/frameworks/ml/nn/runtime/test/generated/models/ |
D | sub_v1_2_broadcast.model.cpp | 9 auto input1 = model->addOperand(&type1); in CreateModel_none() local 15 model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); in CreateModel_none() 18 {input0, input1}, in CreateModel_none() 34 auto input1 = model->addOperand(&type1); in CreateModel_relu() local 40 model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); in CreateModel_relu() 43 {input0, input1}, in CreateModel_relu() 59 auto input1 = model->addOperand(&type1); in CreateModel_relu1() local 65 model->addOperation(ANEURALNETWORKS_SUB, {input0, input1, act}, {output0}); in CreateModel_relu1() 68 {input0, input1}, in CreateModel_relu1() 84 auto input1 = model->addOperand(&type1); in CreateModel_relu6() local [all …]
|
D | minimum.model.cpp | 7 auto input1 = model->addOperand(&type0); in CreateModel() local 10 model->addOperation(ANEURALNETWORKS_MINIMUM, {input0, input1}, {output0}); in CreateModel() 13 {input0, input1}, in CreateModel() 27 auto input1 = model->addOperand(&type0); in CreateModel_relaxed() local 30 model->addOperation(ANEURALNETWORKS_MINIMUM, {input0, input1}, {output0}); in CreateModel_relaxed() 33 {input0, input1}, in CreateModel_relaxed() 49 auto input1 = model->addOperand(&type4); in CreateModel_float16() local 52 model->addOperation(ANEURALNETWORKS_MINIMUM, {input0, input1}, {output0}); in CreateModel_float16() 55 {input0, input1}, in CreateModel_float16() 69 auto input1 = model->addOperand(&type5); in CreateModel_int32() local [all …]
|
D | maximum.model.cpp | 7 auto input1 = model->addOperand(&type0); in CreateModel() local 10 model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0}); in CreateModel() 13 {input0, input1}, in CreateModel() 27 auto input1 = model->addOperand(&type0); in CreateModel_relaxed() local 30 model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0}); in CreateModel_relaxed() 33 {input0, input1}, in CreateModel_relaxed() 49 auto input1 = model->addOperand(&type4); in CreateModel_float16() local 52 model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0}); in CreateModel_float16() 55 {input0, input1}, in CreateModel_float16() 69 auto input1 = model->addOperand(&type5); in CreateModel_int32() local [all …]
|
D | concat_mixed_quant.model.cpp | 12 auto input1 = model->addOperand(&type4); in CreateModel_quant8() local 20 …model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {outpu… in CreateModel_quant8() 23 {input0, input1, input2, input3}, in CreateModel_quant8() 42 auto input1 = model->addOperand(&type4); in CreateModel_dynamic_output_shape_quant8() local 50 …model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {outpu… in CreateModel_dynamic_output_shape_quant8() 53 {input0, input1, input2, input3}, in CreateModel_dynamic_output_shape_quant8() 72 auto input1 = model->addOperand(&type4); in CreateModel_quant8_2() local 80 …model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {outpu… in CreateModel_quant8_2() 83 {input0, input1, input2, input3}, in CreateModel_quant8_2() 102 auto input1 = model->addOperand(&type4); in CreateModel_dynamic_output_shape_quant8_2() local [all …]
|
D | concat_float_2.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 35 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float16_2.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 35 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float16_3.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 35 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_quant8_2.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 35 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float_3.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 35 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_quant8_3.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 35 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float_2_relaxed.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 37 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 44 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 47 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float_3_relaxed.model.cpp | 9 auto input1 = model->addOperand(&type0); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 37 auto input1 = model->addOperand(&type0); in CreateModel_dynamic_output_shape() local 44 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 47 {input1, input2}, in CreateModel_dynamic_output_shape()
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | maximum.mod.py | 17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 18 model = Model().Operation("MAXIMUM", input0, input1).To(output0) 22 input1: ["TENSOR_QUANT8_ASYMM", 1.0, 100], 28 input1: input1_data, 36 input1=Input("input1", "TENSOR_FLOAT32", "{3, 1, 2}"), 46 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 56 input1 = Input("input1", "TENSOR_QUANT8_ASYMM", "{2}, 1.0f, 128") variable 58 model = Model().Operation("MAXIMUM", input0, input1).To(output0) 62 input1: [128, 200],
|
D | minimum.mod.py | 17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 18 model = Model().Operation("MINIMUM", input0, input1).To(output0) 22 input1: ["TENSOR_QUANT8_ASYMM", 1.0, 100], 28 input1: input1_data, 36 input1=Input("input1", "TENSOR_FLOAT32", "{3, 1, 2}"), 46 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 56 input1 = Input("input1", "TENSOR_QUANT8_ASYMM", "{2}, 1.0f, 128") variable 58 model = Model().Operation("MINIMUM", input0, input1).To(output0) 62 input1: [128, 200],
|
D | less_equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 17 model = Model().Operation("LESS_EQUAL", input0, input1).To(output0) 20 input1: input1_data, 29 input1=Input("input1", "TENSOR_FLOAT32", "{3}"), 39 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 49 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)), 60 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)), 71 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), 82 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), 93 input1=Input("input1", "TENSOR_BOOL8", "{4}"),
|
D | greater.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 17 model = Model().Operation("GREATER", input0, input1).To(output0) 20 input1: input1_data, 29 input1=Input("input1", "TENSOR_FLOAT32", "{3}"), 39 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 49 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)), 60 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)), 71 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), 82 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), 93 input1=Input("input1", "TENSOR_BOOL8", "{4}"),
|
D | not_equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 17 model = Model().Operation("NOT_EQUAL", input0, input1).To(output0) 20 input1: input1_data, 29 input1=Input("input1", "TENSOR_FLOAT32", "{3}"), 39 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 49 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)), 60 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)), 71 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), 82 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), 93 input1=Input("input1", "TENSOR_BOOL8", "{4}"),
|
D | less.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 17 model = Model().Operation("LESS", input0, input1).To(output0) 20 input1: input1_data, 29 input1=Input("input1", "TENSOR_FLOAT32", "{3}"), 39 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 49 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)), 60 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)), 71 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), 82 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), 93 input1=Input("input1", "TENSOR_BOOL8", "{4}"),
|
D | equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 17 model = Model().Operation("EQUAL", input0, input1).To(output0) 20 input1: input1_data, 29 input1=Input("input1", "TENSOR_FLOAT32", "{3}"), 39 input1=Input("input1", "TENSOR_FLOAT32", "{2}"), 49 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)), 60 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)), 71 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), 82 input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), 93 input1=Input("input1", "TENSOR_BOOL8", "{4}"),
|
D | concat_mixed_quant.mod.py | 20 input1 = Input("input1", "TENSOR_FLOAT32", "{2, 1, 2}") variable 26 model = Model().Operation("CONCATENATION", input0, input1, input2, input3, axis).To(output0) 31 input1: [1.1, 3.1, 4.1, 7.1], 37 input1: ["TENSOR_QUANT8_ASYMM", 0.05, 0], 46 input1: [1.1, 3.1, 4.1, 7.1], 52 input1: ["TENSOR_QUANT8_ASYMM", 0.05, 0],
|
D | sub_v1_2_broadcast.mod.py | 19 input1 = Input("input1", "TENSOR_FLOAT32", "{2, 2}") variable 23 model = Model().Operation("SUB", input0, input1, activation).To(output0) 33 input1: input1_values, 40 input1 = Input("input1", "TENSOR_QUANT8_ASYMM", "{2, 2}, 1.0, 0") variable 44 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0) 54 input1: input1_values,
|
D | select_v1_2.mod.py | 16 def test(name, input0, input1, input2, output0, input0_data, input1_data, input2_data, output_data): argument 17 model = Model().Operation("SELECT", input0, input1, input2).To(output0) 19 input1: ["TENSOR_QUANT8_ASYMM", 1.5, 129], 25 input1: input1_data, 33 input1=Input("input1", "TENSOR_FLOAT32", "{3}"), 45 input1=Input("input1", "TENSOR_FLOAT32", "{2, 2}"), 57 input1=Input("input1", "TENSOR_FLOAT32", "{2, 1, 2, 1, 2}"),
|
D | logical_or.mod.py | 17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 18 model = Model().Operation("LOGICAL_OR", input0, input1).To(output0) 21 input1: input1_data, 28 input1=Input("input1", "TENSOR_BOOL8", "{1, 1, 1, 4}"), 38 input1=Input("input1", "TENSOR_BOOL8", "{1, 1}"),
|
D | logical_and.mod.py | 17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 18 model = Model().Operation("LOGICAL_AND", input0, input1).To(output0) 21 input1: input1_data, 28 input1=Input("input1", "TENSOR_BOOL8", "{1, 1, 1, 4}"), 38 input1=Input("input1", "TENSOR_BOOL8", "{1, 1}"),
|
D | sub_v1_2.mod.py | 23 input1 = Input("input1", "TENSOR_FLOAT32", "{1, 2, 2, 1}") variable 27 model = Model().Operation("SUB", input0, input1, activation).To(output0) 31 input1: [2.0, -2.0, -4.0, 4.0], 39 input1 = Input("input1", "TENSOR_QUANT8_ASYMM", shape) variable 43 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0) 52 input1: input1_values,
|