1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "loop_optimization.h"
18
19 #include "arch/arm/instruction_set_features_arm.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "arch/instruction_set.h"
22 #include "arch/mips/instruction_set_features_mips.h"
23 #include "arch/mips64/instruction_set_features_mips64.h"
24 #include "arch/x86/instruction_set_features_x86.h"
25 #include "arch/x86_64/instruction_set_features_x86_64.h"
26 #include "driver/compiler_options.h"
27 #include "linear_order.h"
28 #include "mirror/array-inl.h"
29 #include "mirror/string.h"
30
31 namespace art {
32
33 // Enables vectorization (SIMDization) in the loop optimizer.
34 static constexpr bool kEnableVectorization = true;
35
36 //
37 // Static helpers.
38 //
39
40 // Base alignment for arrays/strings guaranteed by the Android runtime.
BaseAlignment()41 static uint32_t BaseAlignment() {
42 return kObjectAlignment;
43 }
44
45 // Hidden offset for arrays/strings guaranteed by the Android runtime.
HiddenOffset(DataType::Type type,bool is_string_char_at)46 static uint32_t HiddenOffset(DataType::Type type, bool is_string_char_at) {
47 return is_string_char_at
48 ? mirror::String::ValueOffset().Uint32Value()
49 : mirror::Array::DataOffset(DataType::Size(type)).Uint32Value();
50 }
51
52 // Remove the instruction from the graph. A bit more elaborate than the usual
53 // instruction removal, since there may be a cycle in the use structure.
RemoveFromCycle(HInstruction * instruction)54 static void RemoveFromCycle(HInstruction* instruction) {
55 instruction->RemoveAsUserOfAllInputs();
56 instruction->RemoveEnvironmentUsers();
57 instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
58 RemoveEnvironmentUses(instruction);
59 ResetEnvironmentInputRecords(instruction);
60 }
61
62 // Detect a goto block and sets succ to the single successor.
IsGotoBlock(HBasicBlock * block,HBasicBlock ** succ)63 static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
64 if (block->GetPredecessors().size() == 1 &&
65 block->GetSuccessors().size() == 1 &&
66 block->IsSingleGoto()) {
67 *succ = block->GetSingleSuccessor();
68 return true;
69 }
70 return false;
71 }
72
73 // Detect an early exit loop.
IsEarlyExit(HLoopInformation * loop_info)74 static bool IsEarlyExit(HLoopInformation* loop_info) {
75 HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
76 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
77 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
78 if (!loop_info->Contains(*successor)) {
79 return true;
80 }
81 }
82 }
83 return false;
84 }
85
86 // Forward declaration.
87 static bool IsZeroExtensionAndGet(HInstruction* instruction,
88 DataType::Type type,
89 /*out*/ HInstruction** operand);
90
91 // Detect a sign extension in instruction from the given type.
92 // Returns the promoted operand on success.
IsSignExtensionAndGet(HInstruction * instruction,DataType::Type type,HInstruction ** operand)93 static bool IsSignExtensionAndGet(HInstruction* instruction,
94 DataType::Type type,
95 /*out*/ HInstruction** operand) {
96 // Accept any already wider constant that would be handled properly by sign
97 // extension when represented in the *width* of the given narrower data type
98 // (the fact that Uint8/Uint16 normally zero extend does not matter here).
99 int64_t value = 0;
100 if (IsInt64AndGet(instruction, /*out*/ &value)) {
101 switch (type) {
102 case DataType::Type::kUint8:
103 case DataType::Type::kInt8:
104 if (IsInt<8>(value)) {
105 *operand = instruction;
106 return true;
107 }
108 return false;
109 case DataType::Type::kUint16:
110 case DataType::Type::kInt16:
111 if (IsInt<16>(value)) {
112 *operand = instruction;
113 return true;
114 }
115 return false;
116 default:
117 return false;
118 }
119 }
120 // An implicit widening conversion of any signed expression sign-extends.
121 if (instruction->GetType() == type) {
122 switch (type) {
123 case DataType::Type::kInt8:
124 case DataType::Type::kInt16:
125 *operand = instruction;
126 return true;
127 default:
128 return false;
129 }
130 }
131 // An explicit widening conversion of a signed expression sign-extends.
132 if (instruction->IsTypeConversion()) {
133 HInstruction* conv = instruction->InputAt(0);
134 DataType::Type from = conv->GetType();
135 switch (instruction->GetType()) {
136 case DataType::Type::kInt32:
137 case DataType::Type::kInt64:
138 if (type == from && (from == DataType::Type::kInt8 ||
139 from == DataType::Type::kInt16 ||
140 from == DataType::Type::kInt32)) {
141 *operand = conv;
142 return true;
143 }
144 return false;
145 case DataType::Type::kInt16:
146 return type == DataType::Type::kUint16 &&
147 from == DataType::Type::kUint16 &&
148 IsZeroExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
149 default:
150 return false;
151 }
152 }
153 return false;
154 }
155
156 // Detect a zero extension in instruction from the given type.
157 // Returns the promoted operand on success.
IsZeroExtensionAndGet(HInstruction * instruction,DataType::Type type,HInstruction ** operand)158 static bool IsZeroExtensionAndGet(HInstruction* instruction,
159 DataType::Type type,
160 /*out*/ HInstruction** operand) {
161 // Accept any already wider constant that would be handled properly by zero
162 // extension when represented in the *width* of the given narrower data type
163 // (the fact that Int8/Int16 normally sign extend does not matter here).
164 int64_t value = 0;
165 if (IsInt64AndGet(instruction, /*out*/ &value)) {
166 switch (type) {
167 case DataType::Type::kUint8:
168 case DataType::Type::kInt8:
169 if (IsUint<8>(value)) {
170 *operand = instruction;
171 return true;
172 }
173 return false;
174 case DataType::Type::kUint16:
175 case DataType::Type::kInt16:
176 if (IsUint<16>(value)) {
177 *operand = instruction;
178 return true;
179 }
180 return false;
181 default:
182 return false;
183 }
184 }
185 // An implicit widening conversion of any unsigned expression zero-extends.
186 if (instruction->GetType() == type) {
187 switch (type) {
188 case DataType::Type::kUint8:
189 case DataType::Type::kUint16:
190 *operand = instruction;
191 return true;
192 default:
193 return false;
194 }
195 }
196 // An explicit widening conversion of an unsigned expression zero-extends.
197 if (instruction->IsTypeConversion()) {
198 HInstruction* conv = instruction->InputAt(0);
199 DataType::Type from = conv->GetType();
200 switch (instruction->GetType()) {
201 case DataType::Type::kInt32:
202 case DataType::Type::kInt64:
203 if (type == from && from == DataType::Type::kUint16) {
204 *operand = conv;
205 return true;
206 }
207 return false;
208 case DataType::Type::kUint16:
209 return type == DataType::Type::kInt16 &&
210 from == DataType::Type::kInt16 &&
211 IsSignExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
212 default:
213 return false;
214 }
215 }
216 return false;
217 }
218
219 // Detect situations with same-extension narrower operands.
220 // Returns true on success and sets is_unsigned accordingly.
IsNarrowerOperands(HInstruction * a,HInstruction * b,DataType::Type type,HInstruction ** r,HInstruction ** s,bool * is_unsigned)221 static bool IsNarrowerOperands(HInstruction* a,
222 HInstruction* b,
223 DataType::Type type,
224 /*out*/ HInstruction** r,
225 /*out*/ HInstruction** s,
226 /*out*/ bool* is_unsigned) {
227 DCHECK(a != nullptr && b != nullptr);
228 // Look for a matching sign extension.
229 DataType::Type stype = HVecOperation::ToSignedType(type);
230 if (IsSignExtensionAndGet(a, stype, r) && IsSignExtensionAndGet(b, stype, s)) {
231 *is_unsigned = false;
232 return true;
233 }
234 // Look for a matching zero extension.
235 DataType::Type utype = HVecOperation::ToUnsignedType(type);
236 if (IsZeroExtensionAndGet(a, utype, r) && IsZeroExtensionAndGet(b, utype, s)) {
237 *is_unsigned = true;
238 return true;
239 }
240 return false;
241 }
242
243 // As above, single operand.
IsNarrowerOperand(HInstruction * a,DataType::Type type,HInstruction ** r,bool * is_unsigned)244 static bool IsNarrowerOperand(HInstruction* a,
245 DataType::Type type,
246 /*out*/ HInstruction** r,
247 /*out*/ bool* is_unsigned) {
248 DCHECK(a != nullptr);
249 // Look for a matching sign extension.
250 DataType::Type stype = HVecOperation::ToSignedType(type);
251 if (IsSignExtensionAndGet(a, stype, r)) {
252 *is_unsigned = false;
253 return true;
254 }
255 // Look for a matching zero extension.
256 DataType::Type utype = HVecOperation::ToUnsignedType(type);
257 if (IsZeroExtensionAndGet(a, utype, r)) {
258 *is_unsigned = true;
259 return true;
260 }
261 return false;
262 }
263
264 // Compute relative vector length based on type difference.
GetOtherVL(DataType::Type other_type,DataType::Type vector_type,uint32_t vl)265 static uint32_t GetOtherVL(DataType::Type other_type, DataType::Type vector_type, uint32_t vl) {
266 DCHECK(DataType::IsIntegralType(other_type));
267 DCHECK(DataType::IsIntegralType(vector_type));
268 DCHECK_GE(DataType::SizeShift(other_type), DataType::SizeShift(vector_type));
269 return vl >> (DataType::SizeShift(other_type) - DataType::SizeShift(vector_type));
270 }
271
272 // Detect up to two added operands a and b and an acccumulated constant c.
IsAddConst(HInstruction * instruction,HInstruction ** a,HInstruction ** b,int64_t * c,int32_t depth=8)273 static bool IsAddConst(HInstruction* instruction,
274 /*out*/ HInstruction** a,
275 /*out*/ HInstruction** b,
276 /*out*/ int64_t* c,
277 int32_t depth = 8) { // don't search too deep
278 int64_t value = 0;
279 // Enter add/sub while still within reasonable depth.
280 if (depth > 0) {
281 if (instruction->IsAdd()) {
282 return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1) &&
283 IsAddConst(instruction->InputAt(1), a, b, c, depth - 1);
284 } else if (instruction->IsSub() &&
285 IsInt64AndGet(instruction->InputAt(1), &value)) {
286 *c -= value;
287 return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1);
288 }
289 }
290 // Otherwise, deal with leaf nodes.
291 if (IsInt64AndGet(instruction, &value)) {
292 *c += value;
293 return true;
294 } else if (*a == nullptr) {
295 *a = instruction;
296 return true;
297 } else if (*b == nullptr) {
298 *b = instruction;
299 return true;
300 }
301 return false; // too many operands
302 }
303
304 // Detect a + b + c with optional constant c.
IsAddConst2(HGraph * graph,HInstruction * instruction,HInstruction ** a,HInstruction ** b,int64_t * c)305 static bool IsAddConst2(HGraph* graph,
306 HInstruction* instruction,
307 /*out*/ HInstruction** a,
308 /*out*/ HInstruction** b,
309 /*out*/ int64_t* c) {
310 if (IsAddConst(instruction, a, b, c) && *a != nullptr) {
311 if (*b == nullptr) {
312 // Constant is usually already present, unless accumulated.
313 *b = graph->GetConstant(instruction->GetType(), (*c));
314 *c = 0;
315 }
316 return true;
317 }
318 return false;
319 }
320
321 // Detect a direct a - b or a hidden a - (-c).
IsSubConst2(HGraph * graph,HInstruction * instruction,HInstruction ** a,HInstruction ** b)322 static bool IsSubConst2(HGraph* graph,
323 HInstruction* instruction,
324 /*out*/ HInstruction** a,
325 /*out*/ HInstruction** b) {
326 int64_t c = 0;
327 if (instruction->IsSub()) {
328 *a = instruction->InputAt(0);
329 *b = instruction->InputAt(1);
330 return true;
331 } else if (IsAddConst(instruction, a, b, &c) && *a != nullptr && *b == nullptr) {
332 // Constant for the hidden subtraction.
333 *b = graph->GetConstant(instruction->GetType(), -c);
334 return true;
335 }
336 return false;
337 }
338
339 // Detect reductions of the following forms,
340 // x = x_phi + ..
341 // x = x_phi - ..
HasReductionFormat(HInstruction * reduction,HInstruction * phi)342 static bool HasReductionFormat(HInstruction* reduction, HInstruction* phi) {
343 if (reduction->IsAdd()) {
344 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) ||
345 (reduction->InputAt(0) != phi && reduction->InputAt(1) == phi);
346 } else if (reduction->IsSub()) {
347 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi);
348 }
349 return false;
350 }
351
352 // Translates vector operation to reduction kind.
GetReductionKind(HVecOperation * reduction)353 static HVecReduce::ReductionKind GetReductionKind(HVecOperation* reduction) {
354 if (reduction->IsVecAdd() ||
355 reduction->IsVecSub() ||
356 reduction->IsVecSADAccumulate() ||
357 reduction->IsVecDotProd()) {
358 return HVecReduce::kSum;
359 }
360 LOG(FATAL) << "Unsupported SIMD reduction " << reduction->GetId();
361 UNREACHABLE();
362 }
363
364 // Test vector restrictions.
HasVectorRestrictions(uint64_t restrictions,uint64_t tested)365 static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
366 return (restrictions & tested) != 0;
367 }
368
369 // Insert an instruction.
Insert(HBasicBlock * block,HInstruction * instruction)370 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
371 DCHECK(block != nullptr);
372 DCHECK(instruction != nullptr);
373 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
374 return instruction;
375 }
376
377 // Check that instructions from the induction sets are fully removed: have no uses
378 // and no other instructions use them.
CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction * > * iset)379 static bool CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction*>* iset) {
380 for (HInstruction* instr : *iset) {
381 if (instr->GetBlock() != nullptr ||
382 !instr->GetUses().empty() ||
383 !instr->GetEnvUses().empty() ||
384 HasEnvironmentUsedByOthers(instr)) {
385 return false;
386 }
387 }
388 return true;
389 }
390
391 // Tries to statically evaluate condition of the specified "HIf" for other condition checks.
TryToEvaluateIfCondition(HIf * instruction,HGraph * graph)392 static void TryToEvaluateIfCondition(HIf* instruction, HGraph* graph) {
393 HInstruction* cond = instruction->InputAt(0);
394
395 // If a condition 'cond' is evaluated in an HIf instruction then in the successors of the
396 // IF_BLOCK we statically know the value of the condition 'cond' (TRUE in TRUE_SUCC, FALSE in
397 // FALSE_SUCC). Using that we can replace another evaluation (use) EVAL of the same 'cond'
398 // with TRUE value (FALSE value) if every path from the ENTRY_BLOCK to EVAL_BLOCK contains the
399 // edge HIF_BLOCK->TRUE_SUCC (HIF_BLOCK->FALSE_SUCC).
400 // if (cond) { if(cond) {
401 // if (cond) {} if (1) {}
402 // } else { =======> } else {
403 // if (cond) {} if (0) {}
404 // } }
405 if (!cond->IsConstant()) {
406 HBasicBlock* true_succ = instruction->IfTrueSuccessor();
407 HBasicBlock* false_succ = instruction->IfFalseSuccessor();
408
409 DCHECK_EQ(true_succ->GetPredecessors().size(), 1u);
410 DCHECK_EQ(false_succ->GetPredecessors().size(), 1u);
411
412 const HUseList<HInstruction*>& uses = cond->GetUses();
413 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
414 HInstruction* user = it->GetUser();
415 size_t index = it->GetIndex();
416 HBasicBlock* user_block = user->GetBlock();
417 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
418 ++it;
419 if (true_succ->Dominates(user_block)) {
420 user->ReplaceInput(graph->GetIntConstant(1), index);
421 } else if (false_succ->Dominates(user_block)) {
422 user->ReplaceInput(graph->GetIntConstant(0), index);
423 }
424 }
425 }
426 }
427
428 // Peel the first 'count' iterations of the loop.
PeelByCount(HLoopInformation * loop_info,int count,InductionVarRange * induction_range)429 static void PeelByCount(HLoopInformation* loop_info,
430 int count,
431 InductionVarRange* induction_range) {
432 for (int i = 0; i < count; i++) {
433 // Perform peeling.
434 PeelUnrollSimpleHelper helper(loop_info, induction_range);
435 helper.DoPeeling();
436 }
437 }
438
439 // Returns the narrower type out of instructions a and b types.
GetNarrowerType(HInstruction * a,HInstruction * b)440 static DataType::Type GetNarrowerType(HInstruction* a, HInstruction* b) {
441 DataType::Type type = a->GetType();
442 if (DataType::Size(b->GetType()) < DataType::Size(type)) {
443 type = b->GetType();
444 }
445 if (a->IsTypeConversion() &&
446 DataType::Size(a->InputAt(0)->GetType()) < DataType::Size(type)) {
447 type = a->InputAt(0)->GetType();
448 }
449 if (b->IsTypeConversion() &&
450 DataType::Size(b->InputAt(0)->GetType()) < DataType::Size(type)) {
451 type = b->InputAt(0)->GetType();
452 }
453 return type;
454 }
455
456 //
457 // Public methods.
458 //
459
HLoopOptimization(HGraph * graph,const CompilerOptions * compiler_options,HInductionVarAnalysis * induction_analysis,OptimizingCompilerStats * stats,const char * name)460 HLoopOptimization::HLoopOptimization(HGraph* graph,
461 const CompilerOptions* compiler_options,
462 HInductionVarAnalysis* induction_analysis,
463 OptimizingCompilerStats* stats,
464 const char* name)
465 : HOptimization(graph, name, stats),
466 compiler_options_(compiler_options),
467 induction_range_(induction_analysis),
468 loop_allocator_(nullptr),
469 global_allocator_(graph_->GetAllocator()),
470 top_loop_(nullptr),
471 last_loop_(nullptr),
472 iset_(nullptr),
473 reductions_(nullptr),
474 simplified_(false),
475 vector_length_(0),
476 vector_refs_(nullptr),
477 vector_static_peeling_factor_(0),
478 vector_dynamic_peeling_candidate_(nullptr),
479 vector_runtime_test_a_(nullptr),
480 vector_runtime_test_b_(nullptr),
481 vector_map_(nullptr),
482 vector_permanent_map_(nullptr),
483 vector_mode_(kSequential),
484 vector_preheader_(nullptr),
485 vector_header_(nullptr),
486 vector_body_(nullptr),
487 vector_index_(nullptr),
488 arch_loop_helper_(ArchNoOptsLoopHelper::Create(compiler_options_ != nullptr
489 ? compiler_options_->GetInstructionSet()
490 : InstructionSet::kNone,
491 global_allocator_)) {
492 }
493
Run()494 bool HLoopOptimization::Run() {
495 // Skip if there is no loop or the graph has try-catch/irreducible loops.
496 // TODO: make this less of a sledgehammer.
497 if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
498 return false;
499 }
500
501 // Phase-local allocator.
502 ScopedArenaAllocator allocator(graph_->GetArenaStack());
503 loop_allocator_ = &allocator;
504
505 // Perform loop optimizations.
506 bool didLoopOpt = LocalRun();
507 if (top_loop_ == nullptr) {
508 graph_->SetHasLoops(false); // no more loops
509 }
510
511 // Detach.
512 loop_allocator_ = nullptr;
513 last_loop_ = top_loop_ = nullptr;
514
515 return didLoopOpt;
516 }
517
518 //
519 // Loop setup and traversal.
520 //
521
LocalRun()522 bool HLoopOptimization::LocalRun() {
523 bool didLoopOpt = false;
524 // Build the linear order using the phase-local allocator. This step enables building
525 // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
526 ScopedArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
527 LinearizeGraph(graph_, &linear_order);
528
529 // Build the loop hierarchy.
530 for (HBasicBlock* block : linear_order) {
531 if (block->IsLoopHeader()) {
532 AddLoop(block->GetLoopInformation());
533 }
534 }
535
536 // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
537 // temporary data structures using the phase-local allocator. All new HIR
538 // should use the global allocator.
539 if (top_loop_ != nullptr) {
540 ScopedArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
541 ScopedArenaSafeMap<HInstruction*, HInstruction*> reds(
542 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
543 ScopedArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
544 ScopedArenaSafeMap<HInstruction*, HInstruction*> map(
545 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
546 ScopedArenaSafeMap<HInstruction*, HInstruction*> perm(
547 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
548 // Attach.
549 iset_ = &iset;
550 reductions_ = &reds;
551 vector_refs_ = &refs;
552 vector_map_ = ↦
553 vector_permanent_map_ = &perm;
554 // Traverse.
555 didLoopOpt = TraverseLoopsInnerToOuter(top_loop_);
556 // Detach.
557 iset_ = nullptr;
558 reductions_ = nullptr;
559 vector_refs_ = nullptr;
560 vector_map_ = nullptr;
561 vector_permanent_map_ = nullptr;
562 }
563 return didLoopOpt;
564 }
565
AddLoop(HLoopInformation * loop_info)566 void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
567 DCHECK(loop_info != nullptr);
568 LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
569 if (last_loop_ == nullptr) {
570 // First loop.
571 DCHECK(top_loop_ == nullptr);
572 last_loop_ = top_loop_ = node;
573 } else if (loop_info->IsIn(*last_loop_->loop_info)) {
574 // Inner loop.
575 node->outer = last_loop_;
576 DCHECK(last_loop_->inner == nullptr);
577 last_loop_ = last_loop_->inner = node;
578 } else {
579 // Subsequent loop.
580 while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
581 last_loop_ = last_loop_->outer;
582 }
583 node->outer = last_loop_->outer;
584 node->previous = last_loop_;
585 DCHECK(last_loop_->next == nullptr);
586 last_loop_ = last_loop_->next = node;
587 }
588 }
589
RemoveLoop(LoopNode * node)590 void HLoopOptimization::RemoveLoop(LoopNode* node) {
591 DCHECK(node != nullptr);
592 DCHECK(node->inner == nullptr);
593 if (node->previous != nullptr) {
594 // Within sequence.
595 node->previous->next = node->next;
596 if (node->next != nullptr) {
597 node->next->previous = node->previous;
598 }
599 } else {
600 // First of sequence.
601 if (node->outer != nullptr) {
602 node->outer->inner = node->next;
603 } else {
604 top_loop_ = node->next;
605 }
606 if (node->next != nullptr) {
607 node->next->outer = node->outer;
608 node->next->previous = nullptr;
609 }
610 }
611 }
612
TraverseLoopsInnerToOuter(LoopNode * node)613 bool HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
614 bool changed = false;
615 for ( ; node != nullptr; node = node->next) {
616 // Visit inner loops first. Recompute induction information for this
617 // loop if the induction of any inner loop has changed.
618 if (TraverseLoopsInnerToOuter(node->inner)) {
619 induction_range_.ReVisit(node->loop_info);
620 changed = true;
621 }
622 // Repeat simplifications in the loop-body until no more changes occur.
623 // Note that since each simplification consists of eliminating code (without
624 // introducing new code), this process is always finite.
625 do {
626 simplified_ = false;
627 SimplifyInduction(node);
628 SimplifyBlocks(node);
629 changed = simplified_ || changed;
630 } while (simplified_);
631 // Optimize inner loop.
632 if (node->inner == nullptr) {
633 changed = OptimizeInnerLoop(node) || changed;
634 }
635 }
636 return changed;
637 }
638
639 //
640 // Optimization.
641 //
642
SimplifyInduction(LoopNode * node)643 void HLoopOptimization::SimplifyInduction(LoopNode* node) {
644 HBasicBlock* header = node->loop_info->GetHeader();
645 HBasicBlock* preheader = node->loop_info->GetPreHeader();
646 // Scan the phis in the header to find opportunities to simplify an induction
647 // cycle that is only used outside the loop. Replace these uses, if any, with
648 // the last value and remove the induction cycle.
649 // Examples: for (int i = 0; x != null; i++) { .... no i .... }
650 // for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
651 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
652 HPhi* phi = it.Current()->AsPhi();
653 if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
654 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
655 // Note that it's ok to have replaced uses after the loop with the last value, without
656 // being able to remove the cycle. Environment uses (which are the reason we may not be
657 // able to remove the cycle) within the loop will still hold the right value. We must
658 // have tried first, however, to replace outside uses.
659 if (CanRemoveCycle()) {
660 simplified_ = true;
661 for (HInstruction* i : *iset_) {
662 RemoveFromCycle(i);
663 }
664 DCHECK(CheckInductionSetFullyRemoved(iset_));
665 }
666 }
667 }
668 }
669
SimplifyBlocks(LoopNode * node)670 void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
671 // Iterate over all basic blocks in the loop-body.
672 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
673 HBasicBlock* block = it.Current();
674 // Remove dead instructions from the loop-body.
675 RemoveDeadInstructions(block->GetPhis());
676 RemoveDeadInstructions(block->GetInstructions());
677 // Remove trivial control flow blocks from the loop-body.
678 if (block->GetPredecessors().size() == 1 &&
679 block->GetSuccessors().size() == 1 &&
680 block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
681 simplified_ = true;
682 block->MergeWith(block->GetSingleSuccessor());
683 } else if (block->GetSuccessors().size() == 2) {
684 // Trivial if block can be bypassed to either branch.
685 HBasicBlock* succ0 = block->GetSuccessors()[0];
686 HBasicBlock* succ1 = block->GetSuccessors()[1];
687 HBasicBlock* meet0 = nullptr;
688 HBasicBlock* meet1 = nullptr;
689 if (succ0 != succ1 &&
690 IsGotoBlock(succ0, &meet0) &&
691 IsGotoBlock(succ1, &meet1) &&
692 meet0 == meet1 && // meets again
693 meet0 != block && // no self-loop
694 meet0->GetPhis().IsEmpty()) { // not used for merging
695 simplified_ = true;
696 succ0->DisconnectAndDelete();
697 if (block->Dominates(meet0)) {
698 block->RemoveDominatedBlock(meet0);
699 succ1->AddDominatedBlock(meet0);
700 meet0->SetDominator(succ1);
701 }
702 }
703 }
704 }
705 }
706
TryOptimizeInnerLoopFinite(LoopNode * node)707 bool HLoopOptimization::TryOptimizeInnerLoopFinite(LoopNode* node) {
708 HBasicBlock* header = node->loop_info->GetHeader();
709 HBasicBlock* preheader = node->loop_info->GetPreHeader();
710 // Ensure loop header logic is finite.
711 int64_t trip_count = 0;
712 if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
713 return false;
714 }
715 // Ensure there is only a single loop-body (besides the header).
716 HBasicBlock* body = nullptr;
717 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
718 if (it.Current() != header) {
719 if (body != nullptr) {
720 return false;
721 }
722 body = it.Current();
723 }
724 }
725 CHECK(body != nullptr);
726 // Ensure there is only a single exit point.
727 if (header->GetSuccessors().size() != 2) {
728 return false;
729 }
730 HBasicBlock* exit = (header->GetSuccessors()[0] == body)
731 ? header->GetSuccessors()[1]
732 : header->GetSuccessors()[0];
733 // Ensure exit can only be reached by exiting loop.
734 if (exit->GetPredecessors().size() != 1) {
735 return false;
736 }
737 // Detect either an empty loop (no side effects other than plain iteration) or
738 // a trivial loop (just iterating once). Replace subsequent index uses, if any,
739 // with the last value and remove the loop, possibly after unrolling its body.
740 HPhi* main_phi = nullptr;
741 if (TrySetSimpleLoopHeader(header, &main_phi)) {
742 bool is_empty = IsEmptyBody(body);
743 if (reductions_->empty() && // TODO: possible with some effort
744 (is_empty || trip_count == 1) &&
745 TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
746 if (!is_empty) {
747 // Unroll the loop-body, which sees initial value of the index.
748 main_phi->ReplaceWith(main_phi->InputAt(0));
749 preheader->MergeInstructionsWith(body);
750 }
751 body->DisconnectAndDelete();
752 exit->RemovePredecessor(header);
753 header->RemoveSuccessor(exit);
754 header->RemoveDominatedBlock(exit);
755 header->DisconnectAndDelete();
756 preheader->AddSuccessor(exit);
757 preheader->AddInstruction(new (global_allocator_) HGoto());
758 preheader->AddDominatedBlock(exit);
759 exit->SetDominator(preheader);
760 RemoveLoop(node); // update hierarchy
761 return true;
762 }
763 }
764 // Vectorize loop, if possible and valid.
765 if (kEnableVectorization &&
766 TrySetSimpleLoopHeader(header, &main_phi) &&
767 ShouldVectorize(node, body, trip_count) &&
768 TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
769 Vectorize(node, body, exit, trip_count);
770 graph_->SetHasSIMD(true); // flag SIMD usage
771 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorized);
772 return true;
773 }
774 return false;
775 }
776
OptimizeInnerLoop(LoopNode * node)777 bool HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
778 return TryOptimizeInnerLoopFinite(node) || TryPeelingAndUnrolling(node);
779 }
780
781
782
783 //
784 // Scalar loop peeling and unrolling: generic part methods.
785 //
786
TryUnrollingForBranchPenaltyReduction(LoopAnalysisInfo * analysis_info,bool generate_code)787 bool HLoopOptimization::TryUnrollingForBranchPenaltyReduction(LoopAnalysisInfo* analysis_info,
788 bool generate_code) {
789 if (analysis_info->GetNumberOfExits() > 1) {
790 return false;
791 }
792
793 uint32_t unrolling_factor = arch_loop_helper_->GetScalarUnrollingFactor(analysis_info);
794 if (unrolling_factor == LoopAnalysisInfo::kNoUnrollingFactor) {
795 return false;
796 }
797
798 if (generate_code) {
799 // TODO: support other unrolling factors.
800 DCHECK_EQ(unrolling_factor, 2u);
801
802 // Perform unrolling.
803 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
804 PeelUnrollSimpleHelper helper(loop_info, &induction_range_);
805 helper.DoUnrolling();
806
807 // Remove the redundant loop check after unrolling.
808 HIf* copy_hif =
809 helper.GetBasicBlockMap()->Get(loop_info->GetHeader())->GetLastInstruction()->AsIf();
810 int32_t constant = loop_info->Contains(*copy_hif->IfTrueSuccessor()) ? 1 : 0;
811 copy_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
812 }
813 return true;
814 }
815
TryPeelingForLoopInvariantExitsElimination(LoopAnalysisInfo * analysis_info,bool generate_code)816 bool HLoopOptimization::TryPeelingForLoopInvariantExitsElimination(LoopAnalysisInfo* analysis_info,
817 bool generate_code) {
818 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
819 if (!arch_loop_helper_->IsLoopPeelingEnabled()) {
820 return false;
821 }
822
823 if (analysis_info->GetNumberOfInvariantExits() == 0) {
824 return false;
825 }
826
827 if (generate_code) {
828 // Perform peeling.
829 PeelUnrollSimpleHelper helper(loop_info, &induction_range_);
830 helper.DoPeeling();
831
832 // Statically evaluate loop check after peeling for loop invariant condition.
833 const SuperblockCloner::HInstructionMap* hir_map = helper.GetInstructionMap();
834 for (auto entry : *hir_map) {
835 HInstruction* copy = entry.second;
836 if (copy->IsIf()) {
837 TryToEvaluateIfCondition(copy->AsIf(), graph_);
838 }
839 }
840 }
841
842 return true;
843 }
844
TryFullUnrolling(LoopAnalysisInfo * analysis_info,bool generate_code)845 bool HLoopOptimization::TryFullUnrolling(LoopAnalysisInfo* analysis_info, bool generate_code) {
846 // Fully unroll loops with a known and small trip count.
847 int64_t trip_count = analysis_info->GetTripCount();
848 if (!arch_loop_helper_->IsLoopPeelingEnabled() ||
849 trip_count == LoopAnalysisInfo::kUnknownTripCount ||
850 !arch_loop_helper_->IsFullUnrollingBeneficial(analysis_info)) {
851 return false;
852 }
853
854 if (generate_code) {
855 // Peeling of the N first iterations (where N equals to the trip count) will effectively
856 // eliminate the loop: after peeling we will have N sequential iterations copied into the loop
857 // preheader and the original loop. The trip count of this loop will be 0 as the sequential
858 // iterations are executed first and there are exactly N of them. Thus we can statically
859 // evaluate the loop exit condition to 'false' and fully eliminate it.
860 //
861 // Here is an example of full unrolling of a loop with a trip count 2:
862 //
863 // loop_cond_1
864 // loop_body_1 <- First iteration.
865 // |
866 // \ v
867 // ==\ loop_cond_2
868 // ==/ loop_body_2 <- Second iteration.
869 // / |
870 // <- v <-
871 // loop_cond \ loop_cond \ <- This cond is always false.
872 // loop_body _/ loop_body _/
873 //
874 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
875 PeelByCount(loop_info, trip_count, &induction_range_);
876 HIf* loop_hif = loop_info->GetHeader()->GetLastInstruction()->AsIf();
877 int32_t constant = loop_info->Contains(*loop_hif->IfTrueSuccessor()) ? 0 : 1;
878 loop_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
879 }
880
881 return true;
882 }
883
TryPeelingAndUnrolling(LoopNode * node)884 bool HLoopOptimization::TryPeelingAndUnrolling(LoopNode* node) {
885 // Don't run peeling/unrolling if compiler_options_ is nullptr (i.e., running under tests)
886 // as InstructionSet is needed.
887 if (compiler_options_ == nullptr) {
888 return false;
889 }
890
891 HLoopInformation* loop_info = node->loop_info;
892 int64_t trip_count = LoopAnalysis::GetLoopTripCount(loop_info, &induction_range_);
893 LoopAnalysisInfo analysis_info(loop_info);
894 LoopAnalysis::CalculateLoopBasicProperties(loop_info, &analysis_info, trip_count);
895
896 if (analysis_info.HasInstructionsPreventingScalarOpts() ||
897 arch_loop_helper_->IsLoopNonBeneficialForScalarOpts(&analysis_info)) {
898 return false;
899 }
900
901 if (!TryFullUnrolling(&analysis_info, /*generate_code*/ false) &&
902 !TryPeelingForLoopInvariantExitsElimination(&analysis_info, /*generate_code*/ false) &&
903 !TryUnrollingForBranchPenaltyReduction(&analysis_info, /*generate_code*/ false)) {
904 return false;
905 }
906
907 // Run 'IsLoopClonable' the last as it might be time-consuming.
908 if (!PeelUnrollHelper::IsLoopClonable(loop_info)) {
909 return false;
910 }
911
912 return TryFullUnrolling(&analysis_info) ||
913 TryPeelingForLoopInvariantExitsElimination(&analysis_info) ||
914 TryUnrollingForBranchPenaltyReduction(&analysis_info);
915 }
916
917 //
918 // Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
919 // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
920 // Intel Press, June, 2004 (http://www.aartbik.com/).
921 //
922
ShouldVectorize(LoopNode * node,HBasicBlock * block,int64_t trip_count)923 bool HLoopOptimization::ShouldVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
924 // Reset vector bookkeeping.
925 vector_length_ = 0;
926 vector_refs_->clear();
927 vector_static_peeling_factor_ = 0;
928 vector_dynamic_peeling_candidate_ = nullptr;
929 vector_runtime_test_a_ =
930 vector_runtime_test_b_ = nullptr;
931
932 // Phis in the loop-body prevent vectorization.
933 if (!block->GetPhis().IsEmpty()) {
934 return false;
935 }
936
937 // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
938 // occurrence, which allows passing down attributes down the use tree.
939 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
940 if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
941 return false; // failure to vectorize a left-hand-side
942 }
943 }
944
945 // Prepare alignment analysis:
946 // (1) find desired alignment (SIMD vector size in bytes).
947 // (2) initialize static loop peeling votes (peeling factor that will
948 // make one particular reference aligned), never to exceed (1).
949 // (3) variable to record how many references share same alignment.
950 // (4) variable to record suitable candidate for dynamic loop peeling.
951 uint32_t desired_alignment = GetVectorSizeInBytes();
952 DCHECK_LE(desired_alignment, 16u);
953 uint32_t peeling_votes[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
954 uint32_t max_num_same_alignment = 0;
955 const ArrayReference* peeling_candidate = nullptr;
956
957 // Data dependence analysis. Find each pair of references with same type, where
958 // at least one is a write. Each such pair denotes a possible data dependence.
959 // This analysis exploits the property that differently typed arrays cannot be
960 // aliased, as well as the property that references either point to the same
961 // array or to two completely disjoint arrays, i.e., no partial aliasing.
962 // Other than a few simply heuristics, no detailed subscript analysis is done.
963 // The scan over references also prepares finding a suitable alignment strategy.
964 for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
965 uint32_t num_same_alignment = 0;
966 // Scan over all next references.
967 for (auto j = i; ++j != vector_refs_->end(); ) {
968 if (i->type == j->type && (i->lhs || j->lhs)) {
969 // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
970 HInstruction* a = i->base;
971 HInstruction* b = j->base;
972 HInstruction* x = i->offset;
973 HInstruction* y = j->offset;
974 if (a == b) {
975 // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
976 // Conservatively assume a loop-carried data dependence otherwise, and reject.
977 if (x != y) {
978 return false;
979 }
980 // Count the number of references that have the same alignment (since
981 // base and offset are the same) and where at least one is a write, so
982 // e.g. a[i] = a[i] + b[i] counts a[i] but not b[i]).
983 num_same_alignment++;
984 } else {
985 // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
986 // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
987 // generating an explicit a != b disambiguation runtime test on the two references.
988 if (x != y) {
989 // To avoid excessive overhead, we only accept one a != b test.
990 if (vector_runtime_test_a_ == nullptr) {
991 // First test found.
992 vector_runtime_test_a_ = a;
993 vector_runtime_test_b_ = b;
994 } else if ((vector_runtime_test_a_ != a || vector_runtime_test_b_ != b) &&
995 (vector_runtime_test_a_ != b || vector_runtime_test_b_ != a)) {
996 return false; // second test would be needed
997 }
998 }
999 }
1000 }
1001 }
1002 // Update information for finding suitable alignment strategy:
1003 // (1) update votes for static loop peeling,
1004 // (2) update suitable candidate for dynamic loop peeling.
1005 Alignment alignment = ComputeAlignment(i->offset, i->type, i->is_string_char_at);
1006 if (alignment.Base() >= desired_alignment) {
1007 // If the array/string object has a known, sufficient alignment, use the
1008 // initial offset to compute the static loop peeling vote (this always
1009 // works, since elements have natural alignment).
1010 uint32_t offset = alignment.Offset() & (desired_alignment - 1u);
1011 uint32_t vote = (offset == 0)
1012 ? 0
1013 : ((desired_alignment - offset) >> DataType::SizeShift(i->type));
1014 DCHECK_LT(vote, 16u);
1015 ++peeling_votes[vote];
1016 } else if (BaseAlignment() >= desired_alignment &&
1017 num_same_alignment > max_num_same_alignment) {
1018 // Otherwise, if the array/string object has a known, sufficient alignment
1019 // for just the base but with an unknown offset, record the candidate with
1020 // the most occurrences for dynamic loop peeling (again, the peeling always
1021 // works, since elements have natural alignment).
1022 max_num_same_alignment = num_same_alignment;
1023 peeling_candidate = &(*i);
1024 }
1025 } // for i
1026
1027 // Find a suitable alignment strategy.
1028 SetAlignmentStrategy(peeling_votes, peeling_candidate);
1029
1030 // Does vectorization seem profitable?
1031 if (!IsVectorizationProfitable(trip_count)) {
1032 return false;
1033 }
1034
1035 // Success!
1036 return true;
1037 }
1038
Vectorize(LoopNode * node,HBasicBlock * block,HBasicBlock * exit,int64_t trip_count)1039 void HLoopOptimization::Vectorize(LoopNode* node,
1040 HBasicBlock* block,
1041 HBasicBlock* exit,
1042 int64_t trip_count) {
1043 HBasicBlock* header = node->loop_info->GetHeader();
1044 HBasicBlock* preheader = node->loop_info->GetPreHeader();
1045
1046 // Pick a loop unrolling factor for the vector loop.
1047 uint32_t unroll = arch_loop_helper_->GetSIMDUnrollingFactor(
1048 block, trip_count, MaxNumberPeeled(), vector_length_);
1049 uint32_t chunk = vector_length_ * unroll;
1050
1051 DCHECK(trip_count == 0 || (trip_count >= MaxNumberPeeled() + chunk));
1052
1053 // A cleanup loop is needed, at least, for any unknown trip count or
1054 // for a known trip count with remainder iterations after vectorization.
1055 bool needs_cleanup = trip_count == 0 ||
1056 ((trip_count - vector_static_peeling_factor_) % chunk) != 0;
1057
1058 // Adjust vector bookkeeping.
1059 HPhi* main_phi = nullptr;
1060 bool is_simple_loop_header = TrySetSimpleLoopHeader(header, &main_phi); // refills sets
1061 DCHECK(is_simple_loop_header);
1062 vector_header_ = header;
1063 vector_body_ = block;
1064
1065 // Loop induction type.
1066 DataType::Type induc_type = main_phi->GetType();
1067 DCHECK(induc_type == DataType::Type::kInt32 || induc_type == DataType::Type::kInt64)
1068 << induc_type;
1069
1070 // Generate the trip count for static or dynamic loop peeling, if needed:
1071 // ptc = <peeling factor>;
1072 HInstruction* ptc = nullptr;
1073 if (vector_static_peeling_factor_ != 0) {
1074 // Static loop peeling for SIMD alignment (using the most suitable
1075 // fixed peeling factor found during prior alignment analysis).
1076 DCHECK(vector_dynamic_peeling_candidate_ == nullptr);
1077 ptc = graph_->GetConstant(induc_type, vector_static_peeling_factor_);
1078 } else if (vector_dynamic_peeling_candidate_ != nullptr) {
1079 // Dynamic loop peeling for SIMD alignment (using the most suitable
1080 // candidate found during prior alignment analysis):
1081 // rem = offset % ALIGN; // adjusted as #elements
1082 // ptc = rem == 0 ? 0 : (ALIGN - rem);
1083 uint32_t shift = DataType::SizeShift(vector_dynamic_peeling_candidate_->type);
1084 uint32_t align = GetVectorSizeInBytes() >> shift;
1085 uint32_t hidden_offset = HiddenOffset(vector_dynamic_peeling_candidate_->type,
1086 vector_dynamic_peeling_candidate_->is_string_char_at);
1087 HInstruction* adjusted_offset = graph_->GetConstant(induc_type, hidden_offset >> shift);
1088 HInstruction* offset = Insert(preheader, new (global_allocator_) HAdd(
1089 induc_type, vector_dynamic_peeling_candidate_->offset, adjusted_offset));
1090 HInstruction* rem = Insert(preheader, new (global_allocator_) HAnd(
1091 induc_type, offset, graph_->GetConstant(induc_type, align - 1u)));
1092 HInstruction* sub = Insert(preheader, new (global_allocator_) HSub(
1093 induc_type, graph_->GetConstant(induc_type, align), rem));
1094 HInstruction* cond = Insert(preheader, new (global_allocator_) HEqual(
1095 rem, graph_->GetConstant(induc_type, 0)));
1096 ptc = Insert(preheader, new (global_allocator_) HSelect(
1097 cond, graph_->GetConstant(induc_type, 0), sub, kNoDexPc));
1098 needs_cleanup = true; // don't know the exact amount
1099 }
1100
1101 // Generate loop control:
1102 // stc = <trip-count>;
1103 // ptc = min(stc, ptc);
1104 // vtc = stc - (stc - ptc) % chunk;
1105 // i = 0;
1106 HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
1107 HInstruction* vtc = stc;
1108 if (needs_cleanup) {
1109 DCHECK(IsPowerOfTwo(chunk));
1110 HInstruction* diff = stc;
1111 if (ptc != nullptr) {
1112 if (trip_count == 0) {
1113 HInstruction* cond = Insert(preheader, new (global_allocator_) HAboveOrEqual(stc, ptc));
1114 ptc = Insert(preheader, new (global_allocator_) HSelect(cond, ptc, stc, kNoDexPc));
1115 }
1116 diff = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, ptc));
1117 }
1118 HInstruction* rem = Insert(
1119 preheader, new (global_allocator_) HAnd(induc_type,
1120 diff,
1121 graph_->GetConstant(induc_type, chunk - 1)));
1122 vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
1123 }
1124 vector_index_ = graph_->GetConstant(induc_type, 0);
1125
1126 // Generate runtime disambiguation test:
1127 // vtc = a != b ? vtc : 0;
1128 if (vector_runtime_test_a_ != nullptr) {
1129 HInstruction* rt = Insert(
1130 preheader,
1131 new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
1132 vtc = Insert(preheader,
1133 new (global_allocator_)
1134 HSelect(rt, vtc, graph_->GetConstant(induc_type, 0), kNoDexPc));
1135 needs_cleanup = true;
1136 }
1137
1138 // Generate alignment peeling loop, if needed:
1139 // for ( ; i < ptc; i += 1)
1140 // <loop-body>
1141 //
1142 // NOTE: The alignment forced by the peeling loop is preserved even if data is
1143 // moved around during suspend checks, since all analysis was based on
1144 // nothing more than the Android runtime alignment conventions.
1145 if (ptc != nullptr) {
1146 vector_mode_ = kSequential;
1147 GenerateNewLoop(node,
1148 block,
1149 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
1150 vector_index_,
1151 ptc,
1152 graph_->GetConstant(induc_type, 1),
1153 LoopAnalysisInfo::kNoUnrollingFactor);
1154 }
1155
1156 // Generate vector loop, possibly further unrolled:
1157 // for ( ; i < vtc; i += chunk)
1158 // <vectorized-loop-body>
1159 vector_mode_ = kVector;
1160 GenerateNewLoop(node,
1161 block,
1162 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
1163 vector_index_,
1164 vtc,
1165 graph_->GetConstant(induc_type, vector_length_), // increment per unroll
1166 unroll);
1167 HLoopInformation* vloop = vector_header_->GetLoopInformation();
1168
1169 // Generate cleanup loop, if needed:
1170 // for ( ; i < stc; i += 1)
1171 // <loop-body>
1172 if (needs_cleanup) {
1173 vector_mode_ = kSequential;
1174 GenerateNewLoop(node,
1175 block,
1176 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
1177 vector_index_,
1178 stc,
1179 graph_->GetConstant(induc_type, 1),
1180 LoopAnalysisInfo::kNoUnrollingFactor);
1181 }
1182
1183 // Link reductions to their final uses.
1184 for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
1185 if (i->first->IsPhi()) {
1186 HInstruction* phi = i->first;
1187 HInstruction* repl = ReduceAndExtractIfNeeded(i->second);
1188 // Deal with regular uses.
1189 for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
1190 induction_range_.Replace(use.GetUser(), phi, repl); // update induction use
1191 }
1192 phi->ReplaceWith(repl);
1193 }
1194 }
1195
1196 // Remove the original loop by disconnecting the body block
1197 // and removing all instructions from the header.
1198 block->DisconnectAndDelete();
1199 while (!header->GetFirstInstruction()->IsGoto()) {
1200 header->RemoveInstruction(header->GetFirstInstruction());
1201 }
1202
1203 // Update loop hierarchy: the old header now resides in the same outer loop
1204 // as the old preheader. Note that we don't bother putting sequential
1205 // loops back in the hierarchy at this point.
1206 header->SetLoopInformation(preheader->GetLoopInformation()); // outward
1207 node->loop_info = vloop;
1208 }
1209
GenerateNewLoop(LoopNode * node,HBasicBlock * block,HBasicBlock * new_preheader,HInstruction * lo,HInstruction * hi,HInstruction * step,uint32_t unroll)1210 void HLoopOptimization::GenerateNewLoop(LoopNode* node,
1211 HBasicBlock* block,
1212 HBasicBlock* new_preheader,
1213 HInstruction* lo,
1214 HInstruction* hi,
1215 HInstruction* step,
1216 uint32_t unroll) {
1217 DCHECK(unroll == 1 || vector_mode_ == kVector);
1218 DataType::Type induc_type = lo->GetType();
1219 // Prepare new loop.
1220 vector_preheader_ = new_preheader,
1221 vector_header_ = vector_preheader_->GetSingleSuccessor();
1222 vector_body_ = vector_header_->GetSuccessors()[1];
1223 HPhi* phi = new (global_allocator_) HPhi(global_allocator_,
1224 kNoRegNumber,
1225 0,
1226 HPhi::ToPhiType(induc_type));
1227 // Generate header and prepare body.
1228 // for (i = lo; i < hi; i += step)
1229 // <loop-body>
1230 HInstruction* cond = new (global_allocator_) HAboveOrEqual(phi, hi);
1231 vector_header_->AddPhi(phi);
1232 vector_header_->AddInstruction(cond);
1233 vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
1234 vector_index_ = phi;
1235 vector_permanent_map_->clear(); // preserved over unrolling
1236 for (uint32_t u = 0; u < unroll; u++) {
1237 // Generate instruction map.
1238 vector_map_->clear();
1239 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1240 bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
1241 DCHECK(vectorized_def);
1242 }
1243 // Generate body from the instruction map, but in original program order.
1244 HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
1245 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1246 auto i = vector_map_->find(it.Current());
1247 if (i != vector_map_->end() && !i->second->IsInBlock()) {
1248 Insert(vector_body_, i->second);
1249 // Deal with instructions that need an environment, such as the scalar intrinsics.
1250 if (i->second->NeedsEnvironment()) {
1251 i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
1252 }
1253 }
1254 }
1255 // Generate the induction.
1256 vector_index_ = new (global_allocator_) HAdd(induc_type, vector_index_, step);
1257 Insert(vector_body_, vector_index_);
1258 }
1259 // Finalize phi inputs for the reductions (if any).
1260 for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
1261 if (!i->first->IsPhi()) {
1262 DCHECK(i->second->IsPhi());
1263 GenerateVecReductionPhiInputs(i->second->AsPhi(), i->first);
1264 }
1265 }
1266 // Finalize phi inputs for the loop index.
1267 phi->AddInput(lo);
1268 phi->AddInput(vector_index_);
1269 vector_index_ = phi;
1270 }
1271
VectorizeDef(LoopNode * node,HInstruction * instruction,bool generate_code)1272 bool HLoopOptimization::VectorizeDef(LoopNode* node,
1273 HInstruction* instruction,
1274 bool generate_code) {
1275 // Accept a left-hand-side array base[index] for
1276 // (1) supported vector type,
1277 // (2) loop-invariant base,
1278 // (3) unit stride index,
1279 // (4) vectorizable right-hand-side value.
1280 uint64_t restrictions = kNone;
1281 if (instruction->IsArraySet()) {
1282 DataType::Type type = instruction->AsArraySet()->GetComponentType();
1283 HInstruction* base = instruction->InputAt(0);
1284 HInstruction* index = instruction->InputAt(1);
1285 HInstruction* value = instruction->InputAt(2);
1286 HInstruction* offset = nullptr;
1287 // For narrow types, explicit type conversion may have been
1288 // optimized way, so set the no hi bits restriction here.
1289 if (DataType::Size(type) <= 2) {
1290 restrictions |= kNoHiBits;
1291 }
1292 if (TrySetVectorType(type, &restrictions) &&
1293 node->loop_info->IsDefinedOutOfTheLoop(base) &&
1294 induction_range_.IsUnitStride(instruction, index, graph_, &offset) &&
1295 VectorizeUse(node, value, generate_code, type, restrictions)) {
1296 if (generate_code) {
1297 GenerateVecSub(index, offset);
1298 GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), offset, type);
1299 } else {
1300 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
1301 }
1302 return true;
1303 }
1304 return false;
1305 }
1306 // Accept a left-hand-side reduction for
1307 // (1) supported vector type,
1308 // (2) vectorizable right-hand-side value.
1309 auto redit = reductions_->find(instruction);
1310 if (redit != reductions_->end()) {
1311 DataType::Type type = instruction->GetType();
1312 // Recognize SAD idiom or direct reduction.
1313 if (VectorizeSADIdiom(node, instruction, generate_code, type, restrictions) ||
1314 VectorizeDotProdIdiom(node, instruction, generate_code, type, restrictions) ||
1315 (TrySetVectorType(type, &restrictions) &&
1316 VectorizeUse(node, instruction, generate_code, type, restrictions))) {
1317 if (generate_code) {
1318 HInstruction* new_red = vector_map_->Get(instruction);
1319 vector_permanent_map_->Put(new_red, vector_map_->Get(redit->second));
1320 vector_permanent_map_->Overwrite(redit->second, new_red);
1321 }
1322 return true;
1323 }
1324 return false;
1325 }
1326 // Branch back okay.
1327 if (instruction->IsGoto()) {
1328 return true;
1329 }
1330 // Otherwise accept only expressions with no effects outside the immediate loop-body.
1331 // Note that actual uses are inspected during right-hand-side tree traversal.
1332 return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
1333 }
1334
VectorizeUse(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type type,uint64_t restrictions)1335 bool HLoopOptimization::VectorizeUse(LoopNode* node,
1336 HInstruction* instruction,
1337 bool generate_code,
1338 DataType::Type type,
1339 uint64_t restrictions) {
1340 // Accept anything for which code has already been generated.
1341 if (generate_code) {
1342 if (vector_map_->find(instruction) != vector_map_->end()) {
1343 return true;
1344 }
1345 }
1346 // Continue the right-hand-side tree traversal, passing in proper
1347 // types and vector restrictions along the way. During code generation,
1348 // all new nodes are drawn from the global allocator.
1349 if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
1350 // Accept invariant use, using scalar expansion.
1351 if (generate_code) {
1352 GenerateVecInv(instruction, type);
1353 }
1354 return true;
1355 } else if (instruction->IsArrayGet()) {
1356 // Deal with vector restrictions.
1357 bool is_string_char_at = instruction->AsArrayGet()->IsStringCharAt();
1358 if (is_string_char_at && HasVectorRestrictions(restrictions, kNoStringCharAt)) {
1359 return false;
1360 }
1361 // Accept a right-hand-side array base[index] for
1362 // (1) matching vector type (exact match or signed/unsigned integral type of the same size),
1363 // (2) loop-invariant base,
1364 // (3) unit stride index,
1365 // (4) vectorizable right-hand-side value.
1366 HInstruction* base = instruction->InputAt(0);
1367 HInstruction* index = instruction->InputAt(1);
1368 HInstruction* offset = nullptr;
1369 if (HVecOperation::ToSignedType(type) == HVecOperation::ToSignedType(instruction->GetType()) &&
1370 node->loop_info->IsDefinedOutOfTheLoop(base) &&
1371 induction_range_.IsUnitStride(instruction, index, graph_, &offset)) {
1372 if (generate_code) {
1373 GenerateVecSub(index, offset);
1374 GenerateVecMem(instruction, vector_map_->Get(index), nullptr, offset, type);
1375 } else {
1376 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false, is_string_char_at));
1377 }
1378 return true;
1379 }
1380 } else if (instruction->IsPhi()) {
1381 // Accept particular phi operations.
1382 if (reductions_->find(instruction) != reductions_->end()) {
1383 // Deal with vector restrictions.
1384 if (HasVectorRestrictions(restrictions, kNoReduction)) {
1385 return false;
1386 }
1387 // Accept a reduction.
1388 if (generate_code) {
1389 GenerateVecReductionPhi(instruction->AsPhi());
1390 }
1391 return true;
1392 }
1393 // TODO: accept right-hand-side induction?
1394 return false;
1395 } else if (instruction->IsTypeConversion()) {
1396 // Accept particular type conversions.
1397 HTypeConversion* conversion = instruction->AsTypeConversion();
1398 HInstruction* opa = conversion->InputAt(0);
1399 DataType::Type from = conversion->GetInputType();
1400 DataType::Type to = conversion->GetResultType();
1401 if (DataType::IsIntegralType(from) && DataType::IsIntegralType(to)) {
1402 uint32_t size_vec = DataType::Size(type);
1403 uint32_t size_from = DataType::Size(from);
1404 uint32_t size_to = DataType::Size(to);
1405 // Accept an integral conversion
1406 // (1a) narrowing into vector type, "wider" operations cannot bring in higher order bits, or
1407 // (1b) widening from at least vector type, and
1408 // (2) vectorizable operand.
1409 if ((size_to < size_from &&
1410 size_to == size_vec &&
1411 VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) ||
1412 (size_to >= size_from &&
1413 size_from >= size_vec &&
1414 VectorizeUse(node, opa, generate_code, type, restrictions))) {
1415 if (generate_code) {
1416 if (vector_mode_ == kVector) {
1417 vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through
1418 } else {
1419 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1420 }
1421 }
1422 return true;
1423 }
1424 } else if (to == DataType::Type::kFloat32 && from == DataType::Type::kInt32) {
1425 DCHECK_EQ(to, type);
1426 // Accept int to float conversion for
1427 // (1) supported int,
1428 // (2) vectorizable operand.
1429 if (TrySetVectorType(from, &restrictions) &&
1430 VectorizeUse(node, opa, generate_code, from, restrictions)) {
1431 if (generate_code) {
1432 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1433 }
1434 return true;
1435 }
1436 }
1437 return false;
1438 } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
1439 // Accept unary operator for vectorizable operand.
1440 HInstruction* opa = instruction->InputAt(0);
1441 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
1442 if (generate_code) {
1443 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1444 }
1445 return true;
1446 }
1447 } else if (instruction->IsAdd() || instruction->IsSub() ||
1448 instruction->IsMul() || instruction->IsDiv() ||
1449 instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
1450 // Deal with vector restrictions.
1451 if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
1452 (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
1453 return false;
1454 }
1455 // Accept binary operator for vectorizable operands.
1456 HInstruction* opa = instruction->InputAt(0);
1457 HInstruction* opb = instruction->InputAt(1);
1458 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
1459 VectorizeUse(node, opb, generate_code, type, restrictions)) {
1460 if (generate_code) {
1461 GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
1462 }
1463 return true;
1464 }
1465 } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
1466 // Recognize halving add idiom.
1467 if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
1468 return true;
1469 }
1470 // Deal with vector restrictions.
1471 HInstruction* opa = instruction->InputAt(0);
1472 HInstruction* opb = instruction->InputAt(1);
1473 HInstruction* r = opa;
1474 bool is_unsigned = false;
1475 if ((HasVectorRestrictions(restrictions, kNoShift)) ||
1476 (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
1477 return false; // unsupported instruction
1478 } else if (HasVectorRestrictions(restrictions, kNoHiBits)) {
1479 // Shifts right need extra care to account for higher order bits.
1480 // TODO: less likely shr/unsigned and ushr/signed can by flipping signess.
1481 if (instruction->IsShr() &&
1482 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
1483 return false; // reject, unless all operands are sign-extension narrower
1484 } else if (instruction->IsUShr() &&
1485 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || !is_unsigned)) {
1486 return false; // reject, unless all operands are zero-extension narrower
1487 }
1488 }
1489 // Accept shift operator for vectorizable/invariant operands.
1490 // TODO: accept symbolic, albeit loop invariant shift factors.
1491 DCHECK(r != nullptr);
1492 if (generate_code && vector_mode_ != kVector) { // de-idiom
1493 r = opa;
1494 }
1495 int64_t distance = 0;
1496 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1497 IsInt64AndGet(opb, /*out*/ &distance)) {
1498 // Restrict shift distance to packed data type width.
1499 int64_t max_distance = DataType::Size(type) * 8;
1500 if (0 <= distance && distance < max_distance) {
1501 if (generate_code) {
1502 GenerateVecOp(instruction, vector_map_->Get(r), opb, type);
1503 }
1504 return true;
1505 }
1506 }
1507 } else if (instruction->IsAbs()) {
1508 // Deal with vector restrictions.
1509 HInstruction* opa = instruction->InputAt(0);
1510 HInstruction* r = opa;
1511 bool is_unsigned = false;
1512 if (HasVectorRestrictions(restrictions, kNoAbs)) {
1513 return false;
1514 } else if (HasVectorRestrictions(restrictions, kNoHiBits) &&
1515 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
1516 return false; // reject, unless operand is sign-extension narrower
1517 }
1518 // Accept ABS(x) for vectorizable operand.
1519 DCHECK(r != nullptr);
1520 if (generate_code && vector_mode_ != kVector) { // de-idiom
1521 r = opa;
1522 }
1523 if (VectorizeUse(node, r, generate_code, type, restrictions)) {
1524 if (generate_code) {
1525 GenerateVecOp(instruction,
1526 vector_map_->Get(r),
1527 nullptr,
1528 HVecOperation::ToProperType(type, is_unsigned));
1529 }
1530 return true;
1531 }
1532 }
1533 return false;
1534 }
1535
GetVectorSizeInBytes()1536 uint32_t HLoopOptimization::GetVectorSizeInBytes() {
1537 switch (compiler_options_->GetInstructionSet()) {
1538 case InstructionSet::kArm:
1539 case InstructionSet::kThumb2:
1540 return 8; // 64-bit SIMD
1541 default:
1542 return 16; // 128-bit SIMD
1543 }
1544 }
1545
TrySetVectorType(DataType::Type type,uint64_t * restrictions)1546 bool HLoopOptimization::TrySetVectorType(DataType::Type type, uint64_t* restrictions) {
1547 const InstructionSetFeatures* features = compiler_options_->GetInstructionSetFeatures();
1548 switch (compiler_options_->GetInstructionSet()) {
1549 case InstructionSet::kArm:
1550 case InstructionSet::kThumb2:
1551 // Allow vectorization for all ARM devices, because Android assumes that
1552 // ARM 32-bit always supports advanced SIMD (64-bit SIMD).
1553 switch (type) {
1554 case DataType::Type::kBool:
1555 case DataType::Type::kUint8:
1556 case DataType::Type::kInt8:
1557 *restrictions |= kNoDiv | kNoReduction | kNoDotProd;
1558 return TrySetVectorLength(8);
1559 case DataType::Type::kUint16:
1560 case DataType::Type::kInt16:
1561 *restrictions |= kNoDiv | kNoStringCharAt | kNoReduction | kNoDotProd;
1562 return TrySetVectorLength(4);
1563 case DataType::Type::kInt32:
1564 *restrictions |= kNoDiv | kNoWideSAD;
1565 return TrySetVectorLength(2);
1566 default:
1567 break;
1568 }
1569 return false;
1570 case InstructionSet::kArm64:
1571 // Allow vectorization for all ARM devices, because Android assumes that
1572 // ARMv8 AArch64 always supports advanced SIMD (128-bit SIMD).
1573 switch (type) {
1574 case DataType::Type::kBool:
1575 case DataType::Type::kUint8:
1576 case DataType::Type::kInt8:
1577 *restrictions |= kNoDiv;
1578 return TrySetVectorLength(16);
1579 case DataType::Type::kUint16:
1580 case DataType::Type::kInt16:
1581 *restrictions |= kNoDiv;
1582 return TrySetVectorLength(8);
1583 case DataType::Type::kInt32:
1584 *restrictions |= kNoDiv;
1585 return TrySetVectorLength(4);
1586 case DataType::Type::kInt64:
1587 *restrictions |= kNoDiv | kNoMul;
1588 return TrySetVectorLength(2);
1589 case DataType::Type::kFloat32:
1590 *restrictions |= kNoReduction;
1591 return TrySetVectorLength(4);
1592 case DataType::Type::kFloat64:
1593 *restrictions |= kNoReduction;
1594 return TrySetVectorLength(2);
1595 default:
1596 return false;
1597 }
1598 case InstructionSet::kX86:
1599 case InstructionSet::kX86_64:
1600 // Allow vectorization for SSE4.1-enabled X86 devices only (128-bit SIMD).
1601 if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
1602 switch (type) {
1603 case DataType::Type::kBool:
1604 case DataType::Type::kUint8:
1605 case DataType::Type::kInt8:
1606 *restrictions |= kNoMul |
1607 kNoDiv |
1608 kNoShift |
1609 kNoAbs |
1610 kNoSignedHAdd |
1611 kNoUnroundedHAdd |
1612 kNoSAD |
1613 kNoDotProd;
1614 return TrySetVectorLength(16);
1615 case DataType::Type::kUint16:
1616 case DataType::Type::kInt16:
1617 *restrictions |= kNoDiv |
1618 kNoAbs |
1619 kNoSignedHAdd |
1620 kNoUnroundedHAdd |
1621 kNoSAD|
1622 kNoDotProd;
1623 return TrySetVectorLength(8);
1624 case DataType::Type::kInt32:
1625 *restrictions |= kNoDiv | kNoSAD;
1626 return TrySetVectorLength(4);
1627 case DataType::Type::kInt64:
1628 *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoSAD;
1629 return TrySetVectorLength(2);
1630 case DataType::Type::kFloat32:
1631 *restrictions |= kNoReduction;
1632 return TrySetVectorLength(4);
1633 case DataType::Type::kFloat64:
1634 *restrictions |= kNoReduction;
1635 return TrySetVectorLength(2);
1636 default:
1637 break;
1638 } // switch type
1639 }
1640 return false;
1641 case InstructionSet::kMips:
1642 if (features->AsMipsInstructionSetFeatures()->HasMsa()) {
1643 switch (type) {
1644 case DataType::Type::kBool:
1645 case DataType::Type::kUint8:
1646 case DataType::Type::kInt8:
1647 *restrictions |= kNoDiv | kNoDotProd;
1648 return TrySetVectorLength(16);
1649 case DataType::Type::kUint16:
1650 case DataType::Type::kInt16:
1651 *restrictions |= kNoDiv | kNoStringCharAt | kNoDotProd;
1652 return TrySetVectorLength(8);
1653 case DataType::Type::kInt32:
1654 *restrictions |= kNoDiv;
1655 return TrySetVectorLength(4);
1656 case DataType::Type::kInt64:
1657 *restrictions |= kNoDiv;
1658 return TrySetVectorLength(2);
1659 case DataType::Type::kFloat32:
1660 *restrictions |= kNoReduction;
1661 return TrySetVectorLength(4);
1662 case DataType::Type::kFloat64:
1663 *restrictions |= kNoReduction;
1664 return TrySetVectorLength(2);
1665 default:
1666 break;
1667 } // switch type
1668 }
1669 return false;
1670 case InstructionSet::kMips64:
1671 if (features->AsMips64InstructionSetFeatures()->HasMsa()) {
1672 switch (type) {
1673 case DataType::Type::kBool:
1674 case DataType::Type::kUint8:
1675 case DataType::Type::kInt8:
1676 *restrictions |= kNoDiv | kNoDotProd;
1677 return TrySetVectorLength(16);
1678 case DataType::Type::kUint16:
1679 case DataType::Type::kInt16:
1680 *restrictions |= kNoDiv | kNoStringCharAt | kNoDotProd;
1681 return TrySetVectorLength(8);
1682 case DataType::Type::kInt32:
1683 *restrictions |= kNoDiv;
1684 return TrySetVectorLength(4);
1685 case DataType::Type::kInt64:
1686 *restrictions |= kNoDiv;
1687 return TrySetVectorLength(2);
1688 case DataType::Type::kFloat32:
1689 *restrictions |= kNoReduction;
1690 return TrySetVectorLength(4);
1691 case DataType::Type::kFloat64:
1692 *restrictions |= kNoReduction;
1693 return TrySetVectorLength(2);
1694 default:
1695 break;
1696 } // switch type
1697 }
1698 return false;
1699 default:
1700 return false;
1701 } // switch instruction set
1702 }
1703
TrySetVectorLength(uint32_t length)1704 bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
1705 DCHECK(IsPowerOfTwo(length) && length >= 2u);
1706 // First time set?
1707 if (vector_length_ == 0) {
1708 vector_length_ = length;
1709 }
1710 // Different types are acceptable within a loop-body, as long as all the corresponding vector
1711 // lengths match exactly to obtain a uniform traversal through the vector iteration space
1712 // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
1713 return vector_length_ == length;
1714 }
1715
GenerateVecInv(HInstruction * org,DataType::Type type)1716 void HLoopOptimization::GenerateVecInv(HInstruction* org, DataType::Type type) {
1717 if (vector_map_->find(org) == vector_map_->end()) {
1718 // In scalar code, just use a self pass-through for scalar invariants
1719 // (viz. expression remains itself).
1720 if (vector_mode_ == kSequential) {
1721 vector_map_->Put(org, org);
1722 return;
1723 }
1724 // In vector code, explicit scalar expansion is needed.
1725 HInstruction* vector = nullptr;
1726 auto it = vector_permanent_map_->find(org);
1727 if (it != vector_permanent_map_->end()) {
1728 vector = it->second; // reuse during unrolling
1729 } else {
1730 // Generates ReplicateScalar( (optional_type_conv) org ).
1731 HInstruction* input = org;
1732 DataType::Type input_type = input->GetType();
1733 if (type != input_type && (type == DataType::Type::kInt64 ||
1734 input_type == DataType::Type::kInt64)) {
1735 input = Insert(vector_preheader_,
1736 new (global_allocator_) HTypeConversion(type, input, kNoDexPc));
1737 }
1738 vector = new (global_allocator_)
1739 HVecReplicateScalar(global_allocator_, input, type, vector_length_, kNoDexPc);
1740 vector_permanent_map_->Put(org, Insert(vector_preheader_, vector));
1741 }
1742 vector_map_->Put(org, vector);
1743 }
1744 }
1745
GenerateVecSub(HInstruction * org,HInstruction * offset)1746 void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
1747 if (vector_map_->find(org) == vector_map_->end()) {
1748 HInstruction* subscript = vector_index_;
1749 int64_t value = 0;
1750 if (!IsInt64AndGet(offset, &value) || value != 0) {
1751 subscript = new (global_allocator_) HAdd(DataType::Type::kInt32, subscript, offset);
1752 if (org->IsPhi()) {
1753 Insert(vector_body_, subscript); // lacks layout placeholder
1754 }
1755 }
1756 vector_map_->Put(org, subscript);
1757 }
1758 }
1759
GenerateVecMem(HInstruction * org,HInstruction * opa,HInstruction * opb,HInstruction * offset,DataType::Type type)1760 void HLoopOptimization::GenerateVecMem(HInstruction* org,
1761 HInstruction* opa,
1762 HInstruction* opb,
1763 HInstruction* offset,
1764 DataType::Type type) {
1765 uint32_t dex_pc = org->GetDexPc();
1766 HInstruction* vector = nullptr;
1767 if (vector_mode_ == kVector) {
1768 // Vector store or load.
1769 bool is_string_char_at = false;
1770 HInstruction* base = org->InputAt(0);
1771 if (opb != nullptr) {
1772 vector = new (global_allocator_) HVecStore(
1773 global_allocator_, base, opa, opb, type, org->GetSideEffects(), vector_length_, dex_pc);
1774 } else {
1775 is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1776 vector = new (global_allocator_) HVecLoad(global_allocator_,
1777 base,
1778 opa,
1779 type,
1780 org->GetSideEffects(),
1781 vector_length_,
1782 is_string_char_at,
1783 dex_pc);
1784 }
1785 // Known (forced/adjusted/original) alignment?
1786 if (vector_dynamic_peeling_candidate_ != nullptr) {
1787 if (vector_dynamic_peeling_candidate_->offset == offset && // TODO: diffs too?
1788 DataType::Size(vector_dynamic_peeling_candidate_->type) == DataType::Size(type) &&
1789 vector_dynamic_peeling_candidate_->is_string_char_at == is_string_char_at) {
1790 vector->AsVecMemoryOperation()->SetAlignment( // forced
1791 Alignment(GetVectorSizeInBytes(), 0));
1792 }
1793 } else {
1794 vector->AsVecMemoryOperation()->SetAlignment( // adjusted/original
1795 ComputeAlignment(offset, type, is_string_char_at, vector_static_peeling_factor_));
1796 }
1797 } else {
1798 // Scalar store or load.
1799 DCHECK(vector_mode_ == kSequential);
1800 if (opb != nullptr) {
1801 DataType::Type component_type = org->AsArraySet()->GetComponentType();
1802 vector = new (global_allocator_) HArraySet(
1803 org->InputAt(0), opa, opb, component_type, org->GetSideEffects(), dex_pc);
1804 } else {
1805 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1806 vector = new (global_allocator_) HArrayGet(
1807 org->InputAt(0), opa, org->GetType(), org->GetSideEffects(), dex_pc, is_string_char_at);
1808 }
1809 }
1810 vector_map_->Put(org, vector);
1811 }
1812
GenerateVecReductionPhi(HPhi * phi)1813 void HLoopOptimization::GenerateVecReductionPhi(HPhi* phi) {
1814 DCHECK(reductions_->find(phi) != reductions_->end());
1815 DCHECK(reductions_->Get(phi->InputAt(1)) == phi);
1816 HInstruction* vector = nullptr;
1817 if (vector_mode_ == kSequential) {
1818 HPhi* new_phi = new (global_allocator_) HPhi(
1819 global_allocator_, kNoRegNumber, 0, phi->GetType());
1820 vector_header_->AddPhi(new_phi);
1821 vector = new_phi;
1822 } else {
1823 // Link vector reduction back to prior unrolled update, or a first phi.
1824 auto it = vector_permanent_map_->find(phi);
1825 if (it != vector_permanent_map_->end()) {
1826 vector = it->second;
1827 } else {
1828 HPhi* new_phi = new (global_allocator_) HPhi(
1829 global_allocator_, kNoRegNumber, 0, HVecOperation::kSIMDType);
1830 vector_header_->AddPhi(new_phi);
1831 vector = new_phi;
1832 }
1833 }
1834 vector_map_->Put(phi, vector);
1835 }
1836
GenerateVecReductionPhiInputs(HPhi * phi,HInstruction * reduction)1837 void HLoopOptimization::GenerateVecReductionPhiInputs(HPhi* phi, HInstruction* reduction) {
1838 HInstruction* new_phi = vector_map_->Get(phi);
1839 HInstruction* new_init = reductions_->Get(phi);
1840 HInstruction* new_red = vector_map_->Get(reduction);
1841 // Link unrolled vector loop back to new phi.
1842 for (; !new_phi->IsPhi(); new_phi = vector_permanent_map_->Get(new_phi)) {
1843 DCHECK(new_phi->IsVecOperation());
1844 }
1845 // Prepare the new initialization.
1846 if (vector_mode_ == kVector) {
1847 // Generate a [initial, 0, .., 0] vector for add or
1848 // a [initial, initial, .., initial] vector for min/max.
1849 HVecOperation* red_vector = new_red->AsVecOperation();
1850 HVecReduce::ReductionKind kind = GetReductionKind(red_vector);
1851 uint32_t vector_length = red_vector->GetVectorLength();
1852 DataType::Type type = red_vector->GetPackedType();
1853 if (kind == HVecReduce::ReductionKind::kSum) {
1854 new_init = Insert(vector_preheader_,
1855 new (global_allocator_) HVecSetScalars(global_allocator_,
1856 &new_init,
1857 type,
1858 vector_length,
1859 1,
1860 kNoDexPc));
1861 } else {
1862 new_init = Insert(vector_preheader_,
1863 new (global_allocator_) HVecReplicateScalar(global_allocator_,
1864 new_init,
1865 type,
1866 vector_length,
1867 kNoDexPc));
1868 }
1869 } else {
1870 new_init = ReduceAndExtractIfNeeded(new_init);
1871 }
1872 // Set the phi inputs.
1873 DCHECK(new_phi->IsPhi());
1874 new_phi->AsPhi()->AddInput(new_init);
1875 new_phi->AsPhi()->AddInput(new_red);
1876 // New feed value for next phi (safe mutation in iteration).
1877 reductions_->find(phi)->second = new_phi;
1878 }
1879
ReduceAndExtractIfNeeded(HInstruction * instruction)1880 HInstruction* HLoopOptimization::ReduceAndExtractIfNeeded(HInstruction* instruction) {
1881 if (instruction->IsPhi()) {
1882 HInstruction* input = instruction->InputAt(1);
1883 if (HVecOperation::ReturnsSIMDValue(input)) {
1884 DCHECK(!input->IsPhi());
1885 HVecOperation* input_vector = input->AsVecOperation();
1886 uint32_t vector_length = input_vector->GetVectorLength();
1887 DataType::Type type = input_vector->GetPackedType();
1888 HVecReduce::ReductionKind kind = GetReductionKind(input_vector);
1889 HBasicBlock* exit = instruction->GetBlock()->GetSuccessors()[0];
1890 // Generate a vector reduction and scalar extract
1891 // x = REDUCE( [x_1, .., x_n] )
1892 // y = x_1
1893 // along the exit of the defining loop.
1894 HInstruction* reduce = new (global_allocator_) HVecReduce(
1895 global_allocator_, instruction, type, vector_length, kind, kNoDexPc);
1896 exit->InsertInstructionBefore(reduce, exit->GetFirstInstruction());
1897 instruction = new (global_allocator_) HVecExtractScalar(
1898 global_allocator_, reduce, type, vector_length, 0, kNoDexPc);
1899 exit->InsertInstructionAfter(instruction, reduce);
1900 }
1901 }
1902 return instruction;
1903 }
1904
1905 #define GENERATE_VEC(x, y) \
1906 if (vector_mode_ == kVector) { \
1907 vector = (x); \
1908 } else { \
1909 DCHECK(vector_mode_ == kSequential); \
1910 vector = (y); \
1911 } \
1912 break;
1913
GenerateVecOp(HInstruction * org,HInstruction * opa,HInstruction * opb,DataType::Type type)1914 void HLoopOptimization::GenerateVecOp(HInstruction* org,
1915 HInstruction* opa,
1916 HInstruction* opb,
1917 DataType::Type type) {
1918 uint32_t dex_pc = org->GetDexPc();
1919 HInstruction* vector = nullptr;
1920 DataType::Type org_type = org->GetType();
1921 switch (org->GetKind()) {
1922 case HInstruction::kNeg:
1923 DCHECK(opb == nullptr);
1924 GENERATE_VEC(
1925 new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_, dex_pc),
1926 new (global_allocator_) HNeg(org_type, opa, dex_pc));
1927 case HInstruction::kNot:
1928 DCHECK(opb == nullptr);
1929 GENERATE_VEC(
1930 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
1931 new (global_allocator_) HNot(org_type, opa, dex_pc));
1932 case HInstruction::kBooleanNot:
1933 DCHECK(opb == nullptr);
1934 GENERATE_VEC(
1935 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
1936 new (global_allocator_) HBooleanNot(opa, dex_pc));
1937 case HInstruction::kTypeConversion:
1938 DCHECK(opb == nullptr);
1939 GENERATE_VEC(
1940 new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_, dex_pc),
1941 new (global_allocator_) HTypeConversion(org_type, opa, dex_pc));
1942 case HInstruction::kAdd:
1943 GENERATE_VEC(
1944 new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1945 new (global_allocator_) HAdd(org_type, opa, opb, dex_pc));
1946 case HInstruction::kSub:
1947 GENERATE_VEC(
1948 new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1949 new (global_allocator_) HSub(org_type, opa, opb, dex_pc));
1950 case HInstruction::kMul:
1951 GENERATE_VEC(
1952 new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1953 new (global_allocator_) HMul(org_type, opa, opb, dex_pc));
1954 case HInstruction::kDiv:
1955 GENERATE_VEC(
1956 new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1957 new (global_allocator_) HDiv(org_type, opa, opb, dex_pc));
1958 case HInstruction::kAnd:
1959 GENERATE_VEC(
1960 new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1961 new (global_allocator_) HAnd(org_type, opa, opb, dex_pc));
1962 case HInstruction::kOr:
1963 GENERATE_VEC(
1964 new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1965 new (global_allocator_) HOr(org_type, opa, opb, dex_pc));
1966 case HInstruction::kXor:
1967 GENERATE_VEC(
1968 new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1969 new (global_allocator_) HXor(org_type, opa, opb, dex_pc));
1970 case HInstruction::kShl:
1971 GENERATE_VEC(
1972 new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1973 new (global_allocator_) HShl(org_type, opa, opb, dex_pc));
1974 case HInstruction::kShr:
1975 GENERATE_VEC(
1976 new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1977 new (global_allocator_) HShr(org_type, opa, opb, dex_pc));
1978 case HInstruction::kUShr:
1979 GENERATE_VEC(
1980 new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1981 new (global_allocator_) HUShr(org_type, opa, opb, dex_pc));
1982 case HInstruction::kAbs:
1983 DCHECK(opb == nullptr);
1984 GENERATE_VEC(
1985 new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_, dex_pc),
1986 new (global_allocator_) HAbs(org_type, opa, dex_pc));
1987 default:
1988 break;
1989 } // switch
1990 CHECK(vector != nullptr) << "Unsupported SIMD operator";
1991 vector_map_->Put(org, vector);
1992 }
1993
1994 #undef GENERATE_VEC
1995
1996 //
1997 // Vectorization idioms.
1998 //
1999
2000 // Method recognizes the following idioms:
2001 // rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
2002 // truncated halving add (a + b) >> 1 for unsigned/signed operands a, b
2003 // Provided that the operands are promoted to a wider form to do the arithmetic and
2004 // then cast back to narrower form, the idioms can be mapped into efficient SIMD
2005 // implementation that operates directly in narrower form (plus one extra bit).
2006 // TODO: current version recognizes implicit byte/short/char widening only;
2007 // explicit widening from int to long could be added later.
VectorizeHalvingAddIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type type,uint64_t restrictions)2008 bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
2009 HInstruction* instruction,
2010 bool generate_code,
2011 DataType::Type type,
2012 uint64_t restrictions) {
2013 // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
2014 // (note whether the sign bit in wider precision is shifted in has no effect
2015 // on the narrow precision computed by the idiom).
2016 if ((instruction->IsShr() ||
2017 instruction->IsUShr()) &&
2018 IsInt64Value(instruction->InputAt(1), 1)) {
2019 // Test for (a + b + c) >> 1 for optional constant c.
2020 HInstruction* a = nullptr;
2021 HInstruction* b = nullptr;
2022 int64_t c = 0;
2023 if (IsAddConst2(graph_, instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) {
2024 // Accept c == 1 (rounded) or c == 0 (not rounded).
2025 bool is_rounded = false;
2026 if (c == 1) {
2027 is_rounded = true;
2028 } else if (c != 0) {
2029 return false;
2030 }
2031 // Accept consistent zero or sign extension on operands a and b.
2032 HInstruction* r = nullptr;
2033 HInstruction* s = nullptr;
2034 bool is_unsigned = false;
2035 if (!IsNarrowerOperands(a, b, type, &r, &s, &is_unsigned)) {
2036 return false;
2037 }
2038 // Deal with vector restrictions.
2039 if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
2040 (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
2041 return false;
2042 }
2043 // Accept recognized halving add for vectorizable operands. Vectorized code uses the
2044 // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
2045 DCHECK(r != nullptr && s != nullptr);
2046 if (generate_code && vector_mode_ != kVector) { // de-idiom
2047 r = instruction->InputAt(0);
2048 s = instruction->InputAt(1);
2049 }
2050 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
2051 VectorizeUse(node, s, generate_code, type, restrictions)) {
2052 if (generate_code) {
2053 if (vector_mode_ == kVector) {
2054 vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
2055 global_allocator_,
2056 vector_map_->Get(r),
2057 vector_map_->Get(s),
2058 HVecOperation::ToProperType(type, is_unsigned),
2059 vector_length_,
2060 is_rounded,
2061 kNoDexPc));
2062 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2063 } else {
2064 GenerateVecOp(instruction, vector_map_->Get(r), vector_map_->Get(s), type);
2065 }
2066 }
2067 return true;
2068 }
2069 }
2070 }
2071 return false;
2072 }
2073
2074 // Method recognizes the following idiom:
2075 // q += ABS(a - b) for signed operands a, b
2076 // Provided that the operands have the same type or are promoted to a wider form.
2077 // Since this may involve a vector length change, the idiom is handled by going directly
2078 // to a sad-accumulate node (rather than relying combining finer grained nodes later).
2079 // TODO: unsigned SAD too?
VectorizeSADIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type reduction_type,uint64_t restrictions)2080 bool HLoopOptimization::VectorizeSADIdiom(LoopNode* node,
2081 HInstruction* instruction,
2082 bool generate_code,
2083 DataType::Type reduction_type,
2084 uint64_t restrictions) {
2085 // Filter integral "q += ABS(a - b);" reduction, where ABS and SUB
2086 // are done in the same precision (either int or long).
2087 if (!instruction->IsAdd() ||
2088 (reduction_type != DataType::Type::kInt32 && reduction_type != DataType::Type::kInt64)) {
2089 return false;
2090 }
2091 HInstruction* q = instruction->InputAt(0);
2092 HInstruction* v = instruction->InputAt(1);
2093 HInstruction* a = nullptr;
2094 HInstruction* b = nullptr;
2095 if (v->IsAbs() &&
2096 v->GetType() == reduction_type &&
2097 IsSubConst2(graph_, v->InputAt(0), /*out*/ &a, /*out*/ &b)) {
2098 DCHECK(a != nullptr && b != nullptr);
2099 } else {
2100 return false;
2101 }
2102 // Accept same-type or consistent sign extension for narrower-type on operands a and b.
2103 // The same-type or narrower operands are called r (a or lower) and s (b or lower).
2104 // We inspect the operands carefully to pick the most suited type.
2105 HInstruction* r = a;
2106 HInstruction* s = b;
2107 bool is_unsigned = false;
2108 DataType::Type sub_type = GetNarrowerType(a, b);
2109 if (reduction_type != sub_type &&
2110 (!IsNarrowerOperands(a, b, sub_type, &r, &s, &is_unsigned) || is_unsigned)) {
2111 return false;
2112 }
2113 // Try same/narrower type and deal with vector restrictions.
2114 if (!TrySetVectorType(sub_type, &restrictions) ||
2115 HasVectorRestrictions(restrictions, kNoSAD) ||
2116 (reduction_type != sub_type && HasVectorRestrictions(restrictions, kNoWideSAD))) {
2117 return false;
2118 }
2119 // Accept SAD idiom for vectorizable operands. Vectorized code uses the shorthand
2120 // idiomatic operation. Sequential code uses the original scalar expressions.
2121 DCHECK(r != nullptr && s != nullptr);
2122 if (generate_code && vector_mode_ != kVector) { // de-idiom
2123 r = s = v->InputAt(0);
2124 }
2125 if (VectorizeUse(node, q, generate_code, sub_type, restrictions) &&
2126 VectorizeUse(node, r, generate_code, sub_type, restrictions) &&
2127 VectorizeUse(node, s, generate_code, sub_type, restrictions)) {
2128 if (generate_code) {
2129 if (vector_mode_ == kVector) {
2130 vector_map_->Put(instruction, new (global_allocator_) HVecSADAccumulate(
2131 global_allocator_,
2132 vector_map_->Get(q),
2133 vector_map_->Get(r),
2134 vector_map_->Get(s),
2135 HVecOperation::ToProperType(reduction_type, is_unsigned),
2136 GetOtherVL(reduction_type, sub_type, vector_length_),
2137 kNoDexPc));
2138 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2139 } else {
2140 GenerateVecOp(v, vector_map_->Get(r), nullptr, reduction_type);
2141 GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
2142 }
2143 }
2144 return true;
2145 }
2146 return false;
2147 }
2148
2149 // Method recognises the following dot product idiom:
2150 // q += a * b for operands a, b whose type is narrower than the reduction one.
2151 // Provided that the operands have the same type or are promoted to a wider form.
2152 // Since this may involve a vector length change, the idiom is handled by going directly
2153 // to a dot product node (rather than relying combining finer grained nodes later).
VectorizeDotProdIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type reduction_type,uint64_t restrictions)2154 bool HLoopOptimization::VectorizeDotProdIdiom(LoopNode* node,
2155 HInstruction* instruction,
2156 bool generate_code,
2157 DataType::Type reduction_type,
2158 uint64_t restrictions) {
2159 if (!instruction->IsAdd() || (reduction_type != DataType::Type::kInt32)) {
2160 return false;
2161 }
2162
2163 HInstruction* q = instruction->InputAt(0);
2164 HInstruction* v = instruction->InputAt(1);
2165 if (!v->IsMul() || v->GetType() != reduction_type) {
2166 return false;
2167 }
2168
2169 HInstruction* a = v->InputAt(0);
2170 HInstruction* b = v->InputAt(1);
2171 HInstruction* r = a;
2172 HInstruction* s = b;
2173 DataType::Type op_type = GetNarrowerType(a, b);
2174 bool is_unsigned = false;
2175
2176 if (!IsNarrowerOperands(a, b, op_type, &r, &s, &is_unsigned)) {
2177 return false;
2178 }
2179 op_type = HVecOperation::ToProperType(op_type, is_unsigned);
2180
2181 if (!TrySetVectorType(op_type, &restrictions) ||
2182 HasVectorRestrictions(restrictions, kNoDotProd)) {
2183 return false;
2184 }
2185
2186 DCHECK(r != nullptr && s != nullptr);
2187 // Accept dot product idiom for vectorizable operands. Vectorized code uses the shorthand
2188 // idiomatic operation. Sequential code uses the original scalar expressions.
2189 if (generate_code && vector_mode_ != kVector) { // de-idiom
2190 r = a;
2191 s = b;
2192 }
2193 if (VectorizeUse(node, q, generate_code, op_type, restrictions) &&
2194 VectorizeUse(node, r, generate_code, op_type, restrictions) &&
2195 VectorizeUse(node, s, generate_code, op_type, restrictions)) {
2196 if (generate_code) {
2197 if (vector_mode_ == kVector) {
2198 vector_map_->Put(instruction, new (global_allocator_) HVecDotProd(
2199 global_allocator_,
2200 vector_map_->Get(q),
2201 vector_map_->Get(r),
2202 vector_map_->Get(s),
2203 reduction_type,
2204 is_unsigned,
2205 GetOtherVL(reduction_type, op_type, vector_length_),
2206 kNoDexPc));
2207 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2208 } else {
2209 GenerateVecOp(v, vector_map_->Get(r), vector_map_->Get(s), reduction_type);
2210 GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
2211 }
2212 }
2213 return true;
2214 }
2215 return false;
2216 }
2217
2218 //
2219 // Vectorization heuristics.
2220 //
2221
ComputeAlignment(HInstruction * offset,DataType::Type type,bool is_string_char_at,uint32_t peeling)2222 Alignment HLoopOptimization::ComputeAlignment(HInstruction* offset,
2223 DataType::Type type,
2224 bool is_string_char_at,
2225 uint32_t peeling) {
2226 // Combine the alignment and hidden offset that is guaranteed by
2227 // the Android runtime with a known starting index adjusted as bytes.
2228 int64_t value = 0;
2229 if (IsInt64AndGet(offset, /*out*/ &value)) {
2230 uint32_t start_offset =
2231 HiddenOffset(type, is_string_char_at) + (value + peeling) * DataType::Size(type);
2232 return Alignment(BaseAlignment(), start_offset & (BaseAlignment() - 1u));
2233 }
2234 // Otherwise, the Android runtime guarantees at least natural alignment.
2235 return Alignment(DataType::Size(type), 0);
2236 }
2237
SetAlignmentStrategy(uint32_t peeling_votes[],const ArrayReference * peeling_candidate)2238 void HLoopOptimization::SetAlignmentStrategy(uint32_t peeling_votes[],
2239 const ArrayReference* peeling_candidate) {
2240 // Current heuristic: pick the best static loop peeling factor, if any,
2241 // or otherwise use dynamic loop peeling on suggested peeling candidate.
2242 uint32_t max_vote = 0;
2243 for (int32_t i = 0; i < 16; i++) {
2244 if (peeling_votes[i] > max_vote) {
2245 max_vote = peeling_votes[i];
2246 vector_static_peeling_factor_ = i;
2247 }
2248 }
2249 if (max_vote == 0) {
2250 vector_dynamic_peeling_candidate_ = peeling_candidate;
2251 }
2252 }
2253
MaxNumberPeeled()2254 uint32_t HLoopOptimization::MaxNumberPeeled() {
2255 if (vector_dynamic_peeling_candidate_ != nullptr) {
2256 return vector_length_ - 1u; // worst-case
2257 }
2258 return vector_static_peeling_factor_; // known exactly
2259 }
2260
IsVectorizationProfitable(int64_t trip_count)2261 bool HLoopOptimization::IsVectorizationProfitable(int64_t trip_count) {
2262 // Current heuristic: non-empty body with sufficient number of iterations (if known).
2263 // TODO: refine by looking at e.g. operation count, alignment, etc.
2264 // TODO: trip count is really unsigned entity, provided the guarding test
2265 // is satisfied; deal with this more carefully later
2266 uint32_t max_peel = MaxNumberPeeled();
2267 if (vector_length_ == 0) {
2268 return false; // nothing found
2269 } else if (trip_count < 0) {
2270 return false; // guard against non-taken/large
2271 } else if ((0 < trip_count) && (trip_count < (vector_length_ + max_peel))) {
2272 return false; // insufficient iterations
2273 }
2274 return true;
2275 }
2276
2277 //
2278 // Helpers.
2279 //
2280
TrySetPhiInduction(HPhi * phi,bool restrict_uses)2281 bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
2282 // Start with empty phi induction.
2283 iset_->clear();
2284
2285 // Special case Phis that have equivalent in a debuggable setup. Our graph checker isn't
2286 // smart enough to follow strongly connected components (and it's probably not worth
2287 // it to make it so). See b/33775412.
2288 if (graph_->IsDebuggable() && phi->HasEquivalentPhi()) {
2289 return false;
2290 }
2291
2292 // Lookup phi induction cycle.
2293 ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
2294 if (set != nullptr) {
2295 for (HInstruction* i : *set) {
2296 // Check that, other than instructions that are no longer in the graph (removed earlier)
2297 // each instruction is removable and, when restrict uses are requested, other than for phi,
2298 // all uses are contained within the cycle.
2299 if (!i->IsInBlock()) {
2300 continue;
2301 } else if (!i->IsRemovable()) {
2302 return false;
2303 } else if (i != phi && restrict_uses) {
2304 // Deal with regular uses.
2305 for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
2306 if (set->find(use.GetUser()) == set->end()) {
2307 return false;
2308 }
2309 }
2310 }
2311 iset_->insert(i); // copy
2312 }
2313 return true;
2314 }
2315 return false;
2316 }
2317
TrySetPhiReduction(HPhi * phi)2318 bool HLoopOptimization::TrySetPhiReduction(HPhi* phi) {
2319 DCHECK(iset_->empty());
2320 // Only unclassified phi cycles are candidates for reductions.
2321 if (induction_range_.IsClassified(phi)) {
2322 return false;
2323 }
2324 // Accept operations like x = x + .., provided that the phi and the reduction are
2325 // used exactly once inside the loop, and by each other.
2326 HInputsRef inputs = phi->GetInputs();
2327 if (inputs.size() == 2) {
2328 HInstruction* reduction = inputs[1];
2329 if (HasReductionFormat(reduction, phi)) {
2330 HLoopInformation* loop_info = phi->GetBlock()->GetLoopInformation();
2331 uint32_t use_count = 0;
2332 bool single_use_inside_loop =
2333 // Reduction update only used by phi.
2334 reduction->GetUses().HasExactlyOneElement() &&
2335 !reduction->HasEnvironmentUses() &&
2336 // Reduction update is only use of phi inside the loop.
2337 IsOnlyUsedAfterLoop(loop_info, phi, /*collect_loop_uses*/ true, &use_count) &&
2338 iset_->size() == 1;
2339 iset_->clear(); // leave the way you found it
2340 if (single_use_inside_loop) {
2341 // Link reduction back, and start recording feed value.
2342 reductions_->Put(reduction, phi);
2343 reductions_->Put(phi, phi->InputAt(0));
2344 return true;
2345 }
2346 }
2347 }
2348 return false;
2349 }
2350
TrySetSimpleLoopHeader(HBasicBlock * block,HPhi ** main_phi)2351 bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block, /*out*/ HPhi** main_phi) {
2352 // Start with empty phi induction and reductions.
2353 iset_->clear();
2354 reductions_->clear();
2355
2356 // Scan the phis to find the following (the induction structure has already
2357 // been optimized, so we don't need to worry about trivial cases):
2358 // (1) optional reductions in loop,
2359 // (2) the main induction, used in loop control.
2360 HPhi* phi = nullptr;
2361 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
2362 if (TrySetPhiReduction(it.Current()->AsPhi())) {
2363 continue;
2364 } else if (phi == nullptr) {
2365 // Found the first candidate for main induction.
2366 phi = it.Current()->AsPhi();
2367 } else {
2368 return false;
2369 }
2370 }
2371
2372 // Then test for a typical loopheader:
2373 // s: SuspendCheck
2374 // c: Condition(phi, bound)
2375 // i: If(c)
2376 if (phi != nullptr && TrySetPhiInduction(phi, /*restrict_uses*/ false)) {
2377 HInstruction* s = block->GetFirstInstruction();
2378 if (s != nullptr && s->IsSuspendCheck()) {
2379 HInstruction* c = s->GetNext();
2380 if (c != nullptr &&
2381 c->IsCondition() &&
2382 c->GetUses().HasExactlyOneElement() && // only used for termination
2383 !c->HasEnvironmentUses()) { // unlikely, but not impossible
2384 HInstruction* i = c->GetNext();
2385 if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
2386 iset_->insert(c);
2387 iset_->insert(s);
2388 *main_phi = phi;
2389 return true;
2390 }
2391 }
2392 }
2393 }
2394 return false;
2395 }
2396
IsEmptyBody(HBasicBlock * block)2397 bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
2398 if (!block->GetPhis().IsEmpty()) {
2399 return false;
2400 }
2401 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
2402 HInstruction* instruction = it.Current();
2403 if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
2404 return false;
2405 }
2406 }
2407 return true;
2408 }
2409
IsUsedOutsideLoop(HLoopInformation * loop_info,HInstruction * instruction)2410 bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
2411 HInstruction* instruction) {
2412 // Deal with regular uses.
2413 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
2414 if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
2415 return true;
2416 }
2417 }
2418 return false;
2419 }
2420
IsOnlyUsedAfterLoop(HLoopInformation * loop_info,HInstruction * instruction,bool collect_loop_uses,uint32_t * use_count)2421 bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
2422 HInstruction* instruction,
2423 bool collect_loop_uses,
2424 /*out*/ uint32_t* use_count) {
2425 // Deal with regular uses.
2426 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
2427 HInstruction* user = use.GetUser();
2428 if (iset_->find(user) == iset_->end()) { // not excluded?
2429 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
2430 if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
2431 // If collect_loop_uses is set, simply keep adding those uses to the set.
2432 // Otherwise, reject uses inside the loop that were not already in the set.
2433 if (collect_loop_uses) {
2434 iset_->insert(user);
2435 continue;
2436 }
2437 return false;
2438 }
2439 ++*use_count;
2440 }
2441 }
2442 return true;
2443 }
2444
TryReplaceWithLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block)2445 bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
2446 HInstruction* instruction,
2447 HBasicBlock* block) {
2448 // Try to replace outside uses with the last value.
2449 if (induction_range_.CanGenerateLastValue(instruction)) {
2450 HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
2451 // Deal with regular uses.
2452 const HUseList<HInstruction*>& uses = instruction->GetUses();
2453 for (auto it = uses.begin(), end = uses.end(); it != end;) {
2454 HInstruction* user = it->GetUser();
2455 size_t index = it->GetIndex();
2456 ++it; // increment before replacing
2457 if (iset_->find(user) == iset_->end()) { // not excluded?
2458 if (kIsDebugBuild) {
2459 // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
2460 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
2461 CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
2462 }
2463 user->ReplaceInput(replacement, index);
2464 induction_range_.Replace(user, instruction, replacement); // update induction
2465 }
2466 }
2467 // Deal with environment uses.
2468 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
2469 for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
2470 HEnvironment* user = it->GetUser();
2471 size_t index = it->GetIndex();
2472 ++it; // increment before replacing
2473 if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
2474 // Only update environment uses after the loop.
2475 HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
2476 if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
2477 user->RemoveAsUserOfInput(index);
2478 user->SetRawEnvAt(index, replacement);
2479 replacement->AddEnvUseAt(user, index);
2480 }
2481 }
2482 }
2483 return true;
2484 }
2485 return false;
2486 }
2487
TryAssignLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block,bool collect_loop_uses)2488 bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
2489 HInstruction* instruction,
2490 HBasicBlock* block,
2491 bool collect_loop_uses) {
2492 // Assigning the last value is always successful if there are no uses.
2493 // Otherwise, it succeeds in a no early-exit loop by generating the
2494 // proper last value assignment.
2495 uint32_t use_count = 0;
2496 return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
2497 (use_count == 0 ||
2498 (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
2499 }
2500
RemoveDeadInstructions(const HInstructionList & list)2501 void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
2502 for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
2503 HInstruction* instruction = i.Current();
2504 if (instruction->IsDeadAndRemovable()) {
2505 simplified_ = true;
2506 instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
2507 }
2508 }
2509 }
2510
CanRemoveCycle()2511 bool HLoopOptimization::CanRemoveCycle() {
2512 for (HInstruction* i : *iset_) {
2513 // We can never remove instructions that have environment
2514 // uses when we compile 'debuggable'.
2515 if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
2516 return false;
2517 }
2518 // A deoptimization should never have an environment input removed.
2519 for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
2520 if (use.GetUser()->GetHolder()->IsDeoptimize()) {
2521 return false;
2522 }
2523 }
2524 }
2525 return true;
2526 }
2527
2528 } // namespace art
2529