1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2  * project 1999.
3  */
4 /* ====================================================================
5  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    licensing@OpenSSL.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com). */
55 
56 #include <openssl/pkcs8.h>
57 
58 #include <limits.h>
59 
60 #include <openssl/asn1t.h>
61 #include <openssl/asn1.h>
62 #include <openssl/bio.h>
63 #include <openssl/buf.h>
64 #include <openssl/bytestring.h>
65 #include <openssl/err.h>
66 #include <openssl/evp.h>
67 #include <openssl/digest.h>
68 #include <openssl/hmac.h>
69 #include <openssl/mem.h>
70 #include <openssl/rand.h>
71 #include <openssl/x509.h>
72 
73 #include "internal.h"
74 #include "../bytestring/internal.h"
75 #include "../internal.h"
76 
77 
pkcs12_iterations_acceptable(uint64_t iterations)78 int pkcs12_iterations_acceptable(uint64_t iterations) {
79 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
80   static const uint64_t kIterationsLimit = 2048;
81 #else
82   // Windows imposes a limit of 600K. Mozilla say: “so them increasing
83   // maximum to something like 100M or 1G (to have few decades of breathing
84   // room) would be very welcome”[1]. So here we set the limit to 100M.
85   //
86   // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14
87   static const uint64_t kIterationsLimit = 100 * 1000000;
88 #endif
89 
90   return 0 < iterations && iterations <= kIterationsLimit;
91 }
92 
93 // Minor tweak to operation: zero private key data
pkey_cb(int operation,ASN1_VALUE ** pval,const ASN1_ITEM * it,void * exarg)94 static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
95                    void *exarg) {
96   // Since the structure must still be valid use ASN1_OP_FREE_PRE
97   if (operation == ASN1_OP_FREE_PRE) {
98     PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval;
99     if (key->pkey && key->pkey->type == V_ASN1_OCTET_STRING &&
100         key->pkey->value.octet_string) {
101       OPENSSL_cleanse(key->pkey->value.octet_string->data,
102                       key->pkey->value.octet_string->length);
103     }
104   }
105   return 1;
106 }
107 
108 ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = {
109   ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
110   ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
111   ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_ANY),
112   ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0)
113 } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO)
114 
115 IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO)
116 
117 EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
118   uint8_t *der = NULL;
119   int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
120   if (der_len < 0) {
121     return NULL;
122   }
123 
124   CBS cbs;
125   CBS_init(&cbs, der, (size_t)der_len);
126   EVP_PKEY *ret = EVP_parse_private_key(&cbs);
127   if (ret == NULL || CBS_len(&cbs) != 0) {
128     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
129     EVP_PKEY_free(ret);
130     OPENSSL_free(der);
131     return NULL;
132   }
133 
134   OPENSSL_free(der);
135   return ret;
136 }
137 
EVP_PKEY2PKCS8(EVP_PKEY * pkey)138 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
139   CBB cbb;
140   uint8_t *der = NULL;
141   size_t der_len;
142   if (!CBB_init(&cbb, 0) ||
143       !EVP_marshal_private_key(&cbb, pkey) ||
144       !CBB_finish(&cbb, &der, &der_len) ||
145       der_len > LONG_MAX) {
146     CBB_cleanup(&cbb);
147     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
148     goto err;
149   }
150 
151   const uint8_t *p = der;
152   PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
153   if (p8 == NULL || p != der + der_len) {
154     PKCS8_PRIV_KEY_INFO_free(p8);
155     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
156     goto err;
157   }
158 
159   OPENSSL_free(der);
160   return p8;
161 
162 err:
163   OPENSSL_free(der);
164   return NULL;
165 }
166 
PKCS8_decrypt(X509_SIG * pkcs8,const char * pass,int pass_len_in)167 PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
168                                    int pass_len_in) {
169   size_t pass_len;
170   if (pass_len_in == -1 && pass != NULL) {
171     pass_len = strlen(pass);
172   } else {
173     pass_len = (size_t)pass_len_in;
174   }
175 
176   PKCS8_PRIV_KEY_INFO *ret = NULL;
177   EVP_PKEY *pkey = NULL;
178   uint8_t *in = NULL;
179 
180   // Convert the legacy ASN.1 object to a byte string.
181   int in_len = i2d_X509_SIG(pkcs8, &in);
182   if (in_len < 0) {
183     goto err;
184   }
185 
186   CBS cbs;
187   CBS_init(&cbs, in, in_len);
188   pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len);
189   if (pkey == NULL || CBS_len(&cbs) != 0) {
190     goto err;
191   }
192 
193   ret = EVP_PKEY2PKCS8(pkey);
194 
195 err:
196   OPENSSL_free(in);
197   EVP_PKEY_free(pkey);
198   return ret;
199 }
200 
PKCS8_encrypt(int pbe_nid,const EVP_CIPHER * cipher,const char * pass,int pass_len_in,const uint8_t * salt,size_t salt_len,int iterations,PKCS8_PRIV_KEY_INFO * p8inf)201 X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
202                         int pass_len_in, const uint8_t *salt, size_t salt_len,
203                         int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
204   size_t pass_len;
205   if (pass_len_in == -1 && pass != NULL) {
206     pass_len = strlen(pass);
207   } else {
208     pass_len = (size_t)pass_len_in;
209   }
210 
211   // Parse out the private key.
212   EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf);
213   if (pkey == NULL) {
214     return NULL;
215   }
216 
217   X509_SIG *ret = NULL;
218   uint8_t *der = NULL;
219   size_t der_len;
220   CBB cbb;
221   if (!CBB_init(&cbb, 128) ||
222       !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass,
223                                            pass_len, salt, salt_len, iterations,
224                                            pkey) ||
225       !CBB_finish(&cbb, &der, &der_len)) {
226     CBB_cleanup(&cbb);
227     goto err;
228   }
229 
230   // Convert back to legacy ASN.1 objects.
231   const uint8_t *ptr = der;
232   ret = d2i_X509_SIG(NULL, &ptr, der_len);
233   if (ret == NULL || ptr != der + der_len) {
234     OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
235     X509_SIG_free(ret);
236     ret = NULL;
237   }
238 
239 err:
240   OPENSSL_free(der);
241   EVP_PKEY_free(pkey);
242   return ret;
243 }
244 
245 struct pkcs12_context {
246   EVP_PKEY **out_key;
247   STACK_OF(X509) *out_certs;
248   const char *password;
249   size_t password_len;
250 };
251 
252 // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
253 // structure.
PKCS12_handle_sequence(CBS * sequence,struct pkcs12_context * ctx,int (* handle_element)(CBS * cbs,struct pkcs12_context * ctx))254 static int PKCS12_handle_sequence(
255     CBS *sequence, struct pkcs12_context *ctx,
256     int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
257   uint8_t *storage = NULL;
258   CBS in;
259   int ret = 0;
260 
261   // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
262   // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
263   // conversion cannot see through those wrappings. So each time we step
264   // through one we need to convert to DER again.
265   if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) {
266     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
267     return 0;
268   }
269 
270   CBS child;
271   if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
272       CBS_len(&in) != 0) {
273     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
274     goto err;
275   }
276 
277   while (CBS_len(&child) > 0) {
278     CBS element;
279     if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
280       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
281       goto err;
282     }
283 
284     if (!handle_element(&element, ctx)) {
285       goto err;
286     }
287   }
288 
289   ret = 1;
290 
291 err:
292   OPENSSL_free(storage);
293   return ret;
294 }
295 
296 // 1.2.840.113549.1.12.10.1.2
297 static const uint8_t kPKCS8ShroudedKeyBag[] = {
298     0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};
299 
300 // 1.2.840.113549.1.12.10.1.3
301 static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
302                                    0x01, 0x0c, 0x0a, 0x01, 0x03};
303 
304 // 1.2.840.113549.1.9.20
305 static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
306                                         0x0d, 0x01, 0x09, 0x14};
307 
308 // 1.2.840.113549.1.9.21
309 static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
310                                       0x0d, 0x01, 0x09, 0x15};
311 
312 // 1.2.840.113549.1.9.22.1
313 static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
314                                            0x0d, 0x01, 0x09, 0x16, 0x01};
315 
316 // parse_bag_attributes parses the bagAttributes field of a SafeBag structure.
317 // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name,
318 // encoded as a UTF-8 string, or NULL if there is none. It returns one on
319 // success and zero on error.
parse_bag_attributes(CBS * attrs,uint8_t ** out_friendly_name,size_t * out_friendly_name_len)320 static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name,
321                                 size_t *out_friendly_name_len) {
322   *out_friendly_name = NULL;
323   *out_friendly_name_len = 0;
324 
325   // See https://tools.ietf.org/html/rfc7292#section-4.2.
326   while (CBS_len(attrs) != 0) {
327     CBS attr, oid, values;
328     if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) ||
329         !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
330         !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) ||
331         CBS_len(&attr) != 0) {
332       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
333       goto err;
334     }
335     if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) {
336       // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
337       CBS value;
338       if (*out_friendly_name != NULL ||
339           !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) ||
340           CBS_len(&values) != 0 ||
341           CBS_len(&value) == 0) {
342         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
343         goto err;
344       }
345       // Convert the friendly name to UTF-8.
346       CBB cbb;
347       if (!CBB_init(&cbb, CBS_len(&value))) {
348         OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
349         goto err;
350       }
351       while (CBS_len(&value) != 0) {
352         uint32_t c;
353         if (!cbs_get_ucs2_be(&value, &c) ||
354             !cbb_add_utf8(&cbb, c)) {
355           OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
356           CBB_cleanup(&cbb);
357           goto err;
358         }
359       }
360       if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) {
361         OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
362         CBB_cleanup(&cbb);
363         goto err;
364       }
365     }
366   }
367 
368   return 1;
369 
370 err:
371   OPENSSL_free(*out_friendly_name);
372   *out_friendly_name = NULL;
373   *out_friendly_name_len = 0;
374   return 0;
375 }
376 
377 // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
378 // structure.
PKCS12_handle_safe_bag(CBS * safe_bag,struct pkcs12_context * ctx)379 static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
380   CBS bag_id, wrapped_value, bag_attrs;
381   if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
382       !CBS_get_asn1(safe_bag, &wrapped_value,
383                     CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
384     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
385     return 0;
386   }
387   if (CBS_len(safe_bag) == 0) {
388     CBS_init(&bag_attrs, NULL, 0);
389   } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) ||
390              CBS_len(safe_bag) != 0) {
391     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
392     return 0;
393   }
394 
395   if (CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
396                     sizeof(kPKCS8ShroudedKeyBag))) {
397     // See RFC 7292, section 4.2.2.
398     if (*ctx->out_key) {
399       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
400       return 0;
401     }
402 
403     EVP_PKEY *pkey = PKCS8_parse_encrypted_private_key(
404         &wrapped_value, ctx->password, ctx->password_len);
405     if (pkey == NULL) {
406       return 0;
407     }
408 
409     if (CBS_len(&wrapped_value) != 0) {
410       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
411       EVP_PKEY_free(pkey);
412       return 0;
413     }
414 
415     *ctx->out_key = pkey;
416     return 1;
417   }
418 
419   if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
420     // See RFC 7292, section 4.2.3.
421     CBS cert_bag, cert_type, wrapped_cert, cert;
422     if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
423         !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
424         !CBS_get_asn1(&cert_bag, &wrapped_cert,
425                       CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
426         !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
427       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
428       return 0;
429     }
430 
431     // Skip unknown certificate types.
432     if (!CBS_mem_equal(&cert_type, kX509Certificate,
433                        sizeof(kX509Certificate))) {
434       return 1;
435     }
436 
437     if (CBS_len(&cert) > LONG_MAX) {
438       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
439       return 0;
440     }
441 
442     const uint8_t *inp = CBS_data(&cert);
443     X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
444     if (!x509) {
445       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
446       return 0;
447     }
448 
449     if (inp != CBS_data(&cert) + CBS_len(&cert)) {
450       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
451       X509_free(x509);
452       return 0;
453     }
454 
455     uint8_t *friendly_name;
456     size_t friendly_name_len;
457     if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) {
458       X509_free(x509);
459       return 0;
460     }
461     int ok = friendly_name_len == 0 ||
462              X509_alias_set1(x509, friendly_name, friendly_name_len);
463     OPENSSL_free(friendly_name);
464     if (!ok ||
465         0 == sk_X509_push(ctx->out_certs, x509)) {
466       X509_free(x509);
467       return 0;
468     }
469 
470     return 1;
471   }
472 
473   // Unknown element type - ignore it.
474   return 1;
475 }
476 
477 // 1.2.840.113549.1.7.1
478 static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
479                                      0x0d, 0x01, 0x07, 0x01};
480 
481 // 1.2.840.113549.1.7.6
482 static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
483                                               0x0d, 0x01, 0x07, 0x06};
484 
485 // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
486 // PKCS#12 structure.
PKCS12_handle_content_info(CBS * content_info,struct pkcs12_context * ctx)487 static int PKCS12_handle_content_info(CBS *content_info,
488                                       struct pkcs12_context *ctx) {
489   CBS content_type, wrapped_contents, contents;
490   int ret = 0;
491   uint8_t *storage = NULL;
492 
493   if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
494       !CBS_get_asn1(content_info, &wrapped_contents,
495                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
496       CBS_len(content_info) != 0) {
497     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
498     goto err;
499   }
500 
501   if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
502                     sizeof(kPKCS7EncryptedData))) {
503     // See https://tools.ietf.org/html/rfc2315#section-13.
504     //
505     // PKCS#7 encrypted data inside a PKCS#12 structure is generally an
506     // encrypted certificate bag and it's generally encrypted with 40-bit
507     // RC2-CBC.
508     CBS version_bytes, eci, contents_type, ai, encrypted_contents;
509     uint8_t *out;
510     size_t out_len;
511 
512     if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
513         !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
514         // EncryptedContentInfo, see
515         // https://tools.ietf.org/html/rfc2315#section-10.1
516         !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
517         !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
518         // AlgorithmIdentifier, see
519         // https://tools.ietf.org/html/rfc5280#section-4.1.1.2
520         !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
521         !CBS_get_asn1_implicit_string(
522             &eci, &encrypted_contents, &storage,
523             CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
524       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
525       goto err;
526     }
527 
528     if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
529       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
530       goto err;
531     }
532 
533     if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password,
534                            ctx->password_len, CBS_data(&encrypted_contents),
535                            CBS_len(&encrypted_contents))) {
536       goto err;
537     }
538 
539     CBS safe_contents;
540     CBS_init(&safe_contents, out, out_len);
541     ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
542     OPENSSL_free(out);
543   } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
544     CBS octet_string_contents;
545 
546     if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
547                       CBS_ASN1_OCTETSTRING)) {
548       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
549       goto err;
550     }
551 
552     ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
553                                  PKCS12_handle_safe_bag);
554   } else {
555     // Unknown element type - ignore it.
556     ret = 1;
557   }
558 
559 err:
560   OPENSSL_free(storage);
561   return ret;
562 }
563 
pkcs12_check_mac(int * out_mac_ok,const char * password,size_t password_len,const CBS * salt,unsigned iterations,const EVP_MD * md,const CBS * authsafes,const CBS * expected_mac)564 static int pkcs12_check_mac(int *out_mac_ok, const char *password,
565                             size_t password_len, const CBS *salt,
566                             unsigned iterations, const EVP_MD *md,
567                             const CBS *authsafes, const CBS *expected_mac) {
568   int ret = 0;
569   uint8_t hmac_key[EVP_MAX_MD_SIZE];
570   if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt),
571                       PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key,
572                       md)) {
573     goto err;
574   }
575 
576   uint8_t hmac[EVP_MAX_MD_SIZE];
577   unsigned hmac_len;
578   if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes),
579                    CBS_len(authsafes), hmac, &hmac_len)) {
580     goto err;
581   }
582 
583   *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len);
584 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
585   *out_mac_ok = 1;
586 #endif
587   ret = 1;
588 
589 err:
590   OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
591   return ret;
592 }
593 
594 
PKCS12_get_key_and_certs(EVP_PKEY ** out_key,STACK_OF (X509)* out_certs,CBS * ber_in,const char * password)595 int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
596                              CBS *ber_in, const char *password) {
597   uint8_t *storage = NULL;
598   CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
599   uint64_t version;
600   int ret = 0;
601   struct pkcs12_context ctx;
602   const size_t original_out_certs_len = sk_X509_num(out_certs);
603 
604   // The input may be in BER format.
605   if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) {
606     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
607     return 0;
608   }
609 
610   *out_key = NULL;
611   OPENSSL_memset(&ctx, 0, sizeof(ctx));
612 
613   // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
614   // four.
615   if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
616       CBS_len(&in) != 0 ||
617       !CBS_get_asn1_uint64(&pfx, &version)) {
618     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
619     goto err;
620   }
621 
622   if (version < 3) {
623     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
624     goto err;
625   }
626 
627   if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
628     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
629     goto err;
630   }
631 
632   if (CBS_len(&pfx) == 0) {
633     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
634     goto err;
635   }
636 
637   if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
638     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
639     goto err;
640   }
641 
642   // authsafe is a PKCS#7 ContentInfo. See
643   // https://tools.ietf.org/html/rfc2315#section-7.
644   if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
645       !CBS_get_asn1(&authsafe, &wrapped_authsafes,
646                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
647     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
648     goto err;
649   }
650 
651   // The content type can either be data or signedData. The latter indicates
652   // that it's signed by a public key, which isn't supported.
653   if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
654     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
655     goto err;
656   }
657 
658   if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
659     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
660     goto err;
661   }
662 
663   ctx.out_key = out_key;
664   ctx.out_certs = out_certs;
665   ctx.password = password;
666   ctx.password_len = password != NULL ? strlen(password) : 0;
667 
668   // Verify the MAC.
669   {
670     CBS mac, salt, expected_mac;
671     if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) {
672       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
673       goto err;
674     }
675 
676     const EVP_MD *md = EVP_parse_digest_algorithm(&mac);
677     if (md == NULL) {
678       goto err;
679     }
680 
681     if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
682         !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
683       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
684       goto err;
685     }
686 
687     // The iteration count is optional and the default is one.
688     uint64_t iterations = 1;
689     if (CBS_len(&mac_data) > 0) {
690       if (!CBS_get_asn1_uint64(&mac_data, &iterations) ||
691           !pkcs12_iterations_acceptable(iterations)) {
692         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
693         goto err;
694       }
695     }
696 
697     int mac_ok;
698     if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
699                           iterations, md, &authsafes, &expected_mac)) {
700       goto err;
701     }
702     if (!mac_ok && ctx.password_len == 0) {
703       // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty
704       // password is encoded as {0, 0}. Some implementations use the empty byte
705       // array for "no password". OpenSSL considers a non-NULL password as {0,
706       // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing
707       // code, tries both options. We match this behavior.
708       ctx.password = ctx.password != NULL ? NULL : "";
709       if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
710                             iterations, md, &authsafes, &expected_mac)) {
711         goto err;
712       }
713     }
714     if (!mac_ok) {
715       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
716       goto err;
717     }
718   }
719 
720   // authsafes contains a series of PKCS#7 ContentInfos.
721   if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
722     goto err;
723   }
724 
725   ret = 1;
726 
727 err:
728   OPENSSL_free(storage);
729   if (!ret) {
730     EVP_PKEY_free(*out_key);
731     *out_key = NULL;
732     while (sk_X509_num(out_certs) > original_out_certs_len) {
733       X509 *x509 = sk_X509_pop(out_certs);
734       X509_free(x509);
735     }
736   }
737 
738   return ret;
739 }
740 
PKCS12_PBE_add(void)741 void PKCS12_PBE_add(void) {}
742 
743 struct pkcs12_st {
744   uint8_t *ber_bytes;
745   size_t ber_len;
746 };
747 
d2i_PKCS12(PKCS12 ** out_p12,const uint8_t ** ber_bytes,size_t ber_len)748 PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
749                    size_t ber_len) {
750   PKCS12 *p12;
751 
752   p12 = OPENSSL_malloc(sizeof(PKCS12));
753   if (!p12) {
754     return NULL;
755   }
756 
757   p12->ber_bytes = OPENSSL_malloc(ber_len);
758   if (!p12->ber_bytes) {
759     OPENSSL_free(p12);
760     return NULL;
761   }
762 
763   OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len);
764   p12->ber_len = ber_len;
765   *ber_bytes += ber_len;
766 
767   if (out_p12) {
768     PKCS12_free(*out_p12);
769 
770     *out_p12 = p12;
771   }
772 
773   return p12;
774 }
775 
d2i_PKCS12_bio(BIO * bio,PKCS12 ** out_p12)776 PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
777   size_t used = 0;
778   BUF_MEM *buf;
779   const uint8_t *dummy;
780   static const size_t kMaxSize = 256 * 1024;
781   PKCS12 *ret = NULL;
782 
783   buf = BUF_MEM_new();
784   if (buf == NULL) {
785     return NULL;
786   }
787   if (BUF_MEM_grow(buf, 8192) == 0) {
788     goto out;
789   }
790 
791   for (;;) {
792     int n = BIO_read(bio, &buf->data[used], buf->length - used);
793     if (n < 0) {
794       if (used == 0) {
795         goto out;
796       }
797       // Workaround a bug in node.js. It uses a memory BIO for this in the wrong
798       // mode.
799       n = 0;
800     }
801 
802     if (n == 0) {
803       break;
804     }
805     used += n;
806 
807     if (used < buf->length) {
808       continue;
809     }
810 
811     if (buf->length > kMaxSize ||
812         BUF_MEM_grow(buf, buf->length * 2) == 0) {
813       goto out;
814     }
815   }
816 
817   dummy = (uint8_t*) buf->data;
818   ret = d2i_PKCS12(out_p12, &dummy, used);
819 
820 out:
821   BUF_MEM_free(buf);
822   return ret;
823 }
824 
d2i_PKCS12_fp(FILE * fp,PKCS12 ** out_p12)825 PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
826   BIO *bio;
827   PKCS12 *ret;
828 
829   bio = BIO_new_fp(fp, 0 /* don't take ownership */);
830   if (!bio) {
831     return NULL;
832   }
833 
834   ret = d2i_PKCS12_bio(bio, out_p12);
835   BIO_free(bio);
836   return ret;
837 }
838 
i2d_PKCS12(const PKCS12 * p12,uint8_t ** out)839 int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) {
840   if (p12->ber_len > INT_MAX) {
841     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
842     return -1;
843   }
844 
845   if (out == NULL) {
846     return (int)p12->ber_len;
847   }
848 
849   if (*out == NULL) {
850     *out = OPENSSL_malloc(p12->ber_len);
851     if (*out == NULL) {
852       OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
853       return -1;
854     }
855     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
856   } else {
857     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
858     *out += p12->ber_len;
859   }
860   return (int)p12->ber_len;
861 }
862 
i2d_PKCS12_bio(BIO * bio,const PKCS12 * p12)863 int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) {
864   return BIO_write_all(bio, p12->ber_bytes, p12->ber_len);
865 }
866 
i2d_PKCS12_fp(FILE * fp,const PKCS12 * p12)867 int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) {
868   BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */);
869   if (bio == NULL) {
870     return 0;
871   }
872 
873   int ret = i2d_PKCS12_bio(bio, p12);
874   BIO_free(bio);
875   return ret;
876 }
877 
PKCS12_parse(const PKCS12 * p12,const char * password,EVP_PKEY ** out_pkey,X509 ** out_cert,STACK_OF (X509)** out_ca_certs)878 int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
879                  X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
880   CBS ber_bytes;
881   STACK_OF(X509) *ca_certs = NULL;
882   char ca_certs_alloced = 0;
883 
884   if (out_ca_certs != NULL && *out_ca_certs != NULL) {
885     ca_certs = *out_ca_certs;
886   }
887 
888   if (!ca_certs) {
889     ca_certs = sk_X509_new_null();
890     if (ca_certs == NULL) {
891       OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
892       return 0;
893     }
894     ca_certs_alloced = 1;
895   }
896 
897   CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
898   if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
899     if (ca_certs_alloced) {
900       sk_X509_free(ca_certs);
901     }
902     return 0;
903   }
904 
905   *out_cert = NULL;
906   if (sk_X509_num(ca_certs) > 0) {
907     *out_cert = sk_X509_shift(ca_certs);
908   }
909 
910   if (out_ca_certs) {
911     *out_ca_certs = ca_certs;
912   } else {
913     sk_X509_pop_free(ca_certs, X509_free);
914   }
915 
916   return 1;
917 }
918 
PKCS12_verify_mac(const PKCS12 * p12,const char * password,int password_len)919 int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
920                       int password_len) {
921   if (password == NULL) {
922     if (password_len != 0) {
923       return 0;
924     }
925   } else if (password_len != -1 &&
926              (password[password_len] != 0 ||
927               OPENSSL_memchr(password, 0, password_len) != NULL)) {
928     return 0;
929   }
930 
931   EVP_PKEY *pkey = NULL;
932   X509 *cert = NULL;
933   if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
934     ERR_clear_error();
935     return 0;
936   }
937 
938   EVP_PKEY_free(pkey);
939   X509_free(cert);
940 
941   return 1;
942 }
943 
944 // add_bag_attributes adds the bagAttributes field of a SafeBag structure,
945 // containing the specified friendlyName and localKeyId attributes.
add_bag_attributes(CBB * bag,const char * name,const uint8_t * key_id,size_t key_id_len)946 static int add_bag_attributes(CBB *bag, const char *name, const uint8_t *key_id,
947                               size_t key_id_len) {
948   if (name == NULL && key_id_len == 0) {
949     return 1;  // Omit the OPTIONAL SET.
950   }
951   // See https://tools.ietf.org/html/rfc7292#section-4.2.
952   CBB attrs, attr, oid, values, value;
953   if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) {
954     return 0;
955   }
956   if (name != NULL) {
957     // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
958     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
959         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
960         !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) ||
961         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
962         !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) {
963       return 0;
964     }
965     // Convert the friendly name to a BMPString.
966     CBS name_cbs;
967     CBS_init(&name_cbs, (const uint8_t *)name, strlen(name));
968     while (CBS_len(&name_cbs) != 0) {
969       uint32_t c;
970       if (!cbs_get_utf8(&name_cbs, &c) ||
971           !cbb_add_ucs2_be(&value, c)) {
972         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
973         return 0;
974       }
975     }
976   }
977   if (key_id_len != 0) {
978     // See https://tools.ietf.org/html/rfc2985, section 5.5.2.
979     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
980         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
981         !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) ||
982         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
983         !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) ||
984         !CBB_add_bytes(&value, key_id, key_id_len)) {
985       return 0;
986     }
987   }
988   return CBB_flush_asn1_set_of(&attrs) &&
989          CBB_flush(bag);
990 }
991 
add_cert_bag(CBB * cbb,X509 * cert,const char * name,const uint8_t * key_id,size_t key_id_len)992 static int add_cert_bag(CBB *cbb, X509 *cert, const char *name,
993                         const uint8_t *key_id, size_t key_id_len) {
994   CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value;
995   if (// See https://tools.ietf.org/html/rfc7292#section-4.2.
996       !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) ||
997       !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
998       !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) ||
999       !CBB_add_asn1(&bag, &bag_contents,
1000                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1001       // See https://tools.ietf.org/html/rfc7292#section-4.2.3.
1002       !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) ||
1003       !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
1004       !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) ||
1005       !CBB_add_asn1(&cert_bag, &wrapped_cert,
1006                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1007       !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) {
1008     return 0;
1009   }
1010   uint8_t *buf;
1011   int len = i2d_X509(cert, NULL);
1012   if (len < 0 ||
1013       !CBB_add_space(&cert_value, &buf, (size_t)len) ||
1014       i2d_X509(cert, &buf) < 0 ||
1015       !add_bag_attributes(&bag, name, key_id, key_id_len) ||
1016       !CBB_flush(cbb)) {
1017     return 0;
1018   }
1019   return 1;
1020 }
1021 
make_cert_safe_contents(uint8_t ** out_data,size_t * out_len,X509 * cert,const STACK_OF (X509)* chain,const char * name,const uint8_t * key_id,size_t key_id_len)1022 static int make_cert_safe_contents(uint8_t **out_data, size_t *out_len,
1023                                    X509 *cert, const STACK_OF(X509) *chain,
1024                                    const char *name, const uint8_t *key_id,
1025                                    size_t key_id_len) {
1026   int ret = 0;
1027   CBB cbb, safe_contents;
1028   if (!CBB_init(&cbb, 0) ||
1029       !CBB_add_asn1(&cbb, &safe_contents, CBS_ASN1_SEQUENCE) ||
1030       (cert != NULL &&
1031        !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) {
1032     goto err;
1033   }
1034 
1035   for (size_t i = 0; i < sk_X509_num(chain); i++) {
1036     // Only the leaf certificate gets attributes.
1037     if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) {
1038       goto err;
1039     }
1040   }
1041 
1042   ret = CBB_finish(&cbb, out_data, out_len);
1043 
1044 err:
1045   CBB_cleanup(&cbb);
1046   return ret;
1047 }
1048 
add_encrypted_data(CBB * out,int pbe_nid,const char * password,size_t password_len,unsigned iterations,const uint8_t * in,size_t in_len)1049 static int add_encrypted_data(CBB *out, int pbe_nid, const char *password,
1050                               size_t password_len, unsigned iterations,
1051                               const uint8_t *in, size_t in_len) {
1052   uint8_t salt[PKCS5_SALT_LEN];
1053   if (!RAND_bytes(salt, sizeof(salt))) {
1054     return 0;
1055   }
1056 
1057   int ret = 0;
1058   EVP_CIPHER_CTX ctx;
1059   EVP_CIPHER_CTX_init(&ctx);
1060   CBB content_info, type, wrapper, encrypted_data, encrypted_content_info,
1061       inner_type, encrypted_content;
1062   if (// Add the ContentInfo wrapping.
1063       !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) ||
1064       !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) ||
1065       !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) ||
1066       !CBB_add_asn1(&content_info, &wrapper,
1067                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1068       // See https://tools.ietf.org/html/rfc2315#section-13.
1069       !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) ||
1070       !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) ||
1071       // See https://tools.ietf.org/html/rfc2315#section-10.1.
1072       !CBB_add_asn1(&encrypted_data, &encrypted_content_info,
1073                     CBS_ASN1_SEQUENCE) ||
1074       !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) ||
1075       !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) ||
1076       // Set up encryption and fill in contentEncryptionAlgorithm.
1077       !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid,
1078                                iterations, password, password_len, salt,
1079                                sizeof(salt)) ||
1080       // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so
1081       // it inherits the inner tag's constructed bit.
1082       !CBB_add_asn1(&encrypted_content_info, &encrypted_content,
1083                     CBS_ASN1_CONTEXT_SPECIFIC | 0)) {
1084     goto err;
1085   }
1086 
1087   size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx);
1088   if (max_out < in_len) {
1089     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
1090     goto err;
1091   }
1092 
1093   uint8_t *ptr;
1094   int n1, n2;
1095   if (!CBB_reserve(&encrypted_content, &ptr, max_out) ||
1096       !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) ||
1097       !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
1098       !CBB_did_write(&encrypted_content, n1 + n2) ||
1099       !CBB_flush(out)) {
1100     goto err;
1101   }
1102 
1103   ret = 1;
1104 
1105 err:
1106   EVP_CIPHER_CTX_cleanup(&ctx);
1107   return ret;
1108 }
1109 
PKCS12_create(const char * password,const char * name,const EVP_PKEY * pkey,X509 * cert,const STACK_OF (X509)* chain,int key_nid,int cert_nid,int iterations,int mac_iterations,int key_type)1110 PKCS12 *PKCS12_create(const char *password, const char *name,
1111                       const EVP_PKEY *pkey, X509 *cert,
1112                       const STACK_OF(X509)* chain, int key_nid, int cert_nid,
1113                       int iterations, int mac_iterations, int key_type) {
1114   if (key_nid == 0) {
1115     key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
1116   }
1117   if (cert_nid == 0) {
1118     cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC;
1119   }
1120   if (iterations == 0) {
1121     iterations = PKCS5_DEFAULT_ITERATIONS;
1122   }
1123   if (mac_iterations == 0) {
1124     mac_iterations = 1;
1125   }
1126   if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension
1127       // which we do not currently support.
1128       key_type != 0 ||
1129       // In OpenSSL, -1 here means to use no encryption, which we do not
1130       // currently support.
1131       key_nid < 0 || cert_nid < 0 ||
1132       // In OpenSSL, -1 here means to omit the MAC, which we do not
1133       // currently support. Omitting it is also invalid for a password-based
1134       // PKCS#12 file.
1135       mac_iterations < 0 ||
1136       // Don't encode empty objects.
1137       (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) {
1138     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS);
1139     return 0;
1140   }
1141 
1142   // Note that |password| may be NULL to specify no password, rather than the
1143   // empty string. They are encoded differently in PKCS#12. (One is the empty
1144   // byte array and the other is NUL-terminated UCS-2.)
1145   size_t password_len = password != NULL ? strlen(password) : 0;
1146 
1147   uint8_t key_id[EVP_MAX_MD_SIZE];
1148   unsigned key_id_len = 0;
1149   if (cert != NULL && pkey != NULL) {
1150     if (!X509_check_private_key(cert, pkey) ||
1151         // Matching OpenSSL, use the SHA-1 hash of the certificate as the local
1152         // key ID. Some PKCS#12 consumers require one to connect the private key
1153         // and certificate.
1154         !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) {
1155       return 0;
1156     }
1157   }
1158 
1159   // See https://tools.ietf.org/html/rfc7292#section-4.
1160   PKCS12 *ret = NULL;
1161   CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data,
1162       content_infos;
1163   uint8_t mac_key[EVP_MAX_MD_SIZE];
1164   if (!CBB_init(&cbb, 0) ||
1165       !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) ||
1166       !CBB_add_asn1_uint64(&pfx, 3) ||
1167       // auth_safe is a data ContentInfo.
1168       !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) ||
1169       !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) ||
1170       !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1171       !CBB_add_asn1(&auth_safe, &auth_safe_wrapper,
1172                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1173       !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data,
1174                     CBS_ASN1_OCTETSTRING) ||
1175       // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s
1176       // contains a SEQUENCE of ContentInfos.
1177       !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) {
1178     goto err;
1179   }
1180 
1181   // If there are any certificates, place them in CertBags wrapped in a single
1182   // encrypted ContentInfo.
1183   if (cert != NULL || sk_X509_num(chain) > 0) {
1184     uint8_t *data;
1185     size_t len;
1186     if (!make_cert_safe_contents(&data, &len, cert, chain, name, key_id,
1187                                  key_id_len)) {
1188       goto err;
1189     }
1190     int ok = add_encrypted_data(&content_infos, cert_nid, password,
1191                                 password_len, iterations, data, len);
1192     OPENSSL_free(data);
1193     if (!ok) {
1194       goto err;
1195     }
1196   }
1197 
1198   // If there is a key, place it in a single PKCS8ShroudedKeyBag wrapped in an
1199   // unencrypted ContentInfo. (One could also place it in a KeyBag inside an
1200   // encrypted ContentInfo, but OpenSSL does not do this and some PKCS#12
1201   // consumers do not support KeyBags.)
1202   if (pkey != NULL) {
1203     CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid,
1204         bag_contents;
1205     if (// Add another data ContentInfo.
1206         !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1207         !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1208         !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1209         !CBB_add_asn1(&content_info, &wrapper,
1210                       CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1211         !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1212         !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) ||
1213         // Add a SafeBag containing a PKCS8ShroudedKeyBag.
1214         !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) ||
1215         !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
1216         !CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag,
1217                        sizeof(kPKCS8ShroudedKeyBag)) ||
1218         !CBB_add_asn1(&bag, &bag_contents,
1219                       CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1220         !PKCS8_marshal_encrypted_private_key(
1221             &bag_contents, key_nid, NULL, password, password_len,
1222             NULL /* generate a random salt */, 0 /* use default salt length */,
1223             iterations, pkey) ||
1224         !add_bag_attributes(&bag, name, key_id, key_id_len) ||
1225         !CBB_flush(&content_infos)) {
1226       goto err;
1227     }
1228   }
1229 
1230   // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC
1231   // covers |auth_safe_data|.
1232   const EVP_MD *mac_md = EVP_sha1();
1233   uint8_t mac_salt[PKCS5_SALT_LEN];
1234   uint8_t mac[EVP_MAX_MD_SIZE];
1235   unsigned mac_len;
1236   if (!CBB_flush(&auth_safe_data) ||
1237       !RAND_bytes(mac_salt, sizeof(mac_salt)) ||
1238       !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt),
1239                       PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md),
1240                       mac_key, mac_md) ||
1241       !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data),
1242             CBB_len(&auth_safe_data), mac, &mac_len)) {
1243     goto err;
1244   }
1245 
1246   CBB mac_data, digest_info, mac_cbb, mac_salt_cbb;
1247   if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) ||
1248       !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) ||
1249       !EVP_marshal_digest_algorithm(&digest_info, mac_md) ||
1250       !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) ||
1251       !CBB_add_bytes(&mac_cbb, mac, mac_len) ||
1252       !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) ||
1253       !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) ||
1254       // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default
1255       // is for historical reasons and its use is deprecated." Thus we
1256       // explicitly encode the iteration count, though it is not valid DER.
1257       !CBB_add_asn1_uint64(&mac_data, mac_iterations)) {
1258     goto err;
1259   }
1260 
1261   ret = OPENSSL_malloc(sizeof(PKCS12));
1262   if (ret == NULL ||
1263       !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) {
1264     OPENSSL_free(ret);
1265     ret = NULL;
1266     goto err;
1267   }
1268 
1269 err:
1270   OPENSSL_cleanse(mac_key, sizeof(mac_key));
1271   CBB_cleanup(&cbb);
1272   return ret;
1273 }
1274 
PKCS12_free(PKCS12 * p12)1275 void PKCS12_free(PKCS12 *p12) {
1276   if (p12 == NULL) {
1277     return;
1278   }
1279   OPENSSL_free(p12->ber_bytes);
1280   OPENSSL_free(p12);
1281 }
1282