1#! /usr/bin/env perl
2# Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
18# functions were re-implemented to address P4 performance issue [see
19# commentary below], and in 2006 the rest was rewritten in order to
20# gain freedom to liberate licensing terms.
21
22# January, September 2004.
23#
24# It was noted that Intel IA-32 C compiler generates code which
25# performs ~30% *faster* on P4 CPU than original *hand-coded*
26# SHA1 assembler implementation. To address this problem (and
27# prove that humans are still better than machines:-), the
28# original code was overhauled, which resulted in following
29# performance changes:
30#
31#		compared with original	compared with Intel cc
32#		assembler impl.		generated code
33# Pentium	-16%			+48%
34# PIII/AMD	+8%			+16%
35# P4		+85%(!)			+45%
36#
37# As you can see Pentium came out as looser:-( Yet I reckoned that
38# improvement on P4 outweighs the loss and incorporate this
39# re-tuned code to 0.9.7 and later.
40# ----------------------------------------------------------------
41
42# August 2009.
43#
44# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
45# '(c&d) + (b&(c^d))', which allows to accumulate partial results
46# and lighten "pressure" on scratch registers. This resulted in
47# >12% performance improvement on contemporary AMD cores (with no
48# degradation on other CPUs:-). Also, the code was revised to maximize
49# "distance" between instructions producing input to 'lea' instruction
50# and the 'lea' instruction itself, which is essential for Intel Atom
51# core and resulted in ~15% improvement.
52
53# October 2010.
54#
55# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
56# is to offload message schedule denoted by Wt in NIST specification,
57# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
58# and in SSE2 context was first explored by Dean Gaudet in 2004, see
59# http://arctic.org/~dean/crypto/sha1.html. Since then several things
60# have changed that made it interesting again:
61#
62# a) XMM units became faster and wider;
63# b) instruction set became more versatile;
64# c) an important observation was made by Max Locktykhin, which made
65#    it possible to reduce amount of instructions required to perform
66#    the operation in question, for further details see
67#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
68
69# April 2011.
70#
71# Add AVX code path, probably most controversial... The thing is that
72# switch to AVX alone improves performance by as little as 4% in
73# comparison to SSSE3 code path. But below result doesn't look like
74# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
75# pair of µ-ops, and it's the additional µ-ops, two per round, that
76# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
77# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
78# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
79# cycles per processed byte. But 'sh[rl]d' is not something that used
80# to be fast, nor does it appear to be fast in upcoming Bulldozer
81# [according to its optimization manual]. Which is why AVX code path
82# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
83# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
84# makes no sense to keep the AVX code path. If somebody feels that
85# strongly, it's probably more appropriate to discuss possibility of
86# using vector rotate XOP on AMD...
87
88# March 2014.
89#
90# Add support for Intel SHA Extensions.
91
92######################################################################
93# Current performance is summarized in following table. Numbers are
94# CPU clock cycles spent to process single byte (less is better).
95#
96#		x86		SSSE3		AVX
97# Pentium	15.7		-
98# PIII		11.5		-
99# P4		10.6		-
100# AMD K8	7.1		-
101# Core2		7.3		6.0/+22%	-
102# Westmere	7.3		5.5/+33%	-
103# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73%
104# Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53%
105# Haswell	6.5		4.3/+51%	4.1(**)/+58%
106# Skylake	6.4		4.1/+55%	4.1(**)/+55%
107# Bulldozer	11.6		6.0/+92%
108# VIA Nano	10.6		7.5/+41%
109# Atom		12.5		9.3(*)/+35%
110# Silvermont	14.5		9.9(*)/+46%
111# Goldmont	8.8		6.7/+30%	1.7(***)/+415%
112#
113# (*)	Loop is 1056 instructions long and expected result is ~8.25.
114#	The discrepancy is because of front-end limitations, so
115#	called MS-ROM penalties, and on Silvermont even rotate's
116#	limited parallelism.
117#
118# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
119#
120# (***)	SHAEXT result
121
122$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
123push(@INC,"${dir}","${dir}../../../perlasm");
124require "x86asm.pl";
125
126$output=pop;
127open STDOUT,">$output";
128
129&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
130
131$xmm=$ymm=0;
132for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
133
134# In upstream, this is controlled by shelling out to the compiler to check
135# versions, but BoringSSL is intended to be used with pre-generated perlasm
136# output, so this isn't useful anyway.
137$ymm = 1;
138
139$ymm = 0 unless ($xmm);
140
141$shaext=$xmm;	### set to zero if compiling for 1.0.1
142
143# TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
144# been tested.
145$shaext = 0;
146
147&external_label("OPENSSL_ia32cap_P") if ($xmm);
148
149
150$A="eax";
151$B="ebx";
152$C="ecx";
153$D="edx";
154$E="edi";
155$T="esi";
156$tmp1="ebp";
157
158@V=($A,$B,$C,$D,$E,$T);
159
160$alt=0;	# 1 denotes alternative IALU implementation, which performs
161	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
162	# Sandy Bridge...
163
164sub BODY_00_15
165	{
166	local($n,$a,$b,$c,$d,$e,$f)=@_;
167
168	&comment("00_15 $n");
169
170	&mov($f,$c);			# f to hold F_00_19(b,c,d)
171	 if ($n==0)  { &mov($tmp1,$a); }
172	 else        { &mov($a,$tmp1); }
173	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
174	 &xor($f,$d);
175	&add($tmp1,$e);			# tmp1+=e;
176	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
177	 				# with xi, also note that e becomes
178					# f in next round...
179	&and($f,$b);
180	&rotr($b,2);			# b=ROTATE(b,30)
181	 &xor($f,$d);			# f holds F_00_19(b,c,d)
182	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
183
184	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
185		      &add($f,$tmp1); }	# f+=tmp1
186	else        { &add($tmp1,$f); }	# f becomes a in next round
187	&mov($tmp1,$a)			if ($alt && $n==15);
188	}
189
190sub BODY_16_19
191	{
192	local($n,$a,$b,$c,$d,$e,$f)=@_;
193
194	&comment("16_19 $n");
195
196if ($alt) {
197	&xor($c,$d);
198	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
199	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
200	 &xor($f,&swtmp(($n+8)%16));
201	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
202	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
203	&rotl($f,1);			# f=ROTATE(f,1)
204	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
205	&xor($c,$d);			# restore $c
206	 &mov($tmp1,$a);		# b in next round
207	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
208	 &mov(&swtmp($n%16),$f);	# xi=f
209	&rotl($a,5);			# ROTATE(a,5)
210	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
211	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
212	 &add($f,$a);			# f+=ROTATE(a,5)
213} else {
214	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
215	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
216	&xor($tmp1,$d);
217	 &xor($f,&swtmp(($n+8)%16));
218	&and($tmp1,$b);
219	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
220	&rotl($f,1);			# f=ROTATE(f,1)
221	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
222	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
223	 &mov($tmp1,$a);
224	&rotr($b,2);			# b=ROTATE(b,30)
225	 &mov(&swtmp($n%16),$f);	# xi=f
226	&rotl($tmp1,5);			# ROTATE(a,5)
227	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
228	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
229	 &add($f,$tmp1);		# f+=ROTATE(a,5)
230}
231	}
232
233sub BODY_20_39
234	{
235	local($n,$a,$b,$c,$d,$e,$f)=@_;
236	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
237
238	&comment("20_39 $n");
239
240if ($alt) {
241	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
242	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
243	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
244	 &xor($f,&swtmp(($n+8)%16));
245	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
246	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
247	&rotl($f,1);			# f=ROTATE(f,1)
248	 &mov($tmp1,$a);		# b in next round
249	&rotr($b,7);			# b=ROTATE(b,30)
250	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
251	&rotl($a,5);			# ROTATE(a,5)
252	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
253	&and($tmp1,$b)			if($n==39);
254	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
255	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
256	 &add($f,$a);			# f+=ROTATE(a,5)
257	&rotr($a,5)			if ($n==79);
258} else {
259	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
260	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
261	&xor($tmp1,$c);
262	 &xor($f,&swtmp(($n+8)%16));
263	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
264	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
265	&rotl($f,1);			# f=ROTATE(f,1)
266	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
267	&rotr($b,2);			# b=ROTATE(b,30)
268	 &mov($tmp1,$a);
269	&rotl($tmp1,5);			# ROTATE(a,5)
270	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
271	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
272	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
273	&add($f,$tmp1);			# f+=ROTATE(a,5)
274}
275	}
276
277sub BODY_40_59
278	{
279	local($n,$a,$b,$c,$d,$e,$f)=@_;
280
281	&comment("40_59 $n");
282
283if ($alt) {
284	&add($e,$tmp1);			# e+=b&(c^d)
285	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
286	&mov($tmp1,$d);
287	 &xor($f,&swtmp(($n+8)%16));
288	&xor($c,$d);			# restore $c
289	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
290	&rotl($f,1);			# f=ROTATE(f,1)
291	 &and($tmp1,$c);
292	&rotr($b,7);			# b=ROTATE(b,30)
293	 &add($e,$tmp1);		# e+=c&d
294	&mov($tmp1,$a);			# b in next round
295	 &mov(&swtmp($n%16),$f);	# xi=f
296	&rotl($a,5);			# ROTATE(a,5)
297	 &xor($b,$c)			if ($n<59);
298	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
299	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
300	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
301	 &add($f,$a);			# f+=ROTATE(a,5)
302} else {
303	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
304	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
305	&xor($tmp1,$d);
306	 &xor($f,&swtmp(($n+8)%16));
307	&and($tmp1,$b);
308	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
309	&rotl($f,1);			# f=ROTATE(f,1)
310	 &add($tmp1,$e);		# b&(c^d)+=e
311	&rotr($b,2);			# b=ROTATE(b,30)
312	 &mov($e,$a);			# e becomes volatile
313	&rotl($e,5);			# ROTATE(a,5)
314	 &mov(&swtmp($n%16),$f);	# xi=f
315	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
316	 &mov($tmp1,$c);
317	&add($f,$e);			# f+=ROTATE(a,5)
318	 &and($tmp1,$d);
319	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
320	 &add($f,$tmp1);		# f+=c&d
321}
322	}
323
324&function_begin("sha1_block_data_order");
325if ($xmm) {
326  &static_label("shaext_shortcut")	if ($shaext);
327  &static_label("ssse3_shortcut");
328  &static_label("avx_shortcut")		if ($ymm);
329  &static_label("K_XX_XX");
330
331	&call	(&label("pic_point"));	# make it PIC!
332  &set_label("pic_point");
333	&blindpop($tmp1);
334	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
335	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
336
337	&mov	($A,&DWP(0,$T));
338	&mov	($D,&DWP(4,$T));
339	&test	($D,1<<9);		# check SSSE3 bit
340	&jz	(&label("x86"));
341	&mov	($C,&DWP(8,$T));
342	&test	($A,1<<24);		# check FXSR bit
343	&jz	(&label("x86"));
344	if ($shaext) {
345		&test	($C,1<<29);		# check SHA bit
346		&jnz	(&label("shaext_shortcut"));
347	}
348	if ($ymm) {
349		&and	($D,1<<28);		# mask AVX bit
350		&and	($A,1<<30);		# mask "Intel CPU" bit
351		&or	($A,$D);
352		&cmp	($A,1<<28|1<<30);
353		&je	(&label("avx_shortcut"));
354	}
355	&jmp	(&label("ssse3_shortcut"));
356  &set_label("x86",16);
357}
358	&mov($tmp1,&wparam(0));	# SHA_CTX *c
359	&mov($T,&wparam(1));	# const void *input
360	&mov($A,&wparam(2));	# size_t num
361	&stack_push(16+3);	# allocate X[16]
362	&shl($A,6);
363	&add($A,$T);
364	&mov(&wparam(2),$A);	# pointer beyond the end of input
365	&mov($E,&DWP(16,$tmp1));# pre-load E
366	&jmp(&label("loop"));
367
368&set_label("loop",16);
369
370	# copy input chunk to X, but reversing byte order!
371	for ($i=0; $i<16; $i+=4)
372		{
373		&mov($A,&DWP(4*($i+0),$T));
374		&mov($B,&DWP(4*($i+1),$T));
375		&mov($C,&DWP(4*($i+2),$T));
376		&mov($D,&DWP(4*($i+3),$T));
377		&bswap($A);
378		&bswap($B);
379		&bswap($C);
380		&bswap($D);
381		&mov(&swtmp($i+0),$A);
382		&mov(&swtmp($i+1),$B);
383		&mov(&swtmp($i+2),$C);
384		&mov(&swtmp($i+3),$D);
385		}
386	&mov(&wparam(1),$T);	# redundant in 1st spin
387
388	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
389	&mov($B,&DWP(4,$tmp1));
390	&mov($C,&DWP(8,$tmp1));
391	&mov($D,&DWP(12,$tmp1));
392	# E is pre-loaded
393
394	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
395	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
396	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
397	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
398	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
399
400	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
401
402	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
403	&mov($D,&wparam(1));	# D is last "T" and is discarded
404
405	&add($E,&DWP(0,$tmp1));	# E is last "A"...
406	&add($T,&DWP(4,$tmp1));
407	&add($A,&DWP(8,$tmp1));
408	&add($B,&DWP(12,$tmp1));
409	&add($C,&DWP(16,$tmp1));
410
411	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
412	 &add($D,64);		# advance input pointer
413	&mov(&DWP(4,$tmp1),$T);
414	 &cmp($D,&wparam(2));	# have we reached the end yet?
415	&mov(&DWP(8,$tmp1),$A);
416	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
417	&mov(&DWP(12,$tmp1),$B);
418	 &mov($T,$D);		# input pointer
419	&mov(&DWP(16,$tmp1),$C);
420	&jb(&label("loop"));
421
422	&stack_pop(16+3);
423&function_end("sha1_block_data_order");
424
425if ($xmm) {
426if ($shaext) {
427######################################################################
428# Intel SHA Extensions implementation of SHA1 update function.
429#
430my ($ctx,$inp,$num)=("edi","esi","ecx");
431my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
432my @MSG=map("xmm$_",(4..7));
433
434sub sha1rnds4 {
435 my ($dst,$src,$imm)=@_;
436    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
437    {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	}
438}
439sub sha1op38 {
440 my ($opcodelet,$dst,$src)=@_;
441    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
442    {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	}
443}
444sub sha1nexte	{ sha1op38(0xc8,@_); }
445sub sha1msg1	{ sha1op38(0xc9,@_); }
446sub sha1msg2	{ sha1op38(0xca,@_); }
447
448&function_begin("_sha1_block_data_order_shaext");
449	&call	(&label("pic_point"));	# make it PIC!
450	&set_label("pic_point");
451	&blindpop($tmp1);
452	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
453&set_label("shaext_shortcut");
454	&mov	($ctx,&wparam(0));
455	&mov	("ebx","esp");
456	&mov	($inp,&wparam(1));
457	&mov	($num,&wparam(2));
458	&sub	("esp",32);
459
460	&movdqu	($ABCD,&QWP(0,$ctx));
461	&movd	($E,&DWP(16,$ctx));
462	&and	("esp",-32);
463	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap
464
465	&movdqu	(@MSG[0],&QWP(0,$inp));
466	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order
467	&movdqu	(@MSG[1],&QWP(0x10,$inp));
468	&pshufd	($E,$E,0b00011011);		# flip word order
469	&movdqu	(@MSG[2],&QWP(0x20,$inp));
470	&pshufb	(@MSG[0],$BSWAP);
471	&movdqu	(@MSG[3],&QWP(0x30,$inp));
472	&pshufb	(@MSG[1],$BSWAP);
473	&pshufb	(@MSG[2],$BSWAP);
474	&pshufb	(@MSG[3],$BSWAP);
475	&jmp	(&label("loop_shaext"));
476
477&set_label("loop_shaext",16);
478	&dec		($num);
479	&lea		("eax",&DWP(0x40,$inp));
480	&movdqa		(&QWP(0,"esp"),$E);	# offload $E
481	&paddd		($E,@MSG[0]);
482	&cmovne		($inp,"eax");
483	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD
484
485for($i=0;$i<20-4;$i+=2) {
486	&sha1msg1	(@MSG[0],@MSG[1]);
487	&movdqa		($E_,$ABCD);
488	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3...
489	&sha1nexte	($E_,@MSG[1]);
490	&pxor		(@MSG[0],@MSG[2]);
491	&sha1msg1	(@MSG[1],@MSG[2]);
492	&sha1msg2	(@MSG[0],@MSG[3]);
493
494	&movdqa		($E,$ABCD);
495	&sha1rnds4	($ABCD,$E_,int(($i+1)/5));
496	&sha1nexte	($E,@MSG[2]);
497	&pxor		(@MSG[1],@MSG[3]);
498	&sha1msg2	(@MSG[1],@MSG[0]);
499
500	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG));
501}
502	&movdqu		(@MSG[0],&QWP(0,$inp));
503	&movdqa		($E_,$ABCD);
504	&sha1rnds4	($ABCD,$E,3);		# 64-67
505	&sha1nexte	($E_,@MSG[1]);
506	&movdqu		(@MSG[1],&QWP(0x10,$inp));
507	&pshufb		(@MSG[0],$BSWAP);
508
509	&movdqa		($E,$ABCD);
510	&sha1rnds4	($ABCD,$E_,3);		# 68-71
511	&sha1nexte	($E,@MSG[2]);
512	&movdqu		(@MSG[2],&QWP(0x20,$inp));
513	&pshufb		(@MSG[1],$BSWAP);
514
515	&movdqa		($E_,$ABCD);
516	&sha1rnds4	($ABCD,$E,3);		# 72-75
517	&sha1nexte	($E_,@MSG[3]);
518	&movdqu		(@MSG[3],&QWP(0x30,$inp));
519	&pshufb		(@MSG[2],$BSWAP);
520
521	&movdqa		($E,$ABCD);
522	&sha1rnds4	($ABCD,$E_,3);		# 76-79
523	&movdqa		($E_,&QWP(0,"esp"));
524	&pshufb		(@MSG[3],$BSWAP);
525	&sha1nexte	($E,$E_);
526	&paddd		($ABCD,&QWP(16,"esp"));
527
528	&jnz		(&label("loop_shaext"));
529
530	&pshufd	($ABCD,$ABCD,0b00011011);
531	&pshufd	($E,$E,0b00011011);
532	&movdqu	(&QWP(0,$ctx),$ABCD)
533	&movd	(&DWP(16,$ctx),$E);
534	&mov	("esp","ebx");
535&function_end("_sha1_block_data_order_shaext");
536}
537######################################################################
538# The SSSE3 implementation.
539#
540# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
541# 32 elements of the message schedule or Xupdate outputs. First 4
542# quadruples are simply byte-swapped input, next 4 are calculated
543# according to method originally suggested by Dean Gaudet (modulo
544# being implemented in SSSE3). Once 8 quadruples or 32 elements are
545# collected, it switches to routine proposed by Max Locktyukhin.
546#
547# Calculations inevitably require temporary registers, and there are
548# no %xmm registers left to spare. For this reason part of the ring
549# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
550# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
551# X[-5], and X[4] - X[-4]...
552#
553# Another notable optimization is aggressive stack frame compression
554# aiming to minimize amount of 9-byte instructions...
555#
556# Yet another notable optimization is "jumping" $B variable. It means
557# that there is no register permanently allocated for $B value. This
558# allowed to eliminate one instruction from body_20_39...
559#
560my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
561my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
562my @V=($A,$B,$C,$D,$E);
563my $j=0;			# hash round
564my $rx=0;
565my @T=($T,$tmp1);
566my $inp;
567
568my $_rol=sub { &rol(@_) };
569my $_ror=sub { &ror(@_) };
570
571&function_begin("_sha1_block_data_order_ssse3");
572	&call	(&label("pic_point"));	# make it PIC!
573	&set_label("pic_point");
574	&blindpop($tmp1);
575	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
576&set_label("ssse3_shortcut");
577
578	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
579	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
580	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
581	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
582	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
583
584	&mov	($E,&wparam(0));		# load argument block
585	&mov	($inp=@T[1],&wparam(1));
586	&mov	($D,&wparam(2));
587	&mov	(@T[0],"esp");
588
589	# stack frame layout
590	#
591	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
592	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
593	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
594	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
595	#
596	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
597	#	X[4]	X[5]	X[6]	X[7]
598	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
599	#
600	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
601	#	K_40_59	K_40_59	K_40_59	K_40_59
602	#	K_60_79	K_60_79	K_60_79	K_60_79
603	#	K_00_19	K_00_19	K_00_19	K_00_19
604	#	pbswap mask
605	#
606	# +192	ctx				# argument block
607	# +196	inp
608	# +200	end
609	# +204	esp
610	&sub	("esp",208);
611	&and	("esp",-64);
612
613	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
614	&movdqa	(&QWP(112+16,"esp"),@X[5]);
615	&movdqa	(&QWP(112+32,"esp"),@X[6]);
616	&shl	($D,6);				# len*64
617	&movdqa	(&QWP(112+48,"esp"),@X[3]);
618	&add	($D,$inp);			# end of input
619	&movdqa	(&QWP(112+64,"esp"),@X[2]);
620	&add	($inp,64);
621	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
622	&mov	(&DWP(192+4,"esp"),$inp);
623	&mov	(&DWP(192+8,"esp"),$D);
624	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
625
626	&mov	($A,&DWP(0,$E));		# load context
627	&mov	($B,&DWP(4,$E));
628	&mov	($C,&DWP(8,$E));
629	&mov	($D,&DWP(12,$E));
630	&mov	($E,&DWP(16,$E));
631	&mov	(@T[0],$B);			# magic seed
632
633	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
634	&movdqu	(@X[-3&7],&QWP(-48,$inp));
635	&movdqu	(@X[-2&7],&QWP(-32,$inp));
636	&movdqu	(@X[-1&7],&QWP(-16,$inp));
637	&pshufb	(@X[-4&7],@X[2]);		# byte swap
638	&pshufb	(@X[-3&7],@X[2]);
639	&pshufb	(@X[-2&7],@X[2]);
640	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
641	&pshufb	(@X[-1&7],@X[2]);
642	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
643	&paddd	(@X[-3&7],@X[3]);
644	&paddd	(@X[-2&7],@X[3]);
645	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
646	&psubd	(@X[-4&7],@X[3]);		# restore X[]
647	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
648	&psubd	(@X[-3&7],@X[3]);
649	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
650	&mov	(@T[1],$C);
651	&psubd	(@X[-2&7],@X[3]);
652	&xor	(@T[1],$D);
653	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
654	&and	(@T[0],@T[1]);
655	&jmp	(&label("loop"));
656
657######################################################################
658# SSE instruction sequence is first broken to groups of independent
659# instructions, independent in respect to their inputs and shifter
660# (not all architectures have more than one). Then IALU instructions
661# are "knitted in" between the SSE groups. Distance is maintained for
662# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
663# [which allegedly also implements SSSE3]...
664#
665# Temporary registers usage. X[2] is volatile at the entry and at the
666# end is restored from backtrace ring buffer. X[3] is expected to
667# contain current K_XX_XX constant and is used to calculate X[-1]+K
668# from previous round, it becomes volatile the moment the value is
669# saved to stack for transfer to IALU. X[4] becomes volatile whenever
670# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
671# end it is loaded with next K_XX_XX [which becomes X[3] in next
672# round]...
673#
674sub Xupdate_ssse3_16_31()		# recall that $Xi starts with 4
675{ use integer;
676  my $body = shift;
677  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
678  my ($a,$b,$c,$d,$e);
679
680	 eval(shift(@insns));		# ror
681	 eval(shift(@insns));
682	 eval(shift(@insns));
683	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
684	&movdqa	(@X[2],@X[-1&7]);
685	 eval(shift(@insns));
686	 eval(shift(@insns));
687
688	  &paddd	(@X[3],@X[-1&7]);
689	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
690	 eval(shift(@insns));		# rol
691	 eval(shift(@insns));
692	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
693	 eval(shift(@insns));
694	 eval(shift(@insns));
695	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
696	 eval(shift(@insns));
697	 eval(shift(@insns));		# ror
698
699	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
700	 eval(shift(@insns));
701	 eval(shift(@insns));
702	 eval(shift(@insns));
703
704	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
705	 eval(shift(@insns));
706	 eval(shift(@insns));		# rol
707	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
708	 eval(shift(@insns));
709	 eval(shift(@insns));
710
711	&movdqa	(@X[4],@X[0]);
712	 eval(shift(@insns));
713	 eval(shift(@insns));
714	 eval(shift(@insns));		# ror
715	&movdqa (@X[2],@X[0]);
716	 eval(shift(@insns));
717
718	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
719	&paddd	(@X[0],@X[0]);
720	 eval(shift(@insns));
721	 eval(shift(@insns));
722
723	&psrld	(@X[2],31);
724	 eval(shift(@insns));
725	 eval(shift(@insns));		# rol
726	&movdqa	(@X[3],@X[4]);
727	 eval(shift(@insns));
728	 eval(shift(@insns));
729	 eval(shift(@insns));
730
731	&psrld	(@X[4],30);
732	 eval(shift(@insns));
733	 eval(shift(@insns));		# ror
734	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
735	 eval(shift(@insns));
736	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
737	 eval(shift(@insns));
738	 eval(shift(@insns));
739
740	&pslld	(@X[3],2);
741	 eval(shift(@insns));
742	 eval(shift(@insns));		# rol
743	&pxor   (@X[0],@X[4]);
744	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
745	 eval(shift(@insns));
746	 eval(shift(@insns));
747
748	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
749	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7])
750	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7);
751	 eval(shift(@insns));
752	 eval(shift(@insns));
753
754	 foreach (@insns) { eval; }	# remaining instructions [if any]
755
756  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
757}
758
759sub Xupdate_ssse3_32_79()
760{ use integer;
761  my $body = shift;
762  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
763  my ($a,$b,$c,$d,$e);
764
765	 eval(shift(@insns));		# body_20_39
766	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
767	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
768	 eval(shift(@insns));
769	 eval(shift(@insns));
770	 eval(shift(@insns));		# rol
771
772	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
773	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
774	 eval(shift(@insns));
775	 eval(shift(@insns));
776	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
777	 if ($Xi%5) {
778	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
779	 } else {			# ... or load next one
780	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
781	 }
782	 eval(shift(@insns));		# ror
783	  &paddd	(@X[3],@X[-1&7]);
784	 eval(shift(@insns));
785
786	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
787	 eval(shift(@insns));		# body_20_39
788	 eval(shift(@insns));
789	 eval(shift(@insns));
790	 eval(shift(@insns));		# rol
791
792	&movdqa	(@X[2],@X[0]);
793	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
794	 eval(shift(@insns));
795	 eval(shift(@insns));
796	 eval(shift(@insns));		# ror
797	 eval(shift(@insns));
798	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
799
800	&pslld	(@X[0],2);
801	 eval(shift(@insns));		# body_20_39
802	 eval(shift(@insns));
803	&psrld	(@X[2],30);
804	 eval(shift(@insns));
805	 eval(shift(@insns));		# rol
806	 eval(shift(@insns));
807	 eval(shift(@insns));
808	 eval(shift(@insns));		# ror
809	 eval(shift(@insns));
810	 eval(shift(@insns))		if (@insns[1] =~ /_rol/);
811	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
812
813	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
814	 eval(shift(@insns));		# body_20_39
815	 eval(shift(@insns));
816	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
817	 eval(shift(@insns));
818	 eval(shift(@insns));		# rol
819	 eval(shift(@insns));
820	 eval(shift(@insns));
821	 eval(shift(@insns));		# ror
822	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0])
823	 eval(shift(@insns));
824
825	 foreach (@insns) { eval; }	# remaining instructions
826
827  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
828}
829
830sub Xuplast_ssse3_80()
831{ use integer;
832  my $body = shift;
833  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
834  my ($a,$b,$c,$d,$e);
835
836	 eval(shift(@insns));
837	 eval(shift(@insns));
838	 eval(shift(@insns));
839	 eval(shift(@insns));
840	 eval(shift(@insns));
841	 eval(shift(@insns));
842	 eval(shift(@insns));
843	  &paddd	(@X[3],@X[-1&7]);
844	 eval(shift(@insns));
845	 eval(shift(@insns));
846	 eval(shift(@insns));
847	 eval(shift(@insns));
848
849	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
850
851	 foreach (@insns) { eval; }		# remaining instructions
852
853	&mov	($inp=@T[1],&DWP(192+4,"esp"));
854	&cmp	($inp,&DWP(192+8,"esp"));
855	&je	(&label("done"));
856
857	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
858	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
859	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
860	&movdqu	(@X[-3&7],&QWP(16,$inp));
861	&movdqu	(@X[-2&7],&QWP(32,$inp));
862	&movdqu	(@X[-1&7],&QWP(48,$inp));
863	&add	($inp,64);
864	&pshufb	(@X[-4&7],@X[2]);		# byte swap
865	&mov	(&DWP(192+4,"esp"),$inp);
866	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
867
868  $Xi=0;
869}
870
871sub Xloop_ssse3()
872{ use integer;
873  my $body = shift;
874  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
875  my ($a,$b,$c,$d,$e);
876
877	 eval(shift(@insns));
878	 eval(shift(@insns));
879	 eval(shift(@insns));
880	 eval(shift(@insns));
881	 eval(shift(@insns));
882	 eval(shift(@insns));
883	 eval(shift(@insns));
884	&pshufb	(@X[($Xi-3)&7],@X[2]);
885	 eval(shift(@insns));
886	 eval(shift(@insns));
887	 eval(shift(@insns));
888	 eval(shift(@insns));
889	&paddd	(@X[($Xi-4)&7],@X[3]);
890	 eval(shift(@insns));
891	 eval(shift(@insns));
892	 eval(shift(@insns));
893	 eval(shift(@insns));
894	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
895	 eval(shift(@insns));
896	 eval(shift(@insns));
897	 eval(shift(@insns));
898	 eval(shift(@insns));
899	&psubd	(@X[($Xi-4)&7],@X[3]);
900
901	foreach (@insns) { eval; }
902  $Xi++;
903}
904
905sub Xtail_ssse3()
906{ use integer;
907  my $body = shift;
908  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
909  my ($a,$b,$c,$d,$e);
910
911	foreach (@insns) { eval; }
912}
913
914sub body_00_19 () {	# ((c^d)&b)^d
915	# on start @T[0]=(c^d)&b
916	return &body_20_39()	if ($rx==19);	$rx++;
917	(
918	'($a,$b,$c,$d,$e)=@V;'.
919	'&$_ror	($b,$j?7:2);',	# $b>>>2
920	'&xor	(@T[0],$d);',
921	'&mov	(@T[1],$a);',	# $b in next round
922
923	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
924	'&xor	($b,$c);',	# $c^$d for next round
925
926	'&$_rol	($a,5);',
927	'&add	($e,@T[0]);',
928	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round
929
930	'&xor	($b,$c);',	# restore $b
931	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
932	);
933}
934
935sub body_20_39 () {	# b^d^c
936	# on entry @T[0]=b^d
937	return &body_40_59()	if ($rx==39);	$rx++;
938	(
939	'($a,$b,$c,$d,$e)=@V;'.
940	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
941	'&xor	(@T[0],$d)	if($j==19);'.
942	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c)
943	'&mov	(@T[1],$a);',	# $b in next round
944
945	'&$_rol	($a,5);',
946	'&add	($e,@T[0]);',
947	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round
948
949	'&$_ror	($b,7);',	# $b>>>2
950	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
951	);
952}
953
954sub body_40_59 () {	# ((b^c)&(c^d))^c
955	# on entry @T[0]=(b^c), (c^=d)
956	$rx++;
957	(
958	'($a,$b,$c,$d,$e)=@V;'.
959	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
960	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d)
961	'&xor	($c,$d)		if ($j>=40);',	# restore $c
962
963	'&$_ror	($b,7);',	# $b>>>2
964	'&mov	(@T[1],$a);',	# $b for next round
965	'&xor	(@T[0],$c);',
966
967	'&$_rol	($a,5);',
968	'&add	($e,@T[0]);',
969	'&xor	(@T[1],$c)	if ($j==59);'.
970	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round
971
972	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round
973	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
974	);
975}
976######
977sub bodyx_00_19 () {	# ((c^d)&b)^d
978	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
979	return &bodyx_20_39()	if ($rx==19);	$rx++;
980	(
981	'($a,$b,$c,$d,$e)=@V;'.
982
983	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2
984	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2
985	'&lea	($e,&DWP(0,$e,@T[0]));',
986	'&rorx	(@T[0],$a,5);',
987
988	'&andn	(@T[1],$a,$c);',
989	'&and	($a,$b)',
990	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer
991
992	'&xor	(@T[1],$a)',
993	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
994	);
995}
996
997sub bodyx_20_39 () {	# b^d^c
998	# on start $b=b^c^d
999	return &bodyx_40_59()	if ($rx==39);	$rx++;
1000	(
1001	'($a,$b,$c,$d,$e)=@V;'.
1002
1003	'&add	($e,($j==19?@T[0]:$b))',
1004	'&rorx	($b,@T[1],7);',	# $b>>>2
1005	'&rorx	(@T[0],$a,5);',
1006
1007	'&xor	($a,$b)				if ($j<79);',
1008	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer
1009	'&xor	($a,$c)				if ($j<79);',
1010	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1011	);
1012}
1013
1014sub bodyx_40_59 () {	# ((b^c)&(c^d))^c
1015	# on start $b=((b^c)&(c^d))^c
1016	return &bodyx_20_39()	if ($rx==59);	$rx++;
1017	(
1018	'($a,$b,$c,$d,$e)=@V;'.
1019
1020	'&rorx	(@T[0],$a,5)',
1021	'&lea	($e,&DWP(0,$e,$b))',
1022	'&rorx	($b,@T[1],7)',	# $b>>>2
1023	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer
1024
1025	'&mov	(@T[1],$c)',
1026	'&xor	($a,$b)',	# b^c for next round
1027	'&xor	(@T[1],$b)',	# c^d for next round
1028
1029	'&and	($a,@T[1])',
1030	'&add	($e,@T[0])',
1031	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1032	);
1033}
1034
1035&set_label("loop",16);
1036	&Xupdate_ssse3_16_31(\&body_00_19);
1037	&Xupdate_ssse3_16_31(\&body_00_19);
1038	&Xupdate_ssse3_16_31(\&body_00_19);
1039	&Xupdate_ssse3_16_31(\&body_00_19);
1040	&Xupdate_ssse3_32_79(\&body_00_19);
1041	&Xupdate_ssse3_32_79(\&body_20_39);
1042	&Xupdate_ssse3_32_79(\&body_20_39);
1043	&Xupdate_ssse3_32_79(\&body_20_39);
1044	&Xupdate_ssse3_32_79(\&body_20_39);
1045	&Xupdate_ssse3_32_79(\&body_20_39);
1046	&Xupdate_ssse3_32_79(\&body_40_59);
1047	&Xupdate_ssse3_32_79(\&body_40_59);
1048	&Xupdate_ssse3_32_79(\&body_40_59);
1049	&Xupdate_ssse3_32_79(\&body_40_59);
1050	&Xupdate_ssse3_32_79(\&body_40_59);
1051	&Xupdate_ssse3_32_79(\&body_20_39);
1052	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
1053
1054				$saved_j=$j; @saved_V=@V;
1055
1056	&Xloop_ssse3(\&body_20_39);
1057	&Xloop_ssse3(\&body_20_39);
1058	&Xloop_ssse3(\&body_20_39);
1059
1060	&mov	(@T[1],&DWP(192,"esp"));	# update context
1061	&add	($A,&DWP(0,@T[1]));
1062	&add	(@T[0],&DWP(4,@T[1]));		# $b
1063	&add	($C,&DWP(8,@T[1]));
1064	&mov	(&DWP(0,@T[1]),$A);
1065	&add	($D,&DWP(12,@T[1]));
1066	&mov	(&DWP(4,@T[1]),@T[0]);
1067	&add	($E,&DWP(16,@T[1]));
1068	&mov	(&DWP(8,@T[1]),$C);
1069	&mov	($B,$C);
1070	&mov	(&DWP(12,@T[1]),$D);
1071	&xor	($B,$D);
1072	&mov	(&DWP(16,@T[1]),$E);
1073	&mov	(@T[1],@T[0]);
1074	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
1075	&and	(@T[0],$B);
1076	&mov	($B,$T[1]);
1077
1078	&jmp	(&label("loop"));
1079
1080&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1081
1082	&Xtail_ssse3(\&body_20_39);
1083	&Xtail_ssse3(\&body_20_39);
1084	&Xtail_ssse3(\&body_20_39);
1085
1086	&mov	(@T[1],&DWP(192,"esp"));	# update context
1087	&add	($A,&DWP(0,@T[1]));
1088	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1089	&add	(@T[0],&DWP(4,@T[1]));		# $b
1090	&add	($C,&DWP(8,@T[1]));
1091	&mov	(&DWP(0,@T[1]),$A);
1092	&add	($D,&DWP(12,@T[1]));
1093	&mov	(&DWP(4,@T[1]),@T[0]);
1094	&add	($E,&DWP(16,@T[1]));
1095	&mov	(&DWP(8,@T[1]),$C);
1096	&mov	(&DWP(12,@T[1]),$D);
1097	&mov	(&DWP(16,@T[1]),$E);
1098
1099&function_end("_sha1_block_data_order_ssse3");
1100
1101$rx=0;	# reset
1102
1103if ($ymm) {
1104my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
1105my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
1106my @V=($A,$B,$C,$D,$E);
1107my $j=0;			# hash round
1108my @T=($T,$tmp1);
1109my $inp;
1110
1111my $_rol=sub { &shld(@_[0],@_) };
1112my $_ror=sub { &shrd(@_[0],@_) };
1113
1114&function_begin("_sha1_block_data_order_avx");
1115	&call	(&label("pic_point"));	# make it PIC!
1116	&set_label("pic_point");
1117	&blindpop($tmp1);
1118	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1119&set_label("avx_shortcut");
1120	&vzeroall();
1121
1122	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
1123	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
1124	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
1125	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
1126	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
1127
1128	&mov	($E,&wparam(0));		# load argument block
1129	&mov	($inp=@T[1],&wparam(1));
1130	&mov	($D,&wparam(2));
1131	&mov	(@T[0],"esp");
1132
1133	# stack frame layout
1134	#
1135	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
1136	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
1137	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
1138	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
1139	#
1140	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
1141	#	X[4]	X[5]	X[6]	X[7]
1142	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
1143	#
1144	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
1145	#	K_40_59	K_40_59	K_40_59	K_40_59
1146	#	K_60_79	K_60_79	K_60_79	K_60_79
1147	#	K_00_19	K_00_19	K_00_19	K_00_19
1148	#	pbswap mask
1149	#
1150	# +192	ctx				# argument block
1151	# +196	inp
1152	# +200	end
1153	# +204	esp
1154	&sub	("esp",208);
1155	&and	("esp",-64);
1156
1157	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
1158	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
1159	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
1160	&shl	($D,6);				# len*64
1161	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
1162	&add	($D,$inp);			# end of input
1163	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
1164	&add	($inp,64);
1165	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
1166	&mov	(&DWP(192+4,"esp"),$inp);
1167	&mov	(&DWP(192+8,"esp"),$D);
1168	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
1169
1170	&mov	($A,&DWP(0,$E));		# load context
1171	&mov	($B,&DWP(4,$E));
1172	&mov	($C,&DWP(8,$E));
1173	&mov	($D,&DWP(12,$E));
1174	&mov	($E,&DWP(16,$E));
1175	&mov	(@T[0],$B);			# magic seed
1176
1177	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
1178	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
1179	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
1180	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
1181	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
1182	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1183	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1184	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1185	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1186	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
1187	&vpaddd	(@X[1],@X[-3&7],@X[3]);
1188	&vpaddd	(@X[2],@X[-2&7],@X[3]);
1189	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
1190	&mov	(@T[1],$C);
1191	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
1192	&xor	(@T[1],$D);
1193	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
1194	&and	(@T[0],@T[1]);
1195	&jmp	(&label("loop"));
1196
1197sub Xupdate_avx_16_31()		# recall that $Xi starts with 4
1198{ use integer;
1199  my $body = shift;
1200  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
1201  my ($a,$b,$c,$d,$e);
1202
1203	 eval(shift(@insns));
1204	 eval(shift(@insns));
1205	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
1206	 eval(shift(@insns));
1207	 eval(shift(@insns));
1208
1209	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1210	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1211	 eval(shift(@insns));
1212	 eval(shift(@insns));
1213	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
1214	 eval(shift(@insns));
1215	 eval(shift(@insns));
1216	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
1217	 eval(shift(@insns));
1218	 eval(shift(@insns));
1219
1220	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
1221	 eval(shift(@insns));
1222	 eval(shift(@insns));
1223	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1224	 eval(shift(@insns));
1225	 eval(shift(@insns));
1226
1227	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
1228	 eval(shift(@insns));
1229	 eval(shift(@insns));
1230	 eval(shift(@insns));
1231	 eval(shift(@insns));
1232
1233	&vpsrld	(@X[2],@X[0],31);
1234	 eval(shift(@insns));
1235	 eval(shift(@insns));
1236	 eval(shift(@insns));
1237	 eval(shift(@insns));
1238
1239	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
1240	&vpaddd	(@X[0],@X[0],@X[0]);
1241	 eval(shift(@insns));
1242	 eval(shift(@insns));
1243	 eval(shift(@insns));
1244	 eval(shift(@insns));
1245
1246	&vpsrld	(@X[3],@X[4],30);
1247	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
1248	 eval(shift(@insns));
1249	 eval(shift(@insns));
1250	 eval(shift(@insns));
1251	 eval(shift(@insns));
1252
1253	&vpslld	(@X[4],@X[4],2);
1254	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
1255	 eval(shift(@insns));
1256	 eval(shift(@insns));
1257	&vpxor	(@X[0],@X[0],@X[3]);
1258	 eval(shift(@insns));
1259	 eval(shift(@insns));
1260	 eval(shift(@insns));
1261	 eval(shift(@insns));
1262
1263	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
1264	 eval(shift(@insns));
1265	 eval(shift(@insns));
1266	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
1267	 eval(shift(@insns));
1268	 eval(shift(@insns));
1269
1270	 foreach (@insns) { eval; }	# remaining instructions [if any]
1271
1272  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1273}
1274
1275sub Xupdate_avx_32_79()
1276{ use integer;
1277  my $body = shift;
1278  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
1279  my ($a,$b,$c,$d,$e);
1280
1281	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
1282	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
1283	 eval(shift(@insns));		# body_20_39
1284	 eval(shift(@insns));
1285	 eval(shift(@insns));
1286	 eval(shift(@insns));		# rol
1287
1288	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
1289	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
1290	 eval(shift(@insns));
1291	 eval(shift(@insns));
1292	 if ($Xi%5) {
1293	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
1294	 } else {			# ... or load next one
1295	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1296	 }
1297	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1298	 eval(shift(@insns));		# ror
1299	 eval(shift(@insns));
1300
1301	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
1302	 eval(shift(@insns));		# body_20_39
1303	 eval(shift(@insns));
1304	 eval(shift(@insns));
1305	 eval(shift(@insns));		# rol
1306
1307	&vpsrld	(@X[2],@X[0],30);
1308	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1309	 eval(shift(@insns));
1310	 eval(shift(@insns));
1311	 eval(shift(@insns));		# ror
1312	 eval(shift(@insns));
1313
1314	&vpslld	(@X[0],@X[0],2);
1315	 eval(shift(@insns));		# body_20_39
1316	 eval(shift(@insns));
1317	 eval(shift(@insns));
1318	 eval(shift(@insns));		# rol
1319	 eval(shift(@insns));
1320	 eval(shift(@insns));
1321	 eval(shift(@insns));		# ror
1322	 eval(shift(@insns));
1323
1324	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
1325	 eval(shift(@insns));		# body_20_39
1326	 eval(shift(@insns));
1327	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
1328	 eval(shift(@insns));
1329	 eval(shift(@insns));		# rol
1330	 eval(shift(@insns));
1331	 eval(shift(@insns));
1332	 eval(shift(@insns));		# ror
1333	 eval(shift(@insns));
1334
1335	 foreach (@insns) { eval; }	# remaining instructions
1336
1337  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1338}
1339
1340sub Xuplast_avx_80()
1341{ use integer;
1342  my $body = shift;
1343  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1344  my ($a,$b,$c,$d,$e);
1345
1346	 eval(shift(@insns));
1347	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1348	 eval(shift(@insns));
1349	 eval(shift(@insns));
1350	 eval(shift(@insns));
1351	 eval(shift(@insns));
1352
1353	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
1354
1355	 foreach (@insns) { eval; }		# remaining instructions
1356
1357	&mov	($inp=@T[1],&DWP(192+4,"esp"));
1358	&cmp	($inp,&DWP(192+8,"esp"));
1359	&je	(&label("done"));
1360
1361	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
1362	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
1363	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
1364	&vmovdqu(@X[-3&7],&QWP(16,$inp));
1365	&vmovdqu(@X[-2&7],&QWP(32,$inp));
1366	&vmovdqu(@X[-1&7],&QWP(48,$inp));
1367	&add	($inp,64);
1368	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
1369	&mov	(&DWP(192+4,"esp"),$inp);
1370	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1371
1372  $Xi=0;
1373}
1374
1375sub Xloop_avx()
1376{ use integer;
1377  my $body = shift;
1378  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1379  my ($a,$b,$c,$d,$e);
1380
1381	 eval(shift(@insns));
1382	 eval(shift(@insns));
1383	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1384	 eval(shift(@insns));
1385	 eval(shift(@insns));
1386	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1387	 eval(shift(@insns));
1388	 eval(shift(@insns));
1389	 eval(shift(@insns));
1390	 eval(shift(@insns));
1391	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
1392	 eval(shift(@insns));
1393	 eval(shift(@insns));
1394
1395	foreach (@insns) { eval; }
1396  $Xi++;
1397}
1398
1399sub Xtail_avx()
1400{ use integer;
1401  my $body = shift;
1402  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1403  my ($a,$b,$c,$d,$e);
1404
1405	foreach (@insns) { eval; }
1406}
1407
1408&set_label("loop",16);
1409	&Xupdate_avx_16_31(\&body_00_19);
1410	&Xupdate_avx_16_31(\&body_00_19);
1411	&Xupdate_avx_16_31(\&body_00_19);
1412	&Xupdate_avx_16_31(\&body_00_19);
1413	&Xupdate_avx_32_79(\&body_00_19);
1414	&Xupdate_avx_32_79(\&body_20_39);
1415	&Xupdate_avx_32_79(\&body_20_39);
1416	&Xupdate_avx_32_79(\&body_20_39);
1417	&Xupdate_avx_32_79(\&body_20_39);
1418	&Xupdate_avx_32_79(\&body_20_39);
1419	&Xupdate_avx_32_79(\&body_40_59);
1420	&Xupdate_avx_32_79(\&body_40_59);
1421	&Xupdate_avx_32_79(\&body_40_59);
1422	&Xupdate_avx_32_79(\&body_40_59);
1423	&Xupdate_avx_32_79(\&body_40_59);
1424	&Xupdate_avx_32_79(\&body_20_39);
1425	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
1426
1427				$saved_j=$j; @saved_V=@V;
1428
1429	&Xloop_avx(\&body_20_39);
1430	&Xloop_avx(\&body_20_39);
1431	&Xloop_avx(\&body_20_39);
1432
1433	&mov	(@T[1],&DWP(192,"esp"));	# update context
1434	&add	($A,&DWP(0,@T[1]));
1435	&add	(@T[0],&DWP(4,@T[1]));		# $b
1436	&add	($C,&DWP(8,@T[1]));
1437	&mov	(&DWP(0,@T[1]),$A);
1438	&add	($D,&DWP(12,@T[1]));
1439	&mov	(&DWP(4,@T[1]),@T[0]);
1440	&add	($E,&DWP(16,@T[1]));
1441	&mov	($B,$C);
1442	&mov	(&DWP(8,@T[1]),$C);
1443	&xor	($B,$D);
1444	&mov	(&DWP(12,@T[1]),$D);
1445	&mov	(&DWP(16,@T[1]),$E);
1446	&mov	(@T[1],@T[0]);
1447	&and	(@T[0],$B);
1448	&mov	($B,@T[1]);
1449
1450	&jmp	(&label("loop"));
1451
1452&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1453
1454	&Xtail_avx(\&body_20_39);
1455	&Xtail_avx(\&body_20_39);
1456	&Xtail_avx(\&body_20_39);
1457
1458	&vzeroall();
1459
1460	&mov	(@T[1],&DWP(192,"esp"));	# update context
1461	&add	($A,&DWP(0,@T[1]));
1462	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1463	&add	(@T[0],&DWP(4,@T[1]));		# $b
1464	&add	($C,&DWP(8,@T[1]));
1465	&mov	(&DWP(0,@T[1]),$A);
1466	&add	($D,&DWP(12,@T[1]));
1467	&mov	(&DWP(4,@T[1]),@T[0]);
1468	&add	($E,&DWP(16,@T[1]));
1469	&mov	(&DWP(8,@T[1]),$C);
1470	&mov	(&DWP(12,@T[1]),$D);
1471	&mov	(&DWP(16,@T[1]),$E);
1472&function_end("_sha1_block_data_order_avx");
1473}
1474&set_label("K_XX_XX",64);
1475&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
1476&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
1477&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
1478&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
1479&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
1480&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
1481}
1482&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1483
1484&asm_finish();
1485
1486close STDOUT;
1487