/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | alpha_dropout.py | 30 def alpha_dropout(x, keep_prob, noise_shape=None, seed=None, name=None): # pylint: disable=invalid-… argument 58 if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1.: 60 "range (0, 1], got %g" % keep_prob) 61 keep_prob = ops.convert_to_tensor(keep_prob, 64 keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar()) 67 if tensor_util.constant_value(keep_prob) == 1: 76 kept_idx = gen_math_ops.greater_equal(random_tensor, 1 - keep_prob) 82 a = (keep_prob + keep_prob * (1 - keep_prob) * alpha ** 2) ** -0.5 83 b = -a * alpha * (1 - keep_prob)
|
D | alpha_dropout_test.py | 34 for keep_prob in [0.1, 0.5, 0.8]: 37 output = alpha_dropout(t, keep_prob) 48 keep_prob = 0.5 51 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, y_dim + 10]) 53 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, y_dim, 5]) 55 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim + 3]) 57 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim]) 60 _ = alpha_dropout(t, keep_prob, noise_shape=[y_dim]) 61 _ = alpha_dropout(t, keep_prob, noise_shape=[1, y_dim]) 62 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, 1]) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_test.py | 314 for keep_prob in [0.1, 0.5, 0.8]: 316 dropout = nn_ops.dropout(t, keep_prob) 325 self.assertAllClose(1 / keep_prob, sorted_value[1]) 328 expected_count = x_dim * y_dim * keep_prob * num_iter 341 for keep_prob in [0.1, 0.5, 0.8]: 343 dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1]) 352 self.assertAllClose(1 / keep_prob, sorted_value[1]) 355 expected_count = x_dim * y_dim * keep_prob * num_iter 365 for keep_prob in [0.1, 0.5, 0.8]: 367 dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1]) [all …]
|
D | rnn_cell_impl.py | 1352 self, index, value, noise, keep_prob): argument 1355 random_tensor = keep_prob + noise 1359 ret = math_ops.div(value, keep_prob) * binary_tensor 1363 def _dropout(self, values, salt_prefix, recurrent_noise, keep_prob, argument 1376 v, keep_prob=keep_prob, seed=self._gen_seed(salt_prefix, i)) 1385 return self._variational_recurrent_dropout_value(i, v, n, keep_prob)
|
D | nn_ops.py | 4046 def dropout(x, keep_prob=None, noise_shape=None, seed=None, name=None, argument 4081 keep = 1. - keep_prob if keep_prob is not None else None 4084 "(got %r)" % keep_prob) 4164 keep_prob = 1 - rate 4165 scale = 1 / keep_prob
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_colorbot/ |
D | rnn_colorbot.py | 141 def __init__(self, rnn_cell_sizes, label_dimension, keep_prob): argument 153 self.keep_prob = keep_prob 195 chars = tf.nn.dropout(chars, self.keep_prob) 260 keep_prob=FLAGS.keep_probability)
|
D | rnn_colorbot_test.py | 53 keep_prob=1.0) 63 keep_prob=1.0)
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist_with_summaries.py | 104 keep_prob = tf.placeholder(tf.float32) 105 tf.summary.scalar('dropout_keep_probability', keep_prob) 106 dropped = tf.nn.dropout(hidden1, keep_prob) 157 return {x: xs, y_: ys, keep_prob: k}
|
/external/tensorflow/tensorflow/tools/compatibility/ |
D | tf_upgrade_v2.py | 1852 for keep_prob in node.keywords: 1853 if keep_prob.arg == "keep_prob": 1856 keep_prob.arg = "rate" 1857 _replace_keep_prob_node(keep_prob, keep_prob.value)
|
/external/tensorflow/tensorflow/contrib/text/python/ops/ |
D | skip_gram_ops.py | 438 keep_prob = ((math_ops.sqrt(freq / 448 mask = math_ops.less_equal(random_prob, keep_prob)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | word2vec_kernels.cc | 154 float keep_prob = in NextExample() local 157 if (rng_.RandFloat() > keep_prob) { in NextExample()
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | composable_model.py | 389 net = layers.dropout(net, keep_prob=(1.0 - self._dropout))
|
D | dnn.py | 179 net = layers.dropout(net, keep_prob=(1.0 - dropout))
|
D | dnn_linear_combined.py | 267 keep_prob=(1.0 - dnn_dropout))
|
/external/tensorflow/tensorflow/python/grappler/ |
D | hierarchical_controller.py | 143 keep_prob=1.0, 885 if self.hparams.keep_prob is not None: 886 signal = nn_ops.dropout(signal, self.hparams.keep_prob)
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | inception_v2.py | 556 net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
|
D | inception_v3.py | 628 net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | dnn_tree_combined_estimator.py | 208 net = layers.dropout(net, keep_prob=(1.0 - dnn_dropout))
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | layers.py | 1564 keep_prob=0.5, argument 1597 rate=1 - keep_prob,
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.nn.pbtxt | 177 …argspec: "args=[\'x\', \'keep_prob\', \'noise_shape\', \'seed\', \'name\', \'rate\'], varargs=None…
|
/external/tensorflow/tensorflow/contrib/rnn/python/kernel_tests/ |
D | rnn_cell_test.py | 1863 keep_prob = 0.5 1879 num_units, layer_norm=False, dropout_keep_prob=keep_prob)
|
/external/tensorflow/ |
D | RELEASE.md | 62 * Dropout now takes `rate` argument, `keep_prob` is deprecated.
|