1 // clang-format off
2 // Generated file (from: concat_mixed_quant.mod.py). Do not edit
CreateModel_quant8(Model * model)3 void CreateModel_quant8(Model *model) {
4   OperandType type2(Type::INT32, {});
5   OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127);
6   OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0);
7   OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123);
8   OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0);
9   OperandType type7(Type::TENSOR_QUANT8_ASYMM, {2, 1, 8}, 0.1f, 127);
10   // Phase 1, operands
11   auto input0 = model->addOperand(&type3);
12   auto input1 = model->addOperand(&type4);
13   auto input2 = model->addOperand(&type5);
14   auto input3 = model->addOperand(&type6);
15   auto param = model->addOperand(&type2);
16   auto output0 = model->addOperand(&type7);
17   // Phase 2, operations
18   static int32_t param_init[] = {2};
19   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
20   model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0});
21   // Phase 3, inputs and outputs
22   model->identifyInputsAndOutputs(
23     {input0, input1, input2, input3},
24     {output0});
25   assert(model->isValid());
26 }
27 
is_ignored_quant8(int i)28 inline bool is_ignored_quant8(int i) {
29   static std::set<int> ignore = {};
30   return ignore.find(i) != ignore.end();
31 }
32 
CreateModel_dynamic_output_shape_quant8(Model * model)33 void CreateModel_dynamic_output_shape_quant8(Model *model) {
34   OperandType type2(Type::INT32, {});
35   OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127);
36   OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0);
37   OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123);
38   OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0);
39   OperandType type8(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.1f, 127);
40   // Phase 1, operands
41   auto input0 = model->addOperand(&type3);
42   auto input1 = model->addOperand(&type4);
43   auto input2 = model->addOperand(&type5);
44   auto input3 = model->addOperand(&type6);
45   auto param = model->addOperand(&type2);
46   auto output0 = model->addOperand(&type8);
47   // Phase 2, operations
48   static int32_t param_init[] = {2};
49   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
50   model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0});
51   // Phase 3, inputs and outputs
52   model->identifyInputsAndOutputs(
53     {input0, input1, input2, input3},
54     {output0});
55   assert(model->isValid());
56 }
57 
is_ignored_dynamic_output_shape_quant8(int i)58 inline bool is_ignored_dynamic_output_shape_quant8(int i) {
59   static std::set<int> ignore = {};
60   return ignore.find(i) != ignore.end();
61 }
62 
CreateModel_quant8_2(Model * model)63 void CreateModel_quant8_2(Model *model) {
64   OperandType type2(Type::INT32, {});
65   OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127);
66   OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0);
67   OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123);
68   OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0);
69   OperandType type9(Type::TENSOR_QUANT8_ASYMM, {2, 1, 8}, 0.0078125f, 127);
70   // Phase 1, operands
71   auto input0 = model->addOperand(&type3);
72   auto input1 = model->addOperand(&type4);
73   auto input2 = model->addOperand(&type5);
74   auto input3 = model->addOperand(&type6);
75   auto param = model->addOperand(&type2);
76   auto output0 = model->addOperand(&type9);
77   // Phase 2, operations
78   static int32_t param_init[] = {2};
79   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
80   model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0});
81   // Phase 3, inputs and outputs
82   model->identifyInputsAndOutputs(
83     {input0, input1, input2, input3},
84     {output0});
85   assert(model->isValid());
86 }
87 
is_ignored_quant8_2(int i)88 inline bool is_ignored_quant8_2(int i) {
89   static std::set<int> ignore = {};
90   return ignore.find(i) != ignore.end();
91 }
92 
CreateModel_dynamic_output_shape_quant8_2(Model * model)93 void CreateModel_dynamic_output_shape_quant8_2(Model *model) {
94   OperandType type10(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.0078125f, 127);
95   OperandType type2(Type::INT32, {});
96   OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127);
97   OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0);
98   OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123);
99   OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0);
100   // Phase 1, operands
101   auto input0 = model->addOperand(&type3);
102   auto input1 = model->addOperand(&type4);
103   auto input2 = model->addOperand(&type5);
104   auto input3 = model->addOperand(&type6);
105   auto param = model->addOperand(&type2);
106   auto output0 = model->addOperand(&type10);
107   // Phase 2, operations
108   static int32_t param_init[] = {2};
109   model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
110   model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0});
111   // Phase 3, inputs and outputs
112   model->identifyInputsAndOutputs(
113     {input0, input1, input2, input3},
114     {output0});
115   assert(model->isValid());
116 }
117 
is_ignored_dynamic_output_shape_quant8_2(int i)118 inline bool is_ignored_dynamic_output_shape_quant8_2(int i) {
119   static std::set<int> ignore = {};
120   return ignore.find(i) != ignore.end();
121 }
122 
123