1#! /usr/bin/env perl 2# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# ==================================================================== 10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 11# project. The module is, however, dual licensed under OpenSSL and 12# CRYPTOGAMS licenses depending on where you obtain it. For further 13# details see http://www.openssl.org/~appro/cryptogams/. 14# 15# Permission to use under GPLv2 terms is granted. 16# ==================================================================== 17# 18# SHA256/512 for ARMv8. 19# 20# Performance in cycles per processed byte and improvement coefficient 21# over code generated with "default" compiler: 22# 23# SHA256-hw SHA256(*) SHA512 24# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**)) 25# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***)) 26# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***)) 27# Denver 2.01 10.5 (+26%) 6.70 (+8%) 28# X-Gene 20.0 (+100%) 12.8 (+300%(***)) 29# Mongoose 2.36 13.0 (+50%) 8.36 (+33%) 30# 31# (*) Software SHA256 results are of lesser relevance, presented 32# mostly for informational purposes. 33# (**) The result is a trade-off: it's possible to improve it by 34# 10% (or by 1 cycle per round), but at the cost of 20% loss 35# on Cortex-A53 (or by 4 cycles per round). 36# (***) Super-impressive coefficients over gcc-generated code are 37# indication of some compiler "pathology", most notably code 38# generated with -mgeneral-regs-only is significanty faster 39# and the gap is only 40-90%. 40 41$output=pop; 42$flavour=pop; 43 44if ($flavour && $flavour ne "void") { 45 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 46 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or 47 ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or 48 die "can't locate arm-xlate.pl"; 49 50 open OUT,"| \"$^X\" $xlate $flavour $output"; 51 *STDOUT=*OUT; 52} else { 53 open STDOUT,">$output"; 54} 55 56if ($output =~ /512/) { 57 $BITS=512; 58 $SZ=8; 59 @Sigma0=(28,34,39); 60 @Sigma1=(14,18,41); 61 @sigma0=(1, 8, 7); 62 @sigma1=(19,61, 6); 63 $rounds=80; 64 $reg_t="x"; 65} else { 66 $BITS=256; 67 $SZ=4; 68 @Sigma0=( 2,13,22); 69 @Sigma1=( 6,11,25); 70 @sigma0=( 7,18, 3); 71 @sigma1=(17,19,10); 72 $rounds=64; 73 $reg_t="w"; 74} 75 76$func="sha${BITS}_block_data_order"; 77 78($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30)); 79 80@X=map("$reg_t$_",(3..15,0..2)); 81@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27)); 82($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28)); 83 84sub BODY_00_xx { 85my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; 86my $j=($i+1)&15; 87my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); 88 $T0=@X[$i+3] if ($i<11); 89 90$code.=<<___ if ($i<16); 91#ifndef __ARMEB__ 92 rev @X[$i],@X[$i] // $i 93#endif 94___ 95$code.=<<___ if ($i<13 && ($i&1)); 96 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ 97___ 98$code.=<<___ if ($i==13); 99 ldp @X[14],@X[15],[$inp] 100___ 101$code.=<<___ if ($i>=14); 102 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`] 103___ 104$code.=<<___ if ($i>0 && $i<16); 105 add $a,$a,$t1 // h+=Sigma0(a) 106___ 107$code.=<<___ if ($i>=11); 108 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`] 109___ 110# While ARMv8 specifies merged rotate-n-logical operation such as 111# 'eor x,y,z,ror#n', it was found to negatively affect performance 112# on Apple A7. The reason seems to be that it requires even 'y' to 113# be available earlier. This means that such merged instruction is 114# not necessarily best choice on critical path... On the other hand 115# Cortex-A5x handles merged instructions much better than disjoint 116# rotate and logical... See (**) footnote above. 117$code.=<<___ if ($i<15); 118 ror $t0,$e,#$Sigma1[0] 119 add $h,$h,$t2 // h+=K[i] 120 eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]` 121 and $t1,$f,$e 122 bic $t2,$g,$e 123 add $h,$h,@X[$i&15] // h+=X[i] 124 orr $t1,$t1,$t2 // Ch(e,f,g) 125 eor $t2,$a,$b // a^b, b^c in next round 126 eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e) 127 ror $T0,$a,#$Sigma0[0] 128 add $h,$h,$t1 // h+=Ch(e,f,g) 129 eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]` 130 add $h,$h,$t0 // h+=Sigma1(e) 131 and $t3,$t3,$t2 // (b^c)&=(a^b) 132 add $d,$d,$h // d+=h 133 eor $t3,$t3,$b // Maj(a,b,c) 134 eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a) 135 add $h,$h,$t3 // h+=Maj(a,b,c) 136 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round 137 //add $h,$h,$t1 // h+=Sigma0(a) 138___ 139$code.=<<___ if ($i>=15); 140 ror $t0,$e,#$Sigma1[0] 141 add $h,$h,$t2 // h+=K[i] 142 ror $T1,@X[($j+1)&15],#$sigma0[0] 143 and $t1,$f,$e 144 ror $T2,@X[($j+14)&15],#$sigma1[0] 145 bic $t2,$g,$e 146 ror $T0,$a,#$Sigma0[0] 147 add $h,$h,@X[$i&15] // h+=X[i] 148 eor $t0,$t0,$e,ror#$Sigma1[1] 149 eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1] 150 orr $t1,$t1,$t2 // Ch(e,f,g) 151 eor $t2,$a,$b // a^b, b^c in next round 152 eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e) 153 eor $T0,$T0,$a,ror#$Sigma0[1] 154 add $h,$h,$t1 // h+=Ch(e,f,g) 155 and $t3,$t3,$t2 // (b^c)&=(a^b) 156 eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1] 157 eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1]) 158 add $h,$h,$t0 // h+=Sigma1(e) 159 eor $t3,$t3,$b // Maj(a,b,c) 160 eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a) 161 eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14]) 162 add @X[$j],@X[$j],@X[($j+9)&15] 163 add $d,$d,$h // d+=h 164 add $h,$h,$t3 // h+=Maj(a,b,c) 165 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round 166 add @X[$j],@X[$j],$T1 167 add $h,$h,$t1 // h+=Sigma0(a) 168 add @X[$j],@X[$j],$T2 169___ 170 ($t2,$t3)=($t3,$t2); 171} 172 173$code.=<<___; 174#ifndef __KERNEL__ 175# include <openssl/arm_arch.h> 176#endif 177 178.text 179 180.extern OPENSSL_armcap_P 181.globl $func 182.type $func,%function 183.align 6 184$func: 185___ 186$code.=<<___ if ($SZ==4); 187#ifndef __KERNEL__ 188 adrp x16,:pg_hi21:OPENSSL_armcap_P 189 add x16,x16,:lo12:OPENSSL_armcap_P 190 ldr w16,[x16] 191 tst w16,#ARMV8_SHA256 192 b.ne .Lv8_entry 193#endif 194___ 195$code.=<<___; 196 stp x29,x30,[sp,#-128]! 197 add x29,sp,#0 198 199 stp x19,x20,[sp,#16] 200 stp x21,x22,[sp,#32] 201 stp x23,x24,[sp,#48] 202 stp x25,x26,[sp,#64] 203 stp x27,x28,[sp,#80] 204 sub sp,sp,#4*$SZ 205 206 ldp $A,$B,[$ctx] // load context 207 ldp $C,$D,[$ctx,#2*$SZ] 208 ldp $E,$F,[$ctx,#4*$SZ] 209 add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input 210 ldp $G,$H,[$ctx,#6*$SZ] 211 adrp $Ktbl,:pg_hi21:.LK$BITS 212 add $Ktbl,$Ktbl,:lo12:.LK$BITS 213 stp $ctx,$num,[x29,#96] 214 215.Loop: 216 ldp @X[0],@X[1],[$inp],#2*$SZ 217 ldr $t2,[$Ktbl],#$SZ // *K++ 218 eor $t3,$B,$C // magic seed 219 str $inp,[x29,#112] 220___ 221for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } 222$code.=".Loop_16_xx:\n"; 223for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } 224$code.=<<___; 225 cbnz $t2,.Loop_16_xx 226 227 ldp $ctx,$num,[x29,#96] 228 ldr $inp,[x29,#112] 229 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind 230 231 ldp @X[0],@X[1],[$ctx] 232 ldp @X[2],@X[3],[$ctx,#2*$SZ] 233 add $inp,$inp,#14*$SZ // advance input pointer 234 ldp @X[4],@X[5],[$ctx,#4*$SZ] 235 add $A,$A,@X[0] 236 ldp @X[6],@X[7],[$ctx,#6*$SZ] 237 add $B,$B,@X[1] 238 add $C,$C,@X[2] 239 add $D,$D,@X[3] 240 stp $A,$B,[$ctx] 241 add $E,$E,@X[4] 242 add $F,$F,@X[5] 243 stp $C,$D,[$ctx,#2*$SZ] 244 add $G,$G,@X[6] 245 add $H,$H,@X[7] 246 cmp $inp,$num 247 stp $E,$F,[$ctx,#4*$SZ] 248 stp $G,$H,[$ctx,#6*$SZ] 249 b.ne .Loop 250 251 ldp x19,x20,[x29,#16] 252 add sp,sp,#4*$SZ 253 ldp x21,x22,[x29,#32] 254 ldp x23,x24,[x29,#48] 255 ldp x25,x26,[x29,#64] 256 ldp x27,x28,[x29,#80] 257 ldp x29,x30,[sp],#128 258 ret 259.size $func,.-$func 260 261.section .rodata 262.align 6 263.type .LK$BITS,%object 264.LK$BITS: 265___ 266$code.=<<___ if ($SZ==8); 267 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 268 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 269 .quad 0x3956c25bf348b538,0x59f111f1b605d019 270 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 271 .quad 0xd807aa98a3030242,0x12835b0145706fbe 272 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 273 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 274 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 275 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 276 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 277 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 278 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 279 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 280 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 281 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 282 .quad 0x06ca6351e003826f,0x142929670a0e6e70 283 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 284 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 285 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 286 .quad 0x81c2c92e47edaee6,0x92722c851482353b 287 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 288 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 289 .quad 0xd192e819d6ef5218,0xd69906245565a910 290 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 291 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 292 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 293 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 294 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 295 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 296 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 297 .quad 0x90befffa23631e28,0xa4506cebde82bde9 298 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 299 .quad 0xca273eceea26619c,0xd186b8c721c0c207 300 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 301 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 302 .quad 0x113f9804bef90dae,0x1b710b35131c471b 303 .quad 0x28db77f523047d84,0x32caab7b40c72493 304 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 305 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 306 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 307 .quad 0 // terminator 308___ 309$code.=<<___ if ($SZ==4); 310 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 311 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 312 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 313 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 314 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc 315 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da 316 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 317 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 318 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 319 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 320 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 321 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 322 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 323 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 324 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 325 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 326 .long 0 //terminator 327___ 328$code.=<<___; 329.size .LK$BITS,.-.LK$BITS 330.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" 331.align 2 332___ 333 334if ($SZ==4) { 335my $Ktbl="x3"; 336 337my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2)); 338my @MSG=map("v$_.16b",(4..7)); 339my ($W0,$W1)=("v16.4s","v17.4s"); 340my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b"); 341 342$code.=<<___; 343.text 344#ifndef __KERNEL__ 345.type sha256_block_armv8,%function 346.align 6 347sha256_block_armv8: 348.Lv8_entry: 349 stp x29,x30,[sp,#-16]! 350 add x29,sp,#0 351 352 ld1.32 {$ABCD,$EFGH},[$ctx] 353 adrp $Ktbl,:pg_hi21:.LK256 354 add $Ktbl,$Ktbl,:lo12:.LK256 355 356.Loop_hw: 357 ld1 {@MSG[0]-@MSG[3]},[$inp],#64 358 sub $num,$num,#1 359 ld1.32 {$W0},[$Ktbl],#16 360 rev32 @MSG[0],@MSG[0] 361 rev32 @MSG[1],@MSG[1] 362 rev32 @MSG[2],@MSG[2] 363 rev32 @MSG[3],@MSG[3] 364 orr $ABCD_SAVE,$ABCD,$ABCD // offload 365 orr $EFGH_SAVE,$EFGH,$EFGH 366___ 367for($i=0;$i<12;$i++) { 368$code.=<<___; 369 ld1.32 {$W1},[$Ktbl],#16 370 add.i32 $W0,$W0,@MSG[0] 371 sha256su0 @MSG[0],@MSG[1] 372 orr $abcd,$ABCD,$ABCD 373 sha256h $ABCD,$EFGH,$W0 374 sha256h2 $EFGH,$abcd,$W0 375 sha256su1 @MSG[0],@MSG[2],@MSG[3] 376___ 377 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); 378} 379$code.=<<___; 380 ld1.32 {$W1},[$Ktbl],#16 381 add.i32 $W0,$W0,@MSG[0] 382 orr $abcd,$ABCD,$ABCD 383 sha256h $ABCD,$EFGH,$W0 384 sha256h2 $EFGH,$abcd,$W0 385 386 ld1.32 {$W0},[$Ktbl],#16 387 add.i32 $W1,$W1,@MSG[1] 388 orr $abcd,$ABCD,$ABCD 389 sha256h $ABCD,$EFGH,$W1 390 sha256h2 $EFGH,$abcd,$W1 391 392 ld1.32 {$W1},[$Ktbl] 393 add.i32 $W0,$W0,@MSG[2] 394 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind 395 orr $abcd,$ABCD,$ABCD 396 sha256h $ABCD,$EFGH,$W0 397 sha256h2 $EFGH,$abcd,$W0 398 399 add.i32 $W1,$W1,@MSG[3] 400 orr $abcd,$ABCD,$ABCD 401 sha256h $ABCD,$EFGH,$W1 402 sha256h2 $EFGH,$abcd,$W1 403 404 add.i32 $ABCD,$ABCD,$ABCD_SAVE 405 add.i32 $EFGH,$EFGH,$EFGH_SAVE 406 407 cbnz $num,.Loop_hw 408 409 st1.32 {$ABCD,$EFGH},[$ctx] 410 411 ldr x29,[sp],#16 412 ret 413.size sha256_block_armv8,.-sha256_block_armv8 414#endif 415___ 416} 417 418$code.=<<___; 419#ifndef __KERNEL__ 420.comm OPENSSL_armcap_P,4,4 421.hidden OPENSSL_armcap_P 422#endif 423___ 424 425{ my %opcode = ( 426 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000, 427 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 ); 428 429 sub unsha256 { 430 my ($mnemonic,$arg)=@_; 431 432 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o 433 && 434 sprintf ".inst\t0x%08x\t//%s %s", 435 $opcode{$mnemonic}|$1|($2<<5)|($3<<16), 436 $mnemonic,$arg; 437 } 438} 439 440open SELF,$0; 441while(<SELF>) { 442 next if (/^#!/); 443 last if (!s/^#/\/\// and !/^$/); 444 print; 445} 446close SELF; 447 448foreach(split("\n",$code)) { 449 450 s/\`([^\`]*)\`/eval($1)/geo; 451 452 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo; 453 454 s/\.\w?32\b//o and s/\.16b/\.4s/go; 455 m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go; 456 457 print $_,"\n"; 458} 459 460close STDOUT; 461