1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #ifndef OPENSSL_HEADER_EC_INTERNAL_H
69 #define OPENSSL_HEADER_EC_INTERNAL_H
70 
71 #include <openssl/base.h>
72 
73 #include <openssl/bn.h>
74 #include <openssl/ex_data.h>
75 #include <openssl/thread.h>
76 #include <openssl/type_check.h>
77 
78 #include "../bn/internal.h"
79 
80 #if defined(__cplusplus)
81 extern "C" {
82 #endif
83 
84 
85 // Cap the size of all field elements and scalars, including custom curves, to
86 // 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
87 // be the largest fields anyone plausibly uses.
88 #define EC_MAX_BYTES 66
89 #define EC_MAX_WORDS ((EC_MAX_BYTES + BN_BYTES - 1) / BN_BYTES)
90 
91 OPENSSL_STATIC_ASSERT(EC_MAX_WORDS <= BN_SMALL_MAX_WORDS,
92                       "bn_*_small functions not usable");
93 
94 // An EC_SCALAR is an integer fully reduced modulo the order. Only the first
95 // |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP|
96 // and must not be mixed between groups.
97 typedef union {
98   // bytes is the representation of the scalar in little-endian order.
99   uint8_t bytes[EC_MAX_BYTES];
100   BN_ULONG words[EC_MAX_WORDS];
101 } EC_SCALAR;
102 
103 // An EC_FELEM represents a field element. Only the first |field->width| words
104 // are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed
105 // between groups. Additionally, the representation (whether or not elements are
106 // represented in Montgomery-form) may vary between |EC_METHOD|s.
107 typedef union {
108   // bytes is the representation of the field element in little-endian order.
109   uint8_t bytes[EC_MAX_BYTES];
110   BN_ULONG words[EC_MAX_WORDS];
111 } EC_FELEM;
112 
113 // An EC_RAW_POINT represents an elliptic curve point. Unlike |EC_POINT|, it is
114 // a plain struct which can be stack-allocated and needs no cleanup. It is
115 // specific to an |EC_GROUP| and must not be mixed between groups.
116 typedef struct {
117   EC_FELEM X, Y, Z;
118   // X, Y, and Z are Jacobian projective coordinates. They represent
119   // (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise.
120 } EC_RAW_POINT;
121 
122 struct ec_method_st {
123   int (*group_init)(EC_GROUP *);
124   void (*group_finish)(EC_GROUP *);
125   int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
126                          const BIGNUM *b, BN_CTX *);
127 
128   // point_get_affine_coordinates sets |*x| and |*y| to the affine coordinates
129   // of |p|. Either |x| or |y| may be NULL to omit it. It returns one on success
130   // and zero if |p| is the point at infinity.
131   //
132   // Note: unlike |EC_FELEM|s used as intermediate values internal to the
133   // |EC_METHOD|, |*x| and |*y| are not encoded in Montgomery form.
134   int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *p,
135                                       EC_FELEM *x, EC_FELEM *y);
136 
137   // add sets |r| to |a| + |b|.
138   void (*add)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a,
139               const EC_RAW_POINT *b);
140   // dbl sets |r| to |a| + |a|.
141   void (*dbl)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a);
142 
143   // Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar|
144   // are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null.
145   // Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar|
146   // and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is
147   // non-null.
148   void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_SCALAR *g_scalar,
149               const EC_RAW_POINT *p, const EC_SCALAR *p_scalar);
150   // mul_public performs the same computation as mul. It further assumes that
151   // the inputs are public so there is no concern about leaking their values
152   // through timing.
153   void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r,
154                      const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
155                      const EC_SCALAR *p_scalar);
156 
157   // felem_mul and felem_sqr implement multiplication and squaring,
158   // respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl|
159   // implementations can work both with |EC_GFp_mont_method| and the tuned
160   // operations.
161   //
162   // TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds
163   // many indirect calls in the middle of the generic code, and a bunch of
164   // conversions. If p224-64.c were easily convertable to Montgomery form, we
165   // could say |EC_FELEM| is always in Montgomery form. If we routed the rest of
166   // simple.c to |EC_METHOD|, we could give |EC_POINT| an |EC_METHOD|-specific
167   // representation and say |EC_FELEM| is purely a |EC_GFp_mont_method| type.
168   void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
169                     const EC_FELEM *b);
170   void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
171 
172   int (*bignum_to_felem)(const EC_GROUP *group, EC_FELEM *out,
173                          const BIGNUM *in);
174   int (*felem_to_bignum)(const EC_GROUP *group, BIGNUM *out,
175                          const EC_FELEM *in);
176 
177   // scalar_inv_montgomery sets |out| to |in|^-1, where both input and output
178   // are in Montgomery form.
179   void (*scalar_inv_montgomery)(const EC_GROUP *group, EC_SCALAR *out,
180                                 const EC_SCALAR *in);
181 
182   // scalar_inv_montgomery_vartime performs the same computation as
183   // |scalar_inv_montgomery|. It further assumes that the inputs are public so
184   // there is no concern about leaking their values through timing.
185   int (*scalar_inv_montgomery_vartime)(const EC_GROUP *group, EC_SCALAR *out,
186                                        const EC_SCALAR *in);
187 
188   // cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
189   // order, with |r|. It returns one if the values match and zero if |p| is the
190   // point at infinity of the values do not match.
191   int (*cmp_x_coordinate)(const EC_GROUP *group, const EC_RAW_POINT *p,
192                           const EC_SCALAR *r);
193 } /* EC_METHOD */;
194 
195 const EC_METHOD *EC_GFp_mont_method(void);
196 
197 struct ec_group_st {
198   const EC_METHOD *meth;
199 
200   // Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
201   // to avoid a reference cycle.
202   EC_POINT *generator;
203   BIGNUM order;
204 
205   int curve_name;  // optional NID for named curve
206 
207   BN_MONT_CTX *order_mont;  // data for ECDSA inverse
208 
209   // The following members are handled by the method functions,
210   // even if they appear generic
211 
212   BIGNUM field;  // For curves over GF(p), this is the modulus.
213 
214   EC_FELEM a, b;  // Curve coefficients.
215 
216   // a_is_minus3 is one if |a| is -3 mod |field| and zero otherwise. Point
217   // arithmetic is optimized for -3.
218   int a_is_minus3;
219 
220   // field_greater_than_order is one if |field| is greate than |order| and zero
221   // otherwise.
222   int field_greater_than_order;
223 
224   // field_minus_order, if |field_greater_than_order| is true, is |field| minus
225   // |order| represented as an |EC_FELEM|. Otherwise, it is zero.
226   //
227   // Note: unlike |EC_FELEM|s used as intermediate values internal to the
228   // |EC_METHOD|, this value is not encoded in Montgomery form.
229   EC_FELEM field_minus_order;
230 
231   CRYPTO_refcount_t references;
232 
233   BN_MONT_CTX *mont;  // Montgomery structure.
234 
235   EC_FELEM one;  // The value one.
236 } /* EC_GROUP */;
237 
238 struct ec_point_st {
239   // group is an owning reference to |group|, unless this is
240   // |group->generator|.
241   EC_GROUP *group;
242   // raw is the group-specific point data. Functions that take |EC_POINT|
243   // typically check consistency with |EC_GROUP| while functions that take
244   // |EC_RAW_POINT| do not. Thus accesses to this field should be externally
245   // checked for consistency.
246   EC_RAW_POINT raw;
247 } /* EC_POINT */;
248 
249 EC_GROUP *ec_group_new(const EC_METHOD *meth);
250 
251 // ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success
252 // and zero if |in| is out of range.
253 int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in);
254 
255 // ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and
256 // zero on allocation failure.
257 int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in);
258 
259 // ec_felem_neg sets |out| to -|a|.
260 void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a);
261 
262 // ec_felem_add sets |out| to |a| + |b|.
263 void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
264                   const EC_FELEM *b);
265 
266 // ec_felem_add sets |out| to |a| - |b|.
267 void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
268                   const EC_FELEM *b);
269 
270 // ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros
271 // otherwise.
272 BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a);
273 
274 // ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones
275 // and |b| if |mask| is all zeros.
276 void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask,
277                      const EC_FELEM *a, const EC_FELEM *b);
278 
279 // ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. It
280 // treats |a| and |b| as public and does *not* run in constant time.
281 int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b);
282 
283 // ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
284 // |*out|. It returns one on success and zero if |in| is out of range.
285 OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
286                                        const BIGNUM *in);
287 
288 // ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
289 // 1 to |group->order| - 1. It returns one on success and zero on error.
290 int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
291                              const uint8_t additional_data[32]);
292 
293 // ec_scalar_equal_vartime returns one if |a| and |b| are equal and zero
294 // otherwise. Both values are treated as public.
295 int ec_scalar_equal_vartime(const EC_GROUP *group, const EC_SCALAR *a,
296                             const EC_SCALAR *b);
297 
298 // ec_scalar_is_zero returns one if |a| is zero and zero otherwise.
299 int ec_scalar_is_zero(const EC_GROUP *group, const EC_SCALAR *a);
300 
301 // ec_scalar_add sets |r| to |a| + |b|.
302 void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a,
303                    const EC_SCALAR *b);
304 
305 // ec_scalar_to_montgomery sets |r| to |a| in Montgomery form.
306 void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r,
307                              const EC_SCALAR *a);
308 
309 // ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form.
310 void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r,
311                                const EC_SCALAR *a);
312 
313 // ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are
314 // in Montgomery form.
315 void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
316                               const EC_SCALAR *a, const EC_SCALAR *b);
317 
318 // ec_scalar_mul_montgomery sets |r| to |a|^-1 where inputs and outputs are in
319 // Montgomery form.
320 void ec_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
321                               const EC_SCALAR *a);
322 
323 // ec_scalar_inv_montgomery_vartime performs the same actions as
324 // |ec_scalar_inv_montgomery|, but in variable time.
325 int ec_scalar_inv_montgomery_vartime(const EC_GROUP *group, EC_SCALAR *r,
326                                      const EC_SCALAR *a);
327 
328 // ec_point_mul_scalar sets |r| to generator * |g_scalar| + |p| *
329 // |p_scalar|. Unlike other functions which take |EC_SCALAR|, |g_scalar| and
330 // |p_scalar| need not be fully reduced. They need only contain as many bits as
331 // the order.
332 int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r,
333                         const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
334                         const EC_SCALAR *p_scalar);
335 
336 // ec_point_mul_scalar_public performs the same computation as
337 // ec_point_mul_scalar.  It further assumes that the inputs are public so
338 // there is no concern about leaking their values through timing.
339 OPENSSL_EXPORT int ec_point_mul_scalar_public(const EC_GROUP *group,
340                                               EC_RAW_POINT *r,
341                                               const EC_SCALAR *g_scalar,
342                                               const EC_RAW_POINT *p,
343                                               const EC_SCALAR *p_scalar);
344 
345 // ec_cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
346 // order, with |r|. It returns one if the values match and zero if |p| is the
347 // point at infinity of the values do not match.
348 int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
349                         const EC_SCALAR *r);
350 
351 // ec_get_x_coordinate_as_scalar sets |*out| to |p|'s x-coordinate, modulo
352 // |group->order|. It returns one on success and zero if |p| is the point at
353 // infinity.
354 int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out,
355                                   const EC_RAW_POINT *p);
356 
357 // ec_point_get_affine_coordinate_bytes writes |p|'s affine coordinates to
358 // |out_x| and |out_y|, each of which must have at must |max_out| bytes. It sets
359 // |*out_len| to the number of bytes written in each buffer. Coordinates are
360 // written big-endian and zero-padded to the size of the field.
361 //
362 // Either of |out_x| or |out_y| may be NULL to omit that coordinate. This
363 // function returns one on success and zero on failure.
364 int ec_point_get_affine_coordinate_bytes(const EC_GROUP *group, uint8_t *out_x,
365                                          uint8_t *out_y, size_t *out_len,
366                                          size_t max_out, const EC_RAW_POINT *p);
367 
368 // ec_field_element_to_scalar reduces |r| modulo |group->order|. |r| must
369 // previously have been reduced modulo |group->field|.
370 int ec_field_element_to_scalar(const EC_GROUP *group, BIGNUM *r);
371 
372 void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r,
373                      const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
374                      const EC_SCALAR *p_scalar);
375 
376 // ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of
377 // |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of
378 // which will be either zero or odd with an absolute value less than  2^w
379 // satisfying
380 //     scalar = \sum_j out[j]*2^j
381 // where at most one of any  w+1  consecutive digits is non-zero
382 // with the exception that the most significant digit may be only
383 // w-1 zeros away from that next non-zero digit.
384 void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
385                      const EC_SCALAR *scalar, size_t bits, int w);
386 
387 void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
388                             const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
389                             const EC_SCALAR *p_scalar);
390 
391 // method functions in simple.c
392 int ec_GFp_simple_group_init(EC_GROUP *);
393 void ec_GFp_simple_group_finish(EC_GROUP *);
394 int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
395                                   const BIGNUM *b, BN_CTX *);
396 int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
397                                   BIGNUM *b);
398 void ec_GFp_simple_point_init(EC_RAW_POINT *);
399 void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *);
400 void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *);
401 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *,
402                                                const BIGNUM *x,
403                                                const BIGNUM *y);
404 void ec_GFp_mont_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a,
405                      const EC_RAW_POINT *b);
406 void ec_GFp_mont_dbl(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a);
407 void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *);
408 int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *);
409 int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *);
410 int ec_GFp_simple_cmp(const EC_GROUP *, const EC_RAW_POINT *a,
411                       const EC_RAW_POINT *b);
412 void ec_simple_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
413                                      const EC_SCALAR *a);
414 
415 int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, EC_SCALAR *r,
416                                            const EC_SCALAR *a);
417 
418 int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
419                                    const EC_SCALAR *r);
420 
421 // method functions in montgomery.c
422 int ec_GFp_mont_group_init(EC_GROUP *);
423 int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
424                                 const BIGNUM *b, BN_CTX *);
425 void ec_GFp_mont_group_finish(EC_GROUP *);
426 void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
427                            const EC_FELEM *b);
428 void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
429 
430 int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
431                                 const BIGNUM *in);
432 int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
433                                 const EC_FELEM *in);
434 
435 void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
436 
437 const EC_METHOD *EC_GFp_nistp224_method(void);
438 const EC_METHOD *EC_GFp_nistp256_method(void);
439 
440 // EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
441 // x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
442 const EC_METHOD *EC_GFp_nistz256_method(void);
443 
444 // An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM|
445 // representation. It exists to support the |EC_KEY_get0_private_key| API.
446 typedef struct {
447   BIGNUM bignum;
448   EC_SCALAR scalar;
449 } EC_WRAPPED_SCALAR;
450 
451 struct ec_key_st {
452   EC_GROUP *group;
453 
454   EC_POINT *pub_key;
455   EC_WRAPPED_SCALAR *priv_key;
456 
457   // fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
458   // This is only for the FIPS power-on tests.
459   BIGNUM *fixed_k;
460 
461   unsigned int enc_flag;
462   point_conversion_form_t conv_form;
463 
464   CRYPTO_refcount_t references;
465 
466   ECDSA_METHOD *ecdsa_meth;
467 
468   CRYPTO_EX_DATA ex_data;
469 } /* EC_KEY */;
470 
471 struct built_in_curve {
472   int nid;
473   const uint8_t *oid;
474   uint8_t oid_len;
475   // comment is a human-readable string describing the curve.
476   const char *comment;
477   // param_len is the number of bytes needed to store a field element.
478   uint8_t param_len;
479   // params points to an array of 6*|param_len| bytes which hold the field
480   // elements of the following (in big-endian order): prime, a, b, generator x,
481   // generator y, order.
482   const uint8_t *params;
483   const EC_METHOD *method;
484 };
485 
486 #define OPENSSL_NUM_BUILT_IN_CURVES 4
487 
488 struct built_in_curves {
489   struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
490 };
491 
492 // OPENSSL_built_in_curves returns a pointer to static information about
493 // standard curves. The array is terminated with an entry where |nid| is
494 // |NID_undef|.
495 const struct built_in_curves *OPENSSL_built_in_curves(void);
496 
497 #if defined(__cplusplus)
498 }  // extern C
499 #endif
500 
501 #endif  // OPENSSL_HEADER_EC_INTERNAL_H
502