
1572
1573# Release 0.12.0
1574
1575## Major Features and Improvements
1576
1577* TensorFlow now builds and runs on Microsoft Windows (tested on Windows 10,
1578  Windows 7, and Windows Server 2016). Supported languages include Python (via a
1579  pip package) and C++. CUDA 8.0 and cuDNN 5.1 are supported for GPU
1580  acceleration. Known limitations include: It is not currently possible to load
1581  a custom op library. The GCS and HDFS file systems are not currently
1582  supported. The following ops are not currently implemented:
1583  Dequantize, QuantizeAndDequantize, QuantizedAvgPool,
1584  QuantizedBatchNomWithGlobalNormalization, QuantizedBiasAdd, QuantizedConcat,
1585  QuantizedConv2D, QuantizedMatmul, QuantizedMaxPool,
1586  QuantizeDownAndShrinkRange, QuantizedRelu, QuantizedRelu6, QuantizedReshape,
1587  QuantizeV2, RequantizationRange, and Requantize.
1588* Go: Experimental API in Go to create and execute graphs
1589  (https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go)
1590* New checkpoint format becomes the default in `tf.train.Saver`. Old V1
1591  checkpoints continue to be readable; controlled by the `write_version`
1592  argument, `tf.train.Saver` now by default writes out in the new V2
1593  format. It significantly reduces the peak memory required and latency
1594  incurred during restore.
1595* Added a new library for library of matrix-free (iterative) solvers for linear
1596  equations, linear least-squares, eigenvalues and singular values in
1597  tensorflow/contrib/solvers. Initial version has lanczos bidiagonalization,
1598  conjugate gradients and CGLS.
1599* Added gradients for `matrix_solve_ls` and `self_adjoint_eig`.
1600* Large cleanup to add second order gradient for ops with C++ gradients and
1601  improve existing gradients such that most ops can now be differentiated
1602  multiple times.
1603* Added a solver for ordinary differential equations,
1604  `tf.contrib.integrate.odeint`.
1605* New contrib module for tensors with named axes, `tf.contrib.labeled_tensor`.
1606* Visualization of embeddings in TensorBoard.
1607
1608## Breaking Changes to the API
1609
1610* `BusAdjacency` enum replaced with a protocol buffer `DeviceLocality`.  PCI bus
1611  indexing now starts from 1 instead of 0, and `bus_id==0` is used where
1612  previously `BUS_ANY` was used.
1613* `Env::FileExists` and `FileSystem::FileExists` now return a tensorflow::Status
1614  instead of a bool. Any callers to this function can be converted to a bool
1615  by adding .ok() to the call.
1616* The C API type `TF_SessionWithGraph` has been renamed to `TF_Session`,
1617  indicating its preferred use in language bindings for TensorFlow.
1618  What was previously `TF_Session` has been renamed to `TF_DeprecatedSession`.
1619* Renamed `TF_Port` to `TF_Output` in the C API.
1620* Removes RegisterShape from public API. Use C++ shape function registration instead.
1621  indexing now starts from 1 instead of 0, and `bus_id==0` is used where
1622  previously `BUS_ANY` was used.
1623* Most RNN cells and RNN functions now use different variable scopes to be
1624  consistent with layers (`tf.contrib.layers`).  This means old checkpoints
1625  written using this code will not load after this change without providing
1626  `Saver` a list of variable renames.  Examples of variable scope changes
1627  include `RNN` -> `rnn` in `tf.nn.rnn`, `tf.nn.dynamic_rnn` and moving from
1628  `Linear/Matrix` -> `weights` and `Linear/Bias` -> `biases` in most RNN cells.
1629* Deprecated tf.select op. tf.where should be used instead.
1630* `SparseTensor.shape` has been renamed to `SparseTensor.dense_shape`.  Same for
1631  `SparseTensorValue.shape`.
1632* `Env::FileExists` and `FileSystem::FileExists` now return a
1633  `tensorflow::Status` instead of a bool. Any callers to this function can be
1634  converted to a bool by adding `.ok()` to the call.
1635* C API: Type `TF_SessionWithGraph` has been renamed to `TF_Session`, indicating
1636  its preferred use in language bindings for TensorFlow. What was previously
1637  `TF_Session` has been renamed to `TF_DeprecatedSession`.
1638* C API: Renamed `TF_Port` to `TF_Output`.
1639* C API: The caller retains ownership of `TF_Tensor` objects provided to
1640  `TF_Run`, `TF_SessionRun`, `TF_SetAttrTensor` etc.
1641* Renamed `tf.image.per_image_whitening()` to
1642  `tf.image.per_image_standardization()`
1643* Move Summary protobuf constructors to `tf.summary` submodule.
1644* Deprecate `histogram_summary`, `audio_summary`, `scalar_summary`,
1645  `image_summary`, `merge_summary`, and `merge_all_summaries`.
1646* Combined `batch_*` and regular version of linear algebra and FFT ops. The
1647  regular op now handles batches as well. All `batch_*` Python interfaces were
1648  removed.
1649* `tf.all_variables`, `tf.VARIABLES` and `tf.initialize_all_variables` renamed
1650  to `tf.global_variables`, `tf.GLOBAL_VARIABLES` and
1651  `tf.global_variables_initializer` respectively.
1652* `tf.zeros_initializer()` and `tf.ones_initializer()` now return a callable
1653  that must be called with initializer arguments, in your code replace
1654  `tf.zeros_initializer` with `tf.zeros_initializer()`
1655
1656## Bug Fixes and Other Changes
1657
1658* Use threadsafe version of `lgamma` function.
1659* Fix `tf.sqrt` handling of negative arguments.
1660* Fixed bug causing incorrect number of threads to be used for multi-threaded
1661  benchmarks.
1662* Performance optimizations for `batch_matmul` on multi-core CPUs.
1663* Improve trace, `matrix_set_diag`, `matrix_diag_part` and their gradients to
1664  work for rectangular matrices.
1665* Support for SVD of complex valued matrices.
1666
1667
1668## Thanks to our Contributors
1669
1670This release contains contributions from many people at Google, as well as:
1671
1672@a7744hsc, Abhi Agg, @admcrae, Adriano Carmezim, Aki Sukegawa, Alex Kendall,
1673Alexander Rosenberg Johansen, @amcrae, Amlan Kar, Andre Simpelo, Andreas Eberle,
1674Andrew Hundt, Arnaud Lenglet, @b0noI, Balachander Ramachandran, Ben Barsdell,
1675Ben Guidarelli, Benjamin Mularczyk, Burness Duan, @c0g, Changming Sun,
1676@chanis, Corey Wharton, Dan J, Daniel Trebbien, Darren Garvey, David Brailovsky,
1677David Jones, Di Zeng, @DjangoPeng, Dr. Kashif Rasul, @drag0, Fabrizio (Misto)
1678Milo, FabríCio Ceschin, @fp, @Ghedeon, @guschmue, Gökçen Eraslan, Haosdent
1679Huang, Haroen Viaene, Harold Cooper, Henrik Holst, @hoangmit, Ivan Ukhov, Javier
1680Dehesa, Jingtian Peng, Jithin Odattu, Joan Pastor, Johan Mathe, Johannes Mayer,
1681Jongwook Choi, Justus Schwabedal, Kai Wolf, Kamil Hryniewicz, Kamran Amini,
1682Karen Brems, Karl Lattimer, @kborer, Ken Shirriff, Kevin Rose, Larissa Laich,
1683Laurent Mazare, Leonard Lee, Liang-Chi Hsieh, Liangliang He, Luke Iwanski,
1684Marek Kolodziej, Moustafa Alzantot, @MrQianjinsi, @nagachika, Neil Han, Nick
1685Meehan, Niels Ole Salscheider, Nikhil Mishra, @nschuc, Ondrej Skopek, OndřEj
1686Filip, @OscarDPan, Pablo Moyano, Przemyslaw Tredak, @qitaishui, @Quarazy,
1687@raix852, Philipp Helo, Sam Abrahams, @SriramRamesh, Till Hoffmann, Tushar Soni,
1688@tvn, @tyfkda, Uwe Schmidt, Victor Villas, Vit Stepanovs, Vladislav Gubarev,
1689@wujingyue, Xuesong Yang, Yi Liu, Yilei Yang, @youyou3, Yuan (Terry) Tang,
1690Yuming Wang, Zafar Takhirov, @zhongyuk, Ziming Dong, @guotong1988
1691
1692We are also grateful to all who filed issues or helped resolve them, asked and
1693answered questions, and were part of inspiring discussions.
1694
1695# Release 0.11.0
1696
1697## Major Features and Improvements
1698
1699* CUDA 8 support.
1700* cuDNN 5 support.
1701* HDFS Support.
1702* Adds Fused LSTM support via cuDNN 5 in `tensorflow/contrib/cudnn_rnn`.
1703* Improved support for NumPy style basic slicing including non-1 strides,
1704  ellipses, newaxis, and negative indices. For example complicated expressions
1705  like `foo[1, 2:4, tf.newaxis, ..., :-3:-1, :]` are now supported. In addition
1706  we have preliminary (non-broadcasting) support for sliced assignment to
1707  variables. In particular one can write `var[1:3].assign([1,11,111])`.
1708* Deprecated `tf.op_scope` and `tf.variable_op_scope` in favor of a unified `tf.name_scope` and `tf.variable_scope`. The new argument order of `tf.variable_scope` is incompatible with previous versions.
1709* Introducing `core/util/tensor_bundle` module: a module to efficiently
1710  serialize/deserialize tensors to disk.  Will be used in TF's new checkpoint
1711  format.
1712* Added tf.svd for computing the singular value decomposition (SVD) of dense
1713  matrices or batches of matrices (CPU only).
1714* Added gradients for eigenvalues and eigenvectors computed using
1715  `self_adjoint_eig` or `self_adjoint_eigvals`.
1716* Eliminated `batch_*` methods for most linear algebra and FFT ops and promoted
1717  the non-batch version of the ops to handle batches of matrices.
1718* Tracing/timeline support for distributed runtime (no GPU profiler yet).
1719* C API gives access to inferred shapes with `TF_GraphGetTensorNumDims` and
1720  `TF_GraphGetTensorShape`.
1721* Shape functions for core ops have moved to C++ via
1722  `REGISTER_OP(...).SetShapeFn(...)`.  Python shape inference RegisterShape calls
1723  use the C++ shape functions with `common_shapes.call_cpp_shape_fn`.  A future
1724  release will remove `RegisterShape` from python.
1725
1726
1727## Bug Fixes and Other Changes
1728
1729* Documentation now includes operator overloads on Tensor and Variable.
1730* `tensorflow.__git_version__` now allows users to identify the version of the
1731  code that TensorFlow was compiled with. We also have
1732  `tensorflow.__git_compiler__` which identifies the compiler used to compile
1733  TensorFlow's core.
1734* Improved multi-threaded performance of `batch_matmul`.
1735* LSTMCell, BasicLSTMCell, and MultiRNNCell constructors now default to
1736  `state_is_tuple=True`.  For a quick fix while transitioning to the new
1737  default, simply pass the argument `state_is_tuple=False`.
1738* DeviceFactory's AddDevices and CreateDevices functions now return
1739  a Status instead of void.
1740* Int32 elements of list(type) arguments are no longer placed in host memory by
1741  default. If necessary, a list(type) argument to a kernel can be placed in host
1742  memory using a HostMemory annotation.
1743* `uniform_unit_scaling_initializer()` no longer takes a `full_shape` arg,
1744  instead relying on the partition info passed to the initializer function when
1745  it's called.
1746* The NodeDef protocol message is now defined in its own file `node_def.proto`
1747  `instead of graph.proto`.
1748* `ops.NoGradient` was renamed `ops.NotDifferentiable`. `ops.NoGradient` will
1749  be removed soon.
1750* `dot.h` / DotGraph was removed (it was an early analysis tool prior
1751  to TensorBoard, no longer that useful).  It remains in history
1752  should someone find the code useful.
1753* re2 / regexp.h was removed from being a public interface of TF.
1754  Should users need regular expressions, they should depend on the RE2
1755  library directly rather than via TensorFlow.
1756
1757## Thanks to our Contributors
1758
1759This release contains contributions from many people at Google, as well as:
1760
1761Abid K, @afshinrahimi, @AidanGG, Ajay Rao, Aki Sukegawa, Alex Rothberg,
1762Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Thomas, @Appleholic,
1763Bastiaan Quast, Ben Dilday, Bofu Chen, Brandon Amos, Bryon Gloden, Cissp®,
1764@chanis, Chenyang Liu, Corey Wharton, Daeyun Shin, Daniel Julius Lasiman, Daniel
1765Waterworth, Danijar Hafner, Darren Garvey, Denis Gorbachev, @DjangoPeng,
1766Egor-Krivov, Elia Palme, Eric Platon, Fabrizio Milo, Gaetan Semet,
1767Georg Nebehay, Gu Wang, Gustav Larsson, @haosdent, Harold Cooper, Hw-Zz,
1768@ichuang, Igor Babuschkin, Igor Macedo Quintanilha, Ilya Edrenkin, @ironhead,
1769Jakub Kolodziejczyk, Jennifer Guo, Jihun Choi, Jonas Rauber, Josh Bleecher
1770Snyder, @jpangburn, Jules Gagnon-Marchand, Karen Brems, @kborer, Kirill Bobyrev,
1771Laurent Mazare, Longqi Yang, Malith Yapa, Maniteja Nandana, Martin Englund,
1772Matthias Winkelmann, @mecab, Mu-Ik Jeon, Nand Dalal, Niels Ole Salscheider,
1773Nikhil Mishra, Park Jiin, Pieter De Rijk, @raix852, Ritwik Gupta, Sahil Sharma,
1774Sangheum Hwang, @SergejsRk, Shinichiro Hamaji, Simon Denel, @Steve, @suiyuan2009,
1775Tiago Jorge, Tijmen Tieleman, @tvn, @tyfkda, Wang Yang, Wei-Ting Kuo, Wenjian
1776Huang, Yan Chen, @YenChenLin, Yuan (Terry) Tang, Yuncheng Li, Yunfeng Wang, Zack
1777Polizzi, @zhongzyd, Ziming Dong, @perhapszzy
1778
1779We are also grateful to all who filed issues or helped resolve them, asked and
1780answered questions, and were part of inspiring discussions.
1781
1782# Release 0.10.0
1783
1784## Major Features and Improvements
1785
1786* Added support for C++ shape inference
1787* Added graph-construction C API
1788* Major revision to the graph-construction C++ API
1789* Support makefile build for iOS
1790* Added Mac GPU support
1791* Full version of TF-Slim available as `tf.contrib.slim`
1792* Added k-Means clustering and WALS matrix factorization
1793
1794## Bug Fixes and Other Changes
1795
1796* Allow gradient computation for scalar values.
1797* Performance improvements for gRPC
1798* Improved support for fp16
1799* New high-level ops in tf.contrib.{layers,metrics}
1800* New features for TensorBoard, such as shape display, exponential smoothing
1801* Faster and more stable Google Cloud Storage (GCS) filesystem support
1802* Support for zlib compression and decompression for TFRecordReader and TFRecordWriter
1803* Support for reading (animated) GIFs
1804* Improved support for SparseTensor
1805* Added support for more probability distributions (Dirichlet, Beta, Bernoulli, etc.)
1806* Added Python interfaces to reset resource containers.
1807* Many bugfixes and performance improvements
1808* Many documentation fixes
1809
1810## Thanks to our Contributors
1811
1812This release contains contributions from many people at Google, as well as:
1813
1814Alex Rothberg, Andrew Royer, Austin Marshall, @BlackCoal, Bob Adolf, Brian Diesel, Charles-Emmanuel Dias, @chemelnucfin, Chris Lesniewski, Daeyun Shin, Daniel Rodriguez, Danijar Hafner, Darcy Liu, Kristinn R. Thórisson, Daniel Castro, Dmitry Savintsev, Kashif Rasul, Dylan Paiton, Emmanuel T. Odeke, Ernest Grzybowski, Gavin Sherry, Gideon Dresdner, Gregory King, Harold Cooper, @heinzbeinz, Henry Saputra, Huarong Huo, Huazuo Gao, Igor Babuschkin, Igor Macedo Quintanilha, Ivan Ukhov, James Fysh, Jan Wilken Dörrie, Jihun Choi, Johnny Lim, Jonathan Raiman, Justin Francis, @lilac, Li Yi, Marc Khoury, Marco Marchesi, Max Melnick, Micael Carvalho, @mikowals, Mostafa Gazar, Nico Galoppo, Nishant Agrawal, Petr Janda, Yuncheng Li, @raix852, Robert Rose, @Robin-des-Bois, Rohit Girdhar, Sam Abrahams, satok16, Sergey Kishchenko, Sharkd Tu, @shotat, Siddharth Agrawal, Simon Denel, @sono-bfio, SunYeop Lee, Thijs Vogels, @tobegit3hub, @Undo1, Wang Yang, Wenjian Huang, Yaroslav Bulatov, Yuan Tang, Yunfeng Wang, Ziming Dong
1815
1816We are also grateful to all who filed issues or helped resolve them, asked and
1817answered questions, and were part of inspiring discussions.
1818
1819# Release 0.9.0
1820
1821## Major Features and Improvements
1822
1823* Python 3.5 support and binaries
1824* Added iOS support
1825* Added support for processing on GPUs on MacOS
1826* Added makefile for better cross-platform build support (C API only)
1827* fp16 support and improved complex128 support for many ops
1828* Higher level functionality in contrib.{layers,losses,metrics,learn}
1829* More features to Tensorboard
1830* Improved support for string embedding and sparse features
1831* The RNN api is finally "official" (see, e.g., `tf.nn.dynamic_rnn`,
1832  `tf.nn.rnn`, and the classes in `tf.nn.rnn_cell`).
1833* TensorBoard now has an Audio Dashboard, with associated audio summaries.
1834
1835## Bug Fixes and Other Changes
1836
1837* Turned on CuDNN Autotune.
1838* Added support for using third-party Python optimization algorithms (contrib.opt).
1839* Google Cloud Storage filesystem support.
1840* HDF5 support
1841* Add support for 3d convolutions and pooling.
1842* Update gRPC release to 0.14.
1843* Eigen version upgrade.
1844* Switch to eigen thread pool
1845* `tf.nn.moments()` now accepts a `shift` argument. Shifting by a good estimate
1846  of the mean improves numerical stability. Also changes the behavior of the
1847  `shift` argument to `tf.nn.sufficient_statistics()`.
1848* Performance improvements
1849* Many bugfixes
1850* Many documentation fixes
1851* TensorBoard fixes: graphs with only one data point, Nan values,
1852  reload button and auto-reload, tooltips in scalar charts, run
1853  filtering, stable colors
1854* Tensorboard graph visualizer now supports run metadata. Clicking on nodes
1855  while viewing a stats for a particular run will show runtime statistics, such
1856  as memory or compute usage. Unused nodes will be faded out.
1857
1858## Thanks to our Contributors
1859
1860This release contains contributions from many people at Google, as well as:
1861
1862Aaron Schumacher, Aidan Dang, Akihiko ITOH, Aki Sukegawa, Arbit Chen, Aziz Alto, Danijar Hafner, Erik Erwitt, Fabrizio Milo, Felix Maximilian Möller, Henry Saputra, Sung Kim, Igor Babuschkin, Jan Zikes, Jeremy Barnes, Jesper Steen Møller, Johannes Mayer, Justin Harris, Kashif Rasul, Kevin Robinson, Loo Rong Jie, Lucas Moura, Łukasz Bieniasz-Krzywiec, Mario Cho, Maxim Grechkin, Michael Heilman, Mostafa Rahmani, Mourad Mourafiq, @ninotoshi, Orion Reblitz-Richardson, Yuncheng Li, @raoqiyu, Robert DiPietro, Sam Abrahams, Sebastian Raschka, Siddharth Agrawal, @snakecharmer1024, Stephen Roller, Sung Kim, SunYeop Lee, Thijs Vogels, Till Hoffmann, Victor Melo, Ville Kallioniemi, Waleed Abdulla, Wenjian Huang, Yaroslav Bulatov, Yeison Rodriguez, Yuan Tang, Yuxin Wu, @zhongzyd, Ziming Dong, Zohar Jackson
1863
1864We are also grateful to all who filed issues or helped resolve them, asked and
1865answered questions, and were part of inspiring discussions.
1866
1867# Release 0.8.0
1868
1869## Major Features and Improvements
1870
1871* Added a distributed runtime using GRPC
1872* Move skflow to `contrib/learn`
1873* Better linear optimizer in `contrib/linear_optimizer`
1874* Random forest implementation in `contrib/tensor_forest`
1875* CTC loss and decoders in `contrib/ctc`
1876* Basic support for `half` data type
1877* Better support for loading user ops (see examples in `contrib/`)
1878* Allow use of (non-blocking) Eigen threadpool with `TENSORFLOW_USE_EIGEN_THREADPOOL` define
1879* Add an extension mechanism for adding network file system support
1880* TensorBoard displays metadata stats (running time, memory usage and device used) and tensor shapes
1881
1882## Bug Fixes and Other Changes
1883
1884* Utility for inspecting checkpoints
1885* Basic tracing and timeline support
1886* Allow building against cuDNN 5 (not incl. RNN/LSTM support)
1887* Added instructions and binaries for ProtoBuf library with fast serialization and without 64MB limit
1888* Added special functions
1889* `bool`-strictness: Tensors have to be explicitly compared to `None`
1890* Shape strictness: all fed values must have a shape that is compatible with the tensor they are replacing
1891* Exposed `tf.while_loop` (deprecated `control_flow_ops.While`)
1892* run() now takes RunOptions and RunMetadata, which enable timing stats
1893* Fixed lots of potential overflow problems in op kernels
1894* Various performance improvements, especially for RNNs and convolutions
1895* Many bugfixes
1896* Nightly builds, tutorial tests, many test improvements
1897* New examples: transfer learning and deepdream ipython notebook
1898* Added tutorials, many documentation fixes.
1899
1900## Thanks to our Contributors
1901
1902This release contains contributions from many people at Google, as well as:
1903
1904Abhinav Upadhyay, Aggelos Avgerinos, Alan Wu, Alexander G. de G. Matthews, Aleksandr Yahnev, @amchercashin, Andy Kitchen, Aurelien Geron, Awni Hannun, @BanditCat, Bas Veeling, Cameron Chen, @cg31, Cheng-Lung Sung, Christopher Bonnett, Dan Becker, Dan Van Boxel, Daniel Golden, Danijar Hafner, Danny Goodman, Dave Decker, David Dao, David Kretch, Dongjoon Hyun, Dustin Dorroh, @e-lin, Eurico Doirado, Erik Erwitt, Fabrizio Milo, @gaohuazuo, Iblis Lin, Igor Babuschkin, Isaac Hodes, Isaac Turner, Iván Vallés, J Yegerlehner, Jack Zhang, James Wexler, Jan Zikes, Jay Young, Jeff Hodges, @jmtatsch, Johnny Lim, Jonas Meinertz Hansen, Kanit Wongsuphasawat, Kashif Rasul, Ken Shirriff, Kenneth Mitchner, Kenta Yonekura, Konrad Magnusson, Konstantin Lopuhin, @lahwran, @lekaha, @liyongsea, Lucas Adams, @makseq, Mandeep Singh, @manipopopo, Mark Amery, Memo Akten, Michael Heilman, Michael Peteuil, Nathan Daly, Nicolas Fauchereau, @ninotoshi, Olav Nymoen, @panmari, @papelita1234, Pedro Lopes, Pranav Sailesh Mani, RJ Ryan, Rob Culliton, Robert DiPietro, @ronrest, Sam Abrahams, Sarath Shekkizhar, Scott Graham, Sebastian Raschka, Sung Kim, Surya Bhupatiraju, Syed Ahmed, Till Hoffmann, @timsl, @urimend, @vesnica, Vlad Frolov, Vlad Zagorodniy, Wei-Ting Kuo, Wenjian Huang, William Dmitri Breaden Madden, Wladimir Schmidt, Yuan Tang, Yuwen Yan, Yuxin Wu, Yuya Kusakabe, @zhongzyd, @znah.
1905
1906We are also grateful to all who filed issues or helped resolve them, asked and
1907answered questions, and were part of inspiring discussions.
1908
1909
1910# Release 0.7.1
1911
1912## Bug Fixes and Other Changes
1913
1914* Added gfile.Open and gfile.Copy, used by input_data.py.
1915* Fixed Saver bug when MakeDirs tried to create empty directory.
1916* GPU Pip wheels are built with cuda 7.5 and cudnn-v4, making them
1917  required for the binary releases. Lower versions of cuda/cudnn can
1918  be supported by installing from sources and setting the options
1919  during ./configure
1920* Fix dataset encoding example for Python3 (@danijar)
1921* Fix PIP installation by not packaging protobuf as part of wheel,
1922  require protobuf 3.0.0b2.
1923* Fix Mac pip installation of numpy by requiring pip >= 1.10.1.
1924* Improvements and fixes to Docker image.
1925
1926
1927# Release 0.7.0
1928
1929## Major Features and Improvements
1930
1931* Allow using any installed Cuda >= 7.0 and cuDNN >= R2, and add support
1932  for cuDNN R4
1933* Added a `contrib/` directory for unsupported or experimental features,
1934  including higher level `layers` module
1935* Added an easy way to add and dynamically load user-defined ops
1936* Built out a good suite of tests, things should break less!
1937* Added `MetaGraphDef` which makes it easier to save graphs with metadata
1938* Added assignments for "Deep Learning with TensorFlow" udacity course
1939
1940
1941## Bug Fixes and Other Changes
1942
1943* Added a versioning framework for `GraphDef`s to ensure compatibility
1944* Enforced Python 3 compatibility
1945* Internal changes now show up as sensibly separated commits
1946* Open-sourced the doc generator
1947* Un-fork Eigen
1948* Simplified the `BUILD` files and cleaned up C++ headers
1949* TensorFlow can now be used as a submodule in another bazel build
1950* New ops (e.g., `*fft`, `*_matrix_solve`)
1951* Support for more data types in many ops
1952* Performance improvements
1953* Various bugfixes
1954* Documentation fixes and improvements
1955
1956
1957## Breaking Changes to the API
1958
1959* `AdjustContrast` kernel deprecated, new kernel `AdjustContrastv2` takes and
1960  outputs float only. `adjust_contrast` now takes all data types.
1961* `adjust_brightness`'s `delta` argument is now always assumed to be in `[0,1]`
1962  (as is the norm for images in floating point formats), independent of the
1963  data type of the input image.
1964* The image processing ops do not take `min` and `max` inputs any more, casting
1965  safety is handled by `saturate_cast`, which makes sure over- and underflows
1966  are handled before casting to data types with smaller ranges.
1967* For C++ API users: `IsLegacyScalar` and `IsLegacyVector` are now gone from
1968  `TensorShapeUtils` since TensorFlow is scalar strict within Google (for
1969  example, the shape argument to `tf.reshape` can't be a scalar anymore).  The
1970  open source release was already scalar strict, so outside Google `IsScalar`
1971  and `IsVector` are exact replacements.
1972* The following files are being removed from `tensorflow/core/public/`:
1973    * `env.h` -> `../platform/env.h`
1974    * `status.h` -> `../lib/core/status.h`
1975    * `tensor.h` -> `../framework/tensor.h`
1976    * `tensor_shape.h` -> `../framework/tensor_shape.h`
1977    * `partial_tensor_shape.h` -> `../framework/partial_tensor_shape.h`
1978    * `tensorflow_server.h` deleted
1979* For C++ API users: `TensorShape::ShortDebugString` has been renamed to
1980  `DebugString`, and the previous `DebugString` behavior is gone (it was
1981  needlessly verbose and produced a confusing empty string for scalars).
1982* `GraphOptions.skip_common_subexpression_elimination` has been removed. All
1983  graph optimizer options are now specified via
1984  `GraphOptions.OptimizerOptions`.
1985* `ASSERT_OK` / `EXPECT_OK` macros conflicted with external projects, so they
1986  were renamed `TF_ASSERT_OK`, `TF_EXPECT_OK`.  The existing macros are
1987  currently maintained for short-term compatibility but will be removed.
1988* The non-public `nn.rnn` and the various `nn.seq2seq` methods now return
1989  just the final state instead of the list of all states.
1990* `tf.scatter_update` now no longer guarantees that lexicographically largest
1991  index be used for update when duplicate entries exist.
1992* `tf.image.random_crop(image, [height, width])` is now
1993  `tf.random_crop(image, [height, width, depth])`, and `tf.random_crop` works
1994  for any rank (not just 3-D images).  The C++ `RandomCrop` op has been replaced
1995  with pure Python.
1996* Renamed `tf.test.GetTempDir` and `tf.test.IsBuiltWithCuda` to
1997  `tf.test.get_temp_dir` and `tf.test.is_built_with_cuda` for PEP-8
1998  compatibility.
1999* `parse_example`'s interface has changed, the old interface is accessible in
2000  `legacy_parse_example` (same for related functions).
2001* New `Variable`s are not added to the same collection several times even if
2002  a list with duplicates is passed to the constructor.
2003* The Python API will now properly set the `list` member of `AttrValue` in
2004  constructed `GraphDef` messages for empty lists.  The serialization of some
2005  graphs will change, but the change is both forwards and backwards compatible.
2006  It will break tests that compare a generated `GraphDef` to a golden serialized
2007  `GraphDef` (which is discouraged).
2008
2009
2010## Thanks to our Contributors
2011
2012This release contains contributions from many people at Google, as well as:
2013
2014Akiomi Kamakura, Alex Vig, Alexander Rosenberg Johansen, Andre Cruz, Arun Ahuja,
2015Bart Coppens, Bernardo Pires, Carl Vondrick, Cesar Salgado, Chen Yu,
2016Christian Jauvin, Damien Aymeric, Dan Vanderkam, Denny Britz, Dongjoon Hyun,
2017Eren Güven, Erik Erwitt, Fabrizio Milo, G. Hussain Chinoy, Jim Fleming,
2018Joao Felipe Santos, Jonas Meinertz Hansen, Joshi Rekha, Julian Viereck,
2019Keiji Ariyama, Kenton Lee, Krishna Sankar, Kristina Chodorow, Linchao Zhu,
2020Lukas Krecan, Mark Borgerding, Mark Daoust, Moussa Taifi,
2021Nathan Howell, Naveen Sundar Govindarajulu, Nick Sweeting, Niklas Riekenbrauck,
2022Olivier Grisel, Patrick Christ, Povilas Liubauskas, Rainer Wasserfuhr,
2023Romain Thouvenin, Sagan Bolliger, Sam Abrahams, Taehoon Kim, Timothy J Laurent,
2024Vlad Zavidovych, Yangqing Jia, Yi-Lin Juang, Yuxin Wu, Zachary Lipton,
2025Zero Chen, Alan Wu, @brchiu, @emmjaykay, @jalammar, @Mandar-Shinde,
2026@nsipplswezey, @ninotoshi, @panmari, @prolearner and @rizzomichaelg.
2027
2028We are also grateful to all who filed issues or helped resolve them, asked and
2029answered questions, and were part of inspiring discussions.
2030
2031
2032# Release 0.6.0
2033
2034## Major Features and Improvements
2035
2036* Python 3.3+ support via changes to python codebase and ability
2037  to specify python version via ./configure.
2038
2039* Some improvements to GPU performance and memory usage:
2040  [convnet benchmarks](https://github.com/soumith/convnet-benchmarks/issues/66)
2041  roughly equivalent with native cudnn v2 performance.  Improvements mostly due
2042  to moving to 32-bit indices, faster shuffling kernels.  More improvements to
2043  come in later releases.
2044
2045
2046## Bug Fixes
2047
2048* Lots of fixes to documentation and tutorials, many contributed
2049  by the public.
2050
2051* 271 closed issues on github issues.
2052
2053## Backwards-Incompatible Changes
2054
2055* `tf.nn.fixed_unigram_candidate_sampler` changed its default 'distortion'
2056  attribute from 0.0 to 1.0. This was a bug in the original release
2057  that is now fixed.
2058
2059# Release 0.5.0
2060
2061Initial release of TensorFlow.
2062