1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fault_handler.h"
18 
19 #include <string.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22 
23 #include "art_method-inl.h"
24 #include "base/logging.h"  // For VLOG
25 #include "base/safe_copy.h"
26 #include "base/stl_util.h"
27 #include "dex/dex_file_types.h"
28 #include "mirror/class.h"
29 #include "mirror/object_reference.h"
30 #include "oat_quick_method_header.h"
31 #include "sigchain.h"
32 #include "thread-current-inl.h"
33 #include "verify_object-inl.h"
34 
35 namespace art {
36 // Static fault manger object accessed by signal handler.
37 FaultManager fault_manager;
38 
39 // This needs to be NO_INLINE since some debuggers do not read the inline-info to set a breakpoint
40 // if it isn't.
art_sigsegv_fault()41 extern "C" NO_INLINE __attribute__((visibility("default"))) void art_sigsegv_fault() {
42   // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
43   VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
44 }
45 
46 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)47 static bool art_fault_handler(int sig, siginfo_t* info, void* context) {
48   return fault_manager.HandleFault(sig, info, context);
49 }
50 
51 #if defined(__linux__)
52 
53 // Change to verify the safe implementations against the original ones.
54 constexpr bool kVerifySafeImpls = false;
55 
56 // Provide implementations of ArtMethod::GetDeclaringClass and VerifyClassClass that use SafeCopy
57 // to safely dereference pointers which are potentially garbage.
58 // Only available on Linux due to availability of SafeCopy.
59 
SafeGetDeclaringClass(ArtMethod * method)60 static mirror::Class* SafeGetDeclaringClass(ArtMethod* method)
61     REQUIRES_SHARED(Locks::mutator_lock_) {
62   char* method_declaring_class =
63       reinterpret_cast<char*>(method) + ArtMethod::DeclaringClassOffset().SizeValue();
64 
65   // ArtMethod::declaring_class_ is a GcRoot<mirror::Class>.
66   // Read it out into as a CompressedReference directly for simplicity's sake.
67   mirror::CompressedReference<mirror::Class> cls;
68   ssize_t rc = SafeCopy(&cls, method_declaring_class, sizeof(cls));
69   CHECK_NE(-1, rc);
70 
71   if (kVerifySafeImpls) {
72     ObjPtr<mirror::Class> actual_class = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
73     CHECK_EQ(actual_class, cls.AsMirrorPtr());
74   }
75 
76   if (rc != sizeof(cls)) {
77     return nullptr;
78   }
79 
80   return cls.AsMirrorPtr();
81 }
82 
SafeGetClass(mirror::Object * obj)83 static mirror::Class* SafeGetClass(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
84   char* obj_cls = reinterpret_cast<char*>(obj) + mirror::Object::ClassOffset().SizeValue();
85 
86   mirror::HeapReference<mirror::Class> cls;
87   ssize_t rc = SafeCopy(&cls, obj_cls, sizeof(cls));
88   CHECK_NE(-1, rc);
89 
90   if (kVerifySafeImpls) {
91     mirror::Class* actual_class = obj->GetClass<kVerifyNone>();
92     CHECK_EQ(actual_class, cls.AsMirrorPtr());
93   }
94 
95   if (rc != sizeof(cls)) {
96     return nullptr;
97   }
98 
99   return cls.AsMirrorPtr();
100 }
101 
SafeVerifyClassClass(mirror::Class * cls)102 static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
103   mirror::Class* c_c = SafeGetClass(cls);
104   bool result = c_c != nullptr && c_c == SafeGetClass(c_c);
105 
106   if (kVerifySafeImpls) {
107     CHECK_EQ(VerifyClassClass(cls), result);
108   }
109 
110   return result;
111 }
112 
113 #else
114 
SafeGetDeclaringClass(ArtMethod * method_obj)115 static mirror::Class* SafeGetDeclaringClass(ArtMethod* method_obj)
116     REQUIRES_SHARED(Locks::mutator_lock_) {
117   return method_obj->GetDeclaringClassUnchecked<kWithoutReadBarrier>().Ptr();
118 }
119 
SafeVerifyClassClass(mirror::Class * cls)120 static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
121   return VerifyClassClass(cls);
122 }
123 #endif
124 
125 
FaultManager()126 FaultManager::FaultManager() : initialized_(false) {
127   sigaction(SIGSEGV, nullptr, &oldaction_);
128 }
129 
~FaultManager()130 FaultManager::~FaultManager() {
131 }
132 
Init()133 void FaultManager::Init() {
134   CHECK(!initialized_);
135   sigset_t mask;
136   sigfillset(&mask);
137   sigdelset(&mask, SIGABRT);
138   sigdelset(&mask, SIGBUS);
139   sigdelset(&mask, SIGFPE);
140   sigdelset(&mask, SIGILL);
141   sigdelset(&mask, SIGSEGV);
142 
143   SigchainAction sa = {
144     .sc_sigaction = art_fault_handler,
145     .sc_mask = mask,
146     .sc_flags = 0UL,
147   };
148 
149   AddSpecialSignalHandlerFn(SIGSEGV, &sa);
150   initialized_ = true;
151 }
152 
Release()153 void FaultManager::Release() {
154   if (initialized_) {
155     RemoveSpecialSignalHandlerFn(SIGSEGV, art_fault_handler);
156     initialized_ = false;
157   }
158 }
159 
Shutdown()160 void FaultManager::Shutdown() {
161   if (initialized_) {
162     Release();
163 
164     // Free all handlers.
165     STLDeleteElements(&generated_code_handlers_);
166     STLDeleteElements(&other_handlers_);
167   }
168 }
169 
HandleFaultByOtherHandlers(int sig,siginfo_t * info,void * context)170 bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) {
171   if (other_handlers_.empty()) {
172     return false;
173   }
174 
175   Thread* self = Thread::Current();
176 
177   DCHECK(self != nullptr);
178   DCHECK(Runtime::Current() != nullptr);
179   DCHECK(Runtime::Current()->IsStarted());
180   for (const auto& handler : other_handlers_) {
181     if (handler->Action(sig, info, context)) {
182       return true;
183     }
184   }
185   return false;
186 }
187 
SignalCodeName(int sig,int code)188 static const char* SignalCodeName(int sig, int code) {
189   if (sig != SIGSEGV) {
190     return "UNKNOWN";
191   } else {
192     switch (code) {
193       case SEGV_MAPERR: return "SEGV_MAPERR";
194       case SEGV_ACCERR: return "SEGV_ACCERR";
195       default:          return "UNKNOWN";
196     }
197   }
198 }
PrintSignalInfo(std::ostream & os,siginfo_t * info)199 static std::ostream& PrintSignalInfo(std::ostream& os, siginfo_t* info) {
200   os << "  si_signo: " << info->si_signo << " (" << strsignal(info->si_signo) << ")\n"
201      << "  si_code: " << info->si_code
202      << " (" << SignalCodeName(info->si_signo, info->si_code) << ")";
203   if (info->si_signo == SIGSEGV) {
204     os << "\n" << "  si_addr: " << info->si_addr;
205   }
206   return os;
207 }
208 
HandleFault(int sig,siginfo_t * info,void * context)209 bool FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
210   if (VLOG_IS_ON(signals)) {
211     PrintSignalInfo(VLOG_STREAM(signals) << "Handling fault:" << "\n", info);
212   }
213 
214 #ifdef TEST_NESTED_SIGNAL
215   // Simulate a crash in a handler.
216   raise(SIGSEGV);
217 #endif
218 
219   if (IsInGeneratedCode(info, context, true)) {
220     VLOG(signals) << "in generated code, looking for handler";
221     for (const auto& handler : generated_code_handlers_) {
222       VLOG(signals) << "invoking Action on handler " << handler;
223       if (handler->Action(sig, info, context)) {
224         // We have handled a signal so it's time to return from the
225         // signal handler to the appropriate place.
226         return true;
227       }
228     }
229   }
230 
231   // We hit a signal we didn't handle.  This might be something for which
232   // we can give more information about so call all registered handlers to
233   // see if it is.
234   if (HandleFaultByOtherHandlers(sig, info, context)) {
235     return true;
236   }
237 
238   // Set a breakpoint in this function to catch unhandled signals.
239   art_sigsegv_fault();
240   return false;
241 }
242 
AddHandler(FaultHandler * handler,bool generated_code)243 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
244   DCHECK(initialized_);
245   if (generated_code) {
246     generated_code_handlers_.push_back(handler);
247   } else {
248     other_handlers_.push_back(handler);
249   }
250 }
251 
RemoveHandler(FaultHandler * handler)252 void FaultManager::RemoveHandler(FaultHandler* handler) {
253   auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
254   if (it != generated_code_handlers_.end()) {
255     generated_code_handlers_.erase(it);
256     return;
257   }
258   auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
259   if (it2 != other_handlers_.end()) {
260     other_handlers_.erase(it2);
261     return;
262   }
263   LOG(FATAL) << "Attempted to remove non existent handler " << handler;
264 }
265 
266 // This function is called within the signal handler.  It checks that
267 // the mutator_lock is held (shared).  No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)268 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
269   // We can only be running Java code in the current thread if it
270   // is in Runnable state.
271   VLOG(signals) << "Checking for generated code";
272   Thread* thread = Thread::Current();
273   if (thread == nullptr) {
274     VLOG(signals) << "no current thread";
275     return false;
276   }
277 
278   ThreadState state = thread->GetState();
279   if (state != kRunnable) {
280     VLOG(signals) << "not runnable";
281     return false;
282   }
283 
284   // Current thread is runnable.
285   // Make sure it has the mutator lock.
286   if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
287     VLOG(signals) << "no lock";
288     return false;
289   }
290 
291   ArtMethod* method_obj = nullptr;
292   uintptr_t return_pc = 0;
293   uintptr_t sp = 0;
294 
295   // Get the architecture specific method address and return address.  These
296   // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
297   GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
298 
299   // If we don't have a potential method, we're outta here.
300   VLOG(signals) << "potential method: " << method_obj;
301   // TODO: Check linear alloc and image.
302   DCHECK_ALIGNED(ArtMethod::Size(kRuntimePointerSize), sizeof(void*))
303       << "ArtMethod is not pointer aligned";
304   if (method_obj == nullptr || !IsAligned<sizeof(void*)>(method_obj)) {
305     VLOG(signals) << "no method";
306     return false;
307   }
308 
309   // Verify that the potential method is indeed a method.
310   // TODO: check the GC maps to make sure it's an object.
311   // Check that the class pointer inside the object is not null and is aligned.
312   // No read barrier because method_obj may not be a real object.
313   mirror::Class* cls = SafeGetDeclaringClass(method_obj);
314   if (cls == nullptr) {
315     VLOG(signals) << "not a class";
316     return false;
317   }
318 
319   if (!IsAligned<kObjectAlignment>(cls)) {
320     VLOG(signals) << "not aligned";
321     return false;
322   }
323 
324   if (!SafeVerifyClassClass(cls)) {
325     VLOG(signals) << "not a class class";
326     return false;
327   }
328 
329   const OatQuickMethodHeader* method_header = method_obj->GetOatQuickMethodHeader(return_pc);
330 
331   // We can be certain that this is a method now.  Check if we have a GC map
332   // at the return PC address.
333   if (true || kIsDebugBuild) {
334     VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
335     uint32_t sought_offset = return_pc -
336         reinterpret_cast<uintptr_t>(method_header->GetEntryPoint());
337     VLOG(signals) << "pc offset: " << std::hex << sought_offset;
338   }
339   uint32_t dexpc = method_header->ToDexPc(method_obj, return_pc, false);
340   VLOG(signals) << "dexpc: " << dexpc;
341   return !check_dex_pc || dexpc != dex::kDexNoIndex;
342 }
343 
FaultHandler(FaultManager * manager)344 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
345 }
346 
347 //
348 // Null pointer fault handler
349 //
NullPointerHandler(FaultManager * manager)350 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
351   manager_->AddHandler(this, true);
352 }
353 
354 //
355 // Suspension fault handler
356 //
SuspensionHandler(FaultManager * manager)357 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
358   manager_->AddHandler(this, true);
359 }
360 
361 //
362 // Stack overflow fault handler
363 //
StackOverflowHandler(FaultManager * manager)364 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
365   manager_->AddHandler(this, true);
366 }
367 
368 //
369 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
370 //
JavaStackTraceHandler(FaultManager * manager)371 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
372   manager_->AddHandler(this, false);
373 }
374 
Action(int sig ATTRIBUTE_UNUSED,siginfo_t * siginfo,void * context)375 bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) {
376   // Make sure that we are in the generated code, but we may not have a dex pc.
377   bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
378   if (in_generated_code) {
379     LOG(ERROR) << "Dumping java stack trace for crash in generated code";
380     ArtMethod* method = nullptr;
381     uintptr_t return_pc = 0;
382     uintptr_t sp = 0;
383     Thread* self = Thread::Current();
384 
385     manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
386     // Inside of generated code, sp[0] is the method, so sp is the frame.
387     self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
388     self->DumpJavaStack(LOG_STREAM(ERROR));
389   }
390 
391   return false;  // Return false since we want to propagate the fault to the main signal handler.
392 }
393 
394 }   // namespace art
395